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ANNOTATED CONTENT

60 Introduction

§1  Dichotomical results on nice equivalence relations

[Assume E is a II}[\]-equivalence relation on *2 such that 7, v are not E-
equivalent whenever they differ in exactly one place. Assume further that
this holds even after adding a A-Cohen subset of . If A\ = X<* > 3,
(alternatively, E is more nicely defined or other requirement on \) then E
has a perfect set (so 2* elements) of pairwise non E-equivalent members of
22. There are related results.]

§2  Singular of uncountable cofinality

[Assume A = A<F > cf(\) = k > Rg. We find on "\ quite nice equivalence
relations for which the parallel of the results of §1 fail badly. If X is strong
limit, we can use *2.]

83  Countable cofinality: positive results

[Assume that A > cf(\) = Rg and A is the limit of measurables, or just
a related property (which consistently holds for R, = J,) is satisfied. We
prove the parallel of the result in §1 on “\.]

84 The countable cofinality case: negative results

[We show that if our universe is far enough from large cardinals (and close
to L) then we can build counterexamples as in §2.]

86 On r,(Ext(G,Z))

[We return to the p-rank of the abelian group Ext(G,Z) where G is tor-
sion free abelian group (Ni-free, without loss of generality see |[Fu](xxx)).
We show that if k is compact, A strong limit (singular) cardinal > x and
rp(Ext(G,Z)) > X then r,(Ext(G,Z)) > 2*. This is preserved by adding
k Cohens, k super-compact. If GCH holds above k we have a complete
characterization of {Ext(G,Z) : G}.]
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§0 INTRODUCTION

The main topic here is the possible generalizations of the following theorem from
[Sh 273] on “simple” equivalence relation on “2 to higher cardinals.

0.1 Theorem. 1) Assume that

(a) E is a Borel 2-place relation on “2
(b) E is an equivalence relation

(¢) if n,v € “2 and (3'n)(n(n) # v(n)), then n,v are not E-equivalent.

Then there is a perfect subset of “2 of pairwise non E-equivalent members.

2) Instead of “E is Borel”, “E is analytic (or even a Borel combination of analytic
relations)” is enough.

3) If E is a 113 relation which is an equivalence relation satisfying clauses (b) +
(c) also in VCOher  then the conclusion of (1) holds.

In [Sh 273], Theorem 0.1 was used to prove a result on the homotopy group: if X
is a Hausdorff metric topological space which is compact, separable, arc-connected,
and locally arc-connected, and the homotopy group is not finitely generated then
it has the cardinality of the continuum; the proof of 0.1 used forcing in [Sh 273],
see [PaSr98| without the forcing.

We may restrict F to be like the natural equivalence relation in presenting
rp(Ext(G,Z)) or just closer to group theory as in Grossberg Shelah [GrSh 302],
[GrSh 302a], Mekler-Roslanowski-Shelah [MRSh 314|, [Sh 664]. In §5 we say some-
what more. We here continue [Sh 664] but do not rely on it.

Turning to *2 the problem split according to the character of A and the “simplic-
ity” of E. If Eis II} and A = A<* and A > J,, (or just (DI)y holds), a generalization
holds. If E is ¥1 and A = A<?, the generalization in general fails; all this in §1. Now
if \ is singular, strong limit for simplicity, it is natural to consider “(*) X instead of
A2, If X has uncountable cofinality we get strong negative results in §2. If X has
countable cofinality, and is the limit of “somewhat large cardinals”, e.g. measurable
cardinals, (but A = X, may be O.K., i.e., consistently) the generalization holds (in
§3), but if the universe is close to L (e.g. in L there is no weakly compact) then
we get negative results (see §4). Note that theorems of the form “if F has many
equivalence classes it has continuum many equivalence classes” do not generalize
well, see [ShVs 719] even for A weakly compact.

We thank Alex Usuyatsov for many helpful comments and corrections.
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0.2 Definition. For a cardinal A let %, be *2 (or *X or M \); we write % for
such set.

1) For a logic .Z we say that E is a .Z-nice, (say 2-place for simplicity), relation
on A if there is a model M with universe A and finite vocabulary 7, and unary
function symbols Fy, F5 ¢ 7 (denoting possibly partial unary functions), such that
letting 77 = 7 U {F, F»}, for some sentence ¢ = ¢ (Fy, F») in Z(71) we have

© for any ny,1m2 € A letting M, », = (M, n1,12) be the 77-model expanding
M with FEM“’"2 =1 for £ = 1,2 we have
mEn; & (M,n,n2) |= .
We may write M = [, n2) and ¥[ny,n2, M] or (z,y, M) or write a C A
coding M instead of M.

2) E is a I1}-relation on % means that above we allow 1) to be of the form (VX C )¢
where ¢ is first order or even in inductive logic (i.e., we have variables on sets and
are allowed to form the first fix point for formula ¢(z, X) such that ¢(z, X;) &
X1 € Xo = ¢z, X2)); if we allow just first order ¢ we say “strictly” if we allow
formulas ¢ from £ we say Z-strictly. Similarly 31,111, projective; writing nice
means .Z is L(induction) i.e. first order + definition by induction. We may write
E € nice(%)), X1[#] etc, and may replace % by A if this holds for every % = *2.
We write very nice for .Z-nice when .Z is L first order logic.

0.3 Notation:

(V*i < 0) means “for every large enough i < 48”.

J(?d is the ideal of bounded subsets of §.

% denotes a logic, .Z(7) denotes the language (i.e, a set of formulas, for the logic
Z in the vocabulary 7), L denotes first order logic, Ly ,, denotes the extension of
L by allowing /\ 9o (When a(x) < X) and (Vzo, ..., Z)ica@)@ for a(x) < k.

a<a(x)

We note the obvious (by now) relation

0.4 Fact. 1) If A = A<* and R is a [strict] Ly+ ,-nice relation on %), then R is a
[strict] Xi-relation and also a [strict] IIi-relation (with parameter a relation of A,
of course). If kK > Ng,Ly+ ,, = Ly+ ., (induction).

2) If Ris a L,\+,,€(induction)—nice relation on %y and k > Vg, then R is a Ly+ -
[strict] IT}-relation on %) and :i-relation on %.

3) If cf(A) > N then if R is L(induction)-nice relation on %) then R is strictly
Y1-nice (hence being 1 is equivalent to being strictly 7).
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Proof. 1) The quantification on X C A can code the satisfaction relation for any
subformula.

2) Easy.

3) It is well known that a linear order <* on such A is a well ordering iff for every
a <\, <*I'{B:p < a} is isomorphic to (v, <) for some v < A (e.g. [Na85]). [y

0.5 Definition. Let (D/¢)) means that X is regular, uncountable and there is a
sequence & = (P, : a < \) such that &, is a family of < \ subsets of a and for
every X C \theset {§ < X: X NG € Ps} is stationary; hence A = A<*. (By [Sh
460], A = A<* > 0, = (DY!)y and (by Kunen) A = ut = (Df)\ = ).

0.6 Definition. 2 C *2 is called perfect or A-perfect if:

(a) 2#10
(b) if n € 2 then {lg(nNv):ve 2\{n}} C \is an unbounded subset of A

(c) theset {n | (:ne€ 2 and ¢ < A} is closed under the union of <-increasing
sequences.

Equivalently, 2 = {p, : n € *2} such that

(a)’ Py € A2
() m #n2 € 2= py, # py,

(c) if ng,n1,m2 € *2 are distinet and (n; N72) < (91 NMo) (s0 N1 N M2 # N1 M)
then (py, N py,) < (pny N pny) and py, (€g(pn, N pn,)) = m1(Lg(n N n2)).
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61 DICHOTOMICAL RESULTS ON NICE EQUIVALENCE RELATIONS ON *2

We here continue [Sh 664, §2], the theorem and most proofs can be read without
it. The claims below generalize [Sh 273].

1.1 Claim. Assume

Xi(a) A=A and X > 21, or just (DI)y (see 0.4)
(b) FE is a nice 2-place relation on *2
(e)(a) E is an equivalence relation on *2

(B)  ifn,ve2 and 3la < N)(n(a) # v(a)) then =(nEv).

Then E has 2* equivalence classes, moreover a perfect set of pairwise non E-
equivalent members of *2.

Proof. Note that

® If P is a A-complete forcing (or just A-strategically complete) then IFp
“clauses (c), (), (8) are still true”.

So we can apply 1.2 below. U1

A relative is
1.2 Claim. Assume

Xo(a),(c) asin K
(b) E is a I} [\] 2-place relation on *2, say defined by (VZ)p(x,y, Z, a)
see Definition 0.2
(O =) Emen P = (*>2,4), i.e. A\-Cohen, then in VF
clauses (c) from 1.1 still hold.
Then the conclusion of 1.1 holds.

Proof. Stage A: Let (n9,m1) € *2 x *2 be generic over V for the forcing Q =
(*>2) x (*>2) ordered naturally, i.e., (9, 71) < (vo,v1) iff no Jvy & ny < vy. Now

do we have V[no,m| = “noEmn”? If so, then for some (pg,p1) € (*>2) x (*>2) we
have (po,p1) Ik “noEm”, let o < A be > £g(po),£g(p1) and by clause (¢)*(5) in

V[no,n1] we can find 1] € *2 such that 7] [ @ = n; | «, and for some 8 € (a, ), 7} |
[B,A) =m1 [ [B,A), (here 8 = a+1is O.K. but not so in some generalizations) and

Vino,m] E =(ny Em).
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So V[no,m] E “—(noEn})” (again as in V[no,m ], E is an equivalence relation
by clause (¢)* and we are assuming for the time being that V(ng,n1] = “noEn”).
But also (19, 7)) is generic over V for (*>2) x (*>2) with (pg, p1) in the generic set
and V[ng,m] = V[no,n}] so we get a contradiction to (po,p1) IF “(noEn1)”. Hence

®1 ||—()\>2) x (A>2) “—|(7~70E7~71)” .

Stage B:
Let x be large enough and let N < (#(x), €) be such that |[N|| =\, N<* C N
and the definition of E belongs to N. Note that

® if (m0,m) € (*2) x (*2) (and is in V) and N[no,m] = “=(n0Em)", then

~(noEm).
[Why? As E is II, in N[ng, 1], there is a witness € *2 for failure, and it
also witnesses in V that —=(ngEn;).]

Clearly to finish proving 1.1, it suffices to prove

1.3 Subclaim. 1) Assume A = A<* and (DI).

If #(\) € N,N<* C N,|[N|| = X\ and N = ZFC~, then there is a perfect
2 C *2 such that for any no # m from 2 the pair (ny,n1) is generic over N for
[(*~2) x (A=2)]¥.

2) Assume that A is reqular and

(a) 7 is a tree with X levels each of cardinality < X\ and 2* X-branches (or just
> 1) and
(b) N = (N4 : a < \) is C-increasing, N | (a +1) € Noy1,7 € Ny and
a C Ng, |[No|| <A and N = U No and T<o € Noy1 (if X is regqular it is
a<
enough that N | (¢ +1) € N, <, € N)

(¢) <* is a well ordering of N such that <*| Ny € Ngy1.

Then for some X C *2,|X| = 2* (or just | X| = p) and ng # m € X = the pair
(no,m1) is generic over N for (*>2) x (*>2).
3) Like part (2) but we weaken clause (a) to

(a) T is a tree with X levels each of cardinality < X and Y = (Yo : a < \), Y,
is a set of < X nodes of 7 of level a if a < X\ and a set of A\-branches of 7
ifa=Xand |[Yy\|>pandn#veYy= (Fa<N(n]a,vaeY,).
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1.4 Remark. A tree 7 as in clause (a) of 1.3(2) is called a A-Kurepa tree and much
is known on its existence (and non existence). E.g. if A is strong limit then such
T exists.

