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Abstract. We address ZFC inequalities between some cardinal invariants of

the continuum, which turned to be true in spite of strong expectations given

by [10].

1. Introduction

The present paper consists two independent sections which have two things in
common: both resulted in a failure to fulfill old promises to build a specific forcing
notions and in both an important role is played by cardinal invariant κ∗.

The first promise was stated in [4] and was related to cardinal invariant cov?(N ).
Let B denote the measure algebra adding one random real.

Definition 1.1. Let N2 be the ideal of measure zero subsets of R × R and let
Borel(R) be the collection of all Borel mappings from R into R. Define

cov?(N ) = min
{
|A| : A ⊆ N2 & (∀f ∈ Borel(R))(∀B ∈ Borel \ N )(∃H ∈ A)

(
{
x ∈ B : 〈x, f(x)〉 ∈ H

}
6∈ N )

}
and

non?(N ) = min
{
|X| : X ⊆ Borel(R) & (∀H ∈ N2)(∀B ∈ Borel \ N )(∃f ∈ X)

(
{
x ∈ B : 〈x, f(x)〉 6∈ H

}
6∈ N )

}
.

Proposition 1.2. cov?(N ) = cov(N )V
B

and non?(N ) = non(N )V
B

. 2

It has been known that (see [4], [7], [9] for more details):

(1) max{cov(N )V, bV} ≤ cov(N )V
B ≤ non(M);

(2) it is consistent that cov(N )V
B

> max{cov(N )V, bV};
(3) it is consistent that cov(N )V

B

> d.

And in [4, 3.11] we promised that in [10] it would be proved that

• it is consistent that cov(N )V
B

< non(M),
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being sure that using the method of norms on possibilities we could construct a
forcing notion which:

a: is proper ωω–bounding,
b: makes ground reals meager and
c: does not add a B–name for a random real over VB.

However, when trying to fill up the details of the construction, we have discovered
that there is no such forcing notion and found new inequalities provable in ZFC.

The second section deals with an inequality related to localizations of subsets of
ω by partitions of ω. Several notions of localization and related cardinal invariants
were introduced in [11]. The one we will refer to is the R∃0–localization property.

Definition 1.3. Let V ⊆ V∗ be universes of Set Theory and let k ∈ ω.

(1) We say that the extension V ⊆ V∗ has the R∃k–localization property if in
V∗:

for every infinite co-infinite set X ⊆ ω there is a partition
〈Kn : n ∈ ω〉 ∈ V of ω such that |Kn| > k + 1 and

(∃∞n ∈ ω)(|X ∩Kn| ≤ k).

(2) An infinite co-infinite set X ⊆ ω, X ∈ V∗ is said to be (k, 0)–large over V
if

for every sequence 〈Kn : n ∈ ω〉 ∈ V of disjoint k–element
subsets of ω we have

(∀∞n ∈ ω)(Kn ∩X 6= ∅).

The following result has been shown in [11, 1.8].

Proposition 1.4. Let V ⊆ V∗ be models of ZFC, m ≥ 2, k ∈ ω. Then the
following conditions are equivalent:

(1) there is no (m, 0)-large set in V∗ over V,
(2) there is no (2, 0)-large set in V∗ over V,
(3) V ⊆ V∗ has the R∃0–localization property,
(4) V ⊆ V∗ has the R∃k–localization property. 2

After noting that if V ∩ 2ω is not meager in V∗, V ⊆ V∗ then the extension
V ⊆ V∗ has the R∃0–localization property we promised to give in [10] an example
of a forcing notion showing that the converse implication does not hold. In fact we
wanted to construct a forcing notion which:

a: is proper ωω–bounding,
b: makes ground reals meager and
c: has the R∃0–localization property.

Once again, we have discovered that there is no such forcing notion and we have
established some new inequalities between relevant cardinal invariants.

Notation 1.5. We try to keep our notation standard and compatible with that of
classical textbooks on Set Theory (like Jech [6] or Bartoszyński Judah [3]) )

(1) Let i, j < ω. The set of all integers m satisfying i ≤ m < j is denoted by
[i, j), etc.
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(2) For integers ki, . . . , kj (i ≤ j < ω),
j∏̀
=i

k` is their Cartesian product inter-

preted as the collection of all finite functions τ such that dom(τ) = [i, j]
and (∀` ∈ dom(τ))(τ(`) ∈ ki).

However, we will use the same notation for the cardinality of this set,
hoping that it will not cause too much confusion.

(3) For two sequences η, ν we write ν C η whenever ν is a proper initial segment
of η, and ν E η when either ν C η or ν = η. The length of a sequence η is
denoted by lh(η).

(4) The quantifiers (∀∞n) and (∃∞n) are abbreviations for

(∃m ∈ ω)(∀n > m) and (∀m ∈ ω)(∃n > m),

respectively.
(5) For ω–sequences η, ρ we write η =∗ ρ whenever

(∀∞n ∈ ω)(η(n) = ρ(n)).

