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2 SAHARON SHELAH

§0 INTRODUCTION

We deal with the problem of the existence of a universal member in K) for R a
class of abelian groups, where K is the class of G € R of cardinality A; universal
means that every other member can be embedded into it. We are concerned mainly
with the class of reduced torsion free groups. Generally, on the history of the exis-
tence of universal members see Kojman-Shelah [KjSh 409]. From previous works,
a natural division of the possible cardinals for such problems is:

Case 0: A = Ng.

Case 1: A = \Xo,

Case 2: Ny < \ < 280

Case 3: 2% 4+t < A= cf(\) < po.
Case 4: 2% + pt + cf(\) < X < pRo.

Case 5: A = p, cf(u) = Ro, (Vx < ) (X" < p).
Case 6: cf(\) = N, (Vx < A)(x™0 < \).

Subcase 6a: A is strong limit.
Subcase 6b: Case 6 but not 6a.

Our main interest was in Case 3, originally for & = &, the class of torsion free
reduced abelian groups. Note that if we omit the “reduced” then divisible torsion
free abelian groups of cardinality A are universal. A second class is £°(®), the class
of reduced separable p-groups (see Definition 2.3(4), more in Fuchs [Fu]) but we are
interested in having methods and in the class of N;-free abelian groups. Kojman-
Shelah [KjSh 455] show that for & = &', () in Case 3 there is no universal
member if we restrict the possible embeddings to pure embeddings. This stresses
that universality depends not only on the class of structures but also on the kind of
embeddings. In [Sh 456] we allow any embeddings, but restrict the class of abelian
groups to (< A)-stable ones. In [Sh 552, §1,85] we allow any embedding and all
G € Ry but there is a further restriction on A related to the pcf theory (see [Sh:g]).
This restriction is weak in the following sense: it is not clear if there is any cardinal
(in any possible universe of set theory) not satisfying it. We here prove the full
theorem for \ > 3, with no further restrictions:

(¥) for A > 3, in Case 3, & = 8™ &) there is no universal member in K

(where we define inductively Jg = Rg, 31 = 22,3, = Z 27" and generally

nw

:QZN()—FZQ:B).

B<a
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61 deals with &7*f using mainly type theory. In §2, we apply combinatorial ideals
whose definition has some built-in algebra and purely combinatorial ones to get
results on R(P); there is more interaction between algebra and combinatorics than
in [Sh 552]. Similarly in §3 we work on the class of Ri-free abelian groups.

What about the other cases? Case 4 (which is like case 3 but A singular) for &4t
and pure embedding, was solved showing non-existence of universals in [KjSh 455]
provided that some weak pcf assumption holds and in [Sh 552] this was done for
embeddings under slightly stronger pcf assumptions. For both assumptions, it is not
clear if they may fail. Note that the results on consistency of existence of universals
in this case cannot be attacked as long as more basic pcf problems remain open.

Concerning Case 5 - if we try to prove the consistency of the existence of universals,
it is natural first to prove the existence of the relevant club guessing; here we expect
consistency results. (Of course, consistently there is club guessing

(by C = (Cs:6€S),S C ), otp(Cs) = u) and then there is no universal.) Also we
were first of all interested in the existence of universal reduced torsion free groups
under embeddings, but later we also looked into some of the other cases here. See

more in [Sh:F319].

Case 1 (A = A®0). By subsequent work there is a universal member of &%, and

-free

(see Fuchs [Fu]) in ﬁ;s(p) there is a universal member, but in &} there is no

universal member (see forthcoming work).

Case 0 (A = Rp). In & there is no universal member (see above or 3.17) and in

ﬁf\s(p) there is a universal member (see Fuchs [Ful).

Case 2 (Ng < A < 2%0). For &5 we prove here that there is no universal member

(by 1.2), whereas for ﬁ;\s(p) this is consistent with and independent of ZFC (see [Sh
550, §4]).

We also deal with Case 6 ((Vx < A\)x™° < A\, A > cf(\) = Xg). There is a universal

member for & and also for ﬁf\s(p). See [Sh:F319].

We thank two referees and Mirna Dzamonja and Noam Greenberg for many cor-
rections.

Notation: The cardinality of a set A is |A|, the cardinality of a structure G is |G-
A (AT) is the set of sets whose transitive closure has cardinality < X and <}.
denotes a fixed well order of J#(\T).

For an ideal I, we use I to denote the family of subsets of Dom(I) which are
not in 1.
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§1 NON-EXISTENCE OF UNIVERSALS AMONG
REDUCED TORSION FREE ABELIAN GROUPS

The first result (1.2) deals with X satisfying g < A < 2% and show the non-
existence of universal members in &Y which improves [Sh 552]. The proof is
straightforward by analyzing subgroups and comparing Bauer’s types.

Then we deal with 2% + u+ < X = cf(\) < p0. We add witnesses to bar the
way against “undesirable” extensions (see [Sh:F319] on classes of modules) which
is a critical new point compared to [Sh 552].

1.1 Definition. Let £ denote the class of torsion free reduced abelian groups
G where torsion free means that nx = 0,n € Z,x € G = n =0V z = 0 and
reduced means that (Q, +) cannot be embedded into G. The subclass of G € &Y
of cardinality A is denoted by &}f. Moreover, & is the class of torsion free abelian
groups.

1.2 Claim. 1) IfRg < XA < 2%0 then &5 has no universal member.

2) Moreover, there is no member of ﬁf\tf universal for ﬁ‘;flf.

Proof. Let P* be the set of all primes and let {Q; : i < 2%°} be a family of infinite
subsets of P*, pairwise with finite intersection. Let p, € “2 for a < w; be pairwise
distinct. Let H* be the divisible torsion free abelian group with {z, : o < w1} a

maximal independent subset. For i < 2%° let H be the subgroup of H* generated
by

{Za:a<wi}U{p ™ "zq :p € P"\Qi,a < w;y and n < w}
U{p "™ (xq —2p) : o, <wy and p € P* and
Pa [P =ps[pandn<w}

Clearly H} € & and ||H|| = X; < \. Let G € &, and we shall prove that at
most A\ of the groups H; are embeddable into G.

