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Abstract

The notion of stationary reflection is one of the most important
notions of combinatorial set theory. We investigate weak reflection,
which is, as its name suggests, a weak version of stationary reflection.
Our main result is that modulo a large cardinal assumption close to 2-
hugeness, there can be a regular cardinal κ such that the first cardinal
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weakly reflecting at κ is the successor of a singular cardinal. This
answers a question of Cummings, Džamonja and Shelah. 1

0 Introduction and the statement of the re-

sults.

Stationary reflection is a compactness phenomenon in the context of station-

ary sets. To motivate its investigation, let us consider first the situation of

a regular uncountable cardinal κ and a closed unbounded subset C of κ.

For every limit point α of C we have that C ∩ α is closed unbounded in

α. Now let us ask the same question, but starting with a set S which is

stationary, not necessarily club, in κ. Is there necessarily α < κ such that

S ∩α is stationary in α-or as this situation is known in set theory, S reflects

at α? The answer to this question turns out to be very intricate, and in

fact the notion of stationary reflection is one of the most studied notions of

combinatorial set theory. This is the case not only because of the historical

significance stationary reflection achieved through by now classical work of

R. Jensen [Je] and later work of J.E. Baumgartner [Ba], L. Harrington and S.

Shelah [HaSh 99], M. Magidor [Ma] and many later papers, but also because

of the large number of applications it has in set theory and allied areas. In

set theory, stationary reflection is known to have deep connections with var-

ious guessing and coherence principles, the simplest one of which is Jensen’s

� ([Je]), and the notions from pcf theory, such as good scales (for a long

list of results in this area, as well as an excellent list of references, we refer

the reader to [CuFoMa]), and some connections with saturation of normal

filters ([DjSh 545]). In set-theoretic topology, various kinds of spaces have

been constructed from the assumption of the existence of a non-reflecting

stationary set (for references see [KuVa]), and in model theory versions of

1This paper is numbered 691 (10/98) in Saharon Shelah’s list of publications. Both
authors thank NSF for partial support by their grant number NSF-DMS-97-04477, as well
as the United States-Israel Binational Science Foundation for a partial support through a
BSF grant.
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stationary reflection have been shown to have a connection with decidability

of monadic second-order logic ([Sh 80]).

We investigate the notion of weak reflection, which, as the name suggests,

is a weakening of the stationary reflection. For a regular cardinal κ, we say

that λ > κ weakly reflects at κ iff for every function f : λ → κ, there is

δ < λ of cofinality κ (we say δ ∈ Sλκ) such that f � e is not strictly increasing

for any e a club of δ. The negation of this principle is a strong form of

non-reflection, called strong non-reflection. The notions were introduced by

Džamonja and Shelah in [DjSh 545] in connection with saturation of normal

filters, as well as the guessing principle♣∗−λ(λ+), which is a relative of another

popular guessing principle, ♣. It is proved in [DjSh 545] that, in the case

when λ = µ+ and ℵ0 < κ = cf(µ) < µ, if weak reflection of λ at κ holds

relativized to every stationary subset of Sλκ , then ♣∗−µ(Sλκ) holds. The exact

statement of the principle is of no consequence to us here, so we omit the

definition. We simply note that this statement is stronger than just ♣∗−µ(λ),

which holds just from the given cardinal assumptions.

Weak reflection was further investigated by Cummings, Džamonja and

Shelah in [CuDjSh 571], more about which will be mentioned in a moment.

A very interesting application of weak reflection was given by Cummings

and Shelah in [CuSh 596], where they used it as a tool to build models where

stationary reflection holds for some cofinalities but badly fails for others.

It was proved in [DjSh 545] that if there is λ which weakly reflects at κ,

the first such λ is a regular cardinal. It is also not difficult to see that the first

such λ cannot be weakly compact. On the other hand, in [CuDjSh 571] Cum-

mings, Džamonja and Shelah proved that, modulo the existence of certain

large cardinals, it is consistent to have a cardinal λ which weakly reflects

at unboundedly many regular κ below it, and strongly non-reflects at un-

boundedly many others. The forcing notion used in this can be used to get

models where there is κ such that the first cardinal weakly reflecting at κ is

the successor of a regular cardinal.

A question we attempted in these investigations but did not succeed in

resolving was if it is consistent to have κ for which the first λ which weakly re-

flects at κ is the successor of a singular cardinal. In this paper we answer this
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question positively, modulo the existence of a certain large cardinal whose

strength is in the neighbourhood of (and seemingly less than) being 2-huge.

In our model both κ and λ are successors of singulars. Cummings has mean-

while obtained in [Cu] an interesting result indicating that it would be very

difficult to obtain a result similar to ours with e.g. κ = ℵ2 and λ = ℵω+1,

as there is an interplay with a closely related compactness phenomenon. To

state our results more precisely, let us now give the exact definition of weak

reflection and the statement of our main theorem.

Definition 0.1. Given ℵ0 < κ = cf(κ) and λ > κ. We say that λ weakly

reflects at κ iff for every function f : λ→ κ, there is δ ∈ Sλκ such that f � e

is not strictly increasing for any e a club of δ.

Theorem 0.2. (1) Let V be a universe in which, for simplicity, GCH holds

and let µ0 be a cardinal such that there is an elementary embedding j : V →M

with the following properties:

(i) crit(j) = µ0,

(ii) For some κ∗ which is the successor of a singular cardinal θ∗ and for some

χ, we have

µ0 < κ∗ < µ1
def
= j(µ0) < λ∗

def
= j(κ∗) < cf(χ) = χ < µ2

def
= j(µ1),

(iii) χM ⊆M .

Then there is a generic extension of V in which cardinals and cofinalities

≥ µ0 are preserved, GCH holds above µ0, and the first λ weakly reflecting

at κ∗ is λ∗ (hence, the successor of a singular).

(2) In (1), we can replace the requirement that κ∗ is the successor of a singular

by “ϕ(κ∗) holds” for any of the following meanings of ϕ(x):

(a) x is inaccessible,

(b) x is strongly inaccessible,

(c) x is Mahlo,
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(d) x is strongly Mahlo,

(e) x is α-(strongly) inaccessible for α < x,

(f) x is α-(strongly) Mahlo for α < x,

and have the same conclusion (hence in place of “λ∗ is the successor of a

singular”, V P will satisfy ϕ(λ∗)).