(6) The Cantor space 2ω and the Baire space ωω are the spaces of all functions
from ω to 2, ω, respectively, equipped with natural (product) topology.

(7) In forcing arguments, a stronger condition is the larger one.

2. Adding a random name for a random real

As the failure in building the forcing notion we had in mind for [4, 3.11] directly
results in some properties of extensions of universes of ZFC, we will formulate the
main result of the present section in this language. Further we will draw several
conclusions for cardinal invariants.

The result presented in 2.3 below is of some interest per se if you have in mind
the following theorem (see [9, 3.1]).

Theorem 2.1. 1. (Krawczyk; [7]) Suppose that V ⊆ V∗ are universes of Set
Theory such that V ∩ ωω is bounded in V∗ ∩ ωω. Let r be a random real over V∗.
Then there is in V∗[r] a random real over V[r].
2. (Pawlikowski; [9, 3.2]) Suppose that c is a Cohen real over V and r is a random
real over V[c]. Then, in V[c][r] there is no random real over V[r].

Definition 2.2. Let Φ ∈ ωω be a strictly increasing function. A Φ–constructor is
a sequence 〈ni,mi, ki : i < ω〉 of integers defined inductively by: n0 = 2 and for
i ∈ ω
mi = (

∏
j<i

mj) · 23(ni+i), ki = (mi ·
∏
j<i

kj) · Φ(mi ·
∏
j<i

kj), ni+1 = ni(ki + 1).

[So ni < mi < ki < ni+1.]

Theorem 2.3. Suppose that V ⊆ V∗ are universes of Set Theory such that

if r is a random real over V∗

then in V∗[r] there is no random real over V[r].

Let Φ ∈ ωω ∩ V be strictly increasing and let 〈ni,mi, ki : i < ω〉 be the Φ–
constructor.

(1) If V ∩ ωω is dominating in V∗ ∩ ωω, then, in V∗:
for every function η ∈

∏
i∈ω

ki there are sequences 〈X` : ` < ω〉 ∈ V and

〈im : m < ω〉 ∈ V such that
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a: (∀` ∈ ω)(X` ⊆ k` & |X`| = m` ·
∏
j<`

kj),

b: (∀m ∈ ω)(∃` ∈ [im, im+1))(η(`) ∈ X`).
(2) If V ∩ ωω is not domination in V∗ ∩ ωω, then, in V∗:

for every function η ∈
∏
i∈ω

ki there is a sequence 〈X` : ` < ω〉 ∈ V such

that
a: (∀` ∈ ω)(X` ⊆ k` & |X`| = m` ·

∏
j<`

kj),

b: (∃∞` ∈ ω)(η(`) ∈ X`).

Theorem 2.4. Suppose that V ⊆ V∗ are universes of Set Theory such that

if r is a random real over V∗

then V[r] ∩ 2ω has measure zero in V∗[r].

Let Φ ∈ ωω ∩ V be strictly increasing and let 〈ni,mi, ki : i < ω〉 be the Φ–
constructor.

(1) If V∩ωω is bounded in V∗∩ωω, then there are sequences 〈X` : ` < ω〉 ∈ V∗

and 〈im : m < ω〉 ∈ V∗ such that for every function η ∈
∏
i∈ω

ki ∩V

a: (∀` ∈ ω)(X` ⊆ k` & |X`| = m` ·
∏
j<`

kj),

b: (∀∞m ∈ ω)(∃` ∈ [im, im+1))(η(`) ∈ X`).
(2) If V∩ωω is unbounded in V∗∩ωω, then, there is a sequence 〈X` : `<ω〉 ∈

V∗ such that
for every function η ∈

∏
i∈ω

ki ∩V∗

a: (∀` ∈ ω)(X` ⊆ k` & |X`| = m` ·
∏
j<`

kj),

b: (∃∞` ∈ ω)(η(`) ∈ X`).

Proof of 2.3 We will only prove 2.3, the proof of 2.4 is obtained by dualization.
The main parts of the proofs of (1) and (2) are the same, the difference comes

only at the very end. So, for a while, we will not specify which part of the theorem
we are proving. We will present a construction which itself is interesting, though it
is very elementary.

Let Φ ∈ ωω ∩V be increasing and let 〈ni,mi, ki : i < ω〉 be the Φ–constructor.
Letting n−1 = 0, for each i ∈ ω choose a sequence 〈f i` : ` < ki〉 of functions such
that

• f i` : 2[ni,ni+1) −→ 2[ni−1,ni),

• for every sequence 〈ν` : ` < ki〉 ⊆ 2[ni−1,ni) we have

|
{
ρ ∈ 2[ni,ni+1) : (∀` < ki)(f

i
`(ρ) = ν`)

}
| = 2ni+1−ni

2(ni−ni−1)ki
= 2ki·ni−1 .

For i ≤ j < ω and η ∈
j∏
r=i

kr let

f i,jη : 2[ni,nj+1) −→ 2[ni−1,nj) : ρ 7→
j⋃
r=i

frη(r)(ρ�[nr, nr+1)).

