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Abstract

A study is carried out of the elementary theory of quotients of sym-
metric groups in a similar spirit to [10]. Apart from the trivial and al-
ternating subgroups, the normal subgroups of the full symmetric group
S(p) on an infinite cardinal p are all of the form S.(u) = the sub-
group consisting of elements whose support has cardinality < k, for some
k < pt. A many-sorted structure My, is defined which, it is shown,
encapsulates the first order properties of the group Sx(p)/Sx(p). Specif-
ically, these two structures are (uniformly) bi-interpretable, where the
interpretation of My, in Sx(p)/Sk(p) is in the usual sense, but in
the other direction is in a weaker sense, which is nevertheless sufficient
to transfer elementary equivalence. By considering separately the cases
cf(r) > 2% cf(k) < 280 < /Ry < & < 2% and kK = Ny, we make
a further analysis of the first order theory of Sx(u)/S«(n), introducing
many-sorted second order structures NV, wa all of whose sorts have cardi-
nality at most 2%°, and in terms of which we can completely characterize
the elementary theory of the groups Sx(pu)/Sx ().

1 Introduction

In [5], [6], [10], and [11] a study was made of the elementary theory of infinite
symmetric groups, and a number of natural questions arising were answered. In
this paper we examine the quotients of normal subgroups of infinite symmetric
groups in the light of similar questions. Now the normal subgroups of infinite
symmetric groups are easily describable in terms of the cardinalities of support
sets. More exactly, the support of g € Sym(€) is the set of elements of 2 moved
by g. The non-trivial normal subgroups of Sym(u) where 4 is an infinite cardinal
are then of the form S, (u) = {g € Sym(u) : |supp g| < } for some cardinal &,

1 Research supported by the Israel Science Foundation, administered by the Israel Academy
of Sciences and Humanities, Publ. No. 605.



Paper Sh:605, version 1998-05-19.10. See https://shelah.logic.at/papers/605/ for possible updates.

and the alternating group A(u), (see [9] for example), and the objects of study
here are the factors Sy(u)/Sk(n) for k < A.

The problem of which of these groups are isomorphic is mentioned in [9],
but we concentrate exclusively here on the situation with regard to elementary
equivalence. We shall find that many of the ideas from [10] carry through,
though with more complicated proofs.

Interpretability results about the groups Sx(u)/Sk(u) also provide infor-
mation about their outer automorphisms, as was explored for instance for
Sym(w)/S,(w) in [1], and in a related context in [3]. A survey of this as-
pect is given in [12]. The result proved in [1] is that the outer automorphism
group of Sym(w)/S,(w) is infinite cyclic, with a typical outer automorphism
being induced by the map n — n + 1. The method used there incorporates a
second order interpretation of the relevant ring of sets in the quotient group.
One of things we are able to show here is that this can actually be done in a
first order fashion. The existence of this interpretation is also applied in [12]
to show that the outer automorphism group of Sym(u)/S,, (1) is infinite cyclic
for any p, extending the result from [1]. What the outer automorphism group
of S\(u)/Sk(p) is in general is still open—it seems conceivable that it is trivial
whenever k > Ng.

The first order interpretation of the ring of sets in the quotient group was
carried out originally by Rubin in [7] (see also [8]) by a different method. Two
of his main results are [7] Theorems 4.2, 4.3 which state:

(1) {(Sx(1)/ S (1), Broapss ---) 1 £ < A< '}

is interpretable in

(2) {(Sx(1)/S(n),0) 1k <A< '}

where if Py(u), Px(n) are the rings of subsets of p of cardinality < A\, < &
respectively, then By, is the boolean algebra generated by Px(u)/Px (1) and
... signifies the ‘natural relations and functions’,
(2)
2){(S()/Sx () : & < pyef () > 2%}

is bi-interpretable (in a suitable sense) with

{{(ZNO’ [K7M]7P(2N0)+((2NO U [K’M])z); <7E)} IS /’L’Cf(’%) > ZNO}

where [k, ] = {v : v is a cardinal and K < v < pu}, and (a,b,R) € E < (a,b) €
R € Py (2% U, 1])?).

Our corresponding results are Theorems 2.6, 4.3, and Corollaries 3.9, 4.4.
Combining Rubin’s result with (1) and (2) with [10],[11]gives a full classification
of the elementary types of the groups in the class {(S(u)/Sk (1) : & < w, cf (k) >
280} that is two cardinls. The case cf(x) < 2% which Rubin gives as an open
question is treated in our final section.
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The notation used is fairly standard. We use s, \, i, and v to stand for
cardinals (usually infinite), and |X| for the cardinality of the set X. If Q is any
set we write Sym(Q2) for the group of all permutations of  (1-1 maps from
Q onto itself), with permutations acting on the right, and we write S(u) for
Sym(u) for any cardinal p. For g € Sym(Q2) we let supp g be the support of g.
If we are working in Sy (u)/Sk (1) (where Sy(p), Sk (1) are as introduced above)
then we refer to sets of cardinality less than k as small. We use overlines such
as T to stand for finite sequences (‘tuples’) (z1,x2,...,2,). By a permutation
representation or action of a group G we understand a homomorphism 6 from
G into Sym(X) for some set X. The representation is faithful if 6 is 1-1, it is
transitive if for any z,y € X there is g € G such that x(gf) = y, and it is trivial
if its image is the trivial group.

If X is a subset (or sequence of elements) of a group G, we let (X) denote
the subgroup generated by X. If g, h € G we write g" for the conjugate h~'gh
of g by h. If § is a sequence of members of G and h € G, we write g" for the
sequence whose ith entry is g7, and if g, h are sequences of members of G of the
same length, we let g h be the sequence whose ith entry is g;h;. If i = g, for
some h, g, and g, are said to be conjugate. If N < G and f = (f1,...,f.) € G"
we let N.f = (Nfi,...,Nfn).

We write P(X) for the power set of the set X, and P,(X) for the set of
subsets of X of cardinality less than x. Then P(X) is a boolean algebra, and each
P,.(X) for  infinite is a ring of sets. Moreover, if Rg <k < X\ < | X|T, P (X) is
an ideal of Py (X), so we may study the quotient ring Py (X)/P.(X), which is a
boolean algebra just in the case where A = | X | (that is, where Py (X) = P(X)).

In the remainder of this introductory section we give an outline of the main
arguments of the paper.

Our analysis of the quotient groups Sy (p)/Sx (1) is carried out using certain
many sorted structures M, and N2, - (There is also a simpler version M¥* u
of M, applicable just in the case cf(k) > 2%0.) These structures are devised
with the object of describing the permutation action of tuples of elements of
Sx(p), modulo small sets. The essential properties of such an n-tuple g =
(91,92, --,9n) are described by its action on the orbits of the subgroup (g). In
fact, if g; and g, are n-tuples of elements of Sy(u) then g, and g, are conjugate
if and only if the orbits of (g;) and (g,) can be put into 1-1 correspondence in
such a way that the action of g; on each orbit of (g;) is isomorphic to that of g,
on the corresponding orbit of (g,). Similar remarks apply in the quotient group,
except that we have to allow fewer than x ‘mistakes’ (by passing to equivalence
classes of a suitable equivalence relation).

These considerations lead us to observe that what should represent g in
Mia, is a list of how many (g)-orbits there are of the various possible iso-
morphism types, where by ‘isomorphic’ here we mean ‘under the action of g’.
Included among the sorts of My, are therefore, for each positive integer n,
the family 1.5, of isomorphism types of pairs (A, f), where f is an n-tuple of
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permutations of A acting transitively on A. We keep track of the ‘list’ of how
many orbits there are of the various types by means of a function A from IS,
to cardinals, and the family of all these forms a further collection of sorts F,.
In F,, we have to identify two functions under an equivalence relation &, if they
arise from members of Sy(u) lying in the same coset of Sy (u).

Already it is clear that M, will have second order features (not surpris-
ingly, since elements of Sy () are subsets of u?), but it is still officially construed
at this stage as a first order structure. The main reason for this is that at present
we cannot identify the elements of F,, as functions from 1.5, to Card (= the set
of cardinals < ), as we would like, because, as just remarked, the members of F,
are &,-classes, and &, is not in general compatible with application. This point
is responsible for many of the complications in the paper. In the special case
cf(k) > 2%, we can so identify them, and the analysis is considerably simplified.
If we do not assume cf(x) > 280, then the best we can do to point the connection
between I.5,, and F,, is to consider an ‘application’ function App,, which acts on
F,, x IS,, and gives values in Card™ ={v € Card: v =0V k < v < A}. This
then will be compatible with &,,, which is why all values < k are replaced by O.
The final sort in M, is therefore Card™, and various relations and functions
are included in its signature to express which of its properties mirror the first
order properties of Sx(p)/Sk(1). The most important of these is App,, but we
also need relations Eq and Prod corresponding to ‘equality’ and ‘product in
the group’, and ‘projections’ Proj, to handle existential quantification. Here
Eq C Fy, Prod C Fs, and Proj, is a function from F,, 1, to F,,. Corresponding
relations Eq', Prod', and Proj} are defined on the IS,, which in ‘nice’ cases
are sufficient to express Eq, Prod, and Proj,.

The minimum goal in defining the structures My, is that Sx, (1t1)/Sk, (1t1)
and Sh, (p2)/Sk, (p2) should be elementarily equivalent if and only if M, x, .,
and M., x, ., are (Corollary 4.4), and in a sense this ‘solves the problem’ of
which of the quotient groups are elementarily equivalent. More precise infor-
mation is however avalaible. In particular, M, is ‘explicitly interpretable’ in
G = Sx(1)/ S, (); this is ‘interpretability’ in the usual sense, meaning that each
sort and relation and function of M., can be represented by a definable (with-
out parameters, in fact) relation on some power of G. In the other direction we
cannot hope for explicit interpretability, as one sees just by looking at the cardi-
nalities of the structures; a weaker property which we call ‘semi-interpretability’
(Definition 2.5) is established here, which is still strong enough to transfer ele-
mentary equivalence. The fact that Sy(u)/S. (1) is semi-interpretable in M, x,
is shown in Theorem 2.6, and essentially involves making precise the discussion
in the previous paragraph. It goes by induction on formulae of the language of
group theory. For the basis cases we use Fq and Prod, and for the key induction
step (existential quantification), Proj,.

The method for interpreting M., in G = Sx(u)/Sk () is described in Sec-
tions 3 and 4. In Section 3 we show how the quotient ring of sets Py (1) /Py (1)
can be interpreted. The ideas behind McKenzie’s corresponding calculations for
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the symmetric group [5] are followed, but with considerably greater complica-
tions. The key point is to express disjointness of supports (‘almost disjointness’
actually, meaning that they intersect in a small set). Now clearly, if two permu-
tations have almost disjoint supports, then they commute in G. The converse
is very far from true, but we follow this as a first idea, and study the configura-
tions of certain commuting elements in sufficient details to express disjointness.
Specifically we consider sequences g of length 60 which satisfy the diagram
(which we write alts) of A(5), the alternating group on 5 symbols, in some
fixed enumeration. This group is chosen because it is simple, and its outer au-
tomorphisms and transitive permutation representations are easy to describe.
Now apart from a small set, any 60-tuple satisfying alts is determined up to
conjugacy by how many orbits it has of the (finitely many) possible transitive
permutation representations. Indeed this is precisely the information given by
the element of Fgg corresponding to such a tuple. By means of a (rather tech-
nical) analysis of how these interact we can derive a formula which holds for
two elements satisfying alts if and only if (they have a special form and) their
supports are almost disjoint. Using this we find another formula which says that
two involutions have almost disjoint supports, and elements of Py (u)/Py (1) are
then represented by (cosets of) involutions of G. This gives the interpretation
of the quotient ring of sets in G, and that of the action of G on Py (u)/Pr(u)
follows easily. Moreover, all the other items of the signature of M.y, can be
interpreted without much further difficulty, though there are some slight com-
plications in special cases, such as A = u* or kK = Ng. It is important that
we can distinguish each special case by a first order formula. For instance, the
structures in which A = u™ may be singled out by a formula saying that there
is a group element such that the only element disjoint from it is the identity (an
element which moves every element of x for instance).

Although we generally expect M, to have much smaller cardinality than
Sa(p)/Sk(p), and it expresses the structure of the group in a more compact
form, the M., still form a proper class, in view of the presence of the sort
Card~—. In Sections 5 and 6 we introduce the structures J\/E)\M, all of whose
sorts have cardinality < 2%, in order to be able to reduce the problem about
elementary equivalence of the groups to questions about ordinals of cardinality
< 2% In addition, the fact that M, is a ‘second order structure in disguise’
is brought more out into the open, since N. EA u genuinely is second order (hence
the superscript 2). The language used to describe N2, ., has first order variables
ranging over each of its sorts, and for each n-tuple of sorts, n-ary relations whose
ith place lies in the ith sort in the list. See Definitions 5.4 and 6.2. In some
cases we have to restrict the cardinality of the relations over which the second
order variables range.

