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SIMPLE COMPLETE BOOLEAN ALGEBRAS

THOMAS JECH! AND SAHARON SHELAHZ3

The Pennsylvania State University
The Hebrew University of Jerusalem and Rutgers University

ABSTRACT. For every regular cardinal x there exists a simple complete
Boolean algebra with x generators.

1. Introduction.

A complete Boolean algebra is simple if it is atomless and has no non-
trivial proper atomless complete subalgebra. The problem of the exis-
tence of simple complete Boolean algebras was first discussed in 1971 by
McAloon in [8]. Previously, in [7], McAloon constructed a rigid complete
Boolean algebra; it is easily seen that a simple complete Boolean algebra
is rigid. In fact, it has no non-trivial one-to-one complete endomorphism
[1]. Also, if an atomless complete algebra is not simple, then it contains a
non-rigid atomless complete subalgebra [2].

McAloon proved in [8] that an atomless complete algebra B is simple
if and only if it is rigid and minimal, i.e. the generic extension by B is a
minimal extension of the ground model. Since Jensen’s construction [5]
yields a definable real of minimal degree over L, it shows that a simple
complete Boolean algebra exists under the assumption V' = L. McAloon
then asked whether a rigid minimal algebra can be constructed without
such assumption.

In [10], Shelah proved the existence of a rigid complete Boolean algebra
of cardinality & for each regular cardinal x such that x¥° = k. Neither
McAloon’s nor Shelah’s construction gives a minimal algebra.

In [9], Sacks introduced perfect set forcing, to produce a real of minimal
degree. The corresponding complete Boolean algebra is minimal, and has
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N generators. Sacks’ forcing generalizes to regular uncountable cardinals x
(cf.[6]), thus giving a minimal complete Boolean algebra with x generators.
The algebras are not rigid however.

Under the assumption V' = L, Jech constructed in [3] a simple complete
Boolean algebra of cardinality k, for every regular uncountable cardinal
that is not weakly compact (if x is weakly compact, or if « is singular and
GCH holds, then a simple complete Boolean algebra does not exist).

In [4], we proved the existence of a simple complete Boolean algebra
(in ZFC). The algebra is obtained by a modification of Sacks’ forcing, and
has Ny generators (the forcing produces a definable minimal real). The
present paper gives a construction of a simple complete Boolean algebra
with k generators, for every regular uncountable cardinal k.

Main Theorem. Let k be a reqular uncountable cardinal. There exists
a forcing notion P such that the complete Boolean algebra B = B(P) is
rigid, P adds a subset of k without adding any bounded subsets, and for
every X € V[G] (the P-generic extension), either X € V or G € V[X].
Consequently, B is a simple complete Boolean algebra with k generators.

The forcing P is a modification of the generalization of Sacks’ forcing
described in [6].

2. Forcing with perfect x-trees.
For the duration of the paper let k denote a regular uncountable cardi-
nal, and set Seq = 2.

a<k

Definition 2.1. (a) If p C Seq and s € p, say that s splitsin pif s70 € p
and s71 € p.
(b) Say that p C Seq is a perfect tree if:

(i) If s € p, then s« € p for every a.
(ii) If o < k is a limit ordinal, s € “2, and s[f € p for every 8 < a,
then s € p.
(iii) If s € p, then there is a t € p with ¢t O s such that ¢ splits in p.

Our definition of perfect trees follows closely [6], with one exception: unlike
[6], Definition 1.1.(b)(iv), the splitting nodes of p need not be closed.

We consider a notion of forcing P that consists of (some) perfect trees,
with the ordering p < q iff p C ¢q. Below we formulate several properties of
P that guarantee that the proof of minimality for Sacks forcing generalizes
to forcing with P.

Definition 2.2. (a) If p is a perfect tree and s € p, set ps = {t € p: s C
t or t C s}; ps is a restriction of p. A set P of perfect trees is closed under
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restrictions if for every p € P and every s € p, ps € P. If p; = p, then s is
a stem of p.

(b) For each s € Seq, let o(s) denote the domain (length) of s. If
s € p and o(s) is a successor ordinal, s is a successor node of p; if o(s)
is a limit ordinal, s is a limit node of p. If s is a limit node of p and
{a < o(s) : s | a splits in p} is cofinal in o(s), s is a limit of splitting
nodes.