The main point of our arguments will be done by the following combinatorial ob-
servation (which should be clear if S is thought of as a tree of independent equally
distributed random variables, but still it needs some calculations).
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Claim 2.4.1. Suppose that 0 < i ≤ j < ω and ∅ 6= S ⊆
j∏
r=i

kr is such that for each

η ∈ S and r ∈ [i, j):

|{τ(r) : τ ∈ S & τ�r = η�r}| = mr.

Then∣∣∣∣{ρ ∈ 2[ni,nj+1) : (∃σ∈2[ni−1,nj))

(
7

2nj−ni−1
<
|{τ ∈ S : f i,jτ (ρ) = σ}|

|S|

)}∣∣∣∣ <
1

2
· 2nj+1−ni .

Proof of the claim: Fix r ∈ [i, j] and τ∗ ∈
∏

`∈[i,r)

k` (so if r = i then τ∗ = 〈〉) such

that there is τ ∈ S with τ∗ C τ . Let

Arτ∗
def
=

{
ρ ∈ 2[nr,nr+1) : for some σ ∈ 2[nr−1,nr)∣∣∣∣∣ |{τ(r) : τ ∈ S & τ∗ C τ & frτ(r)(ρ) = σ}|

mr
− 1

2nr−nr−1

∣∣∣∣∣ ≥ 1

2nr−nr−1 · 2r

}
.

By Bernoulli’s law of large numbers and by the definition of the mi’s we know that

|Arτ∗ |
2nr+1−nr

≤ 2nr−nr−1 · 1

4 ·mr · (2−(nr−nr−1+r))2
=

1

4 ·
∏
`<r

m`
· 2−(3nr−1+r).

Let

A
def
=

ρ∈2[ni,nj+1) : (∃r∈ [i, j])(∃τ∗∈
∏
`∈[i,r)

k`)
(
(∃τ ∈S)(τ∗ C τ) & ρ�[nr, nr+1) ∈ Arτ∗

) .

Note that

|A|
2nj+1−ni

≤
∑
r∈[i,j]

∑ |Arτ∗ |
2nr+1−nr

: τ∗ ∈
∏
`∈[i,r)

k` & (∃τ ∈ S)(τ∗ C τ)

 ≤
∑
r∈[i,j]

 1

4 ·
∏
`<r

m`
· 2−(3nr−1+r) ·

∏
`<r

m`

 ≤ 1

4

∑
r∈[i,j]

2−r <
1

2
.

Suppose now that ρ ∈ 2[ni,nj+1) \ A. Let σ ∈ 2[ni−1,nj). We know that for each
r ∈ [i, j] and τ∗ ∈

∏
`∈[i,r)

k` such that (∃τ ∈ S)(τ∗ C τ) we have ρ�[nr, nr+1) /∈ Arτ∗

and therefore

|{τ(r) : τ ∈ S & τ∗ C τ & frτ(r)(ρ�[nr, nr+1)) = σ�[nr−1, nr)}|
mr

< (1+
1

2r
)· 1

2nr−nr−1

(just look at the definition of the set Arτ∗). Hence

|{τ ∈ S : f i,jτ (ρ) = σ}|
|S|

<

j∏
r=i

(1 +
1

2r
)

1

2nr−nr−1
=

1

2nj−ni−1
·
j∏
r=i

(1 +
1

2r
) <

1

2nj−ni−1
· e21−i

<
7

2nj−ni−1
.
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This finishes the proof of the claim.

Now define a function

F :
∏
i∈ω

ki × 2ω −→ 2ω : (η, ρ) 7→
⋃
i∈ω

f iη(i)(ρ�[ni, ni+1)).

It should be clear that F is well defined (look at the choice of the f i` ’s) and its
definition (or rather its code) is in V. The function F is continuous and we have
the following claim.

Claim 2.4.2. If η0, η1 ∈
∏
i∈ω ki, ρ0, ρ1 ∈ 2ω and η0 =∗ η1, ρ0 =∗ ρ1 then

F (η0, ρ0) =∗ F (η1, ρ1).

Proof of the claim: Should be clear.

Before we continue with the proof of the theorem let us introduce some more nota-

tion. For a tree T ⊆ 2<ω×2<ω and integers `, i < ω we let Ti
def
= T ∩ (2ni+1 ×2ni)

and

T
[`]
i =

{
(ν0, ν1) ∈ 2ni+1 × 2ni : if ` < i then there are (ν′0, ν

′
1) ∈ Ti such that

ν′0�[n`+1, ni+1) = ν0�[n`+1, ni+1) and ν′1�[n`, ni) = ν1�[n`, ni)
}
.

If ` < i < ω then we may treat members of T
[`]
i as elements of 2[n`+1,ni+1)× 2[n`,ni)

(as only this part carries any information). Thus if ρ0 ∈ 2[n`+1,ni+1), ρ1 ∈ 2[n`,ni)

then (ρ0, ρ1) ∈ T [`]
i means that there is (ν0, ν1) ∈ T [`]

i such that ν0�[n`+1, ni+1) = ρ0,
ν1�[n`, ni) = ρ1.