Proof. 1) Let (£, : a < A) be such that &, C Z(«),|P| < A, and for every
X C Atheset {a: X Na € P,} is stationary. So by coding we can find &2/, C
{(no,m) : mo,m1 € *2} of cardinality < X such that for every ng,nm € *2 the set
{a<X:(nola,m | a) e P} is stationary. Lastly, let (#, : @ < A) list the dense
open subsets of (*>2) x (*>2) which belong to N. Now we define by induction on
a < A, (py :n € *2) such that:

(a) py € A>9

(b) B <Lg(n) = pnis<py

(€) Py () < py o)

(d) 1fa is a limit ordinal and (ng,n1) € 2., by < 2,01 < 2and ny" (bo) # m " ({1)

then (py,(eo)s s~ (e)) € [ ] Fs-
p<a

There is no problem to carry the definition (using |22/ | < A = c¢f()\)) and { U Pt
a<A

n e ’\2} is a perfect set as required.

2) Similar. We choose by induction on «, (p, : n € J4) such that (a),(b),(c) above

hold and

(d)" if no # m are in F, 41 then (py,, py,) € N{F : S is a dense open subset of
P and belongs to N, }

(e) if (p, : m € T,) is the <}-sequence satisfying (a)-(d).

So (pn : m € Tu) can be defined from (N3 : f < «).

The proof in part (2) is easier as we can assume that such a tree belongs to N.

3) Left to the reader.

So we have finished proving claim 1.2 hence claim 1.1. 043,019

1.5 Claim. 1) In claims 1.1, 1.2 we can weaken clause (3) (in (c),(c)*, call it
(c)~, (c)* respectively) to:

(B)~ if n €22 and a < X then for some 8 € (a,\) and p € [*P)2 the sequences
n,((nTa) pnl[B,A) are not E-equivalent .
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2) In claims 1.1, 1.2 and in 1.5(1), for any e* < X we can replace E by (E. : € < &*),
each E. satisfying clauses (b) and (c),(c)T,(c)™, (c)* there respectively and we
strengthen the conclusion:

(x) there is a \-perfect set 2 such that
() 2={p,:n€2} and
(B) if m # n2 are from A2 then Py F Py and € < €% = = (py, Ecpy,)

() form € *2 the set {lg(p, N p,) : v € *2\{n}} is a closed unbounded
subset of .

8) In 1.2, 1.5(1),(2) we can weaken (c)* or (c)* to

(%) for a stationary set of N € [(\T)]* there is (in V) n € *2 which is
Cohen over N such that TI1[\] sentences are absolute from N[n] to 'V (for
Y1[\]-sentences this is necessarily true) and clause (c) (or (c)~) holds.

Proof. 1), 2) The same as the proof of 1.1.

3) The only place it makes a difference is in Stage A of the proof of Claim 1.1. We
choose N,n as in () of 1.5(3), and let ny = (n(2a+ ) : « < A\) in N[n] = N[no, m]
instead of working with V[ng, n1]. Oy 5

Now we would like not to restrict ourselves to I1}[\]-equivalence relations.

1.6 Claim. 1) Assume

(@) A= XA p <22
(b) Eis aTI3[\] 2-place relation on 2, say definable by (VZ1)(3Z2)¢(x,y, Z1, Z2, a)
(c)(a) E is an equivalence relation on 2
(B) ifn,v €2 and (Fla < N)(n(a)) # v(a)) then =(nEv)

(e)* if n € 22 is generic over V for (*>2,4), i.e. is a Cohen sequence over V
then in V[n|, clause (c) still holds
(note that for p1,ps € (*2)Y anyhow V = “p1Epy” < Vi) = “p1Eps”)
(d) for every A C X and x > 2 there are N, (p. : € < p) such that
(i) N =<(#(x),€),NACN,|N|=XAeN
(ii) pe €72 and [e < { = p. # pe]
(tii) for € # ( the pair (pe,p¢) is generic over N for the forcing notion
()\>2 % A>2)

(iv) II}[A] formulas are preserved from N|pe, pc] to V fore < ¢ < p.
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Then E has > p equivalence classes.

2) We can replace > p by “perfect” in the conclusion if in (d), {p. : € < u} C *2
is perfect [see 0.0].

3) We can replace *>2 by a subtree T C *>2 such that forcing with 7 adds no
bounded subset to \.

Proof. By [Sh 664, 2.2t].

1.7 Definition. Clause (d) of 1.6 is called “A is [A, u)-weakly Cohen-absolute:
[\, 1)-w.c.a., in short” (as in [Sh 664, 2.1t]’s notation).

1.8 Claim. We can strengthen 1.6 just as 1.5 strenghthens 1.1.

We may wonder when does clause (d) of 1.6 hold.
1.9 Claim. 1) Assume

(7
(i

YA=APinV
)

(i49) (e :e < p) is a sequence of P-names,
)
)

P is a forcing notion

(iv) Ikp “ne #ne €72 fore < ¢ < p”

(v

if A C N\, p € P,x large enough then there are N < (#(x),€),||N| =
A\, N<* C N,{A,p} € N and q such that p < q € P,q is (N,P)-generic,
ql- “(’\>2)VP C N[Gp]” and P" < P such that q IFp “for some u € [u]*, for

every e # C from u, the pair (735, 7~7<) is generic over N|[Gp| for (/\>2><’\>2)V[P
and the forcing P/(P" + n + n¢) is A-complete (or at least A-strategically

complete).

Then X is (A, p)-w.c.a. (see 1.7) in the universe V¥,

Proof. Straightforward.
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§2 SINGULARS OF UNCOUNTABLE COFINALITY

In this section we show that the natural generalization of 0.1 usually provably
fails badly for ‘X, X singular of uncountable cofinality.

2.1 Claim. Assume

(a) A >k =cf(A) >Ng
(b) 2%+ A<% = A,

Then there is E such that

2.2 Observation. In 2.1, and in the rest of this section: (of course, we have to
translate the results; we leave it as an exercise to the reader).

1) We can restrict ourselves to H Ai wherei < k= \; < A= Z Aj, see the proof;
1<K I<kK
similarly in 2.4.
2) We can consider ®)\ as a subset of %2, in fact a very nice one:
we identify n € ®X\ with v,, € *2 when v, (i) = 1 & i € {pr((,n(¢)) : ¢ < K} for
any choice of a pairing function pr, that is, any one to one function pr from x x A

onto A is O.K.
3) If A\ is strong limit we can identify H \; with 22 as follows: without loss of generality \; =
1<K
2#i with p; increasing, let (g’ : e < #i2) list the functions from [U i, i) to {0,1}
j<i
and we identify n € H A; with U 9717(1‘) e 2.
1<K 1<K
4) We can translate our results to any H A; when \; < A = Z A; = lim sup(); :
1<K 1<K

i < K).
5) Even without assuming 2% + A<* = A, the union of < A Tichonov closed subsets

1In fact we have a closed division of ®\ to ©2 sets such that E refines this division and on each
part E is closed, see 2.2(5)
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of ("A) x (")) is very nice where A C "X x "\ is closed when: if (n,v) € "A x "X and
for every finite u C k for some (n',v') € Awehaven [u=n"u & viu=v Tu
then (n,v) € A.

6) If A = A<" (5) holds even for tree closed subsets (the topology we normally use).

Proof of 2.2. (1),(2),(3) left to the reader.
4) Define the function F' from U ‘) to U H A; by defining F'(n) by induction on
¢<k (<K<
lg(n) as follows:
(a) F(<>) =<>

(b) F(n (o)) is F(n) ppa when: g,, = Min{e : a < Ag(p(m)+ets Pra =
0, . (1+a)

(c) for n of limit length, F'(n) = U F(nle).
e<tg(n)

Clearly lg(n) < ¢g(F(n)) and n,v are <-incomparable implies F'(n), F'(v) are

AN
T

incomparable, so F' is one to one. Also F maps "\ into H A; continuously so
1<K

Range(F) is a closed set.
Also, when cf(k) > N for any n, v € "X we have (V*¢)(n(e) = v(e)) & (Ve)((F(n))(e) =
F))(e))-

This is enough to translate 2.1 to H A; instead of " A.
Alternatively, we can repeat the proog
5) Why is it very nice? Assume E = U{FE; : i < i(x)},i(x) < X and each E; is a
closed subset of () x (®)). Let {v, : @ < A} list “ X\ with no repetitions, and we
define a model M:

its universe is A

Fy is unary, Fo(a) = lg(va)

Fy is binary, Fi(a,e) = B iff vg = v, | (min{e, lg(va))

R is a three-place relation, RM (o, 3,1) iff for some (19,71) € E; we have

Vo <10, V3 411
P is unary predicate PM = i(%)
< is binary relation, the order on A, x an individual constant.

Now for f,g: x — X we have

fEg it (M, f,9) = B)[P(i) & (Ve < k)3, B)(Fo(a) = & Fo(B) =€
& R, B,1) & (V¢ <e)[f(C) = Fila, () & g(¢) = Fi(B,Q)))-

Normally we do not elaborate such things. Lo
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Proof of 2.1. We choose A = ()\; : i < k), nondecreasing, i.e. i < j = \; < \j

with limit A, (e.g. A; = A which is the case stated in the claim) let p; = H Ai SO
1<J
pi < Xand let 2= (f%:a < p;) list H)\j or be just a set of representatives of

j<i
IR
J<i
For every n € H A; let
1<K
(a) for limit i < x let a;(n) = Min{a :n [ i= fi mod JP4}
(b) fore < let B-(n) = {i:i < xisalimit ordinal, ¢ <dand f . (c) = n(e)}
and lastly
(¢) A(n) ={e < k: B-(n) is not stationary}.

Now we define two binary relations Fy, F; on H A
1<K
(d) mEqons iff for every € < k we have B.(n1) = B:(n2)
(e) mEm2 f mEonz & n1 [ A(m) = n2 | A(n2).

Clearly

(o) FEjp is an equivalence relation on H A; with < 2% < X classes
1<K
(8) Ej is an equivalence relation on "\, refining F

(7) Ey, By are very nice; in details:
(a) Ep is a closed subset of (H Ai) X (H A;) (under the initial seg-

1<K 1<K
ment topology, that is, for (mo,m) € (JJA:) x (J] M) the family
1<K 1<K
{ulytem o) € < k) where us = {{(v0,11) H Ai) (H )

1<K 1<K
e,v1 | €) = p} is a neighborhood basis of (19, 71))
(b) Ej is the union of < 2" closed subsets of (") x () under the initial

segment topology

[Why?

(a) asif (ng,m) € H Ai X H Ai\Ep, then for some € < k
1<K 1<K
and i < K, we have (i € B:(1n9)) = (1 ¢ Be(m1)) soe <i <k
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and so u = uéno e 1) 1S @ neighbor of (no,m1) and by the

definition of B.(—) we have uN Ey = () hence unN E; =)
(b) for B=(B.:e<k),B-Ck
let ' ={ne H i 1 Be(n) = B for every € < k}.
1<K
Now (5 : B € "2 (k)) list the Ep-equivalence classes
(and () and each E; | T'j is closed.]

(0) if m1,m2 € "X and 1 Egna then A(n1) = A(n2)
[Why? Check the definitions]

(e) for n € "\, A(n) is a bounded subset of
[why? otherwise let C' = {0 < k: 6 =sup(A(n) Nd)}, it is a club of k, and
for each i € C there is j; < i such that n [ [j;,1) = féi(n) [ [ji, 1), clearly j;
exists by the definition of «;(n). By Fodor lemma, for some j(x) < k the
set Sjy) = {i € C : j; = j(*)} is stationary, now choose € € A(n)\j(x), so
clearly B.(n) includes Sj(,)\e hence is a stationary subset of x hence by the
definition of A(n) clearly ¢ does not belong to A(n), contradiction.]