(c) Let p be a perfect tree and let A be a nonempty set of mutually
incomparable successor nodes of p. If for each s € A, ¢(s) is a perfect tree
with stem s and ¢(s) < ps, let

g={te€p: ift DO s for some s € A then t € ¢(s)}

We call the perfect tree ¢ the amalgamation of {q(s) : s € A} into p. A set
P of perfect trees is closed under amalgamations if for every p € P, every
set A of incomparable successor nodes of p and every {q(s) :s € A} C P
with ¢(s) < ps, the amalgamation is in P.

Definition 2.3. (a) A set P of perfect trees is k-closed if for every v < k
and every decreasing sequence (p, : o <) in P, [, 4 Pa € P.
(b) If (pa : a < k) is a decreasing sequence of perfect trees such that

(i) if 6 is a limit ordinal, then ps =", .5 Pa, and

(ii) for every «, pot1 N “2=p, N “2,
then (p, : @ < k) is called a fusion sequence. A set P is closed under
fusion if for every fusion sequence (p, : @ < k) in P, (|, Pa € P.

The following theorem is a generalization of Sacks” Theorem from [9] to
the uncountable case:

Theorem 2.4. Let P be a set of perfect trees and assume that P is closed
under restrictions and amalgamations, k-closed, and closed under fusion.
If G is P-generic over V, then G is minimal over V; namely if X € V[G]
and X ¢ V, then G € V[X]. Moreover, V[G] has no new bounded subsets
of k, and G can be coded by a subset of k.

Proof. The proof follows as much as in [9]. Given a name X for a set of
ordinals and a condition p € P that forces X ¢ V, one finds a condition
g < p and a set of ordinals {7, : s splits in ¢} such that ¢s—~¢ and gs—~1
both decide v, € X, but in opposite ways. The generic branch can then
be recovered from the interpretation of X .

To construct ¢ and {vs} one builds a fusion sequence {p, : @ < Kk} as
follows. Given pg, let Z = {s € p, : o(s) = a and s splits in p, }. For each
s € Z, let 75 be an ordinal such that (p,)s does not decide 7, € X. Let
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q(s70) < (pa)s—~o0 and g(s™1) < (pa)s—~1 be conditions that decide v, € X
in opposite ways. Then let p,4+1 be the amalgamation of {g(s7i) : s € Z

and ¢ = 0,1} into p,. Finally, let ¢ =, ., Pa- O

In [6] it is postulated that the splitting nodes along any branch of a
perfect tree form a closed unbounded set. This guarantees that the set of
all such trees is k-closed and closed under fusion (Lemmas 1.2 and 1.4 in
[6]). It turns out that a less restrictive requirement suffices.

Definition 2.5. Let S C k be a stationary set. A perfect tree p € P is
S-perfect if whenever s is a limit of splitting nodes of p such that o(s) € S,
then s splits in p.

Lemma 2.6. (a) If (po : @ < 7), v < K, is a decreasing sequence of
S-perfect trees, then (. 4 DPa i a perfect tree.

(b) If (pa : a < k) is a fusion sequence of S-perfect trees, then (), . Pa
1S a perfect tree.

Proof. (a) Let p={1,., Pa- The only condition in Definition 2.1 (b) that
needs to be verified is (iii): for every s € p find ¢ O s that splits in p. First
it is straightforward to find a branch f € "2 through p such that s is an
initial segment of f.

Second, it is equally straightforward to see that for each a < ~, the set
of all 8 such that f | [ splits in p, is unbounded in k. Thus for each
a < v let C,, be the closed unbounded set of all § such that f | § is a limit
of splitting nodes in p,. Let 6 > o(s) be an ordinal in ﬂa<7 C,NS. Then
for each a« < v, t = f | 0 is a limit of splitting nodes in p,, and hence t
splits in p,. Therefore ¢ splits in p.

(b) Let p =(),<, Pa and again, check (iii). Let s € p, and let f € "2
be a branch trough p. For each a < « let C be the club of all § such
that f [ ¢ is a limit of splitting nodes in p,. Let § > o(s) be an ordinal in
ApcConNSandlett = f 0. If a <4, then t splits in p,, and therefore
t splits in ps. Since ps1 N 22 = ps N °2, we have t € psy1, and since psiq
is S-perfect, ¢ splits in ps41. If a > § 4 1, then po N 2112 = psq N 0F12,
and so t splits in p,. Hence t splits in p. O

This is trivial, but note that the limit condition p (in both (a) and (b))
is not only perfect but S-perfect as well.