Looking first at the more straightforward case, to indicate the main ideas,
suppose that cf (k) > 2% . We show that now App,, can genuinely be construed
as ‘application’, so that we may fully describe F,, in terms of 1.5, and Card™.
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What therefore controls the structure M, is Card™~, and more specifically its
order-type o = «(k, A, ). The crucial ordinals needed to describe the elemen-
tary theory of M.y, are found by writing « in ‘base 2 Canotor normal form’
where © = (2%)*, and the countable list of ordinals a, (the Cantor coeffi-
cients) and certain cofinalities o[ are what replace Card~ in N, SM. Theorem
5.5 asserts that NE/\M is (explicitly) interpretable in a reduct My, of My
(and hence in M, ). Non-empty subsets of Card™ of cardinality < © may be
encoded by members of Fy (we have to use Fy rather than F since |IS1]| = Rg
but [IS;| = 2%0), and it is not hard to express all the individual terms of the
base Q) Cantor normal form for . To express facts about cofinalities we have
to quantify over binary relations on Card~ of cardinality < 2, which may be
encoded using members of F5. To express the full second order logic described
above we use longer tuples from possibly higher Fjs.

The transfer of properties from N2, , to My, (M}, actually suffices in
this case) is not even by a semi-interpretation. Theorem 5.9 shows directly how
to express an arbitrary formula of the first order language of M, . by a second
order formula of the language of N, ,f)\#. Parameters are transferred using ‘k-
representations’, where this means that a tuple of elements of M7, L (of possibly
varying sorts) is represented by a (longer) tuple of elements of N 3)\# including
partial maps from IS, to IS, encoding «yq, . .., ap—1) and a0l

If cf(k) < 2%, we can additionally interpret in M., the base  Can-
tor normal form coefficients and cofinalities of the least ordinal a* such that
(37)(8 = v+ *) where x = Ng, so this information needs to be added to N2,
which now includes O‘Fo]v .. .,af‘k_” and o*l%, ... o*F=1 (and also cf(k)) as
additional sorts. As remarked above, since we do not now automatically know
that A > 2%, we have to restrict the second order variables of N ISM to range
over relations of cardinality < A. There are some additional complications in
the cases k < 2% and k = Ry, though in all cases the outline described in the
previous two paragraphs provides the basis of our analysis. Since the precise
definition of N2, ., depends on which of these cases applies, it is important that
they can all be distinguished by elementary formulae.

In summary the main conclusions are as follows. There are first order for-
mulae of the language of group theory distinguishing those Sy(u)/Sx(u) for
which A < g or A = pt, and also the cases cf(k) > 2%, cf(k) < 2% < g,
Ny < k < 2% and k = Ng. In the case A < p and cf(k) > 2% the following
holds:

for any given ordinals a;,a! < € there is a first order theory 7' in the
language of group theory such that

if k=Ng,A=N,, B+a=7,and ap,) = an, al™ = a” for each n,
then the first order theory of the group Sx(u)/Sx (1) is equal to T,

with similar statements in the other cases (including reference to the af‘n} Ll
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and so on corresponding to the exact definition of N2, )

2 The Basic Machinery

Since we are aiming at a two-way interpretation, where the technically most
involved step is the representation of many notions inside the quotient group
Sx(p)/ S, (1), we describe in this section the structure whose bi-interpretability
with this group is to be shown. In one direction this is interpretability in the
usual sense (called ‘explicit interpretability’ in [10]), but in the other only what
we may term ‘semi-interpretability’,—which is still sufficient for the transfer of
elementary properties. We suppose that g < x < A < pu*. The interpretation
is most straightforward when cf(x) > 2%, but we can handle the general case
at the expense of some additional work. In the main presentation we assume
k > N, indicate how the argument simplifies when cf(x) > 2%, and what extra
is required when k = Ng. We remark that in [7] Rubin showed how to interpret
the quotient ring Py (1)/Px (1) in the group, which is also one of our main goals,
though his methods were very different from those we use.

Definition 2.1 (i) For a finite sequence f = (fi, fo,---, fn) of members of
Sx(p) we let supp f =, supp f;.

(ii) For a positive integer n let IS, be the family of isomorphism classes of
pairs (A,g) where g € (Sym(A))"™ and (g) acts transitively on A (and if X < p,
then not every g; is equal to the identity).

(i1i) Card = {v : v a cardinal such that v < A}.

(iv) Card— = {0} U{v € Card : K < v}.

(v) If f € (Sx(p))™ let x = Chy be the function from 1S, to Card given by
Ch+((A,9)x~) = the number of orbits B of (f) such that (B, f) = (A, 7).

(vi) Chy, = {Chy : f € (Sx(w)"}.

(vii) For cardinals k1 < ko we define ko — K1 to be the least cardinal k3 such
that k1 + k3 = Ka, and we let |K1 — Ka| = |ka — K1| = K2 — K1.

(viti) We define an equivalence relation £, on Ch,, by letting x1En X2 if

SH{Ix1(t) — x2(t)] : t € IS, } < k.
(iz) For each n > 1 let F,, be the set of functions h : IS,, — Card such that

S Hnt) t€1S,} <\, and if x=p", > {h(t) :t € 1S,} = p,
modulo &, .

Remark 2.2 In ‘nice’ cases cf(k) > 2% we may replace Card by Card™, and
then the definition of Ch? 1s modified by replacing all values less than k by 0.
Corresponding to this, for x € Chy, we let x~(t) = x(t) if x(t) > k and x~ (t) =
0 otherwise. We consider this case further in section 5. If Kk = W, the definition
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of &, is modified; here we let x1Enx2 if D {|A¢]Ix1(t) — x2(t)| : t € IS} < Ny
where t = (A, 9)~ (and this says that x1(t) = x2(t) whenever A; is infinite,
and {t : x1(t) # x2(t)} is finite).

Lemma 2.3 (i) For any f € (Sx(p)" 2AChs(t) - t € ISy} < A
(i) For any function h from 1S, to Card such that ) {h(t) :t € IS, } <A,
and if A=y, 37 {h(t) : t € IS} = p, there is f € (Sx(u))"™ with Chy = h.
(iii) For f,g € (Sx(p)", Chz &, Chyg if and only if Se(p).f and S.(1).g are
conjugate.

Proof (i) For each t € I'S,,, Ch5(t) is the number of orbits of (f) on y of that
isomorphism type. Hence if A < p, ", Ch?(t) is equal to the number of non-

trivial orbits of (f) on u, which has cardinality at most |supp f|. But supp f
has cardinality less than A. If A = pt, 3", Ch+(t) equals the number of orbits

of (f) on p, which is < p < A. (If K = Ry, instead we have D {|A[.Ch3(t) : T €
IS,} <)

(ii) First suppose A < u. For each t € IS, choose a representative (A, g,;)
of that isomorphism type. Identify (J{A: x h(t) : t € I1S,} with a subset A
of u, and let f act on A; x h(t) as g, does and fix all points outside A. Then
for each t, (f) has precisely h(t) orbits of type t. If A = ut and S_{h(t) : t €
1S,} = p, where now the trivial isomorphism type is allowed, we may identify
U{A: x h(t) : t € IS,} with the whole of u. (If kK = Ng, h(t) is replaced by
[Adl.A(1).)

(iii) Altering a member of (Sx(u))™ on a set of cardinality < x does not

change its Chy,—value (modulo &,), so if S,i(u).fh = Sk(p).g it follows that
Ch/?h &, Chy. But h furnishes an isomorphism of (4, f) to (Ah, ?h) for each

orbit A of (f), and so Chy = Ch?h En Chy.

Conversely, if C’h7 &, Chg, by altering f on a set of cardinality less that
Kk we may suppose that Ch? = Chg. There is therefore a 1-1 correspondence

between the orbits of (f) and (g) which preserves the isomorphism type in 1.5,
and which maps singleton orbits to singleton orbits. Moreover this may be
chosen having support of size < A (since |supp f|, |suppg| < A). This gives rise
to the desired conjugacy h. O

Definition 2.4 Given the cardinals Kk, \, u we form a many-sorted structure
M = M\, with sorts grouped as follows:
sorts 1: a sort IS, for each n > 1 (having cardinality 2%° for n > 2,18, of
cardinality X ),
sort 2: Card~, (in which 0 and k, as the first two elements, are definable,
so do not need to be explicitly named),
sorts 3: a sort Fy, for eachn > 1.
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The signature taken is as follows:
unary relations Eq' on ISy and Prod' on 1S3 given by

Eq' ={teIS;:t=((Ag1,92)~ = g1 = g2},
Prod' = {t € IS : t = ((A, 1,92, 93))~ = G192 = g3},

for each n a binary relation Proj} C IS,.1 x IS, given by

Projl ={(t1,t2) € ISn41 x IS, : 341345391395 . .. gn+1(41 2 A,
N tl — ((Al7gl7 e 7g’n+1))'E A t2 = ((A2791‘A25 s 7971‘142))%)}7

< on sort 2, the usual ordering of cardinals,

for each n a function App,, from F,, x IS, to Card~ given by App,(z,y) = v
provided that for some h with (h)g, = x, h(y) = v (noting that the value of h(y)
is well-defined for v > k, and for v < k, all values are replaced by 0,—see the
definition of x~ above),

unary predicates Eq on sort Fy and Prod on sort Fs given by Eq(h), Prod(h)
hold if

D> An(t) st € ISy A(t=((A,91,92))= = g1 # g2)} =0,
Z{h(t) ite IS?) A (t = ((Av gla927g3))% — g192 7é 93)} = Oa

respectively, (where as the sorts 3 consist of functions modulo &,, saying that
these sums are zero means in effect that they are < k),

and functions Proj, from sort F, 1 to sort F,, such that if h : 15,11 — Card
then Proj,(h) : IS, — Card is given by Proj,(h)(t) = > {|By|.h(t') : t' €
I1S,4+1} where for each t' = ((A,9))~ € ISnt1, and G of length n + 1, By is
the set of all orbits of (g1, 92, .., gn) on A on which (g1,92,...,gn) has isomor-
phism type t. (Note that |Byy| is independent of the particular choice of (A,q)
corresponding to t'. Note also that strictly speaking here and in the definition
of Eq, Prod, we should work with the &,-classes determined by h, Proj,(h).)

We include Proj, in order to handle existential quantification in the forth-
coming induction (Theorem 2.6). The definitions of Fq and Prod apply just
in the case kK > Ny, and are intended to express equality and products in
Sx(p) up to fewer than k mistakes. For k = Ny, instead of summing the rel-
evant h(t) we sum |A}|.h(t) where t = ((A¢, f1, f2))~ or ((As, f1, f2, f3))~ and
A, ={a € A;:afi #afs} or {a € Ay : afifo # afs} respectively.

In the general case the inclusion of the sorts 1.5, and Card™ is unnecessary,
at any rate as far as the proof of Theorem 2.6 is concerned. On the other hand
in all cases they can be naturally represented within Sy (p)/Sx (1), and in the
special case cf (k) > 2% the ‘application’ functions App,, genuinely identify the
members of F,, as functions from IS, to Card~ (since here the equivalence
relation &, can be dispensed with), meaning that App!, : F,, — (Card=)"»
given by App!, (h)(t) = Appn(h,t) is 1-1. In section 5 we shall also see that
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Proj, is definable from Proj! and App, in this case, and similarly for Eq and
Prod, easing the analysis of the M,.»,,.

The sense in which we can show that Sx(p)/ Sk (1) is interpretable in M.,
is weaker than the usual one and is given in the following definition.

Definition 2.5 For structures M and N we say that M is semi-interpretable
in N if there is a recursive function F from formulae of the language of M to
formulae of the language of N and there are functions f, : M™ — N such that
for alla € M™ and ¢(T) with n free variables, M = ¢[a] < N | F(¢)[fn(a)].
If the same F serves over a class of pairs of structures then we say that the first
of each pair is uniformly semi-interpretable in the second.

Theorem 2.6 For every first order formula ¢(xo,...,xn—1) of the theory of
groups there is an effectively determined first order formula v (y) of the language
of M such that for all k,\, u, and for every f € (Sx(p))™,

Sx(1)/ Sk (1) = @Sk (1)-f1 & Muxu = ¢[(Chy)e,].

Proof We construct ¢ by induction. First suppose that ¢ is atomic. It suffices
to consider formulae of the form xy = z1 and zgz1 = x5 for variables xg, 21, 2.
If p(xo,x1) is g = x1 we take for ¥(y) the formula Fq(y). Then

Sa()/ () | Sk(p)-f1 = Se(p)-f2
< Ha:afi #afe}| <k
< the union of the orbits of (f1, f2) on which the actions of f; and fo

are distinct has cardinality < & (since k > Np)
= Z{‘A”Ch?(t) :te IS, /\(t: ((At,gl,gg))g — 1 7592)} <K
& M Eq((Chy)e,) (using x > Ny again)

& ME[(Chye, ]

and similarly for the formula xox1 = z2 (using Prod).
The propositional induction steps are straightforward.
Finally suppose that ¢(T) is Jye1(ZT, y).
It is easily checked that for any f = (fi, f2,..., fn) and fno1 in Sx(u),

Proj,(Ch =Ch

?7f7L+1) i

(From this it follows that if h € F, 1, then Proj,(h) = Ch? if and only if
h = Ch? Foia for some f,, 1. Continuing the proof we deduce that

S)\(M)/SN(M) |: 31’@1(‘&%(“)'?7 :17)

10
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& for some g € Sx(p), Sx(1t)/ Sk (1) = 01[Sk(p)-f, Sw(i).g]
& for some g € Sx(u), M = ¢1[(Chs e, ]

& M Jx(y(x) A Proju(z) = (Chy)e,),

where 1 is a formula corresponding to ¢; as given by the induction hypothesis,
and so we take for ¢(Z) the formula 3y (1 (y) A Proj,(y) =7). O

3 Interpreting Ph(u)/Pr(p) in Sx(p)/Sk(1)

In this section we show how it is possible to interpret many ‘set-theoretical’
properties inside Sy (1)/Sk (1), by representing subsets of p via supports of suit-
ably chosen elements (always up to fewer than ‘s mistakes’), and consequently
to interpret the ring Px(u)/Px(1). The key idea is to use sequences whose
entries are transitive representations of a specific finite non-abelian group to
represent the subsets, which enables us to capture disjointness of their supports
via a commutativity condition. We introduce the necessary formulae one by
one, and outline why they represent what is required.