So clearly
(() Ej has < (H Xi/Eo) + E{H Aj i < Kk} < X equivalence classes.
1<K i<
Now

(n) if n1,m2 € "X and 11 = 1 mod JP9 then for every limit i < s large enough
we have a; (1) = a;(n2)
[why? let ¢* = sup{j+1:n1(j) # n2(j)} so by the assumption, if ¢ is a limit
ordinal and i € (i*,x) then 1y [ i = m | 4 mod JP4 hence a;(n1) = a;(n2)
by the definition of «;(—), which is the desired conclusion of clause (n).]

() if n1,m2 € X and 11 = 02 mod JPI then m E1ne < m = 2

[why? if n; = n9 clearly n; E1ng; so assume 11 E1ne and we shall show that
m = 12, i.e. € < kK = M(e) = n2(e). By the definition of F; we have
m Eonz hence by clause (0) we have A(n) = A(ng), call it A. If ¢ € A,
by the definition of E; we have n; [ A = 12 | A hence n1(e) = n2(e).
So assume € € k\A, first we can find j* < k such that for every limit
i € (j*, k) we have a;(m1) = a;(n2), it exists by clause (7). Second, the sets
B:(m), B<(n2) are stationary (as € ¢ A(n,)) and equal (as 11 Egn2); so we
can find ¢ € B.(n1) N B:(n2) which satisfy ¢ > j*. Now n;(¢g) = féi(m)(a)
by the definition of B.(n1) as i € B:(m) and «;(m1) = ay(n2) as i > j*
and f;i(m)(s) = 1n2(¢) by the definition of B.(n2) as i € B:(12); together
n(e) = n2(). So we have completed the proof that e < k = n1(g) = 12(e)
thus proving 7, = 12 as required.|
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(1) E7 has > \; equivalence classes for any j < x
[why? let n* € H Ai and for o < A; let n} € ®X be defined by n}(¢) is « if
1<K
e = j and is " (¢) otherwise. By clause () we have a < 8 < \; = -, E1n5,
hence | H Ni/E1| > A
i<k
(k) Ej has exactly A equivalence classes
[why? by clause (¢), E1 has > sup{\; : i < K} = X equivalence classes and
by clause (¢), F has < X equivalence classes.]

We could have defined E as

(%) mEone iff for every ¢ < k we have B.(n1) = B.(n2) mod Z,, where Z,; is
the club filter on .

This causes no change except that Fy is not a closed subset of () x (®A), but a
union of 2% ones. s ¢

2.3 Claim. Assume

(a) A >k =cf(\) >Ng
(b) 25+ A<K = A
() A <0<\~

Then there is E such that

E is very nice?

if n1,m2 € "X\ and N1 = N2 mod J2Y then 1 Eny < m1 = o

Proof. Let X be as in the proof of 2.1 except that we add i < k = H Aj < A, (this
j<i

holds if e.g. if i < Kk = A\; = A\). We can find a tree .7 C *~\ with A nodes and

exactly 6 k-branches ([Sh 262]); we can easily manage that n # v € lim,(7) =

(F%i < k)(n(i)) # v(i)). We proceed as in the proof of 2.1, but in the definition of

FE; we add

2in fact, again union of < 2% closed sets of pairs
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m e hmn(T) =2 c hmn<y) & (771 € limlﬁ(y) —m = 772)'

2.4 Claim. In Claim 2.1 we can replace clauses (B), () by

(6)1 E is very nice, moreover is the union of < X\ closed sets minus the union of
< X closed sets

(7)1 for every n* € "\, the set {n € ®X : n = n*modJP} is a set of representa-
tives for the family of E-equivalence classes.

Proof. Let A be as there but € < k = k* < \;. Let K; be a group, with universe
A; and unit Og,. Let <* be a well ordering of *(Z(k)). For every n € H A; let
1<K
E,={(B:(v):e<k):ve H)\i and v = 1 mod J"4}.
1<K
So =, is a non-empty subset of “((k)) and let B; = (B, . : € < k) be its <*-first
member. Note that
[ for m,m2 € [] \i if m = n2 mod JP4 then B} = B}, and E,, = Z,,.
1<K
Let ©, ={v € H Xi i Be(v) = B; _ for every € < k and v = 1 mod J24}.
1<K
Now note
(*)0 @77 7£ 0. _
[Why? By the definition of Z,, B} and ©,.]
(¥)1 if v € ©,, then for every limit ¢ < s large enough we have o;(v) = a;(n).
[Why? As v =7 mod JP9]
(¥)2 if 1,15 € O, and € < K, then for every limit ¢ large enough we have:
ai(v1) = a;i(v2) hence f;i(l,l)@) = féi(w)(g)-

Now for n € H i we define p, € H Ai by
1<K 1<K
pn () is :f(ii(n)(g) for every i € B, _ large enough
ﬁ‘ B;7
0 B

- 18 stationary

- 1s not stationary.
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It is easy to see that

(x)3 ifn € H Ai then p,(g) = n(e) for every e < k large enough.

1<K
[Why? We can find v € H \; such that v =  mod JP4 and (B.(v) : ¢ <
1<K
K) = B;;. Now apply () inside the proof of 2.1.]

hence

(*)a py =n mod J29
(x)5 if m1,m2 € H A\; and 1 = 12 mod JP4 then Py = P -

1<K

Lastly, we define the equivalence relation E:
for n1,1ms € H A; we define:

1<K
[ m Eng iff (for every i < k we have K; = “n1(2)(pn, (1)) ™1 = 02(2) (pn, (4)) 7).

Now clearly

(%) if m1,m2 € H A\; and 1 = 12 mod JP4 then 0y Engy < 0y = ns.
1<K
[(Why? By (x)s5 we have p,, = py,, call it p; we are done by [J and the
properties of groups (i.e. :cly*1 = myil & X = To.]

(x)7 ifn € H A; then {0/ : € H A\; and ' = n mod JP4} is a set of represen-
tatives <0f the E—equivalencei:lasses.
[Why? Let n,v € H A; and we shall define 1’ € H A; such that n € v/E

1<K 1<K

and ' = np mod JP4. For i < xk we choose /(i) € K;, i.e. < \; such that
K; b= “n' () (pn (i)~ = v(i) (pu (i) "
[Why this is solvable? As K is a group and p,(i),v(%), p, (i) are well de-
fined members of K;.] Also we know that v = p, mod JP4 by (*)4 hence
for some i1 < k we have i € [i1,k) = v(i) = p,(i); this implies that
i € li1, k) = 1/ (i) = py(i), so n’ = p, mod JP9; however p, = n mod JPd
hence 1’ = n mod JP4, as required. Hence pn' = pn S0 by the definition of
n' we have K; = “n'(i)(py (i)~ = v(i)(p,(¢))~'” which means that ' Ev,
so we have proved (x)7.]

Lastly, how complicated is E? Define a two-place relation E* on H A
1<K
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Clo m B ny iff
(a) B;;l = B;;Z.

Clearly

(x)s E* is an equivalence relation on *\ and is the union of < X\ closed minus
the union of < A closed subsets of (H i) X (H A;) with < 2% equivalence

1<K 1<K
classes

*)g O each E*—equivalence class the function = p is continuous (even under
n
the Tichonov t()p()l()gy, even more)

()10 if Y7, Y5 are E*-equivalence classes, then F'N(Y; X Y3) is closed (even under
the Tichonov topology).

Now check. Uo.a

We may like to weaken the cardinal arithmetic assumptions.

2.5 Remark. Assume that x = 07 and instead the ideal J*? we use the ideal [r]<".

Then we can define a(n) for n € H Ai and j < K if cf(j) = cf(#). Let a;(n) be
1<K

Min{a: fZ =n | j mod J;} where J; = {A C j: for some i < j we have |A\i|] < 6}

so Jj replaces J;-’d in the earlier proof.

So n = v mod [k]<? implies that a;(n) = «;(v) for all suitable j. There are no

marked changes.
Now
(*) if mE*ny then Be(m) = Be(n2), 5y, = By, and B, = B},

[lg FE™ can serve as well and it is an equivalence relation with < 2" equiv-
alence classes, each closed even under the Tichonov topology.

We can use A > k > 0, J = [k]<Y but in general the number of ideals necessary is
x?. Most interesting is the case § = Ry dealt with in the next claim.

2.6 Claim. 1) Assume

(a) A> kK =cf(\) >Ng
(b) KMo < X = \No,
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Then the results 2.1, 2.4 and 2.3 holds if we replace the ideal J*4 by the ideal [k]<%0.
2) This applies also to 2.3 if

(c) A <0<\ and there is a tree J with A nodes and k-branches.

3) The natural topology for (1) + (2) is the Xy-boz product.

Proof. Without loss of generality \; > x%°, (\; : i < k) as in the proof of 2.1. Let
(D; : i < k™) list the subsets of & of order type w and let fi = (fi : a < H Aj)

JED;

list H Aj (or just a set of representatives modulo JB‘}). For n € H A let

JjE€ED; e<k

(a) a;(n) = Min{a:n | D; = f, mod Jp} for i < k™

(b) for e < klet Bo(n) ={i <K :e € D; and n(e) = fa, () (€)}

(¢) A(n) ={e < Kk : B:(n) is finite}

(d) B:(n) ={i € B:(n) : iN B.L(n) is finite}.
With those choices the proofs are similar. s 6

2.7 Claim. 1) If2% < X\ = A<F g < k = cf(\) < A, then we can find E as in
2.1(), (B),(6) (but not necessarily (7)) and

(M ifne€rXandi <k then Xy ={v e :(Vj)(j <k & j#i—v(j)=
n(j)} is a set of representatives for E.

2) If25° < A= A% Ry < k= cf(N) <A, 1 <0<\ and (Vi < N[(1+0)<% < N),
then we can find E as in 2.1(c), (B) and

(v)* ifn € "X and i < k then X, ; contains a set of representatives

(0)* E has 6 equivalence classes.

Proof. 1) First the proof in short.
We choose \; = A fori < k. Welet K be a group with universe A and let (D, : j <
x0) be as in the proof of 2.6 and define E by: nEv iff K = H (n(@)(py (i)~ 1) =
1€A(n)
H (v(7)(p,(i))~1). We give a more detailed proof below.
i€A(v
2) P(‘il:st, the proof in short. We choose \; but 8 < \;; without loss of generality each
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A; is a subgroup of K but we use equality in cosets of K7 = yK;, K7 a subgroup of
K such that [K : K;] =0 and a,c € K = {abcK; : b€ {e:e < N}} = {bK1;b <
A}
Now in detail (for (2) so including a proof of (1)).