(3) With the same assumptions as in (1), there is a generic extension of V

in which κ∗ = ℵ53 and λ∗, the successor of a singular, is the first cardinal

weakly reflecting at κ∗.

Remark 0.3. (1) Our assumptions follow if µ0 is 2-huge and GCH holds.

The integer 53 in the statement of part (3) above is to a large extent arbitrary.

(2) Notice that κ∗-cc forcing notions preserve that κ∗ is a regular uncountable

cardinal and that λ∗ is the first cardinal weakly reflecting at κ∗, as well as

the fact that λ∗ is the successor of a singular cardinal, but not necessarily the

fact that κ∗ is the successor of a singular cardinal. It is natural to consider

the possibility of κ∗ = ℵω+1 and λ∗ = ℵω+ω+1 but we have not considered

this for the moment.

The proof of (1) of the Theorem uses as a building block a forcing notion

used by Cummings, Džamonja and Shelah in [CuDjSh 571], which introduces

a function witnessing strong non-reflection of a given cardinal λ to a cardinal

κ. An important feature of this forcing is that it has a reasonable degree

of (strategic) closure, provided that strong non-reflection of θ at κ already

holds for θ ∈ (κ, λ), and hence it can be iterated. This forcing is a rather

homogeneous forcing, so the term forcing associated with it has strong deci-

sion properties. The forcing that we actually use is a term forcing associated

with a certain product of the strong non-reflection forcing and a Laver-like

preparation. Using this, we force the strong non-reflection of θ at κ∗ for all

θ < λ∗ (say θ > κ∗, as the alternative situation is trivial), and the point is

to prove that in the extension λ∗ weakly reflects on κ∗. If we are given a

condition and a name forced to be a strongly non-reflecting function, we can

use the large cardinal assumptions to pick a certain model N , for which we
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are able to build a generic condition, whose existence contradicts the choice

of the name. To build the generic condition we use the preparation and the

fact that we are dealing with a term forcing. Proofs of (2) and (3) are easy

modifications of the proof of (1).

We recall some facts and definitions.

Notation 0.4. (1) Reg stands for the class of regular cardinals.

(2) If p, q are elements of a forcing notion, then p ≤ q means that q is an

extension of p. For a forcing notion Q we assume that ∅Q is the minimal

member of Q.

(3) For p a condition in the limit of an iteration 〈Pα, Q
˜
β : α ≤ α∗, β < α∗〉,

we let

Dom(p)
def
= {β < α∗ : ¬(p � β 
 “p(β) = ∅Q

˜
β
”)}.

(4) The statement that λ weakly reflects at κ is denoted by WR(λ, κ). Its

negation (including the situation λ ≤ κ) is denoted by SNR(λ, κ).

Remark 0.5. It is easily seen that λ weakly reflects at κ iff |λ| does, so

we can without loss of generality, when discussing weak reflection of λ to κ

assume that λ is a cardinal.

Definition 0.6. (1) For a forcing notion and a limit ordinal ε, we define the

game a(P, ε) as follows. The game is played between players I and II, and it

lasts ε steps, unless a player is forced to stop before that time. For ζ < ε, we

denote the ζ-th move of I by pζ , and that of II by qζ . The requirements are

that I commences by ∅P and that for all ζ we have pζ ≤ qζ , while for ξ < ζ

we have qξ ≤ pζ .

I wins a play Γ of a(P, ε) iff Γ lasts ε steps.

(2) For P and ε as above, we say that P is ε-strategically closed iff I has a

winning strategy in a(P, ε). We say that P is (< ε)-strategically closed iff it

is ζ-strategically closed for all ζ < ε.

1 Proofs.

We give the proof of Theorem 0.2. The main point is the proof of part (1) of

the Theorem. With minimal changes, this proof can be adapted to prove the
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other parts of the theorem. The necessary changes are described at the end of

the section. Let V , j and the cardinals mentioned in the assumptions of the

Theorem be fixed and satisfy the assumptions. Note that the elementarity

of j guarantees that λ∗ is the successor of a singular cardinal. We shall build

a generic extension in which λ∗ remains the successor of a singular cardinal

and is made to be the first cardinal which weakly reflects at κ∗. Let us

commence by describing the forcing for obtaining strong non-reflection at a

given (favourably prepared) pair of cardinals.

Definition 1.1. Suppose that we are given cardinals κ and σ satisfying

ℵ0 < κ = cf(κ) < σ.

P(κ, σ) is the forcing notion whose elements are functions p with dom(p)

an ordinal < σ, the range rge(p) ⊆ κ, and the property

[β ∈ Sσκ & β ⊆ dom(p)] =⇒ (∃c a club of β) [p � c is strictly increasing],

ordered by extension.

Fact 1.2 (Cummings, Džamonja and Shelah, [CuDjSh 571]). Let κ and

σ be such that P(κ, σ) is defined, then

(1) |P(κ, σ)| ≤ |σ>κ| = κ<σ.

(2) Suppose that for all θ ∈ (κ, σ) we have SNR(θ, κ). Then P(κ, σ) is

(< σ)-strategically closed.

(3) If GCH holds then P(κ, σ) preserves cardinals and cofinalities.

We recall the following

Definition 1.3. A set A of ordinals is an Easton set iff

σ ∈ Reg ∩ (sup(A) + 1) =⇒ sup(A ∩ σ) < σ.

The following forcing notion enforces strong non-reflection through an

iteration of forcing of the form P(κ, σ).
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Definition 1.4. Given ℵ0 < cf(κ) = κ < λ.

Q(κ,λ) is the result of a reverse Easton support iteration of P(κ, σ) for

σ = cf(σ) ∈ (κ, λ). More precisely, let

Q̄ = 〈Qα, R
˜
β : α ≤ λ, β < λ〉,

where

(1) 
Qα “R
˜
α = {∅}” unless α ∈ Reg ∩ (κ, λ), in which case


Qα “R
˜
α = P

˜
(κ, α)”.

(2) For α ≤ λ we define by induction on α that

p ∈ Qα iff p is a function with domain α such that for all γ < α we

have p � γ ∈ Qγ and 
Qγ “p(γ) ∈ R
˜
γ” and letting

Dom(p) = {γ < α : ¬(
Qγ “p(γ) = ∅R
˜
γ”)}

we have that Dom(p) is an Easton subset of α.