Let G be a fixed finite group of order n, and let G = (a1, as,...,a,) be
a fixed enumeration of G for which a; = id, the identity. In what follows we
shall in fact just use G = A(5), the alternating group on {0,1,2,3,4}. This
is for three reasons: it is the smallest non-abelian simple group; its transitive
permutation representations are easy to describe; and (a small point needed in
the proof) its outer automorphism group is also well known (and is just S(5)).

Let diag(G, ) be the conjunction over all i, j, k between 1 and n for which
a;a; = ay, of the formulae x;2; = ;. This is intended to say that (1, z2,...,2x)
is a ‘copy’ of G (in the specified enumeration), but actually just says that it is
a homomorphic image. We write diag(A(5),T) as alts(T).

Lemma 3.1 Suppose f € (Sx(u))"™ is such that Sx(u)/Sk (1) = diag(G, Sk(p).f).
Then there is a small union X of (f)-orbits such that if « € p — X, and
a;a; = ay, then af;f; = afy.

Proof Let X ={a € pu:aff; # afi} and let X = (J{Xijr : @ia; = ar}.
By definition of diag, and of Sx(p)/Sk (1), |X| < k. So it suffices to observe that
p — X is closed under the action of (f). Let a ¢ X and 1 < r < n. Suppose
that ¢, j,k are arbitrary subject to a;a; = a;. Then there are s,t such that
ara; = ag and ara = a;. We find that asa; = ara;a; = arar = a;. Since
a g X,af fifj = afsfj = aft = af, fx. Thus af, ¢ Xijr and so af; ¢ X as
required. O

Lemma 3.2 For any f,Sx(1)/Sx(1) = alts(Sk(p).f) if and only if there is

a small union X of orbits of (f) on p such that for every orbit Y of (f) on

u— X, the action of {f) on'Y is isomorphic to some action of A(5) (so that

11
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Y| = 1,5,6,10,12,15, 20,30, or 60, and then we say that f acts as A(5) with
this degree).

Proof This is immediate from Lemma 3.1 on remarking that for orbits Y
outside X, the action of (f) on Y precisely corresponds to some transitive
action of A(5). The fact that the possible values of |Y| are as stated follows
from the fact that any transitive action of A(5) is isomorphic to its action on a
coset space [A(5) : H| for some subgroup H of A(5), and the possible orders of

subgroups of A(5) are 1,2,3,4,5,6,10,12, and 60. O

With this lemma in mind we may define for any f € Sy(u) of length 60 the

cardinals v, (f) for m € {1,5,6,10,12,15,20, 30,60} by v, (f) = the number of
(f)-orbits on p on which f acts as A(5) with degree m. The significant values

(that is, those which are preserved under passing to the coset Sy (u).f) are those
Vm(f) which are > x, and these provide a ‘profile’ of f characterizing it up to
conjugacy.

To make further progress we need to analyse with some care some properties
of the possible faithful transitive actions of A(5), which we do in the next three

lemmas.

Lemma 3.3 Suppose that H and K are proper subgroups of A(5). Then for
somea € A(5),|HNa 1 Ka| < 3. Moreover, if there is a such that |[HNa *Ka| =
3 but no b such that |HNb " Kb| < 3, then |H| = |K| = 12.

Proof As A(5) is simple, |H|,|K| < 12. If H or K has order < 3 we just let
a = id. Assuming without loss of generality that |H| > | K| we are left with the
following possibilities for (|H]|,|K]):

(12,12), (12,10), (12,6), (12,5), (12, 4), (10, 10), (10, 6), (10, 5), (10, 4),

(6,6), (6,5), (6,4), (5,5), (5,4), (4, 4).

The subgroups of A(5) of orders 12,10, 6,5, 4 are determined uniquely up to
conjugacy in S(5) (as is easy to check) and so by replacing by a conjugate by a
member of A(5) may be taken to lie in the following list:

12 : A(4) (regarded as the stabilizer of 4 in A(5)),

10 : ((01234), (14)(23)), ((01243), (13)(24)),

6: ((012), (01)(34)),

5: ((01234)), ((01243)),

1 {(01)(28), (02)(13)).

The following cases can be at once ruled out as |H N K| < 3 is already true:
(12,10), (12,6), (12,5), (10,6), (10,4), (6,5), (6,4),(5,4). In all the remaining
cases, which are (12,12), (12,4), (10, 10), (10, 5), (6,6), (5,5), and (4,4), the con-
jugator (234) will serve as a, as is easy to check.

Now for the final part, suppose that |H Na~!Ka| = 3 for some a and that
|H Nb~1Kb| > 3 for all b. Then |H| and |K| are multiples of 3. If H or K has
order 12 or 6, we take it as above, and if 3 we take it as ((012)). In all cases

12
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except for |[H| = |K| = 12 we find that for b = (243),|[HNb"*Kb| =1 or 2, and
we conclude that H and K must both have order 12. O

Lemma 3.4 Let D be the diagonal subgroup {(a;,a;) : 1 < i < 60} of A(5) x
A(5). Then for any subgroup H of A(5) x A(5) of order 12 or 36, there is a
such that [a=*Ha N D| # 3.

Proof Suppose otherwise. Thus |H| = 12 or 36, and for every a € A(5) x
A(5),]la"tHan D| = 3. In particular |[H N D| = 3 so we suppose that H N D =
(((012),(012))). Let a = ((13)(24),id). Since |a~'Ha N D| = 3 there are
i < j < k such that ((ijk), (ijk)) € a"'Ha. Also ((034),(012)) € a 'Ha.
If |{4,4,k} N {0,3,4} = 1 then ((ijk), (034)) contains an element of order 5,
contrary to |[a~*Ha| = 12 or 36. Hence |{i,5,k} N {0,3,4}| = 2 or 3. Similarly
[{i,7,k} N {0,1,2}] = 2 or 3. Therefore i =0 and j =1 or 2,k =3 or 4.

Case 1: (ijk) = (013). Then ((012), (012)), ((031), (013)) € H. But these two
elements generate a group of order 144 (A(4) x A(4) in fact).

Case 2: (ijk) = (014). Therefore ((012),(012)),((032),(014)) € H. Since
H has no element of order 5, H < A(4) x A({0,1,2,4}). Let b = ((014),id).
Then b~ Hb < A({1,4,2,3}) x A({0,1,2,4}). If ((i'5'k'), (i'j'K")) lies in b= L Hb
with @ < j' < k' then {¢',j',k'} C {1,4,2,3} N {0,1,2,4}, so (¢§'k') = (124).
Then ((021),(124)) € H, so that (id, (02)(14)) € H, from which it follows that
\H| # 12, 36.

Case 3: (ijk) = (023). Then ((012),(012)), ((041), (023)) € H, and we argue
as in Case 2, with b = ((013),¢d). This time we find that ((021), (123)) € H, so
that (id, (02)(13)) € H, and |H| # 12, 36.

Case 4: (ijk) = (024). Then ((012), (012)), ((042), (024)) € H so ((01)(24), (014))
€ H, and |H| =144 as in Case 1. O

Lemma 3.5 Suppose that f,g are subgroups of Sym(X ) isomorphic to A(5)
(in the specified listings) which centralize each other, and such that (f,g) is
transitive on X. Then f*g has an orbit of length at least 20. Moreover, if f xg
has an orbit of length 20 then it also has an orbit of some other length greater
than 1.

Proof Let X ={X,;:i¢<m}and ) = {Y; :j < n} be the families of orbits
of f and g respectively. Then as f and § commute, f and g each preserve X
and Y (setwise), and hence also Z = {X; NY; : i < m,j < n}. Moreover by
transitivity of (f,g) on X the actions of f on its orbits are all isomorphic, as
are the actions of g on its orbits. Since f,g are isomorphic to A(5), these orbits
are all non-trivial, and since A(5) is simple, they all have at least 5 members.
Case 1: m =n = 1. Thus f and g are both transitive.

In this situation it is standard that f and g both act regularly (see [13,
Theorem 3.2.9]). For suppose that = f; = . Then for each j, (zg,)f; = zfig; =
xg; and as g is transitive, f; = id. Similarly g is regular. By suitably labelling
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the elements of X we may suppose that X = A(5) and f is the right regular
action, in other words (a;)f; = a;a; for each ¢ and j.

Now we appeal essentially to the fact that the centralizer of the right regular
action is the left regular action (see [13, Theorem 3.2.10]). Let a19; = a,. Then
a;j9; = ai1fjgi = a19:f; = a,f; = ara;. Hence g; is multiplication on the
left by a,. Let us write a, as a;0. Thus 6 is 1-1 since if a;0 = a;0,a19; =
arg; and ¢ = j (by regularity). So also 6 is onto. Moreover it is an anti-
homomorphism, since (a;a;)0 = a1(gigir) = ((a;0)a1)gs = (ai0)(a;0)a; =
(ai0)(a;0). Thus ¢ given by a; = (a; ') is an automorphism of A(5). So for
some s € S(5),a;p = s 'a;s for all 4, so that a;(f;g;) = 8—1%718%&],' Now the
length of the orbit of f;g; containing a; is equal to the index of its stabilizer
in A(5). But s‘laj_lsaiaj = a; & a;lsa; = sq;ait & aj € Caes)(sa;) =
A(5)NCg5)(sa;). Now sa; either ranges over A(5) or over S(5) — A(5). If A(5)
let sa; = (012) or (01234). Then |C4(5)(sa;)| = 3 or 5 and so there are orbits of
lengths 20 and 12. If S(5) — A(5) let sa; = (0123). Then |C4(s)(sa;)| = 2 and
so there is an orbit of length 30.

Case 2: m=1 A n>1 (or similarly m >1 A n=1).

Then f is transitive, so by the same proof as above, g acts semiregularly
(that is, only the identity has any fixed point). Hence g acts regularly on each
orbit, and so each orbit has size 60. But then | X| > 60, contrary to f transitive
on X.

Case 3: m,n > 1.

Since (f,g) is transitive, the actions of f on ) and g on & are both transitive,
and hence faithful. Moreover (f, g) acts transitively on Z = {X;NY; 1 i < m,j <
n} (which in particular means that all X; NY; are non-empty of equal size).

We show that some orbit of f % g in its action on Z has length > 20, and it
will follow that the same applies to its action on X. Now the length of the orbit
containing X; NY; is equal to the index of its stabilizer, and as (X; NY;) frgr =
Xige N Yjfe, XainY))fegr = Xi NY; & Xigr = X; AY,fi = Y;. Hence
{ag - (XiNY)) fegr = XsNY;} = {ap : Xig = Xs} N{ax : Y fr =Y;} and all
we have to do is to show that for some 4, j, the right hand side has order < 3. Let
H = {ay : Xogr = Xo} and K = {ay : Yo fr = Yo}. Then the stabilizers of the
other X; and Y; are just the conjugates of these. For instance {aj : Xogigr =
Xogi} = {ax : aiakai_l €EH} = ai_lHai and {ar : Yofife =Yof;} = aj_lKaj.

For our choice we take ¢ = 0 and select j by using Lemma 3.3.

Finally we have to show (still in Case 3) that not all orbits of f *g can have
length 20 or 1. Suppose otherwise. Since m > 5 and f * g acts transitively on
{X; : i < m}, none of the orbits can have length 1. Applying the last clause
of Lemma 3.3 we find that |[H| = |K| = 12, and so m = n = 5. Therefore
| X | = 25| X N Yo| and since this is a multiple of 20, and |Xo| = 5| X0 N Yp| is a
factor of 60, | Xy NYy| =4 or 12, so |X| = 100 or 300.

Pick z € XoNYy and let L = {(a;,a;) € A(5) x A(5) : xfig; = x}. Since
A(5) x A(5) acts transitively on X via (f,9),|L| = 60%/|X| = 12 or 36. By
Lemma 3.4 (and with D as there), there are i, j such that |(a;, a;) " L(a;, a;) N
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D|# 3. Lety = fig;. Thenyfrgr =y < xfifugigr = vfig; < o fifufi ' 9i919; "
=z & (aiakai_l,ajakaj_l) € L & (ag,ar) € (a;,a;) ' L(a;,a;). Hence |{ay :
yfrgr = y} = |(ai,a;)" L(a;,a;) N D| # 3, and so the orbit of y under the
action of f * g does not have length 20 after all. O

We now move towards the construction of a formula which is intended to
say that T acts as A(5) on all but a small set of its orbits, and that each such
orbit has length 1 or 5. Actually we stop short of doing this (even though it
can be done) and just find a formula restricting the range of representations
possible—as this provides a quicker route to our goal. We require the following
auxiliary formulae:

commmm n(T,9): Nicicmi<jon Ti¥i = YiTi,
where m and n are the lengths of T and y. This asserts that
each entry of T commutes with each entry of 3.

conjn(Z,y): (32)(T° =7).

In practice we omit the subscripts from comm,,,, and conj, (and other

similar formulae).

indec(T): alts(T) A (Vg)(VZ) (comm(T,Z) A alts(y) A
alts(Z) NT =7y xZ — (conj(Z,y) V conj(Z, z)).