We repeat the proof of 2.4 + 2.6, so forn € "Awelet 2, = {(B:(v) 1 e < k) : v € "\
and v = 7 mod([k]<N0} where Be(v) = {j < k™ : fo o) (e) = v(e)} and let B; be
the <*-first member of Z, and let ©, = {v € "X\ : B.(v) = B; _ for every ¢ < K
and v = n mod [k]<%} and for n € "\ let p, € "\ be defined by

(a) pp(e) = faj(n)(e) if (W)(ved, & vi)= faj(n)(e)) & jeB,.
(b) pn(e) =0 if there are no j,v as in (a).
<Rg_

Easily p, € “\ is well defined and p, = 1 mod [x]
Lastly, let a, = {e < k : n(¢) # p,(e)} and we define the two-place relation E on

L1 by mEn iff ay, = ay, & ([ m@©py() " Ky = ([ m(e)m(e) K.

i<k 1€y, €€ an,
Is this well defined? The product H n¢(¢) is a finite product in the group K, so
e€any,

in general we have to choose an order of (ny(¢) : € € ay,), i.e., of a,,. We use the
most natural choice: the order on x (if K is abelian clearer). Obviously E is an
equivalence relation on H Ae and it has |[{zK; : A € K}| = [K : K;] equivalence

e<k
classes. Now suppose that n € "\ and € < x and we shall prove that X, . is

the set of representatives for E, recall X, . is defined in (v)* of 2.7(1). Let a~ =

apNe,at =a\(e+1),let g~ = [] (i) (py(1)~") and g* = ] (n()(pn (i)™ ),
i€a~ i€at

S0:

(x) g7,9" € K again well defined as a™—,a* are finite
(#%) if v € Xy e then a, C ay U{e} and [ (v()(pu(i))™") = g v(e)g" € K,

1€a,
the product in K, of course.

Now for part (1), g, the sequence (v(e) : v € X, ) lists K without repetition (as
the universe of K is \) hence (by basic group theory), (97 'v(e)gt : v € X, )

lists K without repetitions hence <H (v(@)(p, (1) 1) v € X4) lists K without
1€ay

repetitions, so if we use the trivial K, X, ; is a set of representatives of E, as

required.

For (2) the sequence (g, K> : v € X, ) lists {x Ky : # € K} possibly with repetition.

U35
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2.8 Concluding Remark. 1) Instead of (JR! : i < k™) we can use ((D;,J;) : i <

i), D; C k,J; an ideal on D; such that | H Ae/Jil < NI ={D C k: for every
eeD;
i <i* we have DN D; € J;} is included in JP9. The author has not pursued this.
2) Assume K is a group of cardinality A\, Ky a subgroup and [K : K1] =6 < A,
Then we can find B C K, |B| = 0 such that if K’ is a subgroup of K including
B such that

@K K, K’ if a,c € K’ then {CLCKl :be K/} = {bKl b e K}
[Why? Let {b; : i < 0} be such that {b;K; : i < 0} = {bK; : b € K} and
let B={b;:i<0}. U BC K'CK and ac € K and i < 0 there is b/ € K’
such that ab’c = b; so ab'cK;, = b; K1.]
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§3 COUNTABLE COFINALITY: POSITIVE RESULTS

We first phrase sufficient conditions which relate to large cardinals. Then we
prove that they suffice. The proof of 3.1 is presented later in this section.

3.1 Lemma. Assume

(a) A is strong limit of cofinality N
(b) X is a limit of measurables, or just

(b)~ for every 6 < X for some p,x satisfying 0 < p < x < A, there is a (x, j1,0)-
witness (see Definition 3.2 below)

(¢) E is a nice equivalence relation on“ X (or has enough absoluteness, as proved
in 8.12), i.e., fact 3.13, so being A () over zc is enough

(d) if n,v € “X and (In)(n(n) # v(n)) then =(nEv).

Then E has 2* equivalence classes, moreover if A, < Ant1l < A = Xpew Ay then
there is a subtree of “~ X isomorphic to U H An, whose w-branches are pairwise

m nm
non E-equivalent (even somewhat more, see 3.17).

Remark. For the simplest example of “witness” defined below see 3.4(2) so a witness
is a weak form of A\ being measurable.

3.2 Definition. 1) We say (Q, s1, s2) is a (A, , 8)-witness if (A > p > 6 and):

(a
(b
(

is a f-complete forcing notion
s1 is a function from Q to Z2(\)\{0}

¢) $o is a function from Q to {A: A C {(o,8) : a < B < A}}
(d) if Q |= “p < ¢” then s¢(q) C s¢(p) for £=1,2
(e B) € sa2(p) = {a, B} C s1(p) for p e Q

) Q
)
)
)
)
)

(a,
(f) for every p € Q there is ¢ such that p < q € Q and
(

VB) (3, 7)[B € s1(q) = (o, B) € s2(p) & (B,7) € s2(p)]
(9) if pe Qand A C X x A, then for some ¢ we have p < ¢ € Q and (s2(q) C
A)V (s2(9)nA=10)

(h) if p € Q then for some Y € [A]* for every a < § from Y we have («a, ) €
so(p) (hence Y C s1(p)).
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2) We say (Q,s1,s2) is a (A, u, 0, 0)-witness if p is a cardinal < X\ and we can
strengthen clause (g) to®

(g)z,L if f:2X\ — o and p € Q then for some g we have p < ¢ € Q and f | s2(q) is
constant.

3) We call (Q, s1,82) a uniform (\, u, 0)-witness if A = U{s1(p) : p € Q} and for
every p € Q and o < \ for some ¢ we have p < ¢ € Q and s1(q) Na = 0.

Similarly “a uniform (A, u, 6, 0)-witness”.

4) We replace ¢ by < g if we demand only (g)¥, which means that Rang(f) is a
subset of o of cardinality < p. We write “< p” instead of “u” if in clause (h) of
Definition 3.2(1) we demand just that for each a < u there is Y C X of order type
a and as there (so p can be an ordinal).

3.3 Definition. 1) We say that (Q, s) isa (\, i, 0, 0;n)-witness if A > pu >0, A > p
and § = (s, :m=1,...,n) and

(a) Q is a #-complete forcing

(b) S, is a function from Q to Z({a:a = {(ap: £ <m) € ™\ and ay < ayyq <
A for ¢ <m —1})

() fQE “p<q” and m € {1,...,n} then s,,(q) C sm(p)

(d) if (g : £ <m+1) € $ppq1(p) and k < m + 1 then
(gl <k)(ap:l=k+1,...,m) € sp(p)

(e) foreverym € {1,...,n—1},k < mand p € Q there is ¢ satisfyingp < ¢ € Q
and (Ya € $,,(¢))(3B € smr1(p)[@= (B 1 k) (B 1 [k+1,m))]

()T ifm e {1,...,n} and f : ™\ — p and p € Q then for some ¢ we have

p<qg€Qand f [ s,(q) is constant

(g9) if p € Q then for some Y € [A\|* every increasing & € Y belongs to s, (p).

2) “(Q,5s)is a (A, p, 0, 0;w)-witness” is defined similarly (i.e., § = (s,, : m € [1,w)))
and in clause (g) the same Y works for all n.

2A) “(Q,8) is a (A, u, 0, o; w)-witness” is defined similarly, except that in clause (h),
for each n < w there is Y € [A]* such that every increasing @ € ™Y belongs to
$n(p)-

3) If p = 2 we may omit it, as in Definition 3.2. Also “uniform” and “< ¢” and
“< pu” mean as in Definition 3.2.

We first give some basic facts on witnesses, including cases of existence.

3note that ()3 is equal to (g) if o = 2
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3.4 Claim. 1) If (Q,3) is a (A, pu,0;n)-witness and o < 0,n < w, then (Q,5) is a
(A, i, 6,22; n)-witness.

2) If 2 is a normal ultrafilter on X\ so X is a measurable cardinal and we choose,
Q=1(2,2),51(A) = A, s2(A) = {(e, B) : @ < B are from A}, then (Q,s1,s2) is a
uniform (A, A\, A, < \)-witness.

3) If in (2), s;m(A) = {a:a = (ap : £ < m) is increasing, ay € A}, 5 = (Spy1 -
1+m<n) andn <w then (Q,5) is a (A, A\, \, < \;n)-witness.

4) If there is a (\, p, 0, 0;n)-witness and 2<% < X, then there is such (Q,3) with
Q| < 2*.

5) Definition 3.2(1) is the case n = 2 of Definition 3.3(1) that is, (Q, s1,s2) is a
()‘7 Ky 97 Q)-'U)’l:tn@SS Zﬁ (Qv (817 82)) is a ()‘7 Ky 07 0; 2)-10@%71688.

6) If (Q,5) is a (A, u, 0)-witness and p € Q, then we can find q such that p < q € Q
and for every € s1(q) there are a; < ag < [ such that (a1, B), (az,8) € s2(p)
(this strengthens clause (f) of 3.2).

Proof. Easy.

1) Checking Definition 3.3 the least easy clause is (f)T, so assume m € {1,...,n}
and p € Q and f is a function from ™\ to 22 and we should find ¢ satisfying
p<qge€Qand f | s,,(q) is constant. Let h be a one to one function from 2¢ into
22 and define f. : ™A\ — {0,1} for € < o by f.(5) = (h(f(5)))(e). Now we choose
pe € Q, increasing (by <g) by induction on € < p such that pg = p, fe | Sm(Pet1) is
constant, say is £.. For ¢ = 0 this is trivial, for e successor use “(Q, 5) is (A, i, #;n)-
witness, i.e. clause (f)" in Definition 3.3”. For & a limit ordinal we use “Q is
f-complete, i.e., clause (a) in Definition 3.3 for (Q, 5) is a (A, i, 0; n)-witness, recall
0 <80.

Lastly, let ¢ = p, so we are done.

2), 3) Note that Q is \-complete as Z is A-complete as Z is a A-complete ultrafilter
(being normal) and clause (f)* holds because if f,, : [\]” — p and g < A then for
some A, € 2 we have f | [A]" is constant (see, e.g., [J]) and as Z is closed under

intersection of < A\ (hence of Ry) we are done (if p € Q, let ¢ = p N ﬂ Ap).

nw

4) Let (Q,5) be a (A, u,0,0;n)-witness and let x be large enough. Choose an
elementary submodel N of (#(x), €) to which (Q, 3) satisfying | N| = 2*, [N]* C
N so 2* C N.

Lastly, choose Q" = Q | N and s, = s, [ Q. Now check that (Q', (s],,; : m <
n)) is a (A, i, 0, g; n)-witness recalling p, 6,0 < A.
5) Read the definitions.
6) For ¢ € {0,1,2} let Ay = {a € s1(p): the number |[{a/ < a: (¢/,a) € s2(p)}| is
equal to ¢ or £ = 2 and the number is > ¢}.
So (A, A1, As) is a partition of s1(p).
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Define a function f from A; to A: for a € Ay, f(«) is the unique o/ < « € s5(p).

It is known (and easy) that we can find a partition (Bj, Ba, B3) of A; such that

l e {1,2,3} & a€ By = f(Oé) é By. Let By = Ao,B4 = AQ, SO <B0,...,B4>
2

is a partition of U Ay that is of s1(p). By clause (g) of Definition 3.2 (applied

=0
three times, see 3.4(1)) we can find ¢(x) < 5 and ¢ € Q such that p < ¢ € @ and
51(q) € By(s)- s s2(q) # () necessarily £(x) = 4 and so we are done. Os 4

Something of the “largeness” remains if we collapse a large cardinal, see, e.g.,

[JMMP]. We shall need
3.5 Claim. 1) Assume

(a) 2<n<wand \=3,_1(0)"

(b) 0 is a compact cardinal or just a A-compact cardinal
(¢) p=p~r<9o

(d) P= Levy(u,<9).

Then in V¥ (and of course in V), there is a (), p, 0;n)-witness (Q, ) which is even
a (A, 1,0, < p;n)-witness.

2) If there are A\, for n < w,\, < Apy1 and A, is 2(2An)+-compact and N =
Y{\, : n < w}, then for some set forcing P, in V¥ the cardinal A\ = J, = N, is
dichotomically good (see Definition 3.8 below).

Proof. By [Sh 124].