3. The notion of forcing for which B(P) is rigid.

We now define a set P of perfect s-trees that is closed under restrictions
and amalgamations, k-closed, and closed under fusion, with the additional
property that the complete Boolean algebra B(P) is rigid. That completes
a proof of Main Theorem.
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Let S and S¢, £ < k, be mutually disjoint stationary subsets of x, such
that for all £ < &, if § € S¢, then § > &.

Definition 3.1. The forcing notion P is the set of all p C Seq such that

(1) pis a perfect tree;

(2) pis S-perfect, i.e. if s is a limit of splitting nodes of p and o(s) € .5,
then s splits in p;

(3) For every € < k, if s is a limit of splitting nodes of p with o(s) € S
and if s(£) = 0 then s splits in p.

The set P is ordered by p < q iff p C q.

Clearly, P is closed under restrictions and amalgamations. By Lemma
2.6, the intersection of either a decreasing short sequence or of a fusion
sequence in P is a perfect tree, and since both properties (2) and (3) are
preserved under arbitrary intersections, we conclude that P is also k-closed
and closed under fusion.

We conclude the proof by showing that B(P) is rigid.

Lemma 3.2. If 7 is a nontrivial automorphism of B(P), then there ex-
ist conditions p and q with incomparable stems such that 7w(p) and q are
compatible (in B(P)).

Proof. Let m be a nontrivial automorphism. It is easy to find a nonzero
element u € B such that 7(u) - u = 0. Let p; € P be such that p; < wu,
and let ¢; € P be such that ¢; < m(p1). As p; and ¢ are incompatible,
there exists some t € g1 such that ¢t ¢ p;. Let ¢ = (q1)¢. Then let py € P
be such that p» < 771(q), and again, there exists some s € py such that
s ¢ q. Let p = (p2)s. Now s and ¢ are incomparable stems of p and ¢, and

m(p) < gq. d

To prove that B(P) has no nontrivial automorphism, we introduce the
following property ¢(&).

Definition 3.3. Let £ < k; we say that £ has property ¢ if and only if
for every function f : k — 2 there exist a function F': Seq — 2 in V and
a club C' C & such that for every 6 € C NS¢, f(§) = F(f [9).

Lemma 3.4. Let ty € Seq and let & = o(ty).

(a) Every condition with stem t50 forces —p(€).
(b) Ewvery condition with stem t;"1 forces p(€).

Proof. (a) Let f be the name for the generic branch fo : k — 2 (i.e.
fa =U{s € Seq : s € pfor all p € G}); this will be the counterexample
for o(€). Let F be a function, F : Seq — 2, let C' be a name for a club
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and let p € P be such that {50 is a stem of p. We shall find a § € S¢ and
q < psuch that ¢ I (6 € C and f(8) # F(f | 9)).

We construct a fusion sequence (p, : a < k), starting with p, so that for
each «, if s € po11 and o(s) = a+1, then (pa41)s decides the value of the
ath element of C; we call this value ;. (We obtain p,+1 by amalgamation
into pe.) Let 7 =, ., Pa-

Let b be a branch through r, and let s, = b | « for all . There exists
a 0 € S such that s5 is a limit of splitting nodes of r, and such that for
every a < 6, Ys,,, < 0. Since s55(§) = 0, s5 splits in 7, and rs; IF§ € C.

Now if F(ss) = i, it is clear that g = r,~ 1 forces f16=ssand
f0)=1-1.

(b) Let f be a name for a function from « to 2, and let p be a condition
with stem £5°1 that forces f ¢ V (p(€) holds trivially for those f that are
in V). We shall construct a condition ¢ < p and collections {hs : s € Z}
and {is : s € Z'}, where Z is the set of all limits of splitting nodes in ¢
and Z' = {s € Z : o(s) € Se}, such that

(3.5)
(i) For each s € Z, hy € Seq and o(hs) = o(s); if o(s) = «, then
gs Ik f 1 a=hs.

(ii) If s,t € Z, o(s) = o(t) = o, and s # t, then hs # hy.

(iii) For each s € Z', iy = 0 or iy = 1; if o(s) = &, then g IF f(8) = is.

Then we define F' by setting F'(hs) = is, for all s € Z' (and F(h)
arbitrary for all other h € Seq ); this is possible because of (ii). We claim
that ¢ forces that for some club C, f(§) = F(f | 6) for all § € C' N S¢.
(This will complete the proof.)