Lemma 3.6 For any sequence f of elements of Sx(p) of length 60, Sx (1) /S (1)

= indec(Sy(p).f) if and only if |u — supp ?i = p, (f) acts as A(5) on all
orbits outside a small subset of i, vso(f),veo(f) < k, and there is at most one

m € {5,6,10,12,15,20} for which vy, (f) > k.

Proof We remark that we need to stipulateim — supp f| = p in view of
the possibility that A = ,u+.7Let us say that f & S.(u) is indecomposable if
Sx(p)/Sk(p) = indec(Sk(p).f).

First observe that if vy, (f), Vm,(f) > k where 1 < my < mg then we may
write f as g * h where g is the restriction of f to the union of its orbits of
length m; (that is it agrees with f there and fixes all other points), and h is
the restriction of f to the complement of the union of these orbits. Clearly
f,g commute, S, (1).g and S, (u).h satisfy alts(Z), and f = g * h. But neither
S,(1).g nor S, (pn).h is conjugate to S, (u).f.

Next suppose that v39(f) > &, and let X be the union of all orbits of f of
length 30 on which f acts as A(5). We let g and f agree on p — X and h fix
p — X pointwise. Let Y be a typical orbit of f contained in X, (and hence of
length 30). Now if H and K are subgroups of A(5) of orders 12 and 10, then
A(5) has a transitive action of degree 30 on [A(5) : H] x [A(5) : K], (since
|H N K| = 2), which is therefore isomorphic to the action of {f) on Y. So we
may let YV = {a(pa, Ka;) : Hai € [A(5) : H], Ka; € [A(5) : K]} in such a way
that for each k, a(fa;,K0;)fk = Q(Ha,ax,Ka;ar)- The point is that this expresses
the action of f on Y as a commuting ‘product’ of actions having orbits of sizes

5 and 6. We let Q(Ha;,Ka;)9k = X(Ha;ar,Kaj) and a(Hai,Kaj)hk = Q(Ha;,Kajay)*
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This therefore defines the actions of § and h on the orbits of f having length
30. It is clear that neither S, (uz).g nor S, (u).h can be conjugate to S, (i).f,
since v30(g), v30(h) < k. But S.(1).g and S, (p).h fulfil the other requirements
on 7 and Z in indec, and so we conclude that S, (u).f cannot satisfy indec.

If vgo(f) > K, a similar argument applies, but this time taking |H| = 12 and
|K|=5.

Now suppose that | — supp f| < p. Let X be a union of orbits of (f) such
that | X| = |u— X| = u, and let g and h be the restrictions of f to X and u— X
respectively. Then S, (u).g and S, (2).h provide witnesses for y and z violating
indec(S,(1).f)-

Conversely, suppose that | — supp f| = p and for some m € {5,6,10,12, 15,
20}, the union X of the orbits of (f) of length m on which f acts as A(5)
has cardinality > x, and that f fixes all but a small subset Y of u — X. We
verify indec(S,(11).f). Suppose S, (1).g and S, (u).h are witnesses for 7 and z
in indec. If |supp g N supp h| < k then g and h are restrictions of f (meaning
that apart from a small set, their supports are contained in supp f, and on their
supports they agree with f), and so, as |supp g| + |supp h| = |supp f|, either
|supp g| = [supp f| or |supp h| = |supp f|, so that one of S ()., Sk(p).h is
conjugate to S, (u).f.

So we suppose that [supp gN supp h| > k and aim for a contradiction. Since
g and h commute mod S, (i), by increasing Y if necessary we may assume they
commute outside Y. Let Z be a typical orbit of (g, h) on (supp gNsupp h) —Y.
Then the restrictions of § and h to Z fulfil the hypotheses of Lemma 3.5, and
so G * h either has an orbit on Z of length greater than 20, or orbits there of
length 20 and some other length greater than 1. Since this applies to all possible
choices of Z, either there are > k Zs for which there is an orbit of length greater
than 20, or there are > k Zs containing an orbit of length 20, and of some other
length greater than 1. But each of these is contrary to the hypothesis on f. O

We are now able to express disjointness of certain sequences, which is the
key to recovering the appropriate ring of sets inside Sy (u)/S,(u). From this we
shall be able to express disjointness of involutions (meaning disjointness of their
supports), which are actually the elements we shall use to represent sets, and
of more general sequences. But the first approximation uses elements satisfying
indec and acting in the same way. Let us say that two such elements S, (u).f

and S, (u).g have the same action if v, (f) > k and v, (g) > & for the same
m > 1.

disj1(Z,7) : indec(T) A indec(g) A comm(Z,7) Aindec(T 7).

Lemma 3.7 For any sequencesff and g of elements of Sx(u) — Sk(u) of length
60, Sx(1)/Sk () b= disji(Sk(p).f, Sk(1).-g) if and only if f and g are indecom-
posable with the same action, |u — (supp f U supp )| = p, and |supp f N

supp g| < k.
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Proof Tt is clear that if two indecomposable sequences in Sy (1)/ S, (1) have the
same action, and almost disjoint supports (meaning that the intersection of their
supports has cardinality less than k), then they commute, and their pointwise
product also is indecomposable (provided that the union of their supports does
not have small complement). Conversely suppose that the given conditions
apply. Then as in the previous proof, if the supports of f and g are not almost
disjoint, then indecomposability of f % g is violated. It also follows that f,g,
and f * g must all have the same action. O

It is now possible to find formulae expressing the following concepts inside
Sx(p)/ Sk (p):

membership in Py (1) /Py (),

the boolean operations on Py (u)/Px (1),

the action of Sx(u)/Sk(r) on Px(w)/Pw(p).

First we represent members of Py (u)/ P, (1) by involutions, and let set(z) be
the formula 22 = 1, (where for present purposes it is easier to count the identity
as an ‘involution’). The idea is that each involution will encode its support (so
for example the identity represents the empty set). Of course this only makes
any sense if we can tell when two involutions encode the same set.

Now let i be such that a; has order 2 in A(5). Then for g € S)(u) with
| —supp g| = p, Sk(w).g has order 2 if and only if there is some indecomposable
g with v5(g) > & such that S;(p).g = Sk(p).9-
disj'(z,y) : set(z) A set(y) A Fz3t(z; = x A t; = y A disji(Z,1)).
disj(x,y) : 3x13xeTxzIws Iy Jyo Jys Fya (@ = 1222324 A Y = Y1Y2y3Ys A

/\lgi,j§4 disj'(zi,y;))-

Here the idea is that disj’ should express disjointness of (sets encoded by)
involutions, and disj should express disjointness of (the supports of) arbitrary
permutations. Because of the possibility that A = u™ we use products of four
elements rather than just two, since we need to be able to express an arbitrary
group element in terms of involutions the complements of whose supports have
cardinality pu.
subset(z,y) : set(x) A set(y) AVz(disj(y, z) — disj(z, z)),
sameset(x,y) : set(x) A set(y) AVz(disj(y, z) < disj(x, z)),
union(z,y, z) : set(z) A set(y) A set(z) A Vt(subset(x,t) A subset(y,t) <>

subset(z,t)),
intersect(z,y, z) : set(x) A set(y) A set(z) A Vt(subset(t,x) A subset(t,y) <>

subset(t, z)),
union,, (T,y) : (V2)(disj(z,y) <> Ny disj(z, x)),
map(z,y, 2) : set(x) A set(y) A sameset(z 1 xz,y),

The following result sums up what these formulae express.

Lemma 3.8 (i) For any f,g € Sx(u), Sx(u)/Sk (1) = disj’(Sk(w).f, Sk(p).g) if
and only if S, (p).f and Sk (u).g are involutions such that |supp f N supp g| < K

and |p — (supp f U supp g)| = p.
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(it) For any f.g € Sx(n), Sx(1)/Sk(p) [ disj(Sk(p)-f, Sk(n)-g) if and only
if |supp f N supp g| < k.

(iii) For any f,g € Sx(u), Sx(#)/Se(n) b= subset(Sw(10)-f, Se(pa)-9) if and
only if Sx(p).f and Se(p).g are involutions such that |supp f — supp g| < k.

(iv) For any f,g € Sx(n), Sx(1)/Sk(n) = sameset(Sy(u).f, Sk(p)-g) if and
only if Sy (p).f and S, (p).g are involutions such that |supp f—supp g|, |supp g—
supp f| < k.

(0) For any £, 9, h € Sx (1), Sx(1) /S (12) b= union(S(1). £, Su(1)-9, Sel1).-1)
if and only if S(u).f, Sk(w).g, and Sy (u).g are involutions such that supp f U
supp g and supp h differ by a set of cardinality < k.

(vi) Similarly for intersections. B

(vii) For any f,g € Sx(1), Sx(1)/Sk(p) |= uniony (Sk(p).f, Sk(p)-g) if and
only if U7, supp(fi) and supp g differ by a set of cardinality < k.

(viii) For any f, g, h € Sx(p), Sx()/ Sk (1) = map(S(p).f, Sk(p)-g, Sk (p)-h)
if and only if S.(u).f and Si(u).g are involutions and (supp f)h and supp g
differ by a set of cardinality < k.

Proof (ii) follows from the fact that any permutation may be written as a
product of two involutions, and any involution may be written as a product of
two involutions the complement of whose support has cardinality u. The rest
of the proof is straightforward. O

Corollary 3.9 The ring of sets Px(u)/Pr(u) and the natural action of Sx(1)/ S ()
on this ring are interpretable inside the group Sx(p)/Sk(1).

This result is due to Rubin [7] Theorem 4.3, but using different methods.
An alternative route to the same conclusion, avoiding so much detail on per-
mutation representations, starts by interpreting Px(u)/Pw (1) in Sx(u)/Sk (1)
using parameters f*, f**. The first of these acts as A(5) with orbits of degree 5
and 1 only, and with the aid of the second, disjointness can be expressed more
rapidly. The parameters are then eliminated at a later stage.

4 Interpreting M,,, in Sx(u)/S.(1)

This is carried out as follows:

members of IS,, are represented by ‘pure’ n-tuples, being those for which
almost all orbits are isomorphic, modulo isomorphism of this action,

members of Card™ are represented by group elements which encode sets,
(that is, involutions), modulo the relation of having equal cardinality,

members of F), are represented by n-tuples of group elements, modulo con-
jugacy.

In addition we have to show definability of the relations and functions in the
signature.
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First we show how to distinguish the case A = u™ (which has already required
special treatment in the previous section). We use the formula

max : (3z)(Vy)(disj(z,y) -y =1)

(expressing that A has its mazimum value)
Remark 4.1 A = u™ if and only Sx(u)/Sx(p) E maz.

To carry out the interpretation more formally we require the following for-
mulae:
disjn(T,Y) : /\19‘,an disj(zs,y;),
restrn,(Z,7) : 32(disjn (T, Z2) NT+Z =7),
T=1: A" 2,=1,
compat, (Z,7) : JZH(Z # 1 Arestr, (Z,T) Arestr, (24, 7)),
pure, (T) : VyVz(§ # 1 AZ # 1 Arestr, (4, T) Arestr,(Z,T)
— compaty(y,Z)) A (—mmaz — T # 1),
150, (Z, Y) : pure, (T) A pure,(§) A (compat,(Z,5) VE =7 = 1).

Lemma 4.2 (i) For any finite sequence f of members of Sx(n), Sx(1t)/Sk (1)

puren(Sk (). f) if and only if the non-trivial actions of f on all but a small union
of the orbits of (f) are isomorphic or, if X = ut, almost all orbits have size 1..

(it) For any sequences f,g in Sx(1), Sx(1t)/Sk(p) £ 150 (Sw(pr)-f, Sk(1)-9)

if and only if the actions of f and g on all but a small union of orbits of (f), (g)
have the same isomorphism type in 1.S,,.

Note that it is not enough to talk of the actions of (f) on its orbits; we
need to distinguish the generating tuple f in order to capture IS,. Observe
that the final parts of the formulae pure, and iso, cover the case A = u™, and
correspond to the remark in parentheses in Definition 2.1(ii). Similar remarks
apply to the treatment of F,,.

As mentioned above, for sort 2 we just use involutions, this time modulo the
equivalence relation given by
samecard(z,y) : set(z) A set(y) A 3xyTzeTyr Iy (disj(x1, x2) A disj(y1, y2)A

T = 2129 NY = y1y2 A conj(x1,y1) A conj(w2, ya)).

This is slightly more complicated than the expected ‘set(z)Aset(y)Aconj(x,y)’
in view of the case A = pu*. And the sorts 3 have already been remarked on.

It remains to show that the relations and functions of M, are definable.

First the ordering < (and hence <) on Card is definable by
lesseq(z,y) : set(x) A set(y) A (3z)(subset(z,y) A samecard(z, z)).

To define Fq', Eq, Prod* and Prod we use
eq*(z1,22) : pures (1, x2)A\ 1 = X9, eq(21,T2) : T1 = T2,
prod (w1, xa, x3) : pures(x1, T2, r3) A 1122 = T3

and
prod(xy,xe,x3) : T1x2 = T3
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respectively. Note that there is a slight difference between Eq! and Eq (and
between Prod' and Prod), since in the former case (21, 2) is meant to represent
a member of IS5, but in the latter, of F5.