Claim 2.4.3. Suppose that η ∈
∏
i∈ω

ki ∩V∗. Then there is a tree T ⊆ 2<ω × 2<ω,

T ∈ V such that

(i) µ2([T ]) > 0
(where [T ] is the set of all infinite branches through T ,

[T ] = {(ρ, σ) ∈ 2ω × 2ω : (∀n ∈ ω)((ρ�n, σ�n) ∈ T )},

and µ2 stands for the Lebesgue measure on the plane 2ω × 2ω),
(ii) for each ` < ω

µ
(
{ρ ∈ 2ω : (∀i ∈ ω)((ρ�ni+1, F (η, ρ)�ni) ∈ T [`]

i )}
)

= 0.

Proof of the claim: Let r be a random real over V∗. By the assumptions of the
theorem we know that F (η, r) is not a random real over V[r]. Every Borel null
subset of 2ω from V[r] is the section at r of a Borel null subset of 2ω × 2ω from
V. Consequently we find a Borel null set B ⊆ 2ω × 2ω coded in V and such that
(r, F (η, r)) ∈ B. We may additionally require that B is invariant under rational
translations, i.e. that

(ρ0, ρ1) ∈ B & ρ0 =∗ ρ′0 & ρ1 =∗ ρ′1 ⇒ (ρ′0, ρ
′
1) ∈ B.

In V take a closed subset of 2ω × 2ω of positive measure disjoint from B. This
gives a tree T ∈ V, T ⊆ 2<ω × 2<ω such that µ2([T ]) > 0 and

(⊕) (∀` ∈ ω)(∃i ∈ ω)((r�ni+1, F (η, r)�ni) /∈ T [`]
i ).

Paper Sh:616, version 1999-02-19 10. See https://shelah.logic.at/papers/616/ for possible updates.



AFTER ALL, THERE ARE SOME INEQUALITIES WHICH ARE PROVABLE IN ZFC 7

We want to argue that this T is as required and for this we need to check the
demand (ii). Let ` < ω. Look at the set

Y
def
= {ρ ∈ 2ω : (∀i ∈ ω)((ρ�ni+1, F (η, ρ)�ni) ∈ T [`]

i )}.
It is a closed subset of 2ω coded in V∗. Assume that µ(Y ) > 0. Then some finite
modification r∗ of the random real r is in Y . By 2.4.2 we know that F (η, r) =∗

F (η, r∗). Take `0 > ` so large that

F (η, r)�[n`0 , ω) = F (η, r∗)�[n`0 , ω) and r�[n`0 , ω) = r∗�[n`0 , ω).

Now note that

r∗ ∈ Y ⇒ (∀i ∈ ω)((r∗�ni+1, F (η, r∗)�ni) ∈ T [`]
i ⇒

⇒ (∀i ∈ ω)((r�ni+1, F (η, r)�ni) ∈ T [`0]
i

and the last contradicts (⊕) above, finishing the claim.

Claim 2.4.4. Suppose that T ⊆ 2<ω × 2<ω is a tree, 1 < i < j < ω and

(⊗ij) 63
64 ≤

|T [i−1]
j |

2nj+1+nj
.

Let

W =

{
τ ∈

j∏
`=i

k` :
|{ρ ∈ 2[ni,nj+1) : (ρ, f i,jτ (ρ)) ∈ T [i−1]

j }|
2nj+1−ni

<
1

64

}
.

Then there are sets Xi ⊆ ki, Xi+1 ⊆ ki+1, . . . , Xj ⊆ kj such that

(α) |X`| ≤ m` ·
∏
r<`

kr for each ` = i, . . . , j and

(β) (∀τ ∈W )(∃` ∈ [i, j])(τ(`) ∈ X`).

Proof of the claim: Assume not. Then we may find a set S ⊆
j∏̀
=i

k` such that

S ⊆W and for every τ0 ∈ S and every ` ∈ [i, j]

|{τ(`) : τ ∈ S & τ�` = τ0�`}| = m`.

How? For ` ∈ [i, j] let W ` = {τ�` : τ ∈ W} (so W i = {〈〉}). Now we choose
inductively sets X` ⊆ k` and Y` ⊆W ` for ` = j, . . . , i. First we let

Yj =
{
ν ∈W j : |{τ(j) : ν C τ ∈W}| < mj

}
, Xj =

⋃
ν∈Yj

{τ(j) : ν C τ ∈W}.

By its definition we have |Xj | ≤ mj · |Yj | ≤ mj ·
∏
r<j

kr. Suppose that i ≤ ` < j and

we have defined Y`+1 ⊆W `+1 already. Let

Y` =
{
ν ∈W ` : |{τ(`) : ν C τ ∈W `+1 \ Y`+1}| < m`

}
, and

X` =
⋃
ν∈Y`

{τ(`) : ν C τ ∈W `+1 \ Y`+1}.