So assume Y C 2% |Y| > X and for i € Y we have h;, an embedding of H} into G
and we shall derive that G is not reduced; a contradiction. We choose by induction
on n a set I', € "\ and pure abelian subgroups G, of G for n € T, as follows.
For n = 0 we let I'y = {<>} and let G~ = G. For n+ 1, for n € T',, such that
|Gnll > Ro we let Ty = {n"(¢) : ¢ < [|Gyll}, and let Gy = (Gyy~(¢) : ¢ < [|Gyl]) be
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an increasing continuous sequence of subgroups of G, of cardinality < ||G,|| with
union G, such that:

(%) for ¢ < ||G,| we have
Gy ¢y = Gy N (the Skolem Hull of G-y in (A1), €, <54, Gy)).

Let I'yyp1 = {n"({) : mp € Iy, |Gyl > No with ¢ < [|G,]|} and T’ = U |
n<w

For each 7 € Y, let n =n; € I" be such that:

(a) {o <wy:hi(zy) € Gy, } is uncountable

(b) under (a), the cardinality of G,,, is minimal.

Clearly 7; is well defined as (a) holds for n = () and clearly G,, is uncountable.
It is also clear that the cardinality |G, || has cofinality N;. Let X; = {a < w; :
hi(za) € Gy, }, and let B; < w; be minimal such that

{pa : @ € B; N X;} is a dense subset of {p, : @ € X;}. Let ¢; < [|G,| be the
minimal ¢ such that {h;(zs) : o € B; N X} C G,-(¢) (exists as cf(||Gy,||) = Ry).
Now by clause (b) the set X; = {a < w1 : hi(za) € Gy,~(,)} is countable, and
hence we can find «; € X;\ X/.

Now the number of possible sequences (n;, B;, (;, i, hi(Z4,;)) is at most [“Z\| X
Ny X A XNy x A\ (as T C “>)). So for some (n,5,¢,a,y) and ig < i1 from Y we
have (for £ =0,1)

Ni, = 7775@';_7 = 57 Cig =, i, = Q, hig (xag> =Y.
Now as h;, embeds H; into G and h;,(z,) = y, necessarily

(xx) if p € P*\Q;, and n < w then in G,p~" divides y.

So this holds for every p € (P*\Q;,) U (P*\Q;,) = P*\(Q;, N Qi,)-

Now Qi, NQ;, is finite so let p* € P* be above its supremum. As {p, : v € X] }
is a dense subset of {p, : @ € X, }, there is v € X such that p, [ p* = po [ p*(=
Paiy | P7). Let hio(xy) =y~ it is in G, ).

So in (H(AY1), €, <%+, Gy), the following formula is satisfied (recall that G, is
a pure subgroup of G)

o(y,y") = “in G,y is divisible by p" when p e P* & p>p* & n<w
and y — y* is divisible by p" when
peP* & p<p® & n<w’.
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Hence by (*), i.e. by the choice of (G, : & < ||Gyll), necessarily for some
y' € Gy ¢y we have o(y',y*). Now y £y as y' € G-y, ¥ & Gyyrc)- Also y —y' is
divisible by p™ for p € P*,n < w.

[Why? If p > p* because both y and 3’ are divisible by p" and if p < p* because
y—vy =w—vy*)— (v —y*) and both y — y* and 3’ — y* are divisible by p™.]

As G is torsion free, the pure closure in G of ({y — ¥'})¢ is isomorphic to Q, a
contradiction to “G is reduced”. 00

1.3 Definition. 1) Let P* be the set of primes.
2) For G € & and = € G\{0} let

(a) P(z,G)={peP :zxc ﬂ p"G,
nw

equivalently x is divisible by p™
in G for every n < w}

() P~ (2,G) ={p:peP* but p ¢ P(z,G)
and there is y € G\{0} such that
P\{p} CP(y,G) and p € P(z — y,G)}.

3) G € & is called full if: for every z € G\{0} we have P* = P(z,G) UP~ (z,G).
4) The class of full G € & is called £ and &% = &% N K (why s? as the
successor of 7 in the alphabet).

1.4 Fact. 1) If G € &Y, then for any x € G the sets P(z,G) and P~ (x,G) are
disjoint subsets of P*.
2) If G5 is an extension of Gy, both in & and z € G;\{0} then

(a) P(z,G1) C P(z,G2), with equality if G is a pure subgroup of G
(b) P~ (2,G1) C P~ (,Go).

3) For every G € & there is a G’ such that

(a) G"is full, G' € g™
(b) G is a pure subgroup of G’ and ||G'|| = ||G]|.

Proof. 1),2) Trivial.
3) It suffices to show

(%) if G € & and 2 € G\{0}, and p € P*\P(x, G) then for some pure extension
G’ of G with tk(G/G’) =1 we have: p € P~ (z,&).
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For proving (x) for a given G,z let G be the divisible hull of G and let

Go=A{y € G : for some n > 0,p"y € G},

Gy ={y e G : for some b € Z,b > 0 not divisible by p we have by € G}. Clearly
G = Gy N G1. We define the following subsets of G x Q:

Hy ={(y,0) : y € G} (so G is isomorphic to Hy)
Hy = {(p"bx,p"b) : byn € Z}

Hy ={(0,¢1/¢2) : ¢1,¢2 € Z and ¢ not divisible by p}.

Easily all three are additive subgroups of G x Q and Hy = Zpy. Let G' = Hp +
H, + H,, a subgroup of G x Q.

We claim that G’ N (G x {0}) = Hp. The inclusion D should be clear. For the
other direction let z € G’ N (G x {0}); as z € G there are (y,0) € Hy, (so
y € G), (p"bx,p"b) € Hy (sob € Z,n € Z and = € G is the constant from
(¥)) and (0,c¢1/ca) € Ha (so c1,c2 € Z and p does not divide c¢2) and integers
ap,a1,as such that z = ag(y,0) + a1 (p™bx, p"b) + a2(0,c1/c2) which means z =
(aoy + a1p™bx, a1p™b + ascy/ca).