3.6 Remark. 1) In fact we can weaken the consistency strength. Assume that
(G.C.H. holds for simplicity) and:

(a) (pn :n < w) is strictly increasing sequence of cardinals

(b) Hn S )\n < Un+1

(¢) Dpiq is a ppy1-complete ultrafilter on I,,.1 = {a € [As1] < fna1 :
min(a) < fini1}

(d) let tni1 @ Ins1 — Ang1 18 tpyi1(a) min(p,41 Na) and if A € Dyyq, f -

A — pp41 is regressive, ie., f(a) < tpy1(a) then f is constant on some
B€Dy.,BCA

(e) if g : [Any1]™ — pp then {a € I,41 : g [ [a\tns1(a)]™ is constant} € D, 11
(f) Qo = Levy(Ro, 0), Qny1 = Levy(A\iH, < piny1), Q= [ ] Qn.

nw
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Then V@ is as required in 3.5.

2) If pu, is uj{("”)—hyper—measurable and we let \,, = ,u,}"(m_l) and py, < fint1, then

there is j, : V.— M,,, i, is the critical cardinal of j,,, MK C My, jn(pn) > ,ui(nJrQ)

and #(\,) € M,. Soin V we can find b € [j, (1) \ftn) "1 such that
() if f: [tn]™ = Ap—1 then j,(f) | [b]™ is constant.

Let a = {u,}Ubso a € M, and D,, = {A C [’ : a € ju(A)}.
Those D,, are as required for A\, = p,.

Toward proving Lemma 3.1 assume (from 3.10 till the end of this section) that

3.7 HypOthQSiS- m = <)\n7 U s 9n7 ]P)ny Sn,1, 3n,2>n<w == <)\7Tv ,u‘;;‘, 9217 ]P)$7 32717 31“;,2>n<w

satisfies A = 2{\, : n < w} and ¥y + {2* : £ < n} <0, <\, and (Pn, Sn.155n,2)
is a (An, < ), 0,)-witness and for simplicity g, < pin+1 and A = Z{“” n <w}.

3.8 Definition. We call A dichotomically good if there is m, i.e., there are
Ay by On s Pry 851, 852 @S in 3.7.

The hypothesis 3.7 is justified because

3.9 Observation. 1) If X satisfies (a) + (b) or at least (a) + (b)™ of Lemma 3.1
then A is dichotomically good.

2) It is consistent that G.C.H. and R, is dichotomically good (if CON(ZFC + there
is a supercompact cardinal).

3) For proving 3.1 without loss of generality ¥ is a nice equivalence relation on
H A satisfying clause (d) of 3.1.

n<w

Proof. 1) By 3.4(2) we know (b) = (b)~ in 3.1, now read the definitions.
2) By 3.5.
3) 77

3.10 Definition. 1) We define the forcing notion Q; (really Q; = Q[m]) as follows:

(a) Qi = {p:p= (1, 4) = (1, A7) such that letting n” = n(p) = fg(n)
we have n? < w,nP € H A¢ and

~ £<n[p]
AP = (A} : 0 € [n(p),w)) and A} € P}
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(b) p <q, ¢ iff n”? < n? (so n(p) < n(g) and [¢ € [n(g),w) = Pr | “A] < A7
and [n(p) < /¢ < n(q) = ni(¢) € s1(A})]

(c) We define the Q;-name n by: n[G] = U{n” : p € Gg, }

(d) We define
(@) p <3 qiff p<g, ¢ & n(p) =n(q)

B) p<Shaiffp<a qa & [\ (A7 =4))
£>n(q)

() p<ptn qiff p <3 qand n>n(p) = AP [ [n(p),n) = A7 | [n(p), n).

2) We define the forcing notion Q2 (really Q2[m]) by:

(@) Q2= {p:p=(n0,m,A4) = (nh,nt, AP) where for some n(p) < w we have:

m,m € J[ A and AP = (AY: ¢ € [n(p),w)) and A} € P}

£<n(p)
(b) p <q, ¢ iff
(i) n(p) <n(q)

(it) ny Qn}for £=0,1

(iii) A C A} for £ € [n(q),w)
(iv) the pair (nd(£),n(€)) is from sy(A}) for ¢ € [n(p),n(q))

(c) we define the Qq-name 7, (for £ =0,1) by 1,[G] = U{n} : p € Gq, }

(d) we define
(a) p<¥ qiff p<q, ¢ & n(p) =n(q) and

(B) pg%ﬂlﬁp <o, q & /\ A = A} and
¢>n(q)

() p <R, qiff p <32 g and n >n(p) = AP [ [n(p),n) = A7 | [n(p), n).

3) If for a fixed k < w, we have (P,,5") is a (An, fn, On; k)-witness for n < w then
we can define Qx naturally.

4) If (P, 3") is a (An, fin, On;n)-witness for n < w then we can define
Q= {(nA) :n <wnl)€N)and A = (A; : £ € [n,w), A, € P;}} with the

natural order.
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Remark. 1) We shall not pursue here parts (3) and (4) of Definition 3.10 because we
deal with equivalence relations which are binary. We can prove parallel theorems
for relations with higher arity using 3.10(3),(4).

2) In the definition of the set of elements p of Qz, why don’t we ask (V/ <
n?)(nh(¢) < nf(€))? To be able to construct the perfect set, but, of course,

plFq, “no(€) <mi(f) for £ € [n(p),w)”.

3) Those forcing notions are in the (large) family of relatives of Prikry forcing.

3.11 Fact. Let £ € {1,2}.
0) For p,q € Q; we have:

(i) p<¥ q=p<q q
(i) p<¥. q=p<q

(“7’) p<prn+1q:>p_prnq:>p<pr q.

1) If p <g, r then for some ¢ we have p <an(q) q _gﬁr r.
2) If p = (pi : i < ) is <Y-increasing and o < Oy (= On(py)): then p has a

<Qé—upper bound; similarly for <% and a < 6,,.

pr n
3) If 7 is a Qp-name of an ordinal and p € Q¢, then for some ¢ and n we have:

(@) p<prq
(b) if ¢ <apr v and n(r) > n, then r forces a value to 7.

4) In (3), if IFg, “T < w or just < a* < 6,,)” then without loss of generality n =
n(p).

Proof. Easy.

3.12 Claim. Recall that by 3.9(3) without loss of generality E is a nice definition
of a two-place relation on H An- Then forcing by Qo preserves “E is an equiva-

n<w
lence relation on H An satisfying clause (d) of 8.1”7 or more exactly the definition
n<w
E defines in V@ an equivalence relation on H An satisfying clause (d) of 3.1

n<w
(and, of course, EV®) (H M)V =EY).

nw
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Proof. Assume toward contradiction that p* IFq, “vo,v1,v2 € H A¢ form a coun-

I<w
terexample, that is: voEv, A viEve A —vgEvs or —vgEvy or voEvy A v Eyvg or

voEvi A (3n)(vo(n) # vi(n))”.
Choose x large enough and N = (N,, : n < w), N such that:

@x

N(Z) Ny <L)\+7)\+ (%(X),E) and HNTLH = 2" and {p*,E, ’{0”{17y27N0""7Nn—1}

belong to N,
(ii) N, € N,4+1 hence N, <L 4 ¢ Vng1and N = U Np so N < (H(x), €).

n<w

Now we choose p,, by induction on n < w such that:

if pry1 < qand n(q) > ky,(7) then ¢ forces a value to 7.

This is possible by 3.11(2),(3). Now let G = {¢g : ¢ € NN Q2 and ¢ < p, or
just p, IF “g € G” for some n}; it is a subset of QY generic over N. (Why?

If N E “7 C Qg is dense” then .# C Qg is dense and there is ./ C .Z, a
maximal antichain of Qo which belongs to N hence to some N, ; there is g € N,,,
a one to one function from .#’ onto |.#’|, so it defines a Q9-name 7 by 7[G]| =

7o (Volge STNG = fla) =) e Bglge NG & flg) =), so
kn(7) < w is well defined (see clause (iv) above) and so py, (;) forces a value to 7

hence forces ¢ € G for some g € ' C ., hence ¢ € G so GN . # () as required).

Now by straightforward absoluteness argument, vo[G], v1[G],v2[G] € H A¢ give

I<w
contradiction to an assumption.

In details let vy = v¢[G]. Let M be the Mostowski collapse of N, so there is an

isomorphism ¢ from N onto M. Clearly A\, C N,, hence A C N hence A+1 C N
sog(x) =xzifzeX+1loraz CA+1orze HN). Clearly G* = ¢"(G) is a
generic subset of Q5 = (¢(Q2))™ and M* = M[G] is a generic extension of M (for
g(Q2)M) and so

[J; M* is a transitive model of enough set theory (i.e. of ZC if x is strong
limit) which includes JZ(\) U{\, (A} U{(A, :n <w)}.
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Also easily in M*, v/[G*] = vy, so as g(p*) € G*, clearly (F stands for the formula
defining it, its parameter is a subset of A so it is mapped by g to itself):

M* = “vo,v1,v5 € II{\,, : n < w} and
voEv, & niEvy & —wygEv, or
-voEvy or voEv, & —wv1Evyy or
voEvy & (An)(vo(n) # 11(n))”.

So it is enough to prove (see Lemma 3.1, clause (c)). Os.12

3.138 Fact. Assume M* satisfies [J; above, F is a nice two-place relation on IT{\,, :
n < w} so a definition with parameter which is a subset of A (equivalently: a model
on \) as in Definition 0.2(1).

Then

Co if M* satisfies “n1 Ene & —msEng and ng,n1,m2,n3 € I{A\, : n < w}” then
so does V.

Proof. Immediate.

In fact

3.14 Observation. Assume

(a)(i) A* is strong limit of cofinality N,

(i) A= X,

n<w

Ay < Ay for n < w, for simplicity 22 < A1
Q is a forcing notion
<pr is included in <g
n: Q — w is a function satisfying for each n the set ., = {p € Q : n(p) >
n} is a dense subset of Q
(iv) forpe Q,{qg € Q:p <, ¢} is )\fl(p)—complete
(v) Q has pure decidability for Q-names of truth values
(vi) if p € Q and 7 is a Q-name of an ordinal, then there are m < w and ¢

satisfying: p <,, ¢ and (¢ <r & m <n(r)) = (r forces a value to 7)

(¢) N,(N, :n <w) as in the proof of 3.12 for (A} : n < w),
{Qa Sa Spr} € NO-
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Then there is G C QY generic over N hence 7 (\)NIE = 22 (\) = 2#2(M)N.

Proof. Should be clear.

3.15 Claim. Assume that F' is a permutation of ( H Ae) X ( H Ae) and let
£<n(x*) £<n(x)
ngn(*) ={peQ2:n(p) >n(x)}. Welet F be the following function from an(*)
>n(*)
to Q3

(o I n(x),ni T n(x)) = F((ng [ nCx),m T n(x)))
15 | [n(+),n(p)) =15 | [n(*),n(p))
n I [n(x),n(p)) = I [n(+),n(p))
Al = AP,
Then the following holds: .

1) Forp € an(*), F(p) is well defined € Q3
2) Fisa permutation of an(*) preserving <, <pr, <prn, Zapr and their negations,
and F + F is a group homomorphism (hence embedding).

3) If G C Qg is generic over V then

(a) F(G) =: {r € Qy: for some ¢ € G @2271(*) we have r < F(q)} is a subset
of Q2 generic over V

b) G = {p € Qu: there is ¢ € Q7" such that p < , q and F(q) € F(@Q)}
2 Q

A A

(¢) and V[F(G)] = V[G] and even N[F(G)| = N[G] if, e.g.,
N < (#(x),€),Q2e N,F € NJACN.
Proof. Easy.
3.16 Claim.

g, “noEn”.