(3) p ≤ q iff for all β < λ we have q � β 
Qβ “q(β) ≥ p(β)”.

Fact 1.5 (Cummings, Džamonja, Shelah, [CuDjSh 571]). Let Q̄, κ and

λ be as in Definition 1.4. For all α ≤ λ:

(1) Whenever α is regular, |Qα| ≤ α<α,

(2) 
Qα “|R
˜
α| ≤ κ<|α|”,

(3) If α ≥ ℵ0, then Qα+1 has (|α|<|α|)+-cc. In addition, if α is strongly

Mahlo, then Qα has α-cc.

(4) 
Qα “R
˜
α is (< α)-strategically closed”.

(5) For all β < α, we have that Q
˜
α/Qβ is (< β)-strategically closed.
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(6) Qα preserves all cardinals and cofinalities ≥ (|α|<|α|)+, and all strongly

inaccessible cardinals and cofinalities ≤ |α| 2, as well as all cardinals

and cofinalities ≤ (κ)+. If α is strongly Mahlo, then Qα preserves

cardinalities and cofinalities ≥ α.

(7) 
Qα “SNR(κ, β)” for all β < α.

The forcing notion we shall use will be a term forcing associated with

iterations of the above type. We first need some general notation for such

forcing.

Notation 1.6. (1) For a forcing notion Q of the form Q = P1 ∗ P
˜

2, we

denote by Q⊗ the term forcing associated with Q, defined by

Q⊗
def
= {(∅P1 , q

˜
) : q

˜
is a canonical P1-name for a condition in P2},

(in particular Q⊗ ⊆ Q), with the order inherited from Q. Following

the usual practice, we may write (∅, q) in place of (∅P1 , q
˜

) when the

meaning is clear from the context.

(2) For a triple (R, κ, λ) with cf(κ) = κ < λ, and R a forcing notion

preserving the fact that λ > κ is a cardinal and κ = cf(κ) > ℵ0, we

define Q⊗(R,κ,λ) to be [R ∗Q
˜

(κ,λ)]
⊗.

(3) In the situation when the notation Q⊗(R,κ,κ∗) makes sense, we abbreviate

it as Q⊗(R,κ).

Observation 1.7. Q⊗(R,κ,λ), when defined, is (< κ+)-strategically closed.

The forcing notion we shall use will have a preparatory component, P−

described below, which will be followed by a component made up of term

forcings described above. We give a precise definition in the following.

2Note that this implies that if GCH holds, all cardinalities and cofinalities are
preserved.
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Definition 1.8. We define P− to be the forcing whose elements are functions

h, with dom(h) an Easton subset of µ0 consisting of cardinals, with the

property that

α < β ∈ dom(h) ∪ {µ0} =⇒ h(α) ∈ H(β)3.

The order on P− is the extension.

In order to be able to define the next component of the forcing we need

to ascertain a preservation property of P−. Recall that we are assuming that

V |= GCH.

Claim 1.9. Forcing with P− preserves cardinals and cofinalities ≥ µ0, and

GCH above and at µ0. If p ∈ P− and θ ∈ dom(p) is (strongly) inaccessible,

then p forces that the cofinality of any σ ≤ µ0 whose V -cofinality is > θ,

remains > θ, while 2θ remains θ+.

Proof of the Claim. First notice that |P−| = µ0, so P− has µ+
0 -cc and

preserves cardinals and cofinalities ≥ µ+
0 , as well as GCH above and at µ0.

Now suppose that p ∈ P− and p forces that for some σ ≤ µ0 and θ < cf(σ)

with θ ∈ dom(p) inaccessible, the cofinality of σ in V [G] is ≤ θ. Let

P<θ
def
= {q � θ : q ∈ P− & q ≥ p}

and

P≥θ
def
= {q � [θ, µ0) : q ∈ P− & q ≥ p},

both ordered by the extension. The mapping q 7→ (q � [θ, µ0), q � θ) shows

that P−/p def
= {q ∈ P− : q ≥ p} is isomorphic to P≥θ × P<θ (we are using the

fact that θ ∈ dom(p)). We have that P≥θ is (< θ+)-closed, so P<θ adds a co-

final function from θ to σ. However, |P<θ| ≤ θ (as θ is strongly inaccessible),

and so it preserves cardinals and cofinalities ≥ θ+, a contradiction.

We can similarly observe that

p 
P− “2θ = θ+”.

F1.9

3Note that this implies that each h(α) is bounded in µ0.
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Definition 1.10. (1) For µ < µ0 strongly inaccessible let R
˜
µ and κ

˜
µ be the

following P−-names:

for a condition p ∈ P−, if µ ∈ dom(p) and

p(µ) = (κ,R) with µ < cf(κ) = κ < µ0,

and R ∈ H(µ0) a forcing notion which preserves the fact that κ is a

regular uncountable cardinal (and it by necessity preserves that κ∗ is a

cardinal larger than κ), then p forces κ
˜
µ to be κ and R

˜
µ to be Q

˜

⊗
(R,κ

˜µ
).

If µ ∈ Dom(p) but µ or p(µ) do not satisfy the conditions above, or p

has no extension q with µ ∈ Dom(q), then p forces κ
˜
µ = 0 and R

˜
µ to

be the trivial forcing, which will for notational purposes be thought of

as {(∅, ∅)}. In these circumstances we think of Rµ = {∅}.
It follows from Claim 1.9 that the above definition is correct and that over

a dense subset of P− each R
˜
µ is a P−-name of a forcing notion from V , κ

˜
µ is

a P−-name of an ordinal < µ0. In the following item (2), clearly
∏
µ<µ0 R˜

µ is

a P−-name of a product of forcing notions from V , but R
˜

below is forced not

to be from V .

(2) For a P−-name f
˜
∈ ∏

µ<µ0 R˜
µ and α ≤ µ0, let

A
˜
f
˜
,α

def
= {µ < µ0 : f

˜
(µ) = (∅, q

˜
) with ¬(
R

˜
µ “α /∈ Dom(q

˜
)”)}.

(3) Let R
˜

be a P−-name for:f˜ ∈
∏
µ<µ0

R
˜
µ : (∀α ≤ µ0) [A

˜
f
˜
,α is an Easton set ]

 ,

ordered by the order inherited from
∏
µ<µ0 R˜

µ.

We proceed to discuss the preservation properties of the forcing notions

we defined.