We may define Proj! and Proj, by

proj'rlp((xh cee axn+l>7 (91» sy yn)) : puren+l(x17 ey xn+1) /\puren(yla cee 7yn)/\

1800 (T1, .y TnyY1y- -y Yn), and
pTOjn((.Tl, s ,ZIJH+1), (yla ceey yn)) : COlen((JZl, s ,l'n), (yla s 7yn))7
and App, by

appn (T, 7, z) : puren(7) A [((3E) (pure, (t) A compat, (G, t) A restry, (¢, T)
A(VT)(restr, (t, @) A restr,(u,T) A pure, (@) — t =u) A (Jv)(union, (t, v)
A samecard(v, z))) V ((Vt)(compat,, (g,t) — —restr,(t,T)) A z = 1)],
which we may paraphrase as ‘either there is a maximal pure restriction  of
T compatible with § and of cardinality (coded by) z, or T has no restriction
compatible with 7 and z = 1 (that is, codes 0)’. If A = u™*, app, is modified
to cover the case ¥ = 1, and if kK = Ny we have to count orbits rather than
their union, and the statement about v is modified to express ‘there is a set
having the same cardinality as z which intersects each orbit of ¢ and is minimal
subject to this’. To justify this we further note that the case k = Xy can be
distinguished by the sentence

(Fz)(Vy)(restri(y,z) — (y =1V y=1x)).
We have proved the following:

Theorem 4.3 M.y, is interpretable in the group Sx(u)/Skx(1).

We remark that ‘interpretability’ here is taken in the usual sense (called
‘explicit interpretability’ in [10]). This means for instance that, rather than
just transferring the first order properties, we are able to deduce that whenever

S)\l (:ul)/SRl (Ml) = S)\2 (N’Q)/Sli‘z (MQ) then Mlﬂ)\l#l = Mﬁz)\zﬂza and hence to
try to distinguish the groups Sx(u)/Sk (1) up to isomorphism as well as up to
elementary equivalence. But for us here the following is the point.

Corollary 4.4 MHI)\IMI = MH2A2M2 Zf and OTLly Zf S)\l (Ml)/Sﬁl (:u’l) =
SAz (MQ)/SIW (MQ)'

Proof This follows from Theorems 2.6 and 4.3. O

In the next sections we give more details about the circumstances under
which My 2 = Miorops-

5 Refinements and the case cf(x) > 2%

We now make some remarks about distinguishing the elementary theories of
Sx(p)/Sk(p) for different values of x, A, u, which by Corollary 4.4 is equivalent
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to distinguishing the M,,,. In the first place, according to Remark 4.1, the
case A = uT can be singled out in Sy(u)/S.(1) by means of the sentence max
of the language of group theory, and hence also by a suitable sentence in M,y
So we may treat the cases A < u, A\ = p* separately. Now when A < u the
cardinal p actually plays no part at all in the structure M.y, so we at once
see that for fixed k < A, all the M., with © > A are elementarily equivalent.
More is even true at this stage, since many of the M,,, are in fact isomor-
phic. For instance if cf(k1),cf(k2) > (2%°)F then M = MH2I€2+;L2 (for

1 > nf,,ug > n;) since in this case Card™ = {0, 1}, {0, k2 } respectively, and
similarly an++u1 =M etc.
1

We know of course that Th(M,y,) can only take at most 2% values, and so
there will be many pairs of distinct triples giving elementarily equivalent models.
In [11] this was however illustrated more explicitly, and we carry out a similar
analysis here. There a characterization of elementary equivalence was provided
based on the second order theory of certain many-sorted ordinal structures,
whose sorts all had cardinality < 2%¢, and we give a parallel treatment. While
doing so we give a few more details about the material from [11] (which in its
turn is related to [4]). First we show how a suitable second order logic can be
represented in the structures M,,. Small modifications are made in the case
k = Vg (distinguishable in the language of group theory), which we do not spell
out explicitly.

To represent subsets of 1.5,, in M., is rather straightforward, but subsets of
1S, x IS,, are harder to deal with. We use ‘products’ (similar to the method of
section 3) to help us to do this. We say that t € IS,,1,, is a product of t; € I.S,,
and ty € IS, if t has the form ((4, f))~ where A = {ay, : © € X,y € Y},
the (f1,..., fm)-orbits of A are {ay, : y € Y} for z € X, all of type ¢1, the
(fm+1s- -5 fmtn)-orbits of A are {ay, : x € X} for y € Y, all of type t2, and
the actions of f; and f; on A for 1 <47 < m < j < m + n commute. We say
that h € Fy,qy is a product if whenever h = (h)g,. ., D {N(t) : t € ISy 4n Nt
not a product} < k.

The idea here is that if f acts as a product on almost all of its orbits, then
we can uniquely recover its actions on the first m and last n co-ordinates, so
that products provide a way of encoding sets of ordered pairs. As illustrated
in section 3 however, the actions of tuples may commute without their being
a product, and so the natural condition to try to capture expressibility as a
product, namely commutativity, does not work. This time however this does
not matter; the point being that when two actions commute, and together
generate a transitive action, the projections onto the two sets of co-ordinates
are uniquely determined. Let us therefore say that h € Fj,4, is a product if
whenever h = (h/)¢

Hlﬁfﬂl

K2 N;+N2

m+n’

Z{h/(t) 1t € ISmin At = (A, (f1, F2)))> = —~commumn(f1, f2)} < k-

We now represent subsets of IS,, of cardinality < A by h € F, such that
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(Vt € 1S,)h(t) < k, and subsets of 1.5, x IS, of cardinality < A by k € Fy,1p
which are products and such that (V¢ € I.S,,4,)k(t) < k. The subset of IS,
encoded by h is then {t : h(t) = k} and the subset of I.S,, x IS,, encoded by k
is {(t1,t2) € ISy x IS, : (3t € IS, 44)(k(t) = k and t1,t2 are the members of
IS,,,1S,, determined on co-ordinates 1 to m and m+ 1 to m +n respectively)}.
(The definition of ‘product’ ensures that these are uniquely determined from
t, since if the actions of f, and f, on the f-orbit A commute then they each
preserve the set of orbits of the other, and all actions of f; on its orbits are
isomorphic, and similary for f,.)

Lemma 5.1 There are formulae of the language of M., expressing the fol-
lowing:

(i) h encodes a subset of 1S,

(ii) k encodes a subset of ISy, x IS,

(#ii) mem., (t,h) : t lies in the set encoded by h,

MeMyy n(t1,t2, k) @ (t1,12) lies in the set encoded by k,

(iv) equal, (h,h") : h,h' encode the same subset of 1S,

equaly, o(k, k') : k, k' encode the same subset of 1Sy, x IS,

(v) funmn (k) : k encodes a function (from a subset of ISy, into 1S,),

(vi) one-one fung, ,(k) : k encodes a 1-1 function.

Proof (i) h encodes a subset of I.S,, if and only if (Vt € I.S,,) Appn (h,t) < k.

(ii) By appeal to Theorem 2.6 we may express projections of h € Fy,4,, to
co-ordinates 1 to m and m + 1 to m + n, and then use the formula commyy, .

(iil) memy, (¢, h) is taken as App,(h,t) = k.

For memy, n(t1,t2, k) we take (3t € ISp4n)(ADDmin(h,t) = K Aty to are
the projections of ¢ onto co-ordinates 1 to m and m + 1 to m + n respectively).
(The fact that we can express these more generalized projections here follows
by appeal to Theorem 2.6, though they could also have been included in the
signature of the M), if desired.)

(iv), (v), and (vi) follow from (iii). O

For the remainder of this section we specialize to the case cf(k) > 2%, to
avoid complications. We return to the general case in section 6. One of the
benefits of assuming cf(x) > 2% is that we can dispense altogether with the
equivalence relations &,. This is because any function from F;, to Card is &,-
equivalent to a unique function from F;, into Card~ (obtained by replacing all
values below « by 0). Various other simplifications and interdefinabilities in this
case are described in the following theorem.

Theorem 5.2 Suppose that k < A\ < ut and cf (k) > 280, Then

(i) for each h € F,, there is a unique E,-representative which is a function
from IS,, to Card~ (so that from now on in this section we dispense with &,
and regard F,, as a subset of (Card™)'Sn),
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(i) for each n, Sum,, : F,, — Card~ given by Sum,(h) = > {h(t) : t € IS,}
is definable in M,
(ii) Eq, Prod, and Proj, are all definable in

:)\N = ((ISn)nZh Oa”’dia (Fn)n21; qua P’I"Odl, (Projyll)nZh < (Appn)nzl)y
and conversely Eq', Prod*, and Proj. are all definable in

((ISn>n217 Card_, (Fn)nZﬂ <7 (Appn)an Eqa PTOda (Projn)nZI)'

Proof (ii) This is because Sum,,(h) may also be written as sup{h(t) : t € I5,}
(since k > 2%0), so that

Sumy(h) = a < (Vt)Appn(h,t) < a A (VB < «)(3t)(6 < Appn(h,t)).

(iii) Bq = {h € Fy: (Vt € 1S2)(Appa(h,t) # 0 — Eq'(t))},
Prod = {h € F3 : (Vt € 1S3)(Apps(h,t) # 0 — Prod'(t))}.
For Proj, we remark that By # 0 < Projl(t',t), and so

Proj,(h)(t) = Z{h(t') : Proji(t',t)} = sup{h(t') : Proji(t',t)}.

As in (ii) we see that

Projn(h)(t) = a < (V') (Projk(t',t) — Appnii(h,t') < )
ANVB < )3t € IS,11)(Projl(t',t) A B < Appnii(h,t)).

Conversely we have

Eq¢t ={t € 1Sy : (3h € F»)(Eq(h) N Appa(h,t) #0)},
Prod* = {t € 1S3 : (3h € F3)(Prod(h) A Apps(h,t) #0)},

and

Projy(ti,t2) & (Vh € Fop1)(Appps1(hity) # 0 = Proju(h)(t2) #0). O

This theorem tells us that when cf(x) > 2% it suffices to consider the
structures M7 , W and here, since the members of F;, are now viewed as functions
from I.S,, to Card—, this amounts to a version of second order logic on the sorts 1
and 2, together with Eq', Prod', Projl, and <. The sorts 1.9, are independent
of k, A, i, and so the main point is to analyse Card~. We give an analysis of this
situation similar to that in [11] which involves defining suitable ‘small’ ordinals
(meaning of cardinality < 2%0), sufficient to capture the elementary theory.

In what follows we extend the definition of ‘cofinality’ to zero or successor
ordinals by letting cf(0) = 0 and cf(a + 1) = 1. Let Q = (2%)*. Then any
ordinal o may be written uniquely in the form

a=0a,+...+ Qn()([n] + ...+ Q.Oz[l] + o]
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where ¢ is the ordinal power, ap,) < Q for n € w, and {n : o) # 0} is finite.
We write a[n] = Q.o + ... + Q" Lap, 4] and let
m _ J T+ecflaln]) ifcef(aln]) <Q,
al™ = .
0 otherwise
For ordinals «, 3, and k € w, let a ~ 3 if ap;) = By and all = gl for all 1 < k,
and a ~ § if a ~ B for all k. For a set of ordinals {a} U A let y(«, A) be the

order-type of {f < a: (Vy € A)(y < @« = v < B)}. Note that this set is the
final segment of oo U {a} consisting of all (strict) upper bounds of AN a.

The following lemma is stated in [10] and a proof outlined. The result is
also related to [4]. We give fuller details here for the reader’s benefit.

Lemma 5.3 (i) ~ is an equivalence relation. For each « there is 3 < QF+2
with a ~y, B; and if o ~ B then a < QFL if and only if B < QFL, and each
of these implies o = 3.

(ii) If a > QL then for any B,a ~1, B+ .

(iti) If oy ~p By for each v <0, then 3 5oy~ 30 5 By

() If a ~41 B, and A C o with |A| < Q, there is an order-preserving map
F : A — j such that for each a € AU {a},v(a,A) ~, v(F(a), F(A)) (where
F(a) is taken to equal 3).

Proof (1) Let g = Qk+1.ﬂ[k+1] + Qk.a[k] + ...+ Q.Ozm + o where ﬂ[k-&—l] is
given as follows:

Q[p] if o) # 0 for some least n > k,
w if ap) =0 for all n > k and «, is a successor,
Br+1] = ¢f(aw) if o) = 0 for all n > k, v, a limit ordinal and
cf (o) < Q
0 otherwise

Then a = By for | < k is immediate. If a < QF*1 the final clause applies, so
B =a< QL Also if B < QFF! then a < QF*F! 5o the last part also follows.
Now suppose the first clause applies. Then if [ < k,

alll =Qa,+...+ Q".Oc[n] + Qk.a[k] +...+ Ql+1.a[z+1]

and B[l] = Qk+1.a[n] + Qk.a[k] + ...+ Ql+1.a[l+1]

which have equal cofinalities as oy, # 0. If the second or third clause applies,
then
Ozm = 0%, + Qk.a[k] + ...+ QlJrl.Oé[H_l]

and B[l] = QkJrl.ﬁ[k_H] + Qka[k] +...+ Ql+1.a[l+1].
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If ol £ Bl then o = ... =apy1) = 0so afl] = Q. and B[] = Q5 By 44y
But if clause 2 applies, ¢f (a[l]) = w = cf(5[l]), and if clause 3 applies, cf (a[l])
cf(aw) = By = cf (Bl]) after all.
(i) As a > QF1 o, #0, or apy) # 0 for some n > k. Write o = QN.oz[N] +
..+ ap) where N > k,an] # 0 (and where N = w,aqn] = ay, is allowed).
Writing 8 in a similar way, if n < N,Q".8, + QN.a[N} = QN.a[N}7 and so
6 + o = Qw.ﬁw + ...+ QN(B[N] + a[N]) =+ QN_I.Oz[Nfl] + ...+ o] For I <k
we have
Oém = QN.CX[N] +...+ Ql+1.a[l+1]

and (8 + Oé)[l] =Q“B,+...+ QN(,B[N] + a[N]) +...+ Ql+1.04[l+1].