Proof. 1f not, let p € Q2 be such that p Ikg, “noEni”. Now by clause (f) of
Definition 3.2(1), we can find p; such that:
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(1) Q2 Fp <pep1
(7i) if n(p) <n < w and B € s1(AP") then for some «,~ we have («a, ), (8,7) €
SQ(A%)
Let G1 € Q2 be generic over V such that p; € G7 and let ny = W[Gl] for/ =1,2

so V[G1] E nmoEn . By 3.12 in V[G4], E is still an equivalence relation satisfying

clause (d) of 3.1 and trivially n € [n(p),w) = m(n) € s1(A4AP). Let n* =: n(p), by

3.4(6)we can find a* < A+ such that a* < n1(n*),a* # no(n*) and (a*,n1(n*)) €

so(AP ). Let us define 0, € H An by ni(n) is o if n = n* and np(n) otherwise;
n<w

as o < mp(n*) < no(n*) necessarily ny # 7.

Now the pairs (o | (n(x)+1),m | (n(x¥)+1)) and (n{ [ (n(x))+1),m1 | (n(x)+1)) are

from ( H An) X ( H An), so there is a permutation F' of this set interchanging
n<n(x) n<n(x) X

those two pairs and is the identity otherwise. Let F be the automorphism of

@22(”*+1) from Claim 3.15. Let Gy = F'(G1). Now by 3.15:

(x)1 Go is a generic subset of Qy over V
(¥)2 V[G2] = V[G4]
(*)3 1m0[Ga] = g, m[G2] = m.

By 3.12 (and the choice of 7)) we have
(¥)a VI[G1] = —noEnp.

As p < p1 € G1, by the choice of p clearly
(*)s VIGi] = “noEm”.

By the choice of p; and (a, n1(n*)) clearly p < (9§ | [-n(x)+1)),n] | (n(x)+1), A |
[n(x) +1,w) € G3 so (using (*)1)

(¥)6 VIG2] = “(no|G2]) E(n1[G2])”
hence by (*)2 + ()3 we have

(¥)7 VI[Ga] = “noEm”.

Now (*)4 + (%)5 + (*)7 contradict 3.12. Os 16
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3.17 Claim. 1) Fir x > X large enough and choose Ny, <v, , (H(x),€) such
that || N, | = 2™, {E,m} U{N, : £ < n} belongs to N,, (hence Qa2 € N,,), and let
N = U N,; (certainly can be done). Then we can find (p, : v € Hun and

n<w £<n
n < w) and?*

(@) p, € H by,

£<lg(v)
(B) vi<ve = py, <pu,

(v) if vi,vs € H A and m <k <n,vy | m=vy [ m and vi(m) < vo(m) then
<n
Ny (k) < Nyy (M)

(0) ifv e H e then p, =: U puin is generic for (N, Q1)

L<w n<w

(€) ifvo,11 € H pe and vy <iex V1 then (puy, pu,) is generic for (N,Qq) hence

I<w

Q) ifvo#11 € H fe then —(py, Epy, ).

<w

2) Also, for some p € Qq2,n(p) = 0 and non-principal ultrafilter D on w we have

(x) ifn,v e |] s1(A%) and n/D # v/D then ~(nEv).

n<w

3) Moreover, there is a filter J on w to which all co-finite subsets of w belong and
form,v e H s1(AP) we have nEv < n =v mod J.

n<w

Proof. Let Mo <1, ,, No be such that || M|l = 2% and {E, m} € M.
As above we choose p,, by induction on n such that:

®1(Z) Pn € Q2
(“) Pn € Ny
(#11) n(po) =0

4why not v € TI{\, : £ < n}? First we like {p,(n) : v € TI{\; : £ < n}) to be increasing with
v (the v’s are linearly ordered by lexicographic order) so the order type is the ordinal product
An X Ap—1 X ... X X\ has cardinality A but order type > A. Second and more seriously we intend
to use clause (h) of Definition 3.2 which gives us Y of cardinality u; note if we use 3.4(1) we get
An = pn but not if we use 3.5(1).
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(ZU) DPn Spr Pn+1 (hence Do Spr Pn SO 14 <w = n<p€) — O)
(v) for every Qq-name of an ordinal 7 € N,,, for some k, (1) € [n,w) we have:

if Q2 F “pn+1 < ¢q” and n(q) > k, (1) then ¢ forces a value to T

(vi) if T € My is a Qq-name of a natural number then py forces a value to it.

Moreover,

(vii) if n < w and g, € H A¢ then pp o = (no,m, (A" 1 £ € [n,w]) € Qo
£<n
satisfies, too, clause (v).

We can find p,, € Qz such that n < w = p,, <, po and we can find p* such that

P < p* and (¥n)(VB)(3a,7)[B € s1(AL) — (o, B), (8,7) € s2(A%)] and we shall
show that p* is as required in parts (2) and (3), for p. Now clearly

Xy if no,m € H A, and (V2 < 2)(Vn < w)(ne(n) € s1(AP")) and for every

n<w

n < w large enough (no(n),m1(n)) € s2(AP") then
(a) for some subset G of Q) generic over N to which py belongs we have
"o [G] = no, 7]1[G] =N

(0) —moEm.

[Why? Let k* < w be such that k* < k <w = no [ (k*) #m | (k%),
it exists by the definition of order on Q2. For every k > k* we define
a condition ¢ = ¢ € Qa2 by: n(q) = k,n{ =no | ki =m [ k
and A2 = AP for n € [k,w) and let G,,,, =: {r : 7 € Qq,7 € N
and r <g, qﬁoﬂh for some k < w}. By K; and the proof of 3.12 easily
G, 15 a subset of Q2NN generic over N, so clause (a) holds. By 3.16
clearly N |Gy, = —(n0En1). By using absoluteness (as in 3.12(1)),
also clause (b) holds.]

This suffices for part (1), in detail: by clause (h) of Definition 3.2(1) recalling the

w.t is Hypothesis 3.7, we can find Y,, C \,, of order type pt,, X fin_1 X ... X pgo from

N,, such that for any o < 3 from Y, the pair (o, 8) belong to s2(AP ). Now we

can choose by induction on n, (p, : v € H pe) as required in («), (B), () of 3.17(1)
l<n

such that n(¢) € Yy, they are as required.

We are left with proving part (2). For B C w let np be the following Q2-name:
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ne(n) is ni(n) if n € B and is no(n) if n € w\B.

Clearly np is a Qz-name of a member of “A and np € Mo (recall that || Mo| = 2%0)

hence for By, By C w the following Qo-name of a truth value, the truth value of
(7]BIE7]BQ), is decided by py, say it is t(By, Bs).

Define a two place relation E' on & (w) : B1E' By iff (B, B2) = truth.
Let J ={B Cw:t(0,B) = truth}, that is, J = {B : 0E'B}.
Clearly

(x)o E’ is an equivalence relation on #(w).
[Why? By E being (forced to be) an equivalence relation. |

(x)1 w ¢ J, moreover [n,w) ¢ J.
[Why? By Xs.]

(*)2 if B,By € J then BlE/BQ.
[Why? As E’ is an equivalence relation.]

Let o < al < a2 <a? <at <ad befromY, forn < w and for h € “{0,1,2,3,4}
let vy, € H An be vp(n) = AN [ 91,92 € “{1,2,3,4} and B C w we let
n<w
gi(n) in¢B
h € “{1,2,3,4} be hy, 4, =
g1,92,B { } g1,92,B(10) { g2(n) ifn e B.
Easily

(%)s if g1,92 € “{1,2,3,4} and (Vn < w)((n € B1\B2)V (n € B2\B1) = g1(n) <
g2(n)) and By, By Cw then B1E'By iff v, . 5 EViy, .. 5.
[Why? That is, let hy = hg, 4,.8, for £ =1,2 and note that n € (B; N By)U
(W\Bl\Bg) = hl (n) = hg (n)
We define n§,n; € Hyn as follows:

(a) ifne (Bl\Bz) (B2\B1) then ng(n) = ag (), 01 (n) = ag,
) =

(b) if n € By N By then g (n ;2(,1)*1,771‘(7%) = g, (n)

(¢) if n € w\By\Ba then nj(n) = gl (n)> 17 (n) = O‘Zl (n)+1°

Now choose G as in clause (a) of Xy with (15, n7) here standing for (19, 71)
there and note that

(d) vn, =n5,[Gl,vh, =1B,[G].
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[Why? Because as
n € Bi\By = (13,(n),n5,)[G] = (92(n), g1(n)) = (¥a, (1), v, (n)) and

n € Bo\B1 = (1B,(n), 15,(n))|G] = (91(n), g2(n)) = (va, (n), vn,(n))

and also for the other n’s.]
Now vi, .. 5 EVh, ,, 5, mean (by the choice of hq, h2) that vy, Evy, which
by clause (d) means np, [G]Eng, [G] which by 3.13 is equivalent to N|[G] =

“np, [G]Enp,[G]” which means that BiE'Bs, so we are done.|

if By, By Cw,B = By N DBy then BiE'By < B1E'B & ByE'B.

[Why? The implication < holds as E is an equivalence relation so let us
proof =. By the symmetry it is enough to show that By E’B. We choose
he € “{1,2,3,4} for ¢ = 1,2,3 by: if n € (B1\Bz) then (hi(n), ha(n), hg(n)) =
(2,3,1), if n € By\B; then (hi(n), ha(n),hs(n)) = (1,2,3), if n € w\(B1 U
Bz) orn c Bl N Bg = B then (hl(n), hg(n),hg(n)) = (1, 1, 1)

Now we choose functions ¢¢, ¢4, 9%, 95,95, 95 € “{1,2,3,4} as follows: for
n < w, the six-tuple (g7(n), g5(n), g5(n), g5(n), g5 (n), g(n) is

(1) (1,2;1,3;2,3) if n € B1\Bs

(1) (1,3;2,3;1,2) if n € Bo\ By
(7i7) (1,1;1,1;1,1) if n € (B1 N Bg) U (w\(B1 U By))

So vy, Evp,, as we are asuming By E’' By, using ()3 for (¢¢, g) the “only if”
part because (hy,h3) = (hga go B, hgo go B,. Also Vi, Evy, similarly using
(9, 95)-

Together it follows that vy, Evp, as E is an equivalence relation. Using
()3 again for (¢¢,¢S) this time, by the “if” part it follows that B;E’'B as
required. ]

Similarly

(*)s
(*)6

if B C By, Cw then BlE/BQ ~ (BQ\Bl) e J.
[Why? This follows by (x)3.]

if B1 Q BQ Q B3 g w and BlE/Bg then BlE/BQ & BQE/B3
[Why? We define hq, ho, hg € “{1,2,3,4} by:

(a) if n € Bs\Bsy then (hi(n), ha(n),hs(n)) = (2,2,4)
(b) if n € BQ\Bl then (hl(n),hg(n),hg( )) = ( , ,4)

(C) ifn e w\(Bg\Bl) then (hl(n),hg( ) ( )) = (1 ) Now VhlEth,
as we are assuming By E' Bs using (*)s with (¢{, ¢9) the “only if” part.
Similarly vy, Evp, using ()3 with (g%, ¢5).
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As E is an equivalence relation we deduce vy, Evy, hence B1E'Bs by (x)3 using
(9%, 95) the “if” part.
By E’ being an equivalence relation we can deduce By E’ B3 so we are done.]

(%)7 J is an ideal
[Why? If Bl - Bg & BQ € J we have @ - Bl - B2 & (Z)E/BQ SO by
(¥)¢ we have DE’B; as required. If By, By € J are disjoint members of J,
then DE'B; & (FE’By by the definition J, so by E’ being an equivalence
relation By E'Bs. Now By € J and so by ()5 applied with By, By U By here
standing for By, By there we get By E’'(B1 U Bs) so by transitivity of E' we
have OE’(B; U By) which means By U By € J.]