Notation 1.11. If we write (p, r̄
˜

) ∈ P− ∗ R
˜

, we mean that p ∈ P− and


P− r̄
˜

= 〈(∅Rµ , r
˜

(µ)) : µ < µ0〉.
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Definition 1.12. (1) Given (p, r̄
˜

) ∈ P− ∗ R
˜

and σ = cf(σ) < µ0. For

(q, s̄
˜

) ∈ P− ∗ R
˜

, we define

(i) (q, s̄
˜

) ≥pr,σ (p, r̄
˜

) iff

(α) (q, s̄
˜

) ≥ (p, r̄
˜

),

(β) q � (σ + 1) = p � (σ + 1),

(γ) for µ < µ0 with ¬(q 
 “R
˜
µ is trivial”), we have

(q, ∅R
˜
µ) 
 “if κ

˜
µ < σ, then s

˜
(µ) � (κ

˜
µ, σ] = r

˜
(µ) � (κ

˜
µ, σ]”.

(ii) (q, s̄
˜

) ≥apr,σ (p, r̄
˜

) iff

(α) (q, s̄
˜

) ≥ (p, r̄
˜

),

(β) q � (σ + 1, µ0) = p � (σ + 1, µ0),

(γ) for µ < µ0 with ¬(q 
 “R
˜
µ is trivial”), we have

(q, ∅R
˜
µ) 
 “s

˜
(µ) � (σ, κ∗) = r

˜
(µ) � (σ, κ∗)”.

(2) For (p, r̄
˜

) ∈ P− ∗ R
˜

and σ = cf(σ) ≤ µ0, we let

Q−(p,r̄
˜

),σ
def
= {(q, s̄

˜
) : (q, s̄

˜
) ≥apr,σ (p′, r̄

˜
′) for some (p′, r̄

˜
′) ≤pr,σ (p, r̄

˜
)},

ordered as a suborder of P− ∗ R
˜

.

Claim 1.13. Given (p, r̄
˜

) ≤ (q, s̄
˜

) in P− ∗ R
˜

, and a regular σ < µ0.

Then there is a unique (t, z̄
˜

) such that

(p, r̄
˜

) ≤pr,σ (t, z̄
˜

) ≤apr,σ (q, s̄
˜

).

Proof of the Claim. Let t
def
= p � (σ + 1) ∪ q � (σ + 1, µ0). Hence t ∈ P−

and p ≤ t ≤ q (note that σ + 1 /∈ dom(p)). We define a P− ∗ R
˜

-name z̄
˜

by

letting for µ < µ0

z
˜

(µ)
def
=

{
r
˜

(µ) � (κ
˜
µ, σ] _ q

˜
(µ) � (σ, κ∗] if defined

r
˜

(µ) otherwise.

F1.13
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Notation 1.14. (t, z̄
˜

) as in Claim 1.13 is denoted by intr((p, r̄
˜

), (q, s̄
˜

)).

Claim 1.15. For σ = cf(σ) < µ0, the forcing notion (P− ∗ R
˜
,≤pr,σ) is

(< σ + 2)-strategically closed.

Proof of the Claim. For every µ < µ0 we have by Fact 1.5(5) applied to

σ+ (or σ+2, recalling that for coordinates ζ ∈ (σ, σ+) in the iteration Q
˜
κ
˜
µ,κ∗)

the factor R
˜
ζ is trivial)


P− “R
˜
µ non-trivial =⇒ Q

˜
(κ
˜
µ,κ∗)/Q

˜
(κ
˜
µ,σ] is (< σ + 2)-strategically closed.”

Hence we can find names St
˜
σ
µ of the winning strategies exemplifying the

corresponding instances of the above statement.

Suppose that ζ ≤ σ+ 1 and 〈pξ = 〈p0
ξ , p̄

˜

1
ξ〉 : ξ < ζ〉, 〈qξ = 〈q0

ξ , q̄
˜

1
ξ〉 : ξ < ζ〉

are sequences of elements of P− ∗ R
˜

such that

(1) For all ξ < ζ we have pξ ≤pr,σ qξ,

(2) For all ξ < ζ and ε < ξ we have qε ≤pr,σ pξ and for µ < µ0 with

¬(p0
ξ 
 “R

˜
µ is trivial”), we have (p0

ξ , (∅R
˜
µ , p

˜

1
ξ(µ) � (κ

˜
µ, σ])) 
P−∗R

˜
µ∗Q

˜
(κ
˜
µ,σ]

“p
˜

1
ξ(µ) � (σ, κ∗) = St

˜
σ
µ(〈p

˜

1
ε(µ) � (σ, κ∗) : ε < ξ〉, 〈q

˜

1
ε(µ) � (σ, κ∗) : ε < ξ〉)”

We define pζ as follows. First let p0
ζ

def
=

⋃{q0
ξ : ξ < ζ}. Notice that p0

ζ ∈ P−

and p0
ζ � (σ + 1) = p0

0 � (σ + 1).

For µ < µ0 with ¬(pξ 
 “R
˜
µ is trivial”), we let p

˜

1
ζ(µ) be the name given

by

p
˜

1
ζ(µ) � (κ

˜
µ, σ]

def
= p

˜

1
0(µ) � (κ

˜
µ, σ]

and

p
˜

1
ζ(µ) � (σ, κ∗)

def
= St

˜
σ
µ(〈p

˜

1
ξ(µ) � (σ, κ∗) : ξ < ζ〉, 〈q

˜

1
ξ(µ) � (σ, κ∗) : ξ < ζ〉).

The conclusion follows because we have just described a winning strategy for

I in a((P− ∗ R
˜
,≤pr,σ), ξ). F1.15
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Claim 1.16. Suppose (p, r̄
˜

) 
 “τ
˜

: σ → Ord”, where σ is regular < µ0.

Then there is (q, s̄
˜

) ≥pr,σ (p, r̄
˜

) and a Q−(q,s̄
˜

),σ-name τ
˜
′ such that

(q, s̄
˜

) 
 “τ
˜

= τ
˜
′”.

Proof of the Claim. We define a play of a((P− ∗R
˜
,≤pr,σ), σ+ 1) as follows.

Player I starts by playing (p, r̄
˜

)
def
= p0. At the stage ζ ≤ σ, player II

chooses q∗ζ ≥ pζ such that q∗ζ forces a value to τ
˜

(ζ), and we let qζ
def
= intr(pζ , q

∗
ζ ).