The only way in which c¢f(afl]) can be unequal to cf((8 + «)[l]) is for afl] =
OV # QB+ ...+ QV.(Bv + apny) = (B4 a)[l]. But if apyy is a limit
ordinal, cf(QN.a[N]) =cf(a)) = cf(QN.(B[N] +anp)), and if it is a successor,
both cofinalities are equal to cf(QV), so we deduce that all = gl and hence
that o ~g, .

(iii) If § = 0 or 1 the result is immediate. Next suppose § = 2. If a; > QFF!
then by (i) also 87 > QF*! (and vice versa), so by (ii) g + a1 ~p a1 ~p B1 ~p
Bo + B1. Otherwise if m is greatest such that ayp,) # 0 then m < k and also m
is the greatest such that B(,,) # 0, and ag + a1 =

QY. aow+. A+ gt AL () Q) ) QT 1) - -]
and By + 1 =
Q“ Bow =+ . -+Qk+1ﬂo[k+1] oA Q™ (Bopm) + Buim) T Bipm—1) +- -+ Bio]

(From a B[l] for i = 0,1,1 < k it follows that (ag + a1) = (8o + B1) Y.

We now prove the general case by transfinite induction. The successor case
follows easily from the case § = 2. Suppose therefore that § is a limit ordinal.
Since ay ~y By for v < d,ay = 0 & B, = 0, so we ignore any zero terms. Thus
cf (s ) = cf (<5 8y) (= cf(6)). Also by (i), ay > Q! & B, > QFFH
and so {y < & : ay, > QFF1} is unbounded & {y < § : B, > QF*1} is unbounded.
If each of these is unbounded, > _;a, = Qk+1.a*,27<5 B, = QFFLB* for
some o, 3*. Otherwise for some vy < 6, (Vy > 79)(ay, 8, < Q1) and as
oy~ By, by (1) (V7 > 70)(cy = By). In each case it follows that >0 sy ~p
Z'y<6 B’Y‘

(iv) Given o ~gy1 B and A C a,|A4| < Q we write a = o/ + &, 5 =5 +¢
where o, 3’ are divisible by Q*+2 and cf(a’) = cf(B8') or cf(a/),cf(B') > Q
First suppose & = 0.

If cf(a),cf(B) > Q we define FF : AU {a} = pU{B} by F(a) = 5 and
otherwise inductively so that for each a € A,~v(a,A) ~r y(F(a),F(A)) and
v(F(a), F(A)) < Q%+2. Suppose that F(a’) has been defined for a’ < a having
these properties. Then v(a, A) is known and F'(a) has to be chosen. This is
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possible by (i), and as |A| < Q and  is regular, F(a) < Q2 < 3. Moreover
Y(a, A) ~p v(B, F(A)) is clear (since each of these order-types is cofinal with a
positive multiple of Q¥+2).

Next if cf(a) = cf(8) < Q we may write a =3 _, o, 8 =3 _, B, where
each ., 3, has cofinality > Q and is divisible by Q¥*2. By the first case we
define F': AN{¢: Z(;<7046 <¢E< Zég'ya(S} = {¢: 25<'yﬂé <&< Zéﬁvﬂ(S}
for each v < A and put the pieces together.

Finally for the case £ # 0 we define F' : ANa’ — B as above and let
Flo'+vy)=pf+vyfory<&and o' +v€ A. O

Now we can prove the required bi-interpretability result. First we define the
relevant structures.

Definition 5.4 If o = a(k, A\, ) is the order-type of Card™ in M, we let

NEA#:((ISn)nZM (a[n])HZOa (Ol[n])nzo; qu, PTOdlv (P’rojib)HZD (<n)n203 (<n)n20)

be the structure whose sorts are viewed as being pairwise disjoint (and all but
finitely many ap,) are empty), and <, <" are the usual (well-) orderings on
a[n],a["]. The superscript 2 indicates that N,SM is vewed as a second order
structure in a very strong sense. This means that the language used to describe
it, as well as including first order variables corresponding to each sort, also
contains, for each tuple of sorts, variables ranging over relations whose ith entry
lies in the ith sort of the tuple for each i. (Alternatively we can introduce sorts
corresponding to each such tuple, adjoin all the natural relations, and work in
first order logic).

In one direction the interpretability is ‘explicit’.

Theorem 5.5 If cf(k) > 2% then N7y, is interpretable in M, ,.

Proof The main point is to show how each a[n],a["] may be represented
in M:Au‘ Then we sketch how second order variables as described above are
‘simulated” within the first order language of M, .

First we represent non-empty subsets of Card™ of cardinality < €2 using
members of Fy, the idea being that h € F, represents its range. Since 280 <
cf(k) < k < A, all such subsets of Card~ can be represented. The following
can then be expressed:

the set encoded by hq is a subset of that encoded by ho:

incl(hl,hg) . (th)(atg)(hl(tl) = hg(tg)),
(where as App,, is just ‘application’ we write hq (¢1) instead of Appa(hi,t1) etc).
hi and hg encode the same set: incl(hy, he) A incl(he, h1),

h encodes a final segment of «:

final(h) : (Vt1)(VB)(3t2) (h(t1) < B — h(t2) = B),

a is divisible by Q (= ap = 0),
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div(a, Q) : (Vh)=final(h).
B € a is divisible by Q, QF+1:
div(5,9) : (Vh)(% < B)(30) (v < 6 < B A (VE)(h(t) £9),
div(B, Q1) « div(B,QF) A (VR)(Vy < B)(30) (v < 6 < B A div(8, Q%) A
(Vt)(h(t) # 0)).
a is divisible by QF*1:
div(a, Q1) « div(a, Q) A (VR) (VB < a)(FY)(B < v < a A div(y, QF) A
(V8)(h(t) # 7).

«a[g) is now represented by A such that
final(h) A (VR')(incl(h, B') A final(h') — h = 1),

if such exists (and otherwise is 0). Similarly ay is represented by A such that
(vt)(div(h(t), Q%)) A (VA (V) (div(B (), QF)) A incl(h,h') — h = R') if such
exists (and otherwise is 0).

To encode facts about cofinalities we quantify over non-empty binary rela-
tions on Card™ of cardinality < € using pairs (hy, hs) in Fs. Observe that if
) # R C (Card™)? |R| < £, then for some hy, hy € Fao, R = {(h1(t),ha(t)) : t €
I1S;}. We can describe when R is an order-isomorphism thus:

iSO(hl,hg) : (th)(vtg)(hl(tl) § hl(tg) d hg(tl) S hg(tg)).
The set coded by h is then cofinal in « if
cofinal(h) : (VB8)(It)(B < h(t)),
and h codes the cofinality of «, which is < € if
cofinal(h) A (Yh')(cofinal(h’) — (3h1)(3he)(iso(h1, ha) Aincl(h, hy)
Aincl(hy, h) Aincl(hg, h')).

We may express cf(a) > Q by (Vh)-cofinal(h), and in a similar way for
each 8 € o we may express ‘h codes a cofinal subset of 8’ and ‘h codes cf(8)’.
From this it should be clear that each a[n],a["] can be represented (though
presumably not uniformly).

Finally we show how to represent non-empty n—ary relations of cardinality
< £ on the sorts of the original structure according to sort provisos of the kind
described above. Since the sorts of N2, ., all have cardinality < €2, this translates
into full second order logic in this structure.

Without loss of generality consider a tuple of sorts in Mmu
(ISiy,...,IS;,,,Card=,...,Card™) (where Card~ occurs n times). We repre-
sent corresponding non-empty relations of cardinality < € by m 4+ n—tuples
of the form (hi,...,hpm,hy,..., h,) where h; € F; 1o satisfies funs g, (h;) and

h’; € F3. Such an m + n—tuple represents

*, of the form

B = B(h)={(H1(t),...,Hpu(t),h\(t),... kL (t)) : t € 1S3}

where H; is the function from I.S; to I Sij determined by h;.

Clearly B(h) is a non-empty relation of the required kind of cardinality < 2,

and conversely every such relation can be written as B (h) for some m + n-tuple

h.
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7 *

As in the proof of Lemma 5.1, € B(h) can be expressed in M, .

If R is a non-empty n-ary relation on NSM with specified sorts, then as
each individual sort is definable as indicated above, R may be represented by a
corresponding n-ary relation of the kind just discussed, in My, . O

In the other direction we have a weaker notion than ‘semi-interpretability’,
which is nevertheless sufficient to transfer elementary equivalence. The weak-
ening just consists in having a whole family of representatives of a tuple rather
than a single one. Let us say that for k € N a k-representation of a tuple (, 3, h)
in Mfdu where each ¢; lies in some 1.5;, 8; € Card™, and each h; lies in some
Fj, is any tuple of the form (A, <*,g,%,b, H) where

<* is a well-ordering of .55,

ACISy,b; €A,

if h; € FJ then H; : ISJ — A,

g=1(90,-,91-1,9%-..,g* 1) where g;, g* : AU {0} — IS,

for some order-preserving 1-1 map 0 : A — Card—,0(b;) = B;, (Vt €
IS;)0(H;(t)) = h,(t), and for every a € AU {oo} the order-type of {t € 1.9, :
t <* gj(a)} equals v(0(a),0(A)); and the order-type of {t € IS : t <* g7(a)}
equals v(A(a), #(A))V] (where we take f(c0) = A (> S for all § € Card™)).

We remark that all entries in this tuple except for the g;, g° lie in N, EM:

<*C IS%,A - ISQ,ti S ISj,bi S ISQ,HI‘ - ISj x 185.

Moreover g;|A, g'|A C IS5 lie in N2, so by making an easy modification to
their ‘official’ definition, so do g;,¢g*. But 6 does not (which is why it does not
form part of the representation).

Lemma 5.6 Any (,3,h) has a k-representation.

Proof Let A’ be the union of the set of entries of 5 and the ranges of the
hi, A" C Card=. Then [A’| < 2%, Also v(a, A’)(;;,v(a, A')V) each has order-
type at most that of A’. We choose A C ISy of cardinality |A’|, a bijection
0: A — A and a well-ordering <* of ISy extending §~!(<). For a € A let
gj(a) equal the y(6(a),0(A));th element of ISy under <*, g;(co) = A, and
similarly for g/(a). Let b; = 0~(3;) and H;(t) = 0~ h;(t) for each ¢t. O

Lemma 5.7 In the language of/\fif)\# for each k there is a formula py, such that
N,?M E orlA, <*,g,b] if and only if

A C IS5, <* is a well-ordering of 1S2,b € 15,

7=1(90-,9k-1,9°-..,g"" 1) where the g;, g* are functions from AU {oo}
into 1.5,

and if A and ISy are enumerated in <*-increasing order as {ag : f <
Bot:{by : v < Y}, and b = by,, and for each f < Bo,ap is an ordinal for
which b(ay),, = gl(a,@),b(aﬁ)[z] = g'(ap) for 1 <k, then Zﬁ<50 ag ~p M-
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Proof The proof of this is obtained by formalizing a transfinite induction
similar to that used in the proof of Lemma 5.3(iii). O

Lemma 5.8 For each tuple of sorts and each k,

(i) there is a formula repy of the language of./\/,f)\# which holds in NEM for
a tuple having the right sequence of sorts if and only if it is a k-representation
(of some tuple),

(ii) there is a formula isorepy of the language ofJ\/E/\M which holds in N,fw
for a pair of tuples each having the right sequence of sorts if and only if there

is some tuple of My, of which they are both k-representations.

Proof (i) To tell whether a tuple is a k-representation we first verify lines
1 to 4 of the definition, which can all be expressed in the language of NZM
(where we have second order logic). If they hold then the main point is to check
whether 6 can be defined to give the correct ~-values. For this we appeal to
the previous lemma, and we also need to refer to the sorts ajy), all for j <k to
ensure that the right v(6(c0), 0(A))(;1,7(0(c0), 0(A))U values can be achieved.
Then we may define 3, h by 8; = 0(b;), hi(t) = 0(H;(t)).

(ii) Similar remarks apply except that we should now work with ‘minimal’
A, that is, those which are equal to the union of the {b;} and range(H;). O

Theorem 5.9 For every (first order) formula p(xg,...,Tn—1) of the language
of M5, there is an effectively determined integer k and (second order) formula
(Yo, - -+ s Y2k+n+1) of the language of/\/,f/\H such that for all kK, \, p with cf (k) >

3
RAM

representation cq, ..., Cogtrnt1 Of @ in N,?/\H,

2%o - for every ag,...,an_1 in M (having the correct sorts) and every k-

My, E ola & N2, vl

Proof We construct ¢ by induction. The k is just the ‘quantifier depth’ of ¢
(for quantifications over F}), as emerges from what follows.