(x)s {0,...,n}eJ
[(Why? By K]

(*)9 BlE/BQ ﬁ B1ABy € J
[Why? Let B = Bl N BQ, if BlABQ € J then we have Bl\B,BQ\B e J
so by (x)5 we have BiE'B & BE’'B; hence B1E'By. If B1E'Bs then
B1E'B & B3EB by (x)4, hence Bi\B,Bx\B € J by (x)5 so by ()7
Bi{ABs € J]

So by (*)7 + (*)2 there is an ultrafilter D on w disjoint to J, and by (x)g it is
non-principal, and by (x)g it has the desired property so we have proved also part
(2). Part (3) has been proved by ()7 + (*)g. Os17 Osg
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§4 THE COUNTABLE COFINALITY CASE: NEGATIVE RESULTS

In the previous section we have gotten positive results, however, the assump-
tions are such that they may fail in ZFC (for every ). Can we eliminate those
assumptions? We below show that we cannot eliminate them: for reasonable \ the
conclusion fails strongly (as in §2), if A fails the free subset property (a well known
property, see, e.g., [J]). So e.g. if =07, the results of §3 fail.

4.1 Claim. Assume

(a) A > cf(N) =Rg
(b) (Va < N)[|af < )]

(c) there is an algebra B with universe A\, with < X\ functions and with no
infinite free subset, see Definition below.

Then there is E such that

(o) E is an equivalence relation on “\

(B8) E is very nice (see Definition 0.2)

() ifn,v €“X and n =" v (i.e. (3<Non)(n(n) # v(n)) then nEv < n=v
)

(0) E has X equivalence classes.

4.2 Definition. A subset Y of an algebra B is free if: a € Y = a ¢ clos (Y \{a})
where ¢l (Y”) means the subalgebra of B generated by Y.

4.3 Remark. 1) We can replace “\ by the set of increasing w-sequences or by H An
nw

when A, < Apy1 <A= Y Aporby {ACA: (Wn)Fla)(acAd & Y N<a<

m<w £<n
An)}
2) We can omit clause (b) if we weaken clause (). We can imitate 2.4 and 2.7, see
4.4 below.

Proof. Without loss of generality 8 has Ny function and the individual con-
stants {o : a < Ao} and there are no other individual constants. Let ¥} =
{o(z0,...,xpn—1) : 0(x0,...,2pn_1) & Ta-term} and <} a well ordering of ¥* where
Ao < A, of course.

We define a two place Ey on “\ by
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nkov iff : if n <w and k, kq,...,k, < w then

(a) thereis o(xg,...,xn—1) € X, such that
n(k) = o(n(ky),...,n(k,)) iff there is
o(xo,...,Tn—1) € X, such that v(k) = (c(v(k1),...,v(kn))

(b) if in (a) they hold then the < -first term o(xq,...,zp—1) € 3,
such that n(k) = o(n(k1),...,n(ky)
is the < -first term o(xq,...,z,_1) € X such that
v(k) =o(v(ki),...,v(kn)).

So Ej is an equivalence relation with < )\g © < X equivalence classes. For n € “)\ let
A(n) = {k : for some k* < w there are no n < w,ky,...,k, € [k*,w) and B-term

o(x1,...,zy) such that n(k) = a(n(k1),...,n(kn))}.
Lastly, we define E; by

nEw iff nEgv & n 1 A(n) =v | A(v).
The rest is as in §2. Uaa

4.4 Claim. 1) In 4.1 we can demand

(8) for each n € “\,n/JPY is a set of representatives of E.
2) We can weaken in 4.1 assumption (b) to

(b)" (Ro + |7(B))M0 < A,

3) If in 4.1 we change clause () in the conclusion to (v)* below, we can omit clause
(b) of the assumption

(7)* for every n € “X the set (Na,n : @ < A) is a set of representatives of E with
no repetition where Mg, € “X is: Non(f) = a if £ =n and Ny (0) = n(¢)
otherwise.

Proof. 1) We imitate 2.4 only letting Z,, = {{(k, k1,..., kn,0) : v(k) = o (k1,..., kn)} :
ve“n\v/Jot =n/J5.
2) The same proof.
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3) For n € “X let n(n) < w be the minimal n € [n(n),w) = clu{n(l) : L € [n,w)} =
clg{n(l) : £ € [n(n),w)}. Let K be an additive group with universe A\, K7 a sub-
group, |Ki| = A\, [K : K1) = X and nEv iff H n(n) = H v(n) mod K;.

n<n(n) n<n(v)

Uga

Remark. We can imitate in §2 the proof of 4.1: use a function F' : “A — X such
that there is no infinite independent set for the algebra (A, F') see [\EH71 |.

4.5 Question: 1) What about having o € (),2*) equivalence classes?
2) Assume, e.g., \ is strong limit singular and 2* > A%+, does A have the free subset
property? (See in [Sh 513]).
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§5 ON r,(EXT(G,Z)

5.1 Definition. For an abelian group G and prime p let r,(G) be the rank of
G/pG as a vector space over Z/pZ. Let ro(G) be the rank of G/Tor(G).

There has been much interest in Ext(G,Z) for G torsion free abelian group see
[EM], and later [MRSh 314]. This group is divisible so the ranks r,(G) above and
ro(Ext(G,7Z)) determine it up to isomorphism.

Instead using a definition of the abelian group Ext(G,Z), we quote (see [Fu]) a
result which gives a characterization of the cardinal r,(Ext(G,Z)) directly from G.

5.2 Claim. For a torsion free abelian group G and prime p,r,(Ext(G,Z)) is the
rank of Hom(G,Z/pZ)/(Hom(G, Z)/pZ) where
(a) Hom(G,Z/pZ) is the abelian group of homomorphisms from G to Z/pZ,

(b) Hom(G,Z)/pZ is the abelian group of homomorphism h from G to Z/pZ
such that for some homomorphism g from G to Z we have x € G =

9(x)/pZ = h(z).

More generally (see [Sh 664, §3] except separating ¢*), the point is that asking what
can 7,(Ext(G,Z)) be when G is an abelian group of cardinality A, we can translate
the situation to a A-system:

5.3 Definition. 1) We say % = (A, K, G, D) is a A-system if
(A) A
(B) K
€) G

= (A; : i < \) is an increasing sequence of sets, A = Ay = U{A4; : i < A}

(Ky : t € A) is a sequence of finite groups

= (G, : i < \) is a sequence of groups, G; C H K, each G; is closed
teA;
(under the Tichonov topology) and i < j < A= G, ={g [ 4 : g € G;}
and
Gy ={g € H K : (Vi < X)(g ] A; € G;)}, that is, G is the inverse limit
teAx

of (G; : ¢ < A) under the restriction maps

(D) D = (Ds:§ < X (alimit ordinal)), Ds an ultrafilter on § such that o < § =
[, 8) € Dg; the Ds’s are used to choose limits canonically.

Of course, formally we should write A?/, K?,GY, D?, g,i@ , etc., but if clear from
the context we shall not write this.

2) Let &~ be the same omitting D, and we call it a lean A-system.

3) We say g* is a % -candidate if

(E) g =(g9/ i< N),gf € Gyand g/ | A; =eq, = (ek, :t € A;).
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We can deduce the result of Sageev Shelah [SgSh 148] (if |G| = A is weakly
compact (> Ng) and p is prime, then r,(Ext(G,Z)) > A = r,(Ext(G,Z)) = 2*).
(We later get more.) For this note

5.4 Claim. 1) Assume

(a) ¥ is a A\-system

(b) H = (H;:i<M\) is a sequence of groups, ® = (m; j 11 < j < \),
mi,; € Hom(H;, H;), commuting

(¢) h={(h; i< A),h; € Hom(H;,G?), andi <j <\ & z € H; = (hj(x)) |
Ai = hi(mi,j(z))

(d) Hx,m;x (i <) form the inverse limit of (H;,m; ;1 < j <\), and h = hy
the inverse limit of (h; : 1 < \)

(e) Ey, is the following 2-place relation on Gy : fiEnfo < fify' € Rang(h)
similarly Ey,, for a < A.

() h € Hom(Hy, Gy)
(B) if (% < N(A <A & [H| <X & [Gi| <N, then By is a SI-
equivalence relation on Gy

(v) if (Vi < N)(JAil < A & |H;| < A) and X is weakly compact uncountable
cardinal, then

(a) the 2-place relation E = Ej on Gy (from clause (e)) is a very nice
equivalence relation

(b) if f1, f2 € Gy and f1f5 ' ¢ Rang(h) then for every o < X large enough
(fi T Ai)(f2 T Ai)~" ¢ Rang(hy) that is ~(f1Exf2) = (Va < X)=(fi |
A;)

(8) under (v)’s assumptions, if [G : Rang(h)] > X then [G : Rang(h)] = 2*.

2) If for e < e(x) < XA we have (Hf i < A), (75, 11 < j < A),(hf i <A
are as in (a) - (e) above and ® below (which follows for A\ weakly compact) and
i < A= |H;| + |Ai] < A, and for every a < X there are f* € Gy (fori < a) such
that —~(f{ Ens f5') fori <j <a & e <e(x), then there are f; € G for i < 2% such
that i < j < 2N & e<e = _'(szhif]>

® X is strong limit and for any f,g € Gy and € < e(x) such that fg=! ¢
Rang(hg,) for some v < A we have (fg~") | Ay ¢ Rang(hs).
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Proof. Straightforward.

1) Clause («): Easy.
Clause (8): By (b) of clause (v) proved below it is enough (in Definition 0.2) to
code F; for every ¢ < A and as A is strong limit this is easy.

Clause (v): The point is that if f € G\ Rang(hy) then for some ¢ < A\ we have
mia(f) € G;\ Rang(h;) by the tree property of A, (one of the equivalent forms of
being “weakly compact”).

Clause (9): By part (2).

2) We shall show the proof such that it works for any strong limit except one point
where we use weak compactness. For each ¢ < A, as A is strong limit, let u, be
( H |K¢|)T if A regular, H | K|+ cf(\) if A singular. By the assumption we can
tEA, tEA,

find (f*:i < (2">)T) such that f € Gande <a & i <j < po = ﬂ(fiaEhiqu).
By the choice of a without loss of generality i < (2<)* = f* | A, = f& | Aa. By
the weak compactness (i.e., see clause () of part (1)) for any ¢ < j < p, there is
Ya(i,7) < Asuch that e < o= (f(f§)7") | Ayoij) ¢ Rang(hs,_; ;))-

If A = cf(\) let 7% = sup{Va(i,5) : i < j < (o)t} Noteif A is regular then triv-
ially v < Aand if A > cf(\) by Erdés-Rado theorem without loss of generality v =
sup{7a(i,7) : 1 < j < pt} < A So for some club E of A we have a € F = v <
Min(E\(a+1)). Now for any p € H pt we define g, = (g, : @ < \) as follows:

ack
9pa € Gris [,y if a € Eand is eq, if a ¢ E and let f, = f;, be defined as in

[Sh 664, §3]. Easily (see there)

® fpeGrandifpr [a=p2 [ a,a € E,pi(a) # p2(a) and f = Min(E\ (o +
1)) then e < e(x) = (fp, f5,') | Ag ¢ Rang(h5).

Easily we can find B, € [u}]#« for a € E such that:

(%) p1,p2 € H /%L and (1 # (2 € B, and € < g(%) and f = Min(E\(a+1))
BEEN«
then

(fgps iv<a) sz ) Flap rivear(re)) ™' | Ap ¢ Rang(he).