At the stage 0 < ζ < σ, we let I play according to the winning strategy for

a((P− ∗R
˜
,≤pr,σ), σ+ 1) applied to (〈pξ : ξ < ζ〉, 〈qξ : ξ < ζ〉). At the end, we

let (q, s̄
˜

) = pσ. This process defines τ
˜
′ by letting τ

˜
′(ζ) be the Q−(q,s̄

˜
),σ-name

such that for (q∗, t̄) ∈ Q−(q,s̄
˜

),σ we have

(q∗, t̄) 
 “τ
˜
′(ζ) = τ

˜
(ζ)”.

Note that q∗ζ ∈ Q−(q,s̄
˜

),σ and τ
˜
′ is a Q−(q,s̄

˜
),σ-name. F1.16

Claim 1.17. If (p, r̄
˜

) ∈ P− ∗ R
˜

, and σ < µ0 is inaccessible with σ ∈ dom(p),

then Q−(p,r̄
˜

),σ has µ0-cc.

Proof of the Claim. Given q̄ = 〈qi = 〈q0
i , q

˜

1
i 〉 : i < µ0〉, with qi ∈ Q−(p,r̄

˜
),σ.

Suppose for contradiction that the range of this sequence is an antichain.

We have that for all i < µ0

dom(q0
i ) ∩ (σ + 1, µ0) ⊆ dom(p) ∩ (σ + 1, µ0).

As dom(p) is an Easton set, without loss of generality we have that all

dom(q0
i )∩ (σ + 1, µ0) are the same. If this set has the largest element, let us

denote its successor by ρ. Otherwise, let ρ
def
= | sup[dom(p) ∩ (σ + 1, µ0)]|+.

In either case, we have that for all i and α ∈ dom(q0
i � (σ+1, µ0)) the relation

q0
i (α) ∈ H(ρ) holds. Hence for all i < µ0

〈q0
i (α) : α ∈ dom(q0

i ) ∩ (σ + 1, µ0)〉 ∈ H(ρ),

as dom(q0
i ) is an Easton set, so without loss of generality all q0

i are the same.

As σ ∈ dom(p), for each i we have that σ ∈ dom(q0
i ) and hence q0

i � σ ⊆ H(σ)

14
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and we can assume that all q0
i � σ are the same, and hence all q0

i are the same

condition in P−, which we shall call q∗. Let G− be P−-generic over V with

q∗ ∈ G−. Hence in V [G−] the sequence 〈q1
i

def
= (∅, q̄

˜

i) : i < µ0〉 is an antichain

in
∏
µ<µ0 [Rµ∗Q

˜
(κµ,κ∗)]

⊗, and by the choice of the initial sequence, we have that

〈(∅, q
˜

i(µ) � (σ+1)) : µ < µ0〉 : i < µ0〉 is an antichain in
∏
µ<µ0 [Rµ∗Q

˜
(κµ,σ)]

⊗.

For every i < µ0,

Ai
def
= {µ < µ0 : q

˜

i
µ � (σ + 1) 6= ∅}

is the union of ≤ σ Easton sets. Hence by Claim 1.9 (i.e. as in V [G−] the

cardinal µ0 is still strongly Mahlo), without loss of generality, Ai’s form a

∆-system with root A∗. Note that A∗ is a bounded subset of µ0. We can

conclude that

〈〈∅, q
˜

i
µ � (σ + 1)〉 : µ ≤ sup(A∗)〉 : i < µ0〉

forms an antichain in
∏
µ≤sup(A∗)[Rµ∗Q

˜
(κµ,σ)]

⊗, in contradiction with Fact 1.5

(in fact the number of possible values is < µ0. F1.17

Claim 1.18. Forcing with P− ∗ R
˜

preserves cardinals and cofinalities ≥ µ0.

Proof of the Claim. Suppose cofinalities ≥ µ0 are not preserved and let

θ be the first cofinality ≥ µ0 destroyed. Hence θ is regular, and for some

τ
˜

, condition (p, r̄
˜

) and some regular σ < θ, we have (p, r̄
˜

) 
 “τ
˜

: σ → θ is

cofinal”.

Case 1. σ < µ0. Without loss of generality, σ is inaccessible, and by

increasing σ and p if necessary, we can assume that σ ∈ dom(p). By Claim

1.16, there is (q, s̄
˜

) ≥ (p, r̄
˜

) and a Q−(q,s̄
˜

),σ-name τ
˜
′ such that (q, s̄

˜
) 
 “τ

˜
= τ

˜
′”.

Hence (q, s̄
˜

) 
 “τ
˜
′ : σ → θ is cofinal”, contradicting the fact that Q−(p,r̄

˜
),σ

satisfies µ0-cc, which follows from Claim 1.17.

Case 2. σ ≥ µ0.

As for every µ < µ0 with R
˜
µ non-trivial we have


P−∗R
˜
µ “Q

˜
(κ
˜
µ,κ∗)/Q

˜
(κ
˜
µ,σ] is (< (σ + 1))-strategically closed”,
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there is (q, s̄
˜

) ≥ (p, r̄
˜

) and a P− ∗ ∏
µ<µ0 [R˜

µ ∗ Q
˜

(κ
˜
µ,σ]]

⊗-name τ
˜
′ such that

(q, s̄
˜

) 
 “τ
˜
′ : σ → θ is cofinal”. But this forcing has σ+-cc, a contradiction.

F1.18

Combining Claim 1.18 with Fact 1.5, we obtain

Corollary 1.19. Forcing with P− ∗ R
˜
∗ Q

˜
(κ∗,λ∗) preserves cardinalities and

cofinalities ≥ µ0, it preserves GCH from µ0 on, and forces SNR(θ, κ∗) for

θ ∈ (κ∗, λ∗).

By our assumptions it follows that the predecessor of λ∗ is singular, so λ∗

remains the successor of a singular after we have forced by P− ∗ R
˜
∗Q

˜
(κ∗,λ∗),

and clearly κ∗ remains regular.