First consider the case of atomic formulae, where we take k = 0. If o(xg)
is Eq'(z0) we let 1 (yo) also be Eq*(ya), (since sort IS5 is the same in the two
structures). Similarly for Prod!(zo), Proj}(zo, 1), and xo = x; where g,z
lie in the same I.5;. If p(xg,21) is 29 = x1 or xp < x1 where xg,z1 € Card™
we let ¥ (yo, Y1, Y2,y3) be y2 = y3 or (ya2,y3) € y1 respectively. Consider < for
instance, and let (A, <*,bg, 1), a k-representation of (8y, 51), and 6, be given by
the definition of what this means. Then 6(b;) = 5;, so by <* b1 < fy < (1 and

i | @lBo, Bi] & Bo < B & by <* by & N2y, | (bo,b1) €< N2,
P[A, <* by, b1]. For the remainder it suffices to consider p(zg,x1,z2) = 1 =
Appr(z2, o) (since the other atomic formulae may be written in terms of this
and the ones above). Here we let ¢¥(yo, y1, Y2, y3, ya) be (y2,y3) € ya.
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For the induction step the case of negation is immediate (we take the same k
and the negation of the corresponding formula). For conjunction suppose that

© 18 ©1(T0, s Ti—1, Tly ooy Tne1) A ©2(T0y - oy T1—1, Tiny -+, Tn—1), Where the z;
are distinct variables , and that k1,1 (yg; - Yok, 41> T0s - Try—1) corresponding
to @1 and K2, V2 (Y0 - -+ s Yoy 415 T0s - - - L) 15 Loy - -, Ty_1) cOrTesponding to o
have been chosen. Let k = max(k1,k2) and (Yo, - -« Y2k415 205 - - 5 Z1—1s Zls - - 5
Zm—1,Zms - -+, 2n—1) be the formula

U1(Y0s -y Y2ky 415 205 -+ -5 Zm—1) A2(Y0s -+ Y2ho 15 205 -+ 5 21— 15 Zms - -+ » Zn—1)-
If ag,...,ap_1 in M:Au have the correct sorts, and (A4, <*,go,...,grk-1,9%, -,
g" 1 bo,...,by_1) is a k-representation in EM, then (A, <*, 90,9k 1,9,

. 7gk1_1ab0a .. 'abm—l)? <A7 <*a907 cee 7gk2—lago7' .. ,gk2_17b07' . 'abl—17bm7' )
bn—1) are ki-,ko-representations of (ag, ..., am—1), (a0, -, Q1—1,Cmy- -, Ap_1)
respectively, and so the result goes through with this k.

Now consider the existential quantifier. Suppose ¢(zg,...,Tn—1) is (3z,)

@' (xoy ..., Tn_1,%,), and that k', 1’ corresponding to ¢’ have been chosen.

Case 1: z,, € IS;. Let k =k and ¥(yo, ..., Y2rtn+1) be (Fy2k4nt2)? (vo, - -,
Yok+n+2) (where yoptnt2 € 1S; t00).

Suppose ag, - . ., an—1 € M, , have the correct sorts, and (A,<*,g,0)is a k-
representation of @. Then for any a,, € IS}, (A, <*,7,¢, ay) is a k-representation
of (ag,...,a,). Hence

:)\/t |: (p[(lo, o 7an71]
& for some a, € 155, M}, = ¢'lao, ..., an)
& for some anISj,J\/',?/\M E 'A<, g,co,...,Cn)
g N/?)\;L ':¢[A7<*u§76]'

Case 2: x,, € Card™. Any existential quantifiers over Card~ may be eliminated
in favour of quantifiers over 1S3 and Fs, since (3z,, € Card™ )¢’ (zo,...,zn) &
(Hh € Fg)(ﬂt S ISQ)QD/(xo, ey Tp—1, h(t))

Case 3: z,, € F;. Let k =k 4+ 1 and ¥(yo, - . ., Y2k+n+1) be the formula

(J20) - . . (F22knt1)(F2) (repr (2o, - - - s 2264 n41,2) A
iS0TePk (Yo, - - - Y2ktnt1, 205 - - - Z2k4nt1) AV (20, s Z2kins1s 2)),

where repy,isorepy are the appropriate instances of the formulae provided by
Lemma 5.8 (that is for the correct sequence of sorts), and " (zo, . . ., 2oktnt1,
2) is (20, - - - Zpyn_1,2) Where (20, ..., 25, _1,%) is obtained from (zo,...,
Zokint1,2) by deleting the two variables corresponding to gx and g*. For ease
assume the variables in |JI.S; come first, then those in Card™, then those in
U F;. o o

Let (A,<*,g,t,b, H) be a k-representation of (¢, 3, h). Then
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" [ olt, 8,7
& for some h € Fj, M5y, E ¢'[t,5,h, h]
& for some A',<',¢',t,b/,H',H', where H' : IS; — A,
,fM = repi[A', <, g, LV, H  H'| A
isorepp[A', </, g/, 6,0, H', A, <*,g,t,b, H A" [A', <, ¢, £, b/, H', H']
& N2, EY[A <710 H]

The first and last steps are immediate. It is the intermediate equivalence
which we have to justify. o S

Suppose then that My, = ¢'[t, 8, h, h], and let (A, <’,¢',,0/, H', H') be
a k-representation of (%, 3, h,h) (which exists by Lemma 5.6). We get a corre-
sponding k’-representation by omitting gj, (g*)', so by the induction hypothesis,

,f)\# = 1/’”[14/,5/79:%;5/7[{/71{/} AESCLNEM Erepp|A, <',g,t, 0/, H', H'|A

iSOT@pk[A/,<I,g/,¥, blleaAa<*a§7ia bLHL o

Conversely ifJ\/E/\M E 1/}[/7175*,@ t,b, H| there are A’, <', ¢’,t,t/, H', H which
form a k-representation of £, 8, h, h for some h, and such that EM Erepp[A, <",
gt 0, H' H'| A isorepi|A’, <, ¢, t, b/, H' A, <*, 5,1, b, H]. By Lemma 5.3(iv)
there is some H : I.S; — A such that (A, <*,g,t,b, H, H) is a k'-representation
of (t,8,h,h). By the induction hypothesis again, M, E ¢'[t, 8, h,h] as re-
quired. O

Corollary 5.10 If cf(k1),cf (k) > 280 then the following are equivalent:
(Z) M;l/\lﬂl = /\/Lﬁzkzltw
(“) thm ENKz)\z#Q’

(iii) Sx, (11)/ Sk, (1) = Sx, (12)/ Sk, (p12)-
Proof This follows from Theorems 5.2, 5.5, and 5.9. O

So in a certain sense, for cofinalities above 28, only a rather modest amount
of information about the cardinals &, A, and p is needed to distinguish the
quotient groups, and in particular, whenever a(r1, A1, pt1) ~ (K2, A2, p2) they
are elementarily equivalent.

6 The case cf(x) < 2% and conclusions

In this section we begin by treating the rather more complicated case in which
cf(k) < 2% and then summarize the conclusions in all cases. The first remark
is that there is a first order sentence of the language of M, which distinguishes
this case, namely

(th,hg € FQ)(hl 75 ha A (Vt S ISQ)(Appg(hl,t) = Appg(hg,t))).

So from now on we assume that cf(x) < 2%o.
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We now describe the modification of N 3Au appropriate in this case, which

varies slightly according as k < 2% or not, and K = Xy or not (cases which
we shall see below can be distinguished by formulae of the language of group
theory). Let a* be the least ordinal > 0 such that (37)(8 = v+ a*) where k =
Rg. The definition of N2, , is modified to include as additional sorts cf(x), and

*
Oé[n

most one «

I’ o*" for n > 0. Since o* is by definition additively indecomposable, only at

E‘n] can be non-zero, so the representation is somewhat redundant, and
we have just w+1 possible cases. We also include (distinct) individual constants
co,Cx € IS5 in the structure. These may be chosen arbitrarily or, better, as

definable elements (to ensure that the interpretation is without parameters).

Definition 6.1 If o = a(k, A, 1) is the order-type of Card™ in My, and o*
is the least ordinal > 0 such that (3v)(8 = v+ a*) where k = Vg, we let

N'?AM - ((Isn)nZIa (a[n])nzov (a[n])nzm (arn])nzm (a*[n])nZO; quv PT‘Od17
(Proj})n>1, (<n)nz0s (<™")n>0, (<5 )n>0, (<*™)n>0, o, Cxs kap, fin)

be the structure whose sorts are viewed as being pairwise disjoint (and all but
finitely many o, and all but at most one O[Fn] are empty), and <, <", <& <N

n’

are the usual (well-) orderings on oy, a[”],af‘n], o*". As in Definition 5.4 the
superscript 2 indicates that ./\/ZM is a second order structure, and the same
restrictions are made as before on the second order variables which are allowed
(where the new sorts are now allowed as entries in the tuples of sorts), except
that since we no longer know for sure that X > 280, we have to restrict to
quantification over relations of cardinality < A. The constants ¢y and ¢, are
distinct elements of 1S3, and kap and fin are unary relations on 1S3, kap
picking out a subset of ISy of cardinality x and fin the set of isomorphism
types of finite sets, which are only included if k < 2%, k = R respectively.

The case k < 2% has to be treated separately because it is precisely here
that Sum,, (summation of h € F},) cannot be identified with supremum. As we
saw above, subsets of ISy can be represented in M.y, and by various tricks
(which we do not go into, but which are similar to ones described below for other
purposes) one can express the property of having cardinality . In general there
will be no definable such set however, so the interpretation of Nf)\u in M., in
this case requires a parameter. If also Kk = Ny, we include a predicate fin picking
out out the members of IS5 corresponding to isomorphism types of finite sets.
(This predicate is definable in M)

The fact that kap is not definable does not affect our main results however.
We shall show that (in the relevant case), kap can be interpreted, and that we
can express when the representations of members of our structure using two
possible interpretations of kap represent the same object.

One main difference in this section is that we can no longer work with M, .
Instead we refine the methods of section 5 to show how the second order logic
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just mentioned can be represented in M,y,. We recall that in Lemma 5.1(ii)
we saw how to say that two members of F;, or F,,, 1, encode the same subsets of
IS, or IS, x IS,,. In fact if cf(x) > 280 they encode the same set if and only if
they are equal. But this is not true if cf(x) < 2% (as was essentially exploited
above in devising a sentence to characterize this case). Life is easier if we use h
which ‘minimally encode’ sets or relations. All this means is that the cumulative
effect of values below k is negligible, in other words > {h(t) : h(t) < K} < &,
but we have to see how this can be formally expressed.

For hy, he € F),, we write restry,(h1, he) for > {hi(t) — ha(t) : t € IS, } < k.
In Sy (u)/Sk (1) this corresponds to a tuple representing h; being conjugate to a
restriction of a tuple representing ho (expressed in section 4 by a corresponding
formula restr,,), and so by Theorem 2.6 is first order expressible in the language
of My, Saying that h minimally encodes a set (or relation) then is expressed
by min(h):

(Vh' € F,)((Vt € 15,)(Appn(h,t) = k < App, (B t) = k) — restr,(h, 1')).

Now we show how to capture the behaviour of cardinals below x in M.
Let us write Card<,, for {v € Card : v < k}. We can only hope to capture the
‘tail’ of Card<,. We encode (the tail of) a subset X of Card<, by any k € Fy
having X as range. (Of course subsets of Card« of cardinality < min({2, A) can
be so encoded.) We can express ‘k encodes some set’ by (V¢ € 1.52)(Appa(k,t) =
0), and we say that such a k is almost zero. In the sense of the previous
paragraph k encodes the empty subset of 1S5. As we wish to exclude 0 (that
is, any k such that Y {k(t) : t € IS2} < k) we identify 0 as any k € F, which
minimally encodes the empty set.

In order to express when two almost zero members of F» encode the same
subset of Card., it is easier to pass to those which are ‘almost 1-1’, meaning
that

(31/ < H)(th,tg S ISQ)(kJ(tl) = k)(tg) >v—t = tg).

This requires a further technical trick.
Now if A € Fy minimally encodes a subset X of IS5, and ki, ks are almost
zero, we can express ‘k, encodes the restriction of k; to X’ by the formula

restra(ky, ko) Arestra(ki, W)A(VE € Fy)(restra(k', ka)Arestra(k', h) — restra(k, k1)).

If f € Fy and one-onefuns 2(f) we can express ‘the function F' coded by f
carries k1 to ko’ (meaning that F carries {t : k1(¢) > 0} to {t : k2(¢) > 0}, and
for each t with k1 (t) > 0, ko(F'(t)) = k1(t)), via Sx(p)/S.(p) and Theorem 2.6
as follows:

‘a tuple representing f has a restriction which projects to a conjugate of a
tuple representing k; on co-ordinates 1,2, and to a conjugate of a tuple repre-
senting ks on co-ordinates 5,6’.

Using this we can now express ‘k is almost 1-1’ thus:
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one-one(k) : k is almost zero and Vk;VkoV f(k1, ke non-zero restrictions of k
to disjoint subsets of .52 A one-onefun(f) — —(f carries k1 to ks)).

For if k is not almost 1-1 there are cofinally many v < & such that [k~1(v)| >
2 and we can find non-zero restrictions of k to disjoint subsets of IS and a
permutation taking one to the other.

The point of doing this is that we can now express ‘almost zero ki and ks
code the same (tail of a) subset of Card.,’, and compare order-types of such
subsets. For k1 and kg code the same subset of Card., if and only if one can
be carried to the other by a 1-1 function from a subset of 1.5 to I.S5.

We can now express cf (k) < 280 A k is a successor by

cf(k) < 2% (already expressed) A (Vk)(one-one(k) — k = 0),

if desired (though it corresponds to the special case a* = 1).