Note that |X`| ≤ m` · |Y`| ≤ m` ·
∏
r<`

kr.

Now look at the sets Xi, . . . , Xj . By our assumption we know that there is τ0 ∈W
such that (∀` ∈ [i, j])(τ0(`) /∈ X`). This implies that 〈〉 /∈ Yi. [Why? If 〈〉 ∈ Yi
then, as τ0(i) /∈ Xi, we have 〈τ0(i)〉 ∈ Yi+1. Suppose have already shown that
〈τ0(i), . . . , τ0(`)〉 ∈ Y`+1, i ≤ ` < j − 1. Since τ0(` + 1) /∈ X`+1 we conclude
〈τ0(i), . . . , τ0(`), τ0(` + 1)〉 ∈ Y`+2. Thus, by induction, 〈τ0(i), . . . , τ0(j − 1)〉 ∈ Yj
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and τ0(j) ∈ Xj , a contradiction.]
Now we define the set S ⊆ W . We do this choosing inductively a finite tree

S∗ ⊆
j⋃̀
=i

∏̀
r=i

kr in which maximal nodes will be elements of W . First we declare

that 〈〉 ∈ S∗ and since 〈〉 /∈ Yi we may choose a set S
〈〉
i ⊆ {τ(i) : τ ∈ W i+1 \ Yi+1}

of size mi. We declare that {〈z〉 : z ∈ S〈〉i } ⊆ S∗. Note that 〈z〉 ∈ W i+1 \ Yi+1

for z ∈ S
〈〉
i . Suppose that we have decided that a sequence ν ∈

∏̀
r=i

kr is in S,

i ≤ ` < j − 1 and we know that ν ∈ W `+1 \ Y`+1. By the definition of Y`+1 we
may choose a set Sν`+1 ⊆ {τ(` + 1) : ν C τ ∈ W `+2 \ Y`+2} of size m`+1. We
declare that all the sequences ν_〈z〉 for z ∈ Sν`+1 are in S∗. Note that we are sure

that ν_〈z〉 ∈ W `+2 \ Y`+2 (for z ∈ Sν`+1). Finally, having decided that a sequence

ν ∈ W j \ Yj is in S∗ we choose a set Sνj ⊆ {τ(j) : ν C τ ∈ W} of size mj and we
declare ν_〈z〉 ∈ S∗ for z ∈ Sνj . Immediately by the construction of S∗ we see that

the set S = S∗ ∩
j∏̀
=i

k` is as required.

Define:

u0
def
=

{
ρ ∈ 2[ni,nj+1) :

|{τ ∈ S : (ρ, f i,jτ (ρ)) ∈ T [i−1]
j }|

|S|
≥ 1

8

}
,

u1
def
=

{
ρ ∈ 2[ni,nj+1) :

|{σ ∈ 2[ni−1,nj) : (ρ, σ) ∈ T [i−1]
j }|

2nj−ni−1
≤ 7

8

}
,

u2
def
=

{
ρ ∈ 2[ni,nj+1) : (∃σ∈2[ni−1,nj))

(
7

2nj−ni−1
<
|{τ ∈ S : f i,jτ (ρ) = σ}|

|S|

)}
.

Since S ⊆W , by Fubini theorem, we have that

|u0|
2nj+1−ni

<
1

8
.

Now look at the assumption (⊗ij) on T : it implies that, by Fubini theorem once
again,

|u1|
2nj+1−ni

≤ 1

8
.

Finally, by 2.4.1, we know that

|u2|
2nj+1−ni

≤ 1

2
.

Consequently we find a sequence ρ ∈ 2[ni,nj+1) \ (u0 ∪ u1 ∪ u2). Since ρ /∈ u0 ∪ u1

we know that in the sequence

〈f i,jτ (ρ) : τ ∈ S〉

less than 1
8 · 2

nj−ni−1 many values (from 2[ni−1,nj)) appear more than 7
8 · |S| times.

This implies that there is one value σ ∈ 2[ni−1,nj) which appears in this sequence
more than 7

2nj−ni−1
· |S| times and therefore ρ ∈ u2, a contradiction finishing the

proof of the claim.

Now we may prove the theorem.
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(1) Assume that V ∩ ωω is dominating in V∗ ∩ ωω . Let 〈ni,mi, ki : i < ω〉 be
the Φ–constructor and let F :

∏
i∈ω

ki × 2ω −→ 2ω be as defined above. Suppose

η ∈
∏
i∈ω

ki.

By Claim 2.4.3 we find a tree T ⊆ 2<ω × 2<ω from V satisfying the demands (i)
and (ii) of 2.4.3. Let ϕ ∈ ωω ∩V∗ be such that for each i ∈ ω

i < ϕ(i) and
|{ρ ∈ 2[ni,nϕ(i)+1) : (ρ, f

i,ϕ(i)
η�[i,ϕ(i)](ρ)) ∈ T [i−1]

ϕ(i) }|
2nϕ(i)+1−ni

<
1

64
.