As z € G x {0} clearly a1p™b + asci/ca = 0, so as p does not divide ¢z, necessarily
a1p™b is an integer, hence a1p™bxr € G, hence as y € G clearly agy + a1p™bxr € G
and hence z € G x {0} = Hy as required.

It is easy to check now that Hy is a pure subgroup of G'.

Also letting y* = (0, —1) clearly (x,0) — y* is divisible by p* for every k < w (as
(p*z,p*) € Hy C G’ for every k € Z) and y* is divisible by any integer b when b is
not divisible by p (as § y* = (0,—-1/b) € H, C G').

Identifying y € G with (y,0) € G we are done: G’ is as required in (x), with y*
witnessing “p € P~ (z,G")”. Uig

1.5 Claim. If Gy € & is full and G5 € & and h is an embedding of G into
Gy then:

for x € G1\{0},P(z,G1) = P(h(z),G2).

Proof. Without loss of generality h is the identity, now reflect using 1.4(1), 1.4(2)
and the definition of full. Oy 5
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1.6 Conclusion. Assume
(%) 2% <t < A= cf(\) < plo.

Then there is no universal member in ﬁg\tf.

Proof. Let S C {6 < X : cf(§) = Ng and w? divides §} be stationary and 7 =
(ns : § € S) where each 75 is an increasing w-sequence of ordinals < § with limit ¢
such that ns(n) — n is well defined and divisible by w; so d; # d2 = Rang(ns,) N
Rang(ns,) is finite. Let {p} : n < w} list the primes in the increasing order. Let
G be the abelian group generated by {zq : @ <A} U{ys : 6 € S} U{z5n,e:n,{ <
wU{Zame:a <A m<w,a#mmod w} freely except for the equations

3
Ppzsn,e+1 = Z5n,L Ys — Tps(n) = #8,n,0-

* .
PrmZami+1 = Ta,m,ls La,m,0 = Ta, if & #m mod w

We can check that G € £ and P~ (ys, G) is the set of all primes and P(zq, G})) =
the set of primes # p} if « = n mod w.

Let G5 € 85 be a pure extension of G which is full (one exists by 1.4(3)). So

() if h embeds Gj; into G € K5 then
v € Go\[0} = Pz, Gy) = P(h(x), ).

Hence the proof in [KjSh 455] works. Uie

1.7 Remark. 1) Similarly the results on A singular (i.e. Case 4) in [KjSh 455], hold
for embedding (rather than pure embedding).

2) What about Case 57 If there is a family & C {C C pt : otp(C) = u} which
guesses clubs (i.e. every club E of ut contains one of them), the result holds.

3) On Ry < A < 2%0 see also in 3.17.
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§2 THE EXISTENCE OF UNIVERSALS FOR
SEPARABLE REDUCED ABELIAN p-GROUPS

We here eliminate the very weak pcf assumption from the theorem of “no uni-
versal in R;S(p)” when A > J,,. Note that £5(P) is defined in 2.3(4).

In the first section we have eliminated the very weak pcf assumptions for the
theorem concerning &4 (though the A = cf(\) > pT remains, i.e. we assume we
are in Case 3). This was done using the “infinitely many primes”, so in the language
of e.g. [KjSh 455] the invariant refers to one element x. This cannot be generalized

to ﬁf\s(p). However, in [Sh 552, §5] we use an invariant on e.g. suitable groups
and related stronger “combinatorial” ideals. We continue this, using combinatorial
ideals closer to the algebraic ones to show that the algebraic is non-trivial.

We rely on the “GCH right version” provable from ZFC, see [Sh 460] hence the
condition “\ > 1,7 is used.

2.1 Definition. 1) For A = (A\;: / <w) and t = (¢, : £ < w) (with 1 < t, < w) we
define J*5.

It is the family of subsets A of H [Ae]* such that:
L<w

(¥)a for every large enough £ < w, for every B € [\, for some k € (£, w) we

cannot find
(peine [ ™)

1€[L,k)
such that
(a) vy A
(b) if m,m2 € H W], ¢ <m < kand m | [¢,m) = ny | [¢,m) then

1€l,k)
U, | m = vy, | m; hence

Uny T4 =1y, [ £for ni,ne € H [w]
1€[4,k)

(c) ifno € H [w]" and ¢ < m < k then for some E € [\,,]° we have
i€[4,k)

[E]' = {wy(m):ne [] W and [ m=mn | m}
i€[l,k)

and m=¥¢= F = B.
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2) Let

thl’/—\7<9 ={AC H[)\g]tf : for some ov < 6 and Ag € Jé/—\ for B <

I<w

we have A C U A/g}.

f<a
When 6 = k™, we may write x instead of < 6.
2.2 Fact. 1) J' is a §F-complete ideal.
2) If £ < w = A > Jy,1(0) then the ideal J; / is proper (where Jo(#) =
0,3,41(0) = 2279 and for general o we have J,(6) = 6 + Z 22s(0)y,

B<a

Proof. 1) Trivial.
2) Let for { < w

ERIZ = {A C [A\]" : for some F : [A;]" — 0 there is no B € [\,
such that F' | [B]" is constant and [B]"* C A}.

So this is a 6'-complete ideal. It is non-trivial by Erdos-Rado theorem (we use

it similarly in [Sh 620, §1]). Now we shall prove that the ideal thlj\ , 1S proper.

So assume H[)\g]” = U X, and X; € J?/—\ for each i < 0 and we shall get a

<w <0
contradiction. Let

Xt={ne H[)\g]t‘ : for every £ < w for some ' € X; we have n [ £ =1 | (}.
l<w

(i.e. the closure of X;). So X;~ C H [Ae]™ = H Dom(ERIf\‘i) is closed, and those
L<w I<w
ideals are 61-complete and H Dom(ERIf\i) = U X;". Hence (see Rubin-Shelah

I<w <0

[RuSh 117], [Sh:f, Ch.X1,3.5(2)] with H, = X;") we can find T such that:
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(@ 1< |J [

m<w £<m
(b) T is closed under initial segments
(c) <>€T
(d) if v € T and lg(v) = ¢ then
{ueN]t:v"(u)yeT} e (ERI;‘;)"’
(e) for some i < 6, lim(T) C X;".