Now we have arranged the situation so that we are left with the main

point of the argument, which is that after forcing with P− ∗ R
˜
∗ Q

˜
(κ∗,λ∗) we

shall have weak reflection of λ∗ at κ∗. The basic forcing for enforcing strong

non-reflection and the actual forcing we have used posses a convenient ho-

mogeneity property that will become relevant in the main argument, so we

formulate these in the following. As the proof below suggests, the homogene-

ity these forcing notions have is actually stronger than the mild homogeneity

defined in the following definition, but as all we need is mild homogeneity,

we formulate our claims using that notion.

Definition 1.20. We shall call a forcing notion P mildly homogeneous iff for

every formula ϕ(x0, . . . , xn−1) of the forcing language of P and a0, . . . , an−1

(canonical names of) objects in V , we have ∅P ‖ “ϕ(a0, . . . , an−1)”.

Claim 1.21. (1) P(σ, λ) is mildly homogeneous, for ℵ0 < cf(σ) = σ < λ,

(2) Q(κ,λ) is mildly homogeneous, for ℵ0 < cf(κ) = κ < λ.

(3) If R is mildly homogeneous and Q⊗(R,κ,λ) is well defined, then Q⊗(R,κ,λ) is

mildly homogeneous.

(4) It is forced by P− that R
˜

is mildly homogeneous.
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(5) It is forced by P− that R
˜
∗Q

˜
(κ∗,λ∗) is mildly homogeneous.

Proof of the Claim. (1) Suppose not, and let p, q ∈ P
def
= P(σ, λ) force

contradictory statements about ϕ(a0, . . . , an−1) for some a0, . . . , an−1 ∈ V .

Let α = dom(q) and consider the function F = F(σ,λ) : P → P such that

F (f) = g iff q ⊆ g and for i ∈ dom(f) we have g(α + i) = f(i).

This function is an isomorphism between P and P/q
def
= {g ∈ P : g ⊇ q},

so it induces an isomorphism between the canonical P -names for objects in V

and the canonical P/q-names for the same objects. In particular, F (p) forces

in P/q the same statements about a0, . . . , an−1 that p does in P . If G is

P -generic over V such that F (p) ∈ G (then also q ∈ G ). As q ∈ G and F (p)

force contradictory statements about a0, . . . , an−1, we obtain a contradiction.

(2) Suppose that p, q ∈ Q = Q(κ,λ) force contradictory statements about

ϕ(a0, . . . , an−1) for some a0, . . . , an−1 ∈ V . We define a function F+ : Q→ Q

so that such that F (f) = g iff Dom(g) = Dom(q)∪Dom(f) and for ζ ∈ Dom(g)

we have that q � ζ 
 “g(ζ) = F(κ,ζ)(p(ζ)), where F(κ,ζ) is defined as in (1)

above. One can now check that F+ is an isomorphism between Q and Q/q,

and then the conclusion follows as in (1).

(3)-(5) Similar proofs. F1.21

Remark 1.22. The homogeneity properties discussed in Claim 1.21 are not

enjoyed by the forcing notion P−.

Main Claim 1.23. After forcing with P def
= P− ∗R

˜
∗Q

˜
(κ∗,λ∗), the weak reflec-

tion of λ∗ holds at κ∗.

Proof of the Main Claim. Suppose otherwise, and let p∗ = (p, q
˜
, r
˜

) force

τ
˜

to be a function exemplifying the strong non-reflection of λ∗ at κ∗. As

R
˜
∗Q

˜
(κ∗,λ∗) is forced to be mildly homogeneous by Claim 1.21, without loss of

generality p∗ = (p, ∅, ∅). We proceed through a series of lemmas that taken

together suffice to prove the Claim.

Lemma 1.24. There are cardinals µ, κ and χ′ and a model N ≺ H(χ) such

that
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(i) N ∩ µ0 is an inaccessible cardinal µ < µ0,

(ii) otp(N ∩ λ∗) = κ∗,

(iii) otp(N ∩ µ1) = µ0,

(iv) µ>N ⊆ N ,

(v) (N,∈) is isomorphic to H(χ′) for some regular χ′ < χ,

(vi) |N ∩ κ∗| is a regular cardinal κ < µ0, in fact otp(N ∩ κ∗) = κ,

(vii) κ∗, µ0, µ1, λ
∗, P, p∗, τ

˜
∈ N .

Proof of the Lemma. We use the notation of the main Theorem 0.2, in

particular M described in the assumptions of the Theorem. Since we assume

that χM ⊆ M and χ<χ = χ we conclude that j“(H(χ)) ∈ M . Now we can

use elementarity to obtain N ∈ V whose relationship to H(χ) mirrors that

of the relationship between j“(H(χ)) and j(H(χ)) in M . In M we have that

j“(H(χ)) ∩ j(µ0) = µ0 since the critical point of j is µ0, so in M this is an

inaccessible cardinal < j(µ0), and so we can obtain that N satisfies (i) above.

Requirement (ii) follows because in M we have

j(λ∗) ∩ j“(H(χ)) = j“(λ∗)

since λ∗ < χ, and hence this set has order type λ∗ = j(κ∗). We argue similarly

for requirement (iii), using that µ1 < χ and j(µ0) = µ1. For (iv) we choose

the definition of µ as the “mirror” image of µ0 and the fact that j“(H(χ))

is closed under sequences of length < µ0, as µ0 is the critical point of the

embedding. For (v) we use the fact that j“(H(χ)) is isomorphic to H(χ),

which can be said in M because M is closed under χ sequences, and (vi) and

(vii) are handled similarly to the above. F1.24

We fix N as guaranteed by Lemma 1.24 and let δ
def
= sup(N ∩ λ∗). Some

simple consequences of the choice of N are given in the following

Lemma 1.25. The following hold
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(i) δ ∈ Sλ∗κ∗ ,

(ii) N ∩ δ is a stationary subset of δ, and it remains such after forcing with

P.

Proof of the Lemma. The first claim holds because otp(N ∩ λ∗) is κ∗. As

for (ii), notice that the set E defined as the closure of N ∩ δ is a club of δ.

Letting S
def
= Sδℵ0 ∩ N we have that [α ∈ E & cf(α) = ℵ0] =⇒ α ∈ S (the

analogue of this is true even with“cf(α) < µ” in place of “cf(α) = ℵ0”). As

P is an (< ω1)-closed forcing notion, S remains stationary after forcing with

P and hence so does N ∩ δ. F1.25

The next step of our argument is to extend p to a P−-generic condition

over N , which is done as in the following. We use the notation MostN to

denote the function of the Mostowski collapse of the structure (N,∈).