Since V ∩ ωω is dominating in V∗ ∩ ωω we find an increasing sequence of integers
〈im : m ∈ ω〉 ∈ V such that

(⊗) 63
64 ≤

|T [i0−1]
j |

2nj+1+nj
for each i0 < j < ω,

(⊗+) for each m ∈ ω

|{ρ ∈ 2[nim ,nim+1
) : (ρ, f

im,im+1−1
η�[im,im+1)(ρ)) ∈ T [im−1]

im+1−1}|
2nim+1

−nim
<

1

64
.

[Note that to get (⊗+) it is enough to require ϕ(im) < im+1 for each m ∈ ω, what
is easy to get as V ∩ ωω is dominating.]
Now we construct, in V, a sequence 〈X` : ` < ω〉.
Fix m ∈ ω for a moment. Note that (⊗) implies (⊗imim+1−1) of 2.4.4. Let

Wm =

{
τ ∈

im+1−1∏
`=im

k` :
|{ρ ∈ 2[nim ,nim+1

) : (ρ, f
im,im+1−1
τ (ρ)) ∈ T [im−1]

im+1−1}|
2nim+1

−nim
<

1

64

}
.

It follows from 2.4.4 that there are sets Xim ⊆ kim , . . . , Xim+1−1 ⊆ kim+1−1 such
that

(α) |X`| ≤ m` ·
∏
r<`

kr

(β) (∀τ ∈Wm)(∃` ∈ [im, im+1))(τ(`) ∈ X`).

But now we easily finish notifying that (⊗+) implies that

(∀m ∈ ω)(η�[im, im+1) ∈Wm).

(2) We repeat the arguments from the first case, but now we cannot require
(⊗+). Still, as V∩ωω is unbounded in V∗∩ωω we may demand that the sequence
〈im : m ∈ ω〉 ∈ V satisfies (⊗) and

(⊗−) for infinitely many m ∈ ω

|{ρ ∈ 2[nim ,nim+1
) : (ρ, f

im,im+1−1
η�[im,im+1)(ρ)) ∈ T [im−1]

im+1−1}|
2nim+1

−nim
<

1

64
.

Then, defining Wm as above, we will have

(∃∞m ∈ ω)(η�[im, im+1) ∈Wm),

and this is enough to get the conclusion of (2). 2

Corollary 2.5. Suppose that V ⊆ V∗ are universes of Set Theory such that

if r is a random real over V∗

then in V∗[r] there is no random real over V[r].
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Let H ∈ ωω ∩V be an increasing function. Then:

V∗ |= (∀f ∈
∏
`∈ω

H(`))(∃g ∈
∏
`∈ω

H(`) ∩V)(∃∞` ∈ ω)(g(`) = f(`)).

Proof Define inductively a sequence 〈ni,mi, xi, yi, ki : i ∈ ω〉 ∈ V:

n0 = 2, m0 = 64, x0 = 64, y0 = 64 +
∏
`<64

H(`), k0 = 64 · y0,

ni+1 = ni · (ki + 1), mi+1 =
(∏
j≤i

mj

)
· 23(ni+1+i+1), xi+1 = xi +mi+1 ·

∏
j≤i

kj ,

yi+1 = yi + xi+1 +
∏

`∈[xi,xi+1)

H(`), ki+1 = yi+1 ·
(
mi+1 ·

∏
j≤i

kj
)
.

Note that yi+1−yi > xi+1 > mi+1 ·
∏
j≤i

kj−mi ·
∏
j<i

kj . Consequently we may choose

a strictly increasing function Φ ∈ ωω ∩V such that (∀i ∈ ω)(Φ(mi ·
∏
j<i

kj) = yi).

Now look at the definition of the sequence 〈ni,mi, ki : i ∈ ω〉 – clearly it is the
Φ–constructor.
For i ∈ ω we have

∏
`∈[xi−1,xi)

H(`) ≤ ki (we let x−1 = 0 here). So we may take a

one–to–one function πi :
∏

`∈[xi−1,xi)

H(`) −→ ki.

Now suppose f ∈
∏
`∈ω

H(`) ∩V∗. Define η ∈
∏
i∈ω

ki ∩V∗ by

(∀i ∈ ω)(η(i) = πi(f�[xi−1, xi))).

By 2.3(2) we find a sequence 〈X` : ` ∈ ω〉 ∈ V satisfying 2.3(2)(a),(b) (for our
η). Using the sequence 〈X` : ` ∈ ω〉 (and working in V) we define a function
g ∈

∏
r∈ω

H(r) ∩V. Fix ` ∈ ω and look at the set

Y`
def
=

τ ∈ ∏
r∈[x`−1,x`)

H(r) : π`(τ) ∈ X`

 .

Since |Y`| ≤ m` ·
∏
j<`

kj = x` − x`−1, we find σ` ∈
∏

r∈[x`−1,x`)

H(r) such that

(∀τ ∈ Y`)(∃r ∈ [x`−1, x`))(σ`(r) = τ(r)).