(Here, lim(T") = {v € H[)\g]te (Vm <w)v [meTh}).

I<w
Fix ¢ from clause (e). We would like to prove —(x),+. By the definition of the
ideal ERI’;\ZZ we get more than required (for every k in place of “some k” in (x) of
Definition 2.1). La.o

Remark. So we could have used the stronger ideal defined implicitly in 2.2, i.e.

JEX,(J ={X C H)\g : we can find o < 6 and X; C X for i < « such that X =
I<w

U X; and for each i and T satisfying clauses (a) — (d) from the proof of 2.2 there

1<

is 7' C T satisfying clauses (a) — (d) such that lim(7') is disjoint to the closure of

X;}. Of course, we can also replace ERIf\‘/Z by various variants.

We recall from [Sh 552, 5.1]

2.3 Definition. ([Sh 552, 5.1]) 1) For i = (p, : n < w) let By be the following
direct sum of cyclic p-groups. Let K? be a cyclic group of order p"™! generated
by zy, and let B} = @a<y, Ky and By = ®n<wB), , 1.e. By is the abelian group
generated by {27 : n < w,a < u,} freely except that p"*! 2" = 0.
Moreover, let B, = ®{KY 1 a < pim, m < n} C By

. rs(p)
(these groups are in & SSZpun)'
Let Bﬁ be the p-torsion completion of B (i.e. completion under the norm
|z|| = min{2~™ : p" divides x} but putting only the torsion elements, see Fuchs
[Fu]. Note that Bj is the torsion part of the p-adic completion of By).

2) Let I 4 = I} _y[p] be the ideal on By (depending on the choice of (K" : a <
fin, < w) or actually (B, : n < w)) consisting of unions of < § members of I,

where

Ig = Ig[p] ={AC By : for every large enough n, we have cﬁBﬁ«A)Bﬁ)ﬂBﬁ C B}
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(cl 5, is defined in part 3) below).
When 0 = k™ instead of < # we may write x. If p,, = p, we may write p instead of

i.
3) For X C By, recall (X) Ba is the subgroup of B; which X generates and

= {z: (Vn)( EIyEX)(x—yep”B )}

4) Let £(P) be the family of pure subgroups of some Bﬁ.
5) If p is not clear from the context, we may write By |p], Bﬁ [p], etc.

2.4 Claim. Assume i = (jin, 1 n < w),t = (ty : £ < w),ty = p and the ideal Jt 0.0
is proper (so pn, > Jp_1(0)T is enough by 2.2(2)). Then the ideal I}w is proper
(and I} , is a 67 -complete ideal).

Proof. We define a function h from H [Ae]t into Bj;. We let

I<w

h(n) = X{p" 2z : B €n(n) and n <w} € Bulp).
Clearly h is one to one and it suffices to prove

(%) if X € (J7, ,)" then h"(X) belongs to (I} ,)*.

So assume X € (Jf/\ 0
1570. So we can find (Y; : i < 6) such that for such i < 6 we have Y; € Ig and

h(X) C U Y;. Let X; = h™1(Y;). Soh(X;) CY; € Ig and hence h(X;) € Ig, but as

)t is given and suppose toward contradiction that b (X) €

<0
Jf/\ p 18 07 -complete and X € (Jf/\ p)" necessarily for some i < 0, X; € (J4 P
so without loss of generality h”(X) € ID. By the definition of I?, for some n(*) < w
we have

() Bp ety ((B7(X))g,) S Ban(s)-

On the other hand, as X € (qu 0

we can find (B,, : n € I') such that:
(a) T € [w]® and B, € [\,
(b) for n € I, for every k € (n, w) we can find
vy’ Fine H ]’} as in (a)-(c) of Definition 2.1(1) with n, By, k here

Len,k)
standing for ¢, B, k there.

)t it is ¢ thl’ﬁ so from definition 2.1(1) of Jf’ﬂ
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For m € (n,k] and n € H [w]™ we let vy * be 1/,”711”C | m whenever
Len,m)
nam € H [w]™ (by clause (b) in (%) of 2.1 it is well defined). Fix n € T' and

Len,k)
k € [n,w) for awhile. Let A, = A% € [A,]% be such that {I/n ) (m) tu €
[w]tm} = [A,]' and without loss of generality (otp stands for “the order type”)

(%) otp(4,) = w and V:]Li’zw(m) = OPa4, w(u)

(where OPy, (i) = a iff i = otp(A4, Na)).
Now for m € (n,k] and n € H [w]* we define
Len,m)

yn =yt =) {hp*) ingpe [] W)™ and (VO)[lg(n) < £ <k — p(€) C [0,t]}
Len,k)

where < denotes being an initial segment. So y, € Bﬁ and we shall prove by
downward induction on m € (n,k] that for every n € H [w]* we have (Z

Len,m) f<m
means g )

LE[n,m)

k—1
X, yn:(H te+1 Z Z Pl modpkBﬁ.
l=m

<m akvy’ k(o)

Case 1: m = k.
k-1

In this case the product H (t¢ + 1) is just 1, so the equation says

{=m
. A
yn:Z Z pzasﬁY mod p” Bj.
t<m acvt(e)
Now the expression for y, is

d {nwptym<pe ] w™ and (VO)[m < £ < k= p(¢) C[0,t]]}
Len,k)

SN S

I<w aeyg’k(g)

=> > prab Y] Y pihal)

L<m qepmF (e Lelk,w) aev* (e
n n
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so the equality is trivial.