Note that one of the properties of N is that it is isomorphic to H(χ′) for

some regular cardinal χ′ < χ, in particular the Mostowski collapse of N is

H(χ′), and it follows from the other properties of N that κ∗ ∈ H(χ′) and

κ∗ = MostN(λ∗).

As p∗ ∈ N and N ∩ µ0 = µ, we have that dom(p) ⊆ µ and since P− ∈ N
also for all σ ∈ dom(p) we have p(σ) ∈ H(µ). Hence we can extend p to the

condition

p+ def
= p ∪ {〈µ, (κ,MostN((P− ∗ R

˜
)N))〉}.

Note that this is a well defined element of P− because κ < µ0 (see clause

(vi)) and MostN((P− ∗ R
˜

)N) is a well defined element of H(µ0) and a forcing

notion that preserves the fact that κ is a regular uncountable cardinal. In

fact we have

Claim 1.26. The condition p+ a well defined extension of p which is P−-

generic over N .

Proof of the Claim. We have already discussed the fact that p+ is a

well defined extension of p. By the choice of its last coordinate it is actu-

ally P−-generic over N , since any condition q ≥ p+ will satisfy that for all

α ∈ N ∩ dom(q) we have q(α) ∈ H(µ). F1.26
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Claim 1.27. The condition p+ forces that

κ
˜
µ = κ and R

˜
µ = MostN((P− ∗ R

˜
)N),

hence that R
˜
µ is [MostN((P− ∗ R

˜
)N) ∗Q

˜
(κ,κ∗)]

⊗.

Proof of the Claim. This follows by the definition of κ
˜
µ and R

˜
µ. F1.27

Claim 1.28. The condition (p+, ∅) is P− ∗ R
˜

-generic over N .

Proof of the Claim. This follows by the previous claims and the definition

of term forcing. F1.28

Using the definition of the Mostowski collapse, one can establish a con-

nection between QN
(κ∗,λ∗) and Q(κ,κ∗). Namely, let F be the inverse of the

Mostowski collapse of N ∩ λ∗, so an order preserving function from κ∗ onto

N ∩ λ∗. We also let F (κ∗) = λ∗. If N � “σ = cf(σ) ∈ (κ∗, λ∗)”, then F−1(σ)

is an ordinal in (κ, κ∗) and if for such σ we have N � “β < σ is an ordinal”,

then F−1(β) is an ordinal < F−1(σ). For such β, if N � “r is a function from

β to κ∗”, then

{(α, F−1(γ)) : α < F−1(β) & N � “r(F (α)) = γ}

is a function from F−1(β) into F−1(κ∗). Continuing in a similar fashion,

we can see that F−1 induces a mapping from P(κ∗, σ)N into P(κ, F−1(σ)),

which we again denote by F−1. Suppose that N � “α ≤ λ∗ and A ⊆ α is an

Easton set”, then F−1(α) ≤ κ∗ and F−1(A) ⊆ F−1(α) is an Easton set, for

if σ ∈ Reg ∩ sup(F−1(A)) + 1 then N � “F (σ) ∈ Reg ∩ sup(A) + 1” and so

sup(F−1(A)∩ σ) < σ. This shows that F−1 induces a mapping from QN
(κ∗,λ∗)

into Q(κ,κ∗), which we again denote by F−1.

This process can be pushed one step further. As p+ is P−-generic over

N , it forces that N [G
˜

] ∩ V = N , so using that P− ∈ N and an analysis

similar to the one carried so far, one shows that over p+ it is forced that

[MostN((P− ∗ R
˜

)N) ∗ Q
˜

(κ,κ∗)]
⊗ is MostN(([(P− ∗ R

˜
) ∗ Q

˜
(κ∗,λ∗)]

⊗)N) and hence

that there is a function F−1 that induces a mapping between the P−-names
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for conditions in the latter forcing and those in [(P− ∗ R
˜

) ∗ Q
˜

(κ∗,λ∗)]
⊗. This

now shows that p+ forces that R
˜
µ is MostN(([(P− ∗ R

˜
) ∗Q

˜
(κ∗,λ∗)]

⊗)N).

LetH
˜

be the canonical P−-name for a subset of MostN([(P−∗R
˜

)∗Q
˜

(κ∗,λ∗)]
⊗)N)

such that p+ forces H
˜

to be MostN([(P− ∗ R
˜

) ∗ Q
˜

(κ∗,λ∗)]
⊗)N)-generic. The

Mostowski collapse induces a mapping that maps H
˜

into a P−-name for a

subset H
˜
∗ of ([(P− ∗ R

˜
) ∗Q

˜
(κ∗,λ∗)]

⊗)N .

We proceed to define q as follows: q
def
= (p+, ∅R, r

˜
), where r

˜
is a P−∗R

˜
-name

over (p+, ∅R
˜
) of a condition in Q

˜
(κ∗,λ∗) defined by letting

Dom(r
˜

)
def
=

⋃
{Dom(h

˜
) : p+ 
P− “(∅R

˜
, h
˜

) ∈ H
˜
∗”},

and for θ with (p+, ∅R
˜
) 
 “θ ∈ Dom(r

˜
)”, we let

r
˜

(θ)
def
=

⋃
{h
˜

(θ) : (p+, ∅R
˜
) 
 “θ ∈ Dom(h

˜
) & h

˜
∈ H

˜
∗”}.

We have to verify that q is a condition in P and we also claim that q ≥ p∗.

Let us check the relevant items by proving a series of short Lemmas:

Lemma 1.29. If (p+, ∅R
˜
) 
 “θ is strongly inaccessible ∈ (κ∗, λ∗)”, then

(p+, ∅R
˜
) 
 “|Dom(r

˜
) ∩ θ| < θ”.

Proof of the Lemma. We have that (p+, ∅R
˜
) forces that

Dom(r
˜

) ∩ θ ⊆
⋃
{Dom(f

˜
) ∩ θ : f

˜
∈ H

˜
∗}

and |H
˜
∗| ≤ κ∗ < θ (as |N ∩ λ∗| = κ∗), so Dom(r

˜
)∩ θ is forced to be bounded

in θ. F1.29

Lemma 1.30. If (p+, ∅R
˜
) 
 “θ ∈ Dom(r

˜
)”, then (p+, ∅R

˜
) 
 “r

˜
(θ) is a func-

tion whose domain is an ordinal < θ and range a subset of κ∗”.