Next let g ∈
∏
r∈ω

H(r) ∩ V be such that g�[x`−1, x`) = σ` (for ` ∈ ω). We finish

noting that if η(`) ∈ X` then f�[x`−1, x`) ∈ Y` and therefore for some r ∈ [x`−1, x`)
we have g(r) = f(r). 2

3. cov∗(N ) and other cardinal invariants

Results of the previous section allow us to compare cov∗(N ) to other cardinal
invariants.

We will need several definitions. Let f, g ∈ ωω be two nondecreasing functions
such that 0 < g(n) < f(n) for every n. Let Sf,g =

∏
n[f(n)]g(n) and S∗f,g =∏

n[f(n)]g(n) × [ω]ω. Define relations R∀f,g, R
∃
f,g as

ηR∃f,gS ⇐⇒ ∃∞n η(n) ∈ S(n)

Paper Sh:616, version 1999-02-19 10. See https://shelah.logic.at/papers/616/ for possible updates.



AFTER ALL, THERE ARE SOME INEQUALITIES WHICH ARE PROVABLE IN ZFC 11

ηR∀f,gS ⇐⇒ ∀∞n η(n) ∈ S(n)

for η ∈
∏
n f(n) and S ∈ Sf,g. In case when g(n) = 1 for all n we will drop subscript

g and define
η0R

∃
fη1 ⇐⇒ ∃∞n η0(n) = η1(n)

for η0, η1 ∈ Sf . The dual relation R∀f is not very interesting, so we consider the
following weaker relations R∗∗f,g and R∗∗f defined as

ηR∗∗f,g(S,K) ⇐⇒ ∀∞n ∃m ∈ [kn, kn+1) η(m) ∈ S(m),

for η ∈ Sf , S ∈ Sf,g and K = {k0 < k1 < . . . } ∈ [ω]ω. Finally define for a relation
R ⊆ A×B,

b(R) = min{|X| : X ⊆ A & ∀y ∈ B ∃x ∈ X ¬xRy}
d(R) = min{|Y | : Y ⊆ B & ∀x ∈ A ∃y ∈ Y xRy}.

For various independence results and techniques connected with these invariants
see [10].

Using this terminology we can express the results of the previous section as
follows.

Theorem 3.1. There are f, g ∈ ωω such that cov∗(N ) ≥ d(R∃f,g). If cov∗(N ) ≥ d

then cov∗(N ) ≥ d(R∗∗f,g).

Similarly, non∗(N ) ≤ b(R∃f,g), and if non∗(N ) ≤ b then non∗(N ) ≤ b(R∗∗f,g).

Proof This is a simple reformulation of Theorem 2.3. Fix an increasing function
Φ ∈ ωω. Let M be a model of size cov∗(N ) containing a witness for cov∗(N ), and
containing Φ. Since cov∗(N ) ≥ b we can assume that M ∩ ωω is an unbounded
family. Let {ni,mi, ki : i ∈ ω} ∈ M be a Φ-constructor. Define f(n) = kn and
g(n) = mn

∏
i<n f(i). By 2.3,

∀η ∈ Sf ∃S ∈ Sf,g ∩M ∃∞n η(n) ∈ S(n).

Thus d(R∃f,g) ≤ |M | = cov∗(N ). Remaining parts of the theorem are proved in the
same way by using 2.4. It is not very hard to see that by simple diagonalization
we can show that for many triples (h, f, g) we have b(R∃h) ≤ b(R∃f,g) and d(R∃h) ≥
d(R∃f,g)

Definition 3.2. Let

κ∗ = sup
{
d(R∃f ) : f ∈ (ω \ {0})ω

}
and λ∗ = inf

{
b(R∃f ) : f ∈ (ω \ {0})ω

}
.

Theorem 3.3. cov∗(N ) ≥ κ∗ and non∗(N ) ≤ λ∗.

Proof Let f ∈ (ω \ {0})ω . We may assume that f is strictly increasing. Take
a family A ⊆ N2 realizing the minimal cardinality in the definition of cov∗(N ) and
take an unbounded family F ⊆ ωω of size b (remember b ≤ cov∗(N )). Let N ≺
(H(χ),∈, <∗χ) be an elementary submodel of size cov∗(N ) containing all members
of A and F and such that f ∈ N . Now apply 2.5 to N ⊆ V. Note that if r is a
random real over V then in V[r] there is no random real over N [r] (as A ⊆ N).
Moreover N ∩ ωω is unbounded in V ∩ ωω (as F ⊆ N). Consequently (in V) we
have

(∀h ∈
∏
n∈ω

f(n))(∃g ∈
∏
n∈ω

f(n) ∩N)(∃∞n ∈ ω)(g(n) = h(n)),

showing that d(R∃f ) ≤ |N | = cov∗(N ). 2
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Definition 3.4. Suppose that X ⊆ 2ω.

(1) X ∈ SN (strong measure zero) if for every meager set F ⊆ 2ω, X+F 6= 2ω,
(2) X ∈ SM (strongly meager) if for every null set H ⊆ 2ω, X +H 6= 2ω,

Lemma 3.5. λ∗ = non(SN ) and κ∗ ≥ non(SM).