Case 2: n <m < k.
Here (with equalities in the equation being in B , modulo p* B; ), we have:

Yn =
[by the definition of y, ¥y~ (u)]

:Z{ynw UG{ m}] }:

[by the induction hypothesis]

=> {( 1:[ (te+1)( D > o pial)iue {0, tw}]}

=m-+1 L<m+1 O‘G”Z”’?@(@

[by dividing the sum Z into Z and Z and noting what z/gllzm (m) is]

L<m+1 I<m —m
k—1
:Z{( H (te+1)) Z Z pfxﬁ):uE[{O,...,tm}]tm}
L=m+1 L<m aeu” ’(“u>(g)

k—1
+Z{(H(te+1>) > pmxgzue[{o,...,tm}]tm}:

L=m+1 a€OP,, 4, (u)

[in the second sum, we collect together the terms with 7'

:Z{(kﬂl te+1)D. Y. e [{o,...,tm}]tm}

l=m-+1 £<m ge V"k()
k—1
+Z{( [T te+0)mam){u:ue [{0,... tn}]" and |a N A,| € u}|:
{=m-+1

« is a member of A,, moreover |[aN A4,| < tm}

k—1

=( ] te+1)(> Z plal) x |[{u:ue[{0,... tm}]"Y

l=m-+1 L<m ocEV (g)
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k—1
—I-Z{( H (te+1))(pm:cgl) ((tm+1)—1):ae A, |lanAi, gtm} =

l=m+1
[remember t,, = p and p™ ! 2™ = (]
k—1
= (tm +1)( H (te +1 Z Z plat +0
L=m+1 E<m gk (1)
k

=([Ieerm)(> 2, #e

l=m <m acv) (g)

Hence we have finished the proof of X,
Nowast,+1=p+1 andppewf; =0 in By we get

yn=_ > p'al modp*B;.

<m aEz/Z,L’k(Z)

Note that for m = n + 1, the sum Z is just Z So, as for n € I', B,, serves
l<m l=n

for every k € (n,w), if uy,us € [B,]'" are distinct then, for k € (n,w) we have

Yiur) = Ylus) = Z Z pexf; — Z Z pea:f; mod pkB,;. As this holds
£<m aEu?u’l;(Z) £<m ozEuzZ;(é)

for every k € (n,w) we get equality. By the demands on v]"* (see clause (b)

above so Definition 2.1(1)) we have y<y,> — Y<u,> ¢ Bpn but by the last sentence

Y<ur> — Y<us> € Bﬂf(n-f—l) Contradicting (*) 52.4

Recall

2.5 Definition. 1) Let I be an ideal on s (or just I C Z(k) closed downward,
IT™ = 2(k)\I), then we let:

U;(\) = Min{|2|:22 C [A\]=" and for every f € ")
for some a € & we have {i < r: f(i) €a} € [T}

2)Foro <6 <p<Aletcov(\ u,0,0) = Min{\+|Z| : & is a family of subsets of A
each of cardinality < p such that any X C X of cardinality < 6 is included in the
union of < o members of #}.
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2.6 Claim. 1) For every A > 1, for some 0 < 3,, for every pn € (3,-1(0),3,,) we
have (letting p, = 1) Upn ,(A) = A (hence UIo( ) =A).

2) If cf(A) > g, then for some 0 < 3., for every p € (3p-1(0),3y) and N < X\ we
have Uli,e()‘/) <A

Proof. By 2.4, I, ¢ is a f-complete proper ideal on a set of cardinality pu™°, for any
i, 6 as in the assumptions. By [Sh 460] for each X' < A for some 0 = 9[\'] < 3,
for every p € (0,3,) we have cov(N,ut,ut,0) = X, ie. there is &, C [N of
cardinality < X’ such that: if Y € [N]<# then Y is included in the union of < 6
members of &,,. As I, !, is a 6T -complete ideal on a set of cardinality u it follows
that Uf,i JA) <N x L@ | = X\ (and trivially Up ,(A) = A). This proves part (1).
For part (2) we are assuming cf(A) > Ry so for some 0 < 3, for arbitrarily large
N <\ O[N] < 0; clearly we are done. Os 6

2.7 Conclusion. If J,, < pt < X = cf(\) < ™0, then in ﬁt\s(p) there is no universal
member.

Proof. By 2.6 and [Sh 552, 5.9].

Moreover

2.8 Claim. Assume

a) [[re<pm<i=cth) <N <p
I<w
(b) put < X or at least for some & we have
(Do |P]=\ & (Vo€ P)(aCA & otp(a) = )
& (VE)(E a club of A = (Fa € £)(a C E))

() N=Up() < pRo where k = (ky : £ < w) and note that 12 depends on the
prime p.

Then we can find reduced separable abelian p-groups, G, € ﬁi\s(p) for a < pXo such
that for every reduced separable abelian p-group G of cardinality X' we have:

some G is not embeddable into G; also the number of ordinals o < pXo
such that G, is embeddable into G is < N\



Paper Sh:622, version 2000-08-21_10. See https://shelah.logic.at/papers/622/ for possible updates.

NON-EXISTENCE OF UNIVERSAL MEMBERS 17

Moreover, each G, is slender, i.e. there is no homomorphism from Z% into G,
with range of infinite rank.

Proof. Same proof as that of [Sh 552, 5.9], [Sh 552, 7.5].
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83 NON-EXISTENCE OF UNIVERSALS FOR N{-FREE ABELIAN GROUPS

The first section dealt with ﬁ&tf improving [Sh 552]. But the groups used there
are “almost divisible”. So what occurs if we replace 8 by a variant avoiding this?
We suggest to consider the Ni-free abelian groups where type arguments like those
in §1 break down. So the proof of [Sh 552] becomes relevant and it is natural to
improve it as in §2 (which deals with &'5(®)), for diversity we use a stronger ideal.
We have not looked at the problem for X;-free abelian groups of cardinality A when
Ng < A < 207,

So we concentrate here on torsion free (abelian) groups.

3.1 Definition. 1) Let t = (t; : { < w),2 < ty < w. For abelian group H, the
t-valuation is

lzlls = Inf{2=™: ] t, divide = (in G)}.