So restricting ourselves to (f, : p € H B,) we are done, that is, if ¢ < e(*) and
aclk
p1# p2 € H B, then we can find « such that p; [ a = p2 [ a, p1(a) = p2(a), so
ack
letting 8 = Min(E\(a+1)),p; = pe | (a+1) for £ =1,2 we have f,, | Ag = fp/[ I
Ap for £ =1,2 50 (fy o fp_,zl) | As ¢ Rang(hj) hence (for £,0) I Ap ¢ Rang(h3)

hence f,, f,," ¢ Rang(h) as required. Os.4
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5.5 Remark. We can phrase 5.4(2) forgetting hS, etc., using only E.(¢ < A) and
E; ={(f,9) € Gxx Gx: (fg~') | A; € Rang(h{)}.

5.6 Claim. Assume

(A)(a) X is a strong limit cardinal and 0 is a compact cardinal < X
(b) K; is a group fori < A

(¢) I is a directed partial order, t € I = A(t) C X and U A(t) = A
tel
(d) forte I, Gy is a subgroup of II{K; : i € A(t)}
(e) for s <t from I we have A(s) C A(t) and f € Gy = f | A(s) € Gs
(f) Goo is the inverse limit of the Gy’s, i.e, {f € H K;: f| A: € Gy for every
tel} =
(B)(a) e(x) < A
(b) fore < e(x),(Hg,m,, v < w from I) is an inversely directed system of
groups
(¢) (i) hf € Hom(H;,G,) foru e I,e < e(x*)
(i) ifu <w in I and X\ € Hy, then (hi,(x)) [ A(u) = h (75, (2))
(d) HS,,h%, hs,,, are the limit of the inverse system
(€) E. is the equivalence relation on G : fE.g < fg~' € Rang(hZ,)
(C) for every < X we can find (f*:a < p) from G such that
e<pune(*) & a<pB=~(fLEff)

(D) 0 is > sup|K;| + sup|A(t)| and also sup;ey . c(v) |Hf|-
i<\ tel

Then there are fo € G for a < 2* such thate < e(x) & a < B <2* = ~(foE-f3).

Proof. Let k = cf(\), (\; : i < k) be increasing with limit A. We can choose by
induction on 7 < A, I;, A; such that

(B) I; C Iis directed, |I;| <@+ iland j<i=1; CLandt € I, = A(t) C A;

() if we restrict ourselves to A;, I;, there is a sequence (f% : o < );), such that
fi e Gl = Limy(Gu, fuw v < w from I;) and € < e(x) & a < \; =

S(fiELfy) and y € (] A5 N By, fi(7) = ek, .

J<i
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This is straightforward (see the proof of 5.9, first case). We can extend f! to
*fi € Go such that i € N\ B; = *f! (i) = ex,. Now we can apply the proof of 5.4.
Us.6

5.7 Claim. 1) Assume

(a) A > cf(N) = K, and K is a measurable cardinal, say D a normal ultrafilter
on K

(b) G is a torsion free abelian group
(©) [G] = A

(d) p is a prime number.

If rp(Ext(G,Z)) > X\ and A = X\<" then r,(Ext(G,Z)) > \".
2) Assume

(a) of part (1)
(b) (G; : i < K) is an increasing continuous sequence of torsion free abelian
group
(¢) pi =rp(Ext(Gi,Z)) fori < k.
Then
() if f € Hom(G,Z/pZ) but f ¢ Hom(G,Z)/pZ then for some i < kK, f |
G; € Hom(G;,Z/pZ), f ¢ Hom(G, Z)/pZ

B) o < ] s

1<K

Proof. 1) Choose (\; : i < k) an increasing continuous sequence of cardinal with
limit A. Let (G; : i < k) be an increasing sequence of pure subgroups of G with
union G satisfying i < k = |G;| = \;. Now

() if g € Hom(G,Z/pZ) and i < k = g | G; € Hom(G;,Z)/pZ then g €
Hom(G, Z) /pZ.
[Why? Let g | G; = h;/pZ where h; € Hom(G,Z) and let h a function
from G to Z be defined as h(z) =n < {i < k : hj(x) =n} € D. Clearly
h € Hom(G,Z) and g = h/pZ, as required.|

The result follows by 5.4(2).
2) Similar. Os.7

A complimentary claim is
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5.8 Claim. Assume that (G; : i < k) is a purely increasing sequence of torsion
free abelian groups, k = cf(k) for notational simplicity.

1) If (rp(Ext(G;,Z)) : i < k) is not eventually constant then for some closed un-
bounded set C(Ext(G;,7Z)) C k we have

(a) (rp(Ext(G4,Z)) i € C) is strictly increasing
(b) there are (f. :i € C,a < rp(Ext(Gy,2))) such that
(«) [, € Hom(Gx, Z/pZ)
(B) fL 1 Gy is constantly zero (of the abelian group Z./pZ)
(v) ifieCj=Mn(C\(i+1) and a < § < (G;) then (fl — f4) |
G; ¢ (Hom(G,Z)/pZ); moreover, (f. | G;) + (Hom(G,Z)/pZ : o <
rp(Ext(Gy,Z))) is independent.

2) If C C k = sup(C) and the sequence (f. : i € C,a < p;) is as above then
rp(Ext(Gi, Z)) > [ -

Proof. Straight.

5.9 Conclusion. 1If

(a) Ais a strong limit cardinal and such that («) V (8) where
(o) A is above some compact cardinal

(8) cf(A) is a measurable cardinal

(b) G is a torsion free abelian group and p is a prime.

Then r,(Ext(G, Z)) > X = r,(Ext(G, Z)) = 2*.

Proof.

First Case: Let 6 < A be a compact cardinal.

For any pu < A we can find a sequence (f; : i < p) of members of Hom(G, Z/pZ)
such that i < j = f; — fi € {h/pZ : h € Hom(G,Z)}. As 6 is compact for
i < j < p we can find a pure subgroup G;; of G of cardinality < € such that
fj fGi’j = f; rGi,j ¢ {h/pZ :h e Hom(Gm,Z)}.

Let G,, be a pure subgroup of G of cardinality < p + 6 which includes U{G; ; :
i <j<p} Sory,(Ext(G,,Z)) > p. By 5.4(2) we are done.
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Second Case: Should be clear by the two previous claims. IE

5.10 Remark. 1) So for A strong limit singular the problem of the existence of G
such that |G| = A\, 7, (Ext(G, Z)) = X is not similar to the problem of the existence
of M such that ||M| = A, nu(M) = X\ where nu(M) = {N/ = N is a model of
cardinality || M|, Lo x-equivalent to M }.

That is, we know (in ZFC) that for A strong limit singular of uncountable co-

finality, for some model M of cardinality A we have nu(M) = A (see Shelah and
Vaisanen [ShVs 644] and history there). Now 5.9 is a strong negation of the parallel
of this result for r,(Ext(G, Z)).
2) There has been much effort to characterize the class {Ext(G,Z) : G a torsion free
abelian group} of abelian groups under the assumption V.= L (see [MRSh 314] and
references there). We note another possible characterization (in a different model
of ZFC).

5.11 Claim. Assume k is supercompact, (Vp)(u > K — 2° < 247 ) and Q is the
forcing of adding k Cohen reals. Then in V@ we have

X, if G is a torsion free abelian group, p a prime and r,(Ext(G,Z)) > 0 then for
some (pure) subgroup G' of G of cardinality < 2%° we have r,(Ext(G’,Z)) >
0

Xy if G is a torsion free abelian group, then r,(Ext(G,Z)), if not finite, has
the form 2+

X3 in (2) rp(Ext(G,Z)) = 25%w(&) | see below.

5.12 Definition. For a prime p.

1) Let 8, = {G : G is a torsion free abelian group such that even if we add |G|"
Cohen reals still r,(Ext(G,Z)) = 0}.

2) For a torsion free abelian group G let

fr-rkp, (G) = Min{rk(G") :G" is a pure subgroup of
G and G/G' € &, }.

Proof. Essentially by [MkSh 418].



Paper Sh:724, version 2003-07-02_10. See https://shelah.logic.at/papers/724/ for possible updates.

48 SAHARON SHELAH

REFERENCES.

[EM] Paul C. Eklof and Alan Mekler. Almost free modules: Set theoretic
methods, volume 46 of North—Holland Mathematical Library. North—
Holland Publishing Co., Amsterdam, 1990.

[Fu] Laszlo Fuchs. Infinite Abelian Groups, volume I, II. Academic Press,
New York, 1970, 1973.

[GrSh 302] Rami Grossberg and Saharon Shelah. On the structure of Ext, (G, Z).
Journal of Algebra, 121:117-128, 1989. See also [GrSh:302a] below.

[GrSh 302a] Rami Grossberg and Saharon Shelah. On cardinalities in quotients of
inverse limits of groups. Mathematica Japonica, 47(2):189-197, 1998.

[J] Thomas Jech. Set theory. Springer Monographs in Mathematics.
Springer-Verlag, Berlin, 2003. The third millennium edition, revised
and expanded.

[JMMP] Thomas Jech, Menachem Magidor, William Mitchell, and Karel
Prikry. On precipitous ideals. J. of Symb. Logic, 45:1-8, 1980.

[MRSh 314] Alan H. Mekler, Andrzej Rostanowski, and Saharon Shelah. On the
p-rank of Ext. Israel Journal of Mathematics, 112:327-356, 1999.

[MkSh 418] Alan H. Mekler and Saharon Shelah. Every coseparable group may be
free. Israel Journal of Mathematics, 81:161-178, 1993.

[Na85] Mark Nadel. L, ., and admissible fragments. In J. Barwise and S. Fe-
ferman, editors, Model Theoretic Logics, Perspectives in Mathematical
Logic, chapter VIII, pages 271-316. Springer-Verlag, New York Berlin
Heidelberg Tokyo, 1985.

[PaSr9g| N. Pandey and S. M. Srivastava. A Powerless Proof of a Result of
Shelah on Fundamental Groups. Preprint.

[SgSh 148] Gershon Sageev and Saharon Shelah. Weak compactness and the
structure of Ext(A, Z). In Abelian group theory (Oberwolfach, 1981),

volume 874 of Lecture Notes in Mathematics, pages 87-92. Springer,
Berlin-New York, 1981. ed. Goebel, R. and Walker, A.E.

[Sh 124] Saharon Shelah. R, may have a strong partition relation. Israel Jour-
nal of Mathematics, 38:283-288, 1981.

[Sh 273] Saharon Shelah. Can the fundamental (homotopy) group of a space
be the rationals? Proceedings of the American Mathematical Society,
103:627-632, 1988.



Paper Sh:724, version 2003-07-02_10. See https://shelah.logic.at/papers/724/ for possible updates.

ON NICE EQUIVALENCE RELATIONS ON *2 SH724 49

[Sh 262] Saharon Shelah. The number of pairwise non-elementarily-embeddable
models. The Journal of Symbolic Logic, 54:1431-1455, 1989.

[Sh 460] Saharon Shelah. The Generalized Continuum Hypothesis revisited.
Israel Journal of Mathematics, 116:285-321, 2000.

[Sh 664] Saharon Shelah. Strong dichotomy of cardinality. Results in Mathe-
matics, 39:131-154, 2001.

[Sh 513] Saharon Shelah. PCF and infinite free subsets in an algebra. Archive
for Mathematical Logic, 41:321-359, 2002.

[ShVs 644] Saharon Shelah and Pauli Véisdnen. On inverse vy-systems and the
number of L. y-equivalent, non-isomorphic models for A singular.
Journal of Symbolic Logic, 65:272-284, 2000.

[ShVs 719] Saharon Shelah and Pauli Viisédnen. On equivalence relations sec-
ond order definable over H (k). Fundamenta Mathematicae, 174:1-21,
2002.