Proof The first equality was proved by Miller (see [8] or [3], 8.1.14).
Suppose that a family F ⊆

∏
n∈ω f(n) exemplifies d(R∃f ). Work in the space X =∏

n∈ω f(n) (for sufficiently big f) equipped with the standard product measure.
Consider the set G = {x ∈ X : ∃∞n x(n) = 0}. It is easy to see that G is a null
set and F +G = X. Thus F 6∈ SM in X (which easily translates to 2ω). 2

Corollary 3.6. cov∗(N ) ≥ max{b, non(SM)} and non∗(N ) ≤ min{d, non(SN )}. 2

Lemma 3.7. If cov∗(N ) ≥ d then cov∗(N ) = non(M). If non∗(N ) ≤ b then
non∗(N ) = cov(M).

Proof We will prove only the first assertion. The other one is proved by the
dual argument.

It is well known (see [3], 2.4.7, 2.4.1) that

non(M) = min{|F | : F ⊆ ωω & ∀g ∈ ωω ∃f ∈ F ∃∞n f(n) = g(n)}
and

cov(M) = min{|F | : F ⊆ ωω & ∀g ∈ ωω ∃f ∈ F ∀∞n f(n) 6= g(n)}
Let F ⊆ ωω be a dominating family of size d. For each f ∈ F choose a witness

Xf ⊆ Sf of size d(R∃f ). Let X =
⋃
f∈F Xf . It is clear that |X| = max{d, κ∗} ≤

cov∗(N ) and
∀g ∈ ωω ∃f ∈ F ∃xf ∈ Xf ∃∞n g(n) = xf (n).

Thus, non(M) ≤ cov∗(N ). To see that cov∗(N ) ≤ non(M) in we need the following
lemma:

Lemma 3.8. cov?(N ) ≤ non(M) and non∗(N ) ≥ cov(M).

Proof We have the following cov?(N ) = cov(N )V
B ≤ non(M)V

B

= non(M).
The first equality is by 1.2, the second is well known, and for the third one see [3]
or [4]. 2

Corollary 3.9. There is no proper forcing notion P such that

(1) is proper ωω–bounding,
(2) makes ground reals meager and
(3) does not add a B–name for a random real over VB.

4. Adding a (2, 0)–large set.

Theorem 4.1. Assume that V ⊆ V∗ are universes of Set Theory. Let h ∈ ωω ∩V
be a strictly increasing function. Suppose that

V∗ |= (∃η ∈
∏
n∈ω

h(n))(∀ρ ∈
∏
n∈ω
∩V)(∀∞n ∈ ω)(ρ(n) 6= η(n)).

Then there is a set X ∈ [ω]ω ∩V∗ such that

V∗ |= (∀f ∈ ωω ∩V)
(

(∀n ∈ ω)(n < f(n)) ⇒ |{m ∈ X : f(m) ∈ X}| < ω
)
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(so in particular the set ω \X is (2, 0)–large over V).

Proof Let 〈ni : i ∈ ω〉 be defined by

n0 = 0, ni+1 = ni +
∏
k≤ni

h(k).

Let H :
⋃
i∈ω

∏
k≤ni

h(k)
1−1−→ ω be a bijection such that for each i ∈ ω

H

 ∏
k≤ni

h(k)

 = [ni, ni+1).

For a function f ∈ ωω define ρf ∈
∏
k∈ω

h(k) by

ρf (k) =

{
H−1(f(k))(k) if ni ≤ k < ni+1 and ni+1 ≤ f(k)
0 otherwise.

Note that the mapping f 7→ ρf is coded in V.
Let X = {H(η�ni) : i ∈ ω} (so it is an infinite subset of ω from V∗). Suppose
that f ∈ ωω ∩ V is such that (∀n ∈ ω)(n < f(n)). Look at ρf . We know that
ρf ∈

∏
k∈ω

h(k) ∩V. So, by the assumptions on η, we find i0 ∈ ω such that

(∀i ≥ i0)(η(i) 6= ρf (i)).

Suppose now that i ≥ i0 and f(H(η�ni)) ∈ X. Then f(H(η�ni)) = H(η�nj) for
some j > i. But this means that

ρf (H(η�ni)) = H−1(H(η�nj))(H(η�ni)) = η(H(η�ni)),

a contradiction with the choice of i0. 2

Definition 4.2. Let d(R∃0) be the minimal size of a family K of partitions 〈Kn :
n ∈ ω〉 of ω into sets of size ≥ 2 such that for every infinite co-infinite subset X of
ω we have

(∃〈Kn : n ∈ ω〉 ∈ K)(∃∞n ∈ ω)(Kn ∩X = ∅).

In [11, 3.1] we remarked that b ≤ d(R∃0) ≤ non(M). Now we may add:

Corollary 4.3. κ∗ ≤ d(R∃0).

Proof It follows from 4.1 (compare the proof of 3.6); remember 1.4. 2
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