To prove the claim, let G be a generic filter with ¢ € G, let g be the
generic branch (9 = [J{s : s € pforallp € G}), and let f be the G-
interpretation of f. Let C be the set of all a such that g | « is the limit
of splitting nodes in ¢. If 6 € CNSe,let s=g [ §; then s e Z’, f [ § = hy
and f(J) = is. It follows that f(6) = F(f | 9).

To construct ¢, hs and i5, we build a fusion sequence (p, : a < K)
starting with py. We take p, = [) G<a P8 when « is a limit ordinal, and
construct po+1 < po such that po11MN “2 = p, N *2. For each «, we satisfy
the following requirements:

(3.6) For all s € p,, if o(s) < « then:

(i) If s is a limit of splitting nodes in p, and o(s) € Se, then s does
not split in pg.
(ii) If s does not split in pa, then (pq)s decides the value of f(o(s)).
(iii) If s splits in pg, let 5 be the least v such that (p,)s does not
decide f(7). Then (ps)s—o0 and (pa)s—1 decide f(7s) in opposite
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ways, and both (p,)s—~0 and (ps)s—1 have stems of length greater
than ~s.

Note that if p, satisfies (iii) for a given s, then every pg, § > «, satisfies
(iii) for this s, with the same 7;. Also (by induction on o(s)), we have
vs > o(s). Clearly, if « is a limit ordinal and each pg, 8 < «, satisfies
(3.6), then p,, also satisfies (3.6). We show below how to obtain p,41 when
we have already constructed p,.

Now let ¢ = (), <, Pa> and let us verify that ¢ satisfies (3.5). Solet a be a
limit ordinal, and let Z, = {t € ¢ : ¢ is a limit of splitting nodes in ¢ and
o(t) = a}. If t € Z,, then t is a limit of splitting nodes of p,. It follows
from (3.6) (ii) and (iii) that (ps); decides f | «, and we let hy be this
sequence. If t1 # ty are in Z,, let s = t1 Nty. By (3.6) (iii) we have v, < «
(because there exist s; and sg such that s C s; C t1, s C s3 C tg and both
s1 and sy split in p,). It follows that hy, # hy,. If @ € S¢ and s € Z,,
then by (3.6) (i), s does not split in pay1 and so (pay1)s decides f(a); we
let is be this value. These h; and i, satisfy (3.5) for the condition g.

It remains to show how to obtain p,4i1 from p,. Thus assume that
Do satisfies (3.6). First let r < p, be the following condition such that
rN Y2 =poN %2 If a ¢ Se let r = po; if @ € Sg, consider all s € p,
with o(s) = « that are limits of splitting nodes, and replace each (p)s by
a stronger condition r(s) such that s does not split in r(s). For all other
S € po with o(s) = «, let r(s) = (pa)s. Let r be the amalgamation of
the r(s); the tree r is a condition because s(§) = 1 for all s € p, with
o(s) = a.

Now consider all s € r with o(s) = a. If s does not split in r, let t be
the successor of s and let ¢(t) < r; be some condition that decides f(c).
If s splits in r, let £; and t5 be the two successors of s, and let v; be the
least ~ such that f(7) is not decided by r,. Let q(t,) < ¢, and q(t2) < ry,
be conditions that decide f (7s) in opposite ways, and such that they have
stems of length greater than ~,.

Now we let po4+1 be the amalgamation of all the ¢(t), q(t1), q(t2) into
r. Clearly, pa+1 N 2 =71rN 2 = p, N 2. The condition p,1 satisfies
(3.6) (i) because p, < r. It satisfies (ii) because if s does not split and
o(s) = a, then (pa+1)s = q(t) where t is the successor of s. Finally, it
satisfies (iii), because if s splits and o(s) = «, then (py41)s~0 = ¢(t1) and
(Pa+1)s—1 = q(t2) where t; and to are the two successors of s. O

We now complete the proof that B(P) is rigid.

Theorem 3.7. The complete Boolean algebra B(P) has no nontrivial au-
tomorphism.

Proof. Assume that 7 is a nontrivial automorphism of B(P). By Lemma
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3.2 there exist conditions p and ¢ with incomparable stems s and ¢ such
that 7(p) and ¢ are compatible. Let tg = sNt and let £ = o(tp). Hence
t5°0 and t;1 are stems of the two conditions and by Lemma 3.4, one
forces (&) and the other forces —p(£). This is a contradiction because

m(p) forces the same sentences that p does, and 7(p) is compatible with g.
0
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