<m

This is a semi-norm. Remember di(z,y) = ||z — y|z. This semi-norm induces a
topology which is called the t-adic topology.

If t, = p for £ < w we may write p instead of ¢.
2) Let c¢l3(A, H) be the closure of A in H under the t-adic topology.
Let PCy(X) be the pure closure of X in H that is {z € H : for some n > 0,nx
belongs to (z) g }. Moreover PCY,(X) is the p-adic closure in H of the subgroup of
H which X generates.
3) Let 8*"[f] be the class of -reduced torsion free abelian groups, i.e. the G € &Y

such that ﬂ (H t;)G = {0} hence | — ||z induces a Hausdorff topology.

n<w i<n
(Inversely if G is torsion free with the #-adic topology Hausdorff then G € £*[¢].)
4) If the t-adic topology is Hausdorff, then G¥ is the completion of G by || — ||z
If t, = 2 + ¢, this is the Z-adic completion.

The following continues the analysis in [Sh 552, 1.1] (which deals with £()) and
[Sh 552, 1.5] (which deals with &**).

3.2 Definition. We say G has t-density p if it has a pure subgroup of cardinality
< p which is ¢-dense, i.e. dense in the t-adic topology, but has no such subgroup
of cardinality < pu.
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3.3 Proposition. Suppose that

(@) p <A< po
(B) G is an Xy-free abelian group, |G| = A
(7) tis as in 3.1 such that (V€)(Im > {) (ty divides t,, ).

Then there is an Wy -free group H such that G C H,|H| = X\ and H has t-density p.

Proof. Choose A\, < p for n < w such that H An > M > Z)\R,Z)\n <

n<w nw

Ant1 (so A, > 0 may be finite). Let {x; : i < A} list the elements of G. Let
At1 = Ang1,Ag = p. Let m; € H An for i < X\ be pairwise distinct such that

n<w
ni(n+1) > A\, and @ # j = (Im)(Vn)[m < n = ni(n) # n;(n)]. Without loss
of generality u = {n;(n) : i < \,n < w}. Let H be generated by G,z!" (for i <
AL,m < w),yl (for i < \,n < w) freely except for

(a) the equations of G
(b) ¥ =i (€ G)

(¢) tayt + Ty ) = Uit

Fact A: H extends GG and is torsion free.

Proof. H can be embedded into the divisible hull of G x F', where F' is the abelian
group generated freely by {zI" : m <w and o < ] }.

Fact B: H is Ry-free and moreover H/G is N;-free.

Proof. Let K be a countable pure subgroup of H. Now as we can increase K
without loss of generality K is generated by

(i) K1 = {x; : i € I} is a pure subgroup of G, where I is some countably
infinite subset of A\, and so G O K1,

(43) yi*, 2 fori € I,m < w and (n,j) € J, where J C w x A is countable and

iel,n<w= (n,ni(n)) eJ

(n,j)e J=j¢€l.
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Moreover, the equations holding among those elements are deducible from the equa-
tions of the form

(a)~ equations of K

(b)” y) =z foriel

(¢) oyt + Ty =Y foriel,n <w.

We can find (k; :i <w)suchthat i #j & i€l & jel & n>k & n>
kj & i j=ni(n)#mn;n)].

Now we know that K is free (being a countable subgroup of (), and it suffices
to prove that K/Kj is free. But K/K; is freely generated by
{yPF:ieland n> k;} U{z2 : (n,a) € J but for no i € I do we have
n > ki, ni(n) = a}. So K is free.

Fact C: Hy = (z]' : n < w,i < A}) g satisfies:

(a) i < A= dg(x;, Hy) = inf{dg(x;,2): 2 € Hy} =0
(b) z € G=dg(x,Hy) =0
(¢) x € H= di(z,Hy) = 0.

Proof. First note that
()1 Y ={x € H:dg(x,Hy) =0} is a subgroup of H.
Also for every ¢ < A and n

1 1 2
(K2 4f' = @y + tay]" T = 0 )ty Ty F tatnsa g

m k-1 k
= > ([T t)wh e + (] t)u™!
k=n f=n l=n

(prove by induction on m > n), and note that as (V/)(3Im > £)(¢; divides t,,)

necessarily (V/¢)(3°°m)(t, divides t,,) hence (Vk)(EIOOm)(H ty divides th) Now
i<t i=k
(*)2 implies

(*)3 yf €Y.
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But z; = 39 and hence clause (a) holds, so as {x; : i < A} is dense in G also clause
(b) holds. So G C Y (by clause (b)), and 2} € Y (as Hy C Y and the choice of
Ho) and 7 € Y (by (+);).

By (%) clearly Y = H, as required in clause (c).

Fact D: |H| = .

Fact E: The t-density of H is p.

Proof. 1t is < p as Hg has cardinality p and is t-dense in H, it is > u, as we now
show.

Define a function h with domain the generators of H listed above, into H. Let
h(z)=0ifx € G;h(zl') =0ifm >0V a < Ag; h(z]') = 20 if m = 0&X < a <
Ap(=p)ih(y™) =0if m < w,i < A
This function preserves the equations defining H and hence induces a homomor-
phism & from H onto (Rang(h))g = ({20 : o < ), > Ao} . Clearly h(h(z)) =
h(z) for the generators hence h o h = h. Hence ({2 : o < Nj,ax > ANy is a
direct summand of H and hence the di-density of H is at least the dz-density of
({xl : o € [A{, Ao) })m which is A\j = p. Os .3

We define variants of Definition 2.1.

3.4 Definition. For A= (\: { < w),t= (ty: £ <w),2 < t; < w, we let

‘]555\ = {X C H[)\e]te : we cannot find m(x) < w,Y = (Y, : m < w and m > m(x)),
I<w

A™ = (A, : m € Yy,) such that:
(a)  Ym C JTA"

{<m
(b) Yo C H [Ae]™ is a singleton
L<m(x)
(c) (Ay, :m € Yy) is a sequence of pairwise disjoint

subsets of \,, each of order type w
(@) Yopr = {1 (u) : 7 € Y and u € [4,]5}

(e) Ymg{ufm:ueX}},
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Jg 5 is defined similarly but m(*) = 0,

JEK,X,<9 = {X : for some av < 6 and Xp € ny/—\ for 8 < a we have X C U X/g}.
B<a

e _ gt
Also let Ji50 = Jix<or -

3.5 Claim. 1) ‘];(;,)<91 - in,(;,)<92 when 01 < 02 and i(1) < i(2) are among 4,5,6.
2) Jis, 08 a 07T -complete ideal for i = 4,5,6.