Proof of the Lemma. As (p+, ∅R
˜
) 
 “H

˜
∗ is directed”, we have that

(p+, ∅R
˜
) 
 “r

˜
(θ) is a function”. If

(p+, ∅R
˜
) 
 “θ ∈ Dom(h

˜
) & F (h

˜
) ∈ H

˜
”,
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then (p+, ∅R
˜
) forces

“(∀σ ∈ Dom(F (h
˜

))) [F (h
˜

)(σ) is a function with domain ∈ σ]”,

so by the definition of F and the fact that |H
˜
∗| ≤ κ∗ < θ = cf(θ) we have

(p+, ∅R
˜
) 
 “dom(h

˜
(θ)) is an element of θ”

and (p+, ∅R
˜
) 
 “dom(r

˜
(θ)) is an element of θ”. F1.30

Lemma 1.31. (p+, ∅R
˜
) 
 “r

˜
∈ Q

˜
(κ∗,λ∗)”.

Proof of the Lemma. We know by Lemma 1.30 that (p+, ∅R
˜
) 
 “Dom(r

˜
) ⊆ λ∗

is an Easton set”. It is forced by (p+, ∅R
˜
) that for relevant θ the set dom(r

˜
(θ))

is the union of a subset ofH(θ++)∩N which has cardinality≤ |θ++ ∩N | < κ∗,

and clearly {h(θ) : h ∈ H
˜
∗} has no last element, by density and genericity.

Hence the sup of this union has cofinality < κ∗ (as having cofinality ≥ κ∗ is

preserved by the forcing P− ∗R
˜

), so r
˜

(θ) is forced to be in P
˜

(θ, κ∗), and hence

r
˜

is forced to be an element of Q
˜

(κ∗,λ∗). F1.31

Lemma 1.32. (p+, ∅R
˜
) forces that if θ ∈ Dom(r) then for all ε ∈ Sθκ∗ , there

is a club e of ε on which r
˜

(θ) is strictly increasing, for θ ∈ dom(r
˜

).

Proof of the Lemma. Again modulo what is forced by (p+, ∅R
˜
), the set

{h(θ) : h ∈ H
˜
∗ , θ ∈ Dom(h)} is linearly ordered, as the domains are ordinals,

so the conclusion follows because the analogue holds for each h ∈ H
˜
∗. F1.32

Conclusion 1.33. The condition q = (p+, ∅, r
˜

) is an element of P and is

above any condition of the form (p+, ∅, h) such that (p+, ∅) forces that h ∈ H
˜
∗.

Consequently, q is P-generic over N .

We shall now see that q forces τ
˜

to be constant on a stationary subset of

δ, a contradiction, as δ ∈ Sλ∗κ∗ , and remains there after forcing with P. We

need to consider what q forces about τ
˜

(α) for α ∈ N ∩ λ∗. Such τ
˜

(α) is a
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P-name of an ordinal < κ∗, by the choice of τ
˜

, see the beginning of the proof

of the Main Claim. Let

Iα def
= {(∅, ∅, t

˜
) ∈ P : (∅, ∅, t

˜
) forces τ

˜
(α) to be equal to a P− ∗ R

˜
-name}.

Hence Iα ∈ N . As P− ∗ R
˜

forces that Q
˜

(κ∗,λ∗) is (κ∗ + 1)-strategically closed

(this is by Fact 1.5(5) applied to any β ∈ (κ∗+2, (κ∗)+), and as the cardinality

of P− ∗ R
˜

is ≤ κ∗, we have that Iα is dense in [(P− ∗ R
˜

) ∗ Q
˜

(κ∗,λ∗)]
⊗. By the

definition of H
˜
∗, there is (∅, ∅, h

˜
) ∈ Iα ∩ N such that (∅, ∅, h

˜
) ≤ q. Let τ

˜
′

exemplify this, so τ
˜
′ ∈ N .

Hence q forces τ
˜

(α) to be in the set of all τ
˜
′
G
˜
∈ N [G

˜
], where τ

˜
′ is a

P− ∗ R
˜

-name of an ordinal < κ∗. The cardinality of the set

T = {τ
˜
′ ∈ N : τ

˜
′ is a P ∗ R

˜
-name for an ordinal < κ∗}

is forced to be ≤ |P(κ∗) ∩N |, which is < µ0. Since α ∈ N was arbitrary, q

forces the range of τ
˜
� (N ∩ δ) to be a set of size < µ0 < κ∗, hence τ

˜
will

be constant on a stationary subset of N ∩ δ (as N ∩ δ is stationary). More

elaborately, one checks the stationarity in V P−∗R
˜
∗Q

˜
(κ∗,λ∗) . Forcing with Q(κ∗,λ∗)

adds no subsets to κ∗, hence is irrelevant. Forcing with P− ∗ R
˜

preserves the

uncountability of cofinalities, so as N ∩ δ contains {γ ∈ e : cf(γ) = ℵ0} for

some club e of δ, clearly N ∩ δ is stationary in V P−∗R
˜
∗Q

˜
(κ∗,λ∗) , and κ∗ is still

a cardinal, hence we are done. F1.23

Part (2) of Theorem 0.2 Same proof.

Part (3) of Theorem 0.2 In short, follow the forcing from (1) by a Levy

collapse. We are making use of the following

Claim 1.34. Suppose λ weakly reflects at κ and P is a κ-cc forcing.

Then λ weakly reflects at κ in V P .

Proof of the Claim. Suppose that

p 
P “f
˜

: λ→ κ & E
˜
⊆ λ is a club ”.

We define f ′ : λ → κ by letting f(α)
def
= sup{γ < κ : ¬(p 
 “f

˜
(α) 6= γ”)}.

As P is κ-cc, the range of f ′ is indeed contained in κ. Let δ ∈ Sλκ be such
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that f ′ � S is constant on a stationary set S ⊆ δ (the existence of such δ

follows as WR(λ, κ) holds). Hence p 
 “f
˜
� S is bounded”, so f

˜
does not

witness SNR(λ, κ) in V P , as S remains stationary. F1.34

So, for example to get κ∗ = ℵn, we could in V P from (1) first make GCH

hold below µ0 by collapsing various cardinals below µ0, and then collapse κ∗

to ℵn.

F0.2
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