Now suppose that cf (k) < 2% A k is a limit. We wish to represent cf (k)
and each af,; and oM in M, \,,. We represent cf(x) by any k such that

one-one(k) Nk # 0 A (VK') (one-one(k') Nk' #0 — (3g)(g a 1-1 map from a
subset of 155 into 152 A (Vt)(k(t) < k'(gt))).

For this we need to express (Vt)(k(t) < k’(gt))) in M, and we use the
same idea as above, going via S)(u)/S.(n), and say that the projection to
co-ordinates 1,2 of a tuple representing g has as a restriction a conjugate of k.

Now moving towards representing the O‘rn] and o*l"| we find a formula
subset* (ky, ko) which expresses ‘k1, ko are almost 1-1, and the set encoded by
k1 is a subset of the set encoded by ko’ thus:

(31)(3h)(one-one function(f) A h codes a subset of 1.5 A
ky is the restriction of kog to the set encoded by h).

To represent af‘n] in My, the main point is to find inductively a formula
div*(h, Q™) analogous to the div formulae considered earlier, expressing ‘h en-
codes a function from IS5 to Card<, such that for every ¢, h(t) is divisible by
Q™. For the basis case div*(h, Q") just says that h encodes a function from IS,

to Card~, in other words, h is ‘almost zero’. We also need similar almost zero
functions from 152 to Card.

Assuming inductively that div* (h, Q") has been found, we take for div* (h, Q™+1)

the formula

div*(h, Q™) A (VW')[(W' codes a function from IS5 to Card,)A
(Vt, ' € IS9)(R/(t,t') < h(t)) — (3R")(h" codes a function from IS, to
Card<, N (Vt,t' € IS2) (R (t,t) < h'(t) < h(t))].

We illustrated how to handle inequalities in this context above, so such a formula
exists, and is clearly as required.

‘We can therefore represent each af‘n] in Myx,. Moreover, if af‘n] # 0 for some
n, a* = Q”.af‘n], and all cofinalities are at once represented (equal to either 0
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or cf(Q".a[*n])), and if af‘n] = 0 for all n, o* = Q¥.a,, so the cofinalities are
all equal to c¢f(x). Thus all the sorts of N 3/\” are represented. The method for
representing the second order logic on 3)\# described above is as in the proof
of Theorem 5.5.

Next we show how to handle the case k < 280, Let us say that h € F,, takes
at most two values if for some h' : ISy — Card<,, (h')e, = h and |range h'| < 2.
This notion is captured in M.y, by the formula

(VX C 155)(3Y C X)(all permutations of X fixing Y setwise also fix h).

Observe that we need the V3 quantification because we can only quantify over
subsets of 1.5 of cardinality < A, and we have not insisted that A > 2Ro
We can now characterize x < 280 by means of the formula

(3R)(h #0 A his almost zero A h takes at most two values),

which justifies defining N,f/\u by the cases £ > 280 or k < 2%, All the ingredients
of this structure have been represented in M, in the case cf(x) < 2% < k,
and when £ < 280 we interpret kap as a subset of ISy of cardinality x. We
remark that in this case, |Card<,| < 2%, and so this is an instance where the
af‘n] and a*" really are mostly redundant, since 0‘*0] = o, and all other af‘n] are
zero. If Kk = Ny, we also have to represent fin, as mentioned earlier, and this is
done as follows. Amplifying the remarks just before Theorem 4.3, let us say that
an n-tuple T € Sx(u)/Sk(w) is érreducible if T # 1 and Vyvz(disj,(¥,2) AT =
y+*Z — (y=1VZ=1)). Then one easily checks that Sx(u)/S«(n) = (37)(T
irreducible) & k = Ny, and so, by Theorem 2.6, this can also be expressed
in M,,. Moreover, the same argument shows that irreducibility too can be
expressed in M,y,, and we note that ¢ € fin & (Vh € Fy)(h irreducible
— Apps(H,t) = 0). For if S.(u).g is irreducible and Apps(Chg,t) # 0, where
t € fin, then (g) must have infinitely many orbits of type ¢, so can be written
as a non-trivial product of disjoint elements. On the other hand, if ¢t &€ fin,
then there is S, (1).g # 1 such that (g) has a single non-trivial orbit of type ¢.
This describes the essential steps in the proof of the following theorem.

Theorem 6.2 For all &, NSM is interpretable in My, If K > 2% the in-
terpretation is without parameters, and if K < 2% a parameter for kap is used.

Proof The case cf (k) > 2% follows from Theorems 5.2 and 5.5, and the case
cf(k) < 2% is covered by the above discussion. As remarked above, although
the parameter kap is needed in the case k < 2%, since ‘having cardinality &’
is expressible, we can define when a subset of 1.5, is a possible choice for its
interpretation. O

To complete our analysis of the case cf(x) < 2% we show how My is
(weakly) interpretable in N2, ,, in this case in the sense of Theorem 5.9. This
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will suffice to show that the structures N2, = completely capture the first order
theory of the groups Sy (1)/Sk (1), which is our goal. Here we use a modification
of the definition of a k-representation of a tuple (%, 3, h) in M. Recall that
without the assumption cf(x) > 2% we only know that h is a tuple of &,-
classes of functions, which is one reason for the altered definition. Another
point is that we need to capture the eventual behaviour of two well-order-types,
namely Card above and below k. If K = Rg and 7 is least such that 8 = v+ a”,
we let Card* = {v € Card : v =0V R, < v < A}. Then a k-representation of
(t, B, h) is defined to be any tuple of the form (A, <*,g,%,b, H) such that

<* well-orders 1.9,

ACISy,b; € A cg,c €A,

if h; € Fj then H; : IS] — A,

gis a tuple of the form (go, ..., gk-1,9% .-, ¢* 1, 98, , 91,90, ..., g
where g;, g' : A/U{co} — IS2,97,9*%: A” — ISy, where A’ = {a € A:a <* ¢}
and A" ={a € A:c, <a}l,

and for some 1-1 order-preserving map 6 : A — Card*,

0 takes cg to 0, ¢, to k, and b; to (; for each i,

lfhZ S Fj then for some h; : IS] — C’ard*, (h;)g] = h'i and (Vt S ISJ)Q(HIL(t))
— W),

the order-types of {t € ISy : t <* g;(a)} and {t € ISy : t <* g/(a)} are
equal to y(0(a),0(A’));;) and v(6(a), 0(A")V) respectively, for each a € A’,

and the order-types of {t € I.Sy : t <* g%(a)} and {t € ISy : t <* g*/(a)} are
equal to v(6(a),0(A"))};; and v(6(a),0(A"))l] respectively, for each a € A”.

*kfl)

Theorem 6.3 For every (first order) formula ¢(xo,...,x,—1) of the language
of My there is an effectively determined integer k and (second order) formula
(Yo, - -« s Yak+n+1) of the language OfNS)\u such that for all k, A\, p with cf (k) <

*

v (having the correct sorts) and every k-

2% for every ag,...,an_1 in M
representation co, . .., Cak+n+t1 ofa in N,?/\W

;:)\/,1, ': SD[E] ¢>NI§)\/,L ': 1/}[6]

Proof We have to indicate the appropriate modifications in the proof of Theo-
rem 5.9. We first remark on the analogues of Lemmas 5.7 and 5.8, which are re-
quired here too. Finding a formula to express the existence of a k-representation
is much as before. Some modification is needed in Lemma 5.8, since we have to
allow for the possibility that the H; may be £;-equivalent, so that the lack of an
order-isomorphism between the corresponding As need not determine whether
or not the k-representations are isomorphic. This is handled using an additional
existential quantifier.

Proceeding to the main proof, since we now have to work with M, rather
than M7, ,.» there are some extra atomic cases in the induction to consider. We
concentrate on the formula Fq(z), as this serves to illustrate the idea.
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Since the structure N? au> and the notion of ‘k-representation’, is different
in the cases k > 2% and x < 2%, we treat the two separately, starting with the
former, in which cf(k) < 2% < k. Let (A,<*, H) be a O-representation of h.
Then

Moxi | Eqlh] & Y {H(8) : t € ISy A (t = ((B.g1,92))= = g1 # g2)} < ,

where (h')g, = h is as in the definition of k-representation, corresponding to H,
and this is equivalent to

(Fv < k) (Vt € I1S2)(t = ((B,g1,92))~ — h'(t) <v).

For if (V¢ € IS9)(t = ((B,g1,92))~ — h'(¢t) < v) then > {h'(t) : t € ISy A
(t = ((B,g1,92))~ — g1 # g2)} < 2% < k as 2% v < k. And if {P/(t) :
t € ISo A (t = ((Byg1,92))~ — g1 # g2)} is unbounded in Cardcy, then
SSUH(0) £ € IS5 A (1= ((B,g1, 92))= — g1 # 62)} 2 sup{R () : £ € ISy A (1 =
b=k

((B,91,92))> — g1 # g2)
Therefore

M, b Eqlh] & (v < k) (Vt € 1S9)(Eq'(t) — h'(t) <v)
& N, EGyelS)(VzelS)(ye Any <* ¢, A(Eq'(2)
— H(t) <" y)),

and this provides the desired formula ¥ (yo, y1, y2).
Now turning to the case where k < 2% we find that

Mz E Eqlh] & (Bv < k)(Vt € IS)(t = ((B,g1,92))~ — h'(t) <v)
A{t € ISy : W (t) #0} < K
(A(Vt € 1S3 — fin)(K (t) = 0) when x = Xp).

The second clause can be expressed by using kap; one says that there is a 1—
1 function from {¢ : H(t) # co} into kap, and that no such function is onto.
Similarly, when x = R, the final clause is expressed by (V¢ € ISy — fin)(H (t) #
C()).

In conclusion we note that although kap is used here, for any two possible
choices for it, we can define when the representation of some object (for instance
an ordinal) under the two values really represents the same object, and so the
apparent arbitrariness is inessential. O

Further remarks

We first remark here that if « is a successor cardinal, then the analysis at once
becomes much easier. For if cf ( ) > 2% then we may apply the results of section
5, and if ¢f(x) < 2% then a* = 1 and the extra sorts of the structure A2 AL
play no essential part. Note however that although we can distinguish these two
cases (cf(k) > 2% cf(k) < 2%0), we cannot distinguish when & is a successor.
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For as remarked at the beginning of section 5, if cf(k1), cf(k2) > (2%0)F then
M =M , but cf(k) > 2% is compatible both with x a successor
and x singular.

Arising out of this, we further note that in the general case, (if A\ > &%),
Ma, and the disjoint sum of M.+, and M+, are bi-interpretable, and
So we can separate our problem into two parts, the first as in the previous
paragraph, and the second of which is the true content of section 6.

Rln;rpl l€21‘<2+,u2

Conclusions

In studying the elementary theory of the groups G = Sy (u)/S« (1) where
Nog < K < A < pt we distinguish the following eight cases (by first order
sentences of the language of group theory):

First we distinguish the cases A < p and A = uT. In each of these, the
elementary theory of G is determined just by the values of x and A. Then we
consider the cases

cf(r) > 2%, ¢f(k) <2% <k, No <k <2%, and k= N.

In each case we form a many-sorted second order structure N 3/\“ whose sorts
all have cardinality < 2%, which captures the first order theory of G, meaning
that

SM (lul)/S“l (ul) = SAz (MQ)/SNQ (MQ) <~ NSI,\IM = NI?Q)\z/,LQ'

For cf(k) > 2% we just require information about Card~; in the other cases,
information about the (large enough) cardinals below & is also represented, and
when k < 2% we also require extra unary predicate(s) on I.S,. We summarize
this by the general form of Corollary 5.10:

Corollary 6.4 If k1 < M\ < pf and ko < Ao < pj then the following are

equivalent:
(7') Mgl)\lﬂl = /\/12H2>\2M27
(’LZ) Nlﬂ)\l#l = Nioraus

(i) S, (111)/ S (1) = g (112) /Sy (112).

For the case where A < u and cf(x) > 2% the following holds: For any
given ordinals ay, ol < € there is a first order theory 7" in the language of group
theory such that

if 2% < cf(k) <p, A< p k= Ng, A =R, B+ a =7, and Qn] :anaa[n] =a"
for each n, then the first order theory of the group Sy(p)/Sk(p) is equal to T,

with similar statements in the other cases (including reference to the af‘n] , o]
and kap, fin as appropriate).

Finally we remark on quotients by alternating and trivial groups. The class
{Sx(p)/A(n) : Ro < XA < p'} of quotients by alternating groups is definable
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in the class of all quotients of symmetric groups, being precisely those with
non-trivial centre. Moreover since the centre of Sy (u)/A(p) is just S, (1) /A(w),
which has order 2, S5 (u)/S, (1) can be easily interpreted in Sy (u)/A(p). It fol-

lows that if S, (111)/A (1) = Sx, (p2)/A(p2) then Sy, (1) /Sw (1) = Sx, (12)/Sw(12),
but whether the converse is true is not at present clear, (though, as we have
seen, the class {Sx (1) /Sw (1) : A, p} is definable in {Sx(1)/Sk(1) : &, A, p}). The
quotients by trivial groups are just the normal subgroups of Sy (u), which were
studied in [10] and [11]. These may be distinguished from the other ‘genuine’
quotient groups we have studied (as in [12]) by means of the sentence

Jz(z #1A2% = 1A Vy)((x2?)? = 1V (z2¥)? = 1))

(which says that there is a transposition).
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