8) If A¢ > 21,—1(0) then the ideal J! 5 , is proper fori=4,5,6.

Proof. 1), 2) Easy.
3) As in 2.4. Os.5

3.6 Definition. Let A = (\;: / < w),t = (t; : £ < w) such that 2 < ¢, < w and
(Vn)(IFm > n)(t,|t,) we define
(A) Btﬁtjf\ is the free (abelian) group generated by {z' : m < w,a < A\, }.
(B) Let Bgtjf\n be the subgroup of Bgt)f\ generated by {z' : m < n and o < A\, }
() G?; is the pure closure in (Bgf/—{)[ﬂ of the subgroup of (Bg/—{)[ﬂ generated by

B u{ D (I1 t) @laenay — i) :n € [T}

m<w £<m L<w

(here we use the notation that if e.g. n(¢) = {«, B}, a < B then (n(¢))(1) =
B, (n(0))(0) = a).
(D) Let E’;t;f\ = (B;ﬁt/{n tn < w).

To cover also the case =(Vn)(Im > n)(t,|t,,) we can use

3.7 Definition. Let 8o < Ay < Apyq for £ < w.

Let A= (Ml <w)t={(tr: L <w),2<t;<wRg <N < Ny1,(Vn)(Fm >
n)(tn|tm). Let clauses (A), (B), (D) be as in Definition 3.6 but clause (C) is replaced
by
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(C)" we choose Y* = (Y,* : m < w) such that Y;* C H ]2, Yy = {<>} and
£<m
for each m there is a sequence (Ay : n € V) of pairwise disjoint subsets

of A, each of cardinality Ay, such that Y:,, = U{[A)]> : n € Y3}, Let

Yi={ne H[)\g]ZZ for every m < w we have n [ m € Y,*}. Let G;t/—( be
I<w
the abelian group generated by

B;\JCU{xn,yn,g neYil<w}

rtf

freely except the equations which hold in B;§

and y, 0 = z, and

l ?
LeYn, 41 = Yn,t = T(ne0))(1) ~ Tn(e))(0)-

3.8 Definition. Assume

&3_.{7 i H = (H, : n < w) is an increasing sequence of abelian subgroups of H,

such that U H,, is dense in H by the t-adic topology.

nw

Then we let

IZEH = {X C H : for some n < w, the intersection of the ¢-adic closure of PCy(X) in H,

cli(PCy(X), H) with U Hy is a subset of H,}
l<w

IE?HK@ = {X C H : for some a < 6 and Xz € IZ’?H for 8 < a we have X C U Xﬁ}
B<a

aF gt
o= T <ot

3.9 Definition. Assume ¢ = (t;: ¢ < w),2 < ty < w, and

&EJ 7 H is Hausdorff in the ¢ | [k, w)-topology for each k < w where ¢ [ [k,w) =
(tkre + £ < w). Further H = (H, : n < w) is an increasing sequence of
abelian groups, U H, C H is dense in the t | [k,w)-adic topology for each

nw

k< w.
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Then we let

1)

I?ig = {X C H : for some n(*) < w, for every n € (n(*),w) there is no
yE Hn+1 such that: dﬂ[n,w) (y7PC(<X>H)) = 0 but df[[n,w) (y7Hn) > O}

Iil’,tﬁ,d = {X: there are o < 6 and X3 € I5t for 8 < « such that X C U XB}
B<a

5.t
Moreover IHHG IHFI<9+‘

2) Ig’,tl (and IgtH <6 ]gtH p) are defined similarly except that we demand n(x) = 0.

3) I;’/f\tf means 1%

Grtf Brtf Where Brtf <Brtf n< w>.

3.10 Claim. For )\, as in 3.4

(a) we have Kt i (from 3.9)

(b) Grt is Nl—ffr‘ee; moreover Gl"t /B;tf\ ., s Ry-free for each n < w

(c) I; ;tfe are 0% -complete ideals for i = 4,5,6

(d) if H.A (from 3.9) and i € {4,5,6} then I};H , 18 a 0 -complete ideal.
Proof. Straightforward (for (6), use an argument similar to that of 3.3). O3 10

The following lemma connects the combinatorial ideals defined above and the more
algebraic ideals defined in 3.8.

3.11 Claim. 1) Assume

t=(ty: l<w),2<ty<w
Mo A= (\¢: ¢ <w), and \p > 31(0) for { < w.

Then the ideal Itf ;tg is proper for i = 4,5,6.

2) Assume Xy and
@/2 5\: <)\g :£<w>,)\g :No,QZNO.
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Then the ideal I;‘,;\tz is proper.

Proof. 1) If not, we can find X, C L =: G;_t/f\ for a < 6 such that G?/f\ = U Xa
| ) ) a<9
and X, € Ig”gtf. For a« <w and n € H[)\g]Q we let
I<a

zy = (I] t) @l = 26mno):

m<a £<m
As in the proof of 2.4, we can apply a partition theorem on trees (see [Sh:f,

Ch.XL,3.5]) for the ideal J, = ERIZ(\;) (this ideal is, of course, §-complete and
non-trivial as A, > 29).

So we can find (Y}, : m < w), (4, : n € Y,,) and a(x) < 6 such that

(a) Y C H [/\5]2

L<m

b

(b) Yy is a singleton

(c) Ay € (Jogmy)T forn €Yy, (so A, C [)‘ﬁg(n)]Q)
)
)

(d) Y1 ={n"(u) :u € Ay,n € Yn}
(e) if ne Yy, thenne{vim:z, € Xou}.
We now prove by induction on k < w that

(%) for any m < w, if n € Y,;, and A C 4, is from (J,,,)" then for some infinite
A" C A\, for any a < 8 from A’ we have

ety (]t —2m) € cbi((Xa) L)+ ( J] 0L
<m L<m+k

For k = 0 this is trivial: the element (H te)(x5 — xy') belongs to ( H te)L.
£<m L<m+k

For k+1, to prove ()41 we are givenm < w,n € Y, and A’ C A,, A" € (J,)*, and
have to find {a, 8} € A" such that ®l;’j51 holds. For ¢ € [m,w), as J; is an ideal we
can find A € (Jo)T for v € Yy such that A C A, and the statement ®F ; holds for
every {a, 8} € AV or forno {a, B} € A andv =n = Al C Al,. As we are assuming
(%)k necessarily {«a, 5} € Al = ®’§é’ - By renaming without loss of generality A} =
A,. As A, € (Jn)T, by the choice of J,, we can let 79 < 71 < 72 < ... be in
A,. So for each j < w, let n; € Yi1k+1, (yes, not n; € Y,,,11!) be such that
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n; | m =mn,n;(m) = {v;,7j+1}. By clause (e) above we know that there are v;
such that n; <v; € H [A\¢]? and
I<w

(Z) Ty; € Xa(*).
Now by the definitions of x,, ,z,,

(¢1) xy; = z,; mod( H te)L

(<m+k+1
(zit) if e m+1,m+k+1) andj < w then
Ty 1(e+1) Ty, 10 € C€{(< o ) H L L - Cgt a( )> ) ( H t’i)L

1<l+k i<m-+k+1
[why? the first inclusion, by the induction hypothesis as the difference

is ( H ti)(xfnj ©)(1) — x‘gnj (0))(0))s the second inclusion as m +1 < /]
i<m-+4L

(i'U) Ln; — Ty, (m+1) S Cgf(<Xa(*)>, L) + ( H tz)L
i<m-+k+1
[why? use (iii) for £ =m +1,...,m + k, noting that £g(n;) = m + k + 1.]

(V) Zy;1me1) € el (X)), L)+ [] )L
i<m—+k+1
[why? by (i) + (ii) + (iv)]
i) > Awp ey i< ]t} €ctilXae), L)+ J[ )L
i<m+k+1 i<m-+k+1
[why? by (v)]

(vii) 27 —am € cli((Xag), )+ ([ t)Lforjtx) = [[ @

i<m—+k+1 i<m-+k+1
[why? by (vi) because
Z{%r(mm 1J < H ti}
i<m-+k+1
:Z{xmr Ht '7J+1_ J).j< H tz}
i<m i<m-+k+1
ZZ{xnﬂm:j< H t¢}+(H Z{ %H— ,yj ):ij< H ti}
i<m-+k+1 <m i<m-+k+1

las m; | m does not depend on j and obvious arithmetic]

- ( H ti) "I m + (H ti)(%ymj(*) — :L’,%) €

i<m-+k+1 <m
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(T t)er, —amy+C I t)L
<m i<m-+k+1

(viit) if p € Y, and a < 8 are in A,, then

( I to@g —27) € cti((Xaw). L)+ J[ )L

i<m+1 i<m+k+1
[why? by (vii) and the choice of the Y,,,, A, (n € Yy, m < w).]

So we have carried the induction on k.
2) Easier. Us.11

3.12 Claim. Assume
Ky t=(tr:l<w)and2<t;<w
Xo Ap > :1(9)
3 cov(\, ([T A) ™ (T 2e) 7. 67) < .

I<w I<w

Then Uz (A) =\ and UI?”(A) =\

£,X,0
Proof. By the previous claims 3.10, 3.11 (and the relevant definitions 3.6 - 3.9.

3.13 Conclusion. For every A > 3, for some 0 < 3, for every x € (31(0),3,,) for
every A\, € [3,(0), k] we have

UI?,X,@ (W) =A= UJ?,X,@ (A).
Proof. By the previous claim and [Sh 460] (similar to 2.6). Os.13

3.14 Claim. Assume
(a) [Tae<m<r= ey <N <A <ph

I<w
(b) ut < X or at least for some 2,
(%) |2 =X and Va € P)(a C X & otp(a) = p)
and (VE)(E a club of A — (Ja € &)(a C F))
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(C) )\// — UI?;()\/) < Iu/NO whe/r'e tm = H E' or at Zeast )\// - UJ? 7<)\/)
’ £<m '

COV(A" ;AT AT, < p° or at least Ujqa( o < p% where satisfies
d NOAT AT A N l Uiqa(2) N Ro ph i sfi
the demand () o.

Then we can find N -free abelian groups G, of cardinality \ for o < p™° such that

for every W;-free abelian group G of cardinality \ or just G € £ we have:

some G is not embeddable into G; also the number of ordinals a < pNo
for which G4, is embeddable into G is at most cov( N, AT, AT A) (or <
Uiga(2)(\") at least)

Proof. Like 2.8, note that “N;-free” implies || — ||7 is a norm.

8.15 Conclusion. If J, < p™ < A = cf(\) < ™ then in K there is no member
universal even just for ﬁil'ﬁee.

Proof. Straightforward.
3.16 Remark. In §2 we can use the parallel of 3.11.

3.17 Remark. If A = Ny there is no universal member in ﬁg\tf. In fact for any
Q C P* let Gq be the subgroup of Qz & @{Qz), : p € P*\Q} generated by
p

{p "z :peQU{¢ "zy,:pe P \Qand n <w, and ¢ € P*\{p}}
U{p ™ (x —zp) :n <wand p € Q}.

So Gq € K%, and (see Definition 1.3) P(z,Gq) = Q and P~ (z,Gq) = P*\Q
hence (see 1.4) if h embeds Gq into G € K" then P(h(z),G) = Q. As the number
of possible Q’s is 2% we are easily done. This proof gives an alternative proof to
1.2, but the proof there looks more promising for generalization.
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