
The failure of the uncountable non-commutative

Specker Phenomenon

By

Saharon Shelah ∗ and Lutz Strüngmann†

Abstract

Higman proved in 1952 that every free group is non-commutatively
slender, this means that, for a free group G and for a homomorphism h
from the free complete product××ωZ of countably many copies of Z into G,
there exists a finite subset F ⊆ ω and a homomorphism h : ∗FZ→ G such
that h = hρF where ρF is the natural map from ××ωZ into ∗FZ. Due to
the corresponding phenomenon for abelian groups this is called the non-
commutative Specker Phenomenon. In the present paper we shall show
that Higman’s result fails if one passes from countable to uncountable
and with it answer a question posed by K. Eda. In particular, we will
see that, for an uncountable cardinal λ and for non-trivial groups Gα

(α ∈ λ), there are 22λ homomorphisms from the free complete product
of the Gα’s into the integers.

Introduction

In 1952 Higman [H] proved that every free group G is non-commutatively slen-
der where slenderness means that any homomorphism h from the free complete
product××ωZ of countably many copies of the integers into G depends on finitely
many coordinates only. A similar result was proven by Specker in 1950 [S] for
abelian groups. Specker showed that any homomorphism from the product
ΠωZ of countably many copies of Z into the integers is determined by only
finitely many entries. These two phenomenons are called the commutative and
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the non-commutative Specker Phenomenon, respectively. Eda [E1] extended
Higman’s result by showing that, for any non-commutatively slender group S,
for any non-trivial groups Gα (α ∈ I) and for any homomorphism h from the
free σ-product of the G′αs into S, there exist a finite subset F of I and a ho-
momorphism h : ∗i∈FGi → S such that h = hρF where ρF is the natural map
from ××σi∈IGi to ∗i∈FGi (for the definition of σ-product see 1.2). Motivated by
this result Eda [E1, Question 3.8] asked whether or not the non-commutative
Specker Phenomenon still holds if one passes from countable to uncountable
cardinals replacing××ωZ by the free complete product××λZ for some uncountable
cardinal λ (see 1.2). Here we shall give a negative answer to Eda’s question by
constructing, for a given uncountable cardinal λ and for non-trivial groups Gα
(α ∈ λ), a homomorphism h from the free complete product of the Gα’s into
Z for which the non-commutative Specker Phenomenon fails. In fact, we will

show that there are 22
λ

of these homomorphisms and so, in particular, we have
that the cardinality of the set of all homomorphisms from ××α∈λGα into the
additive group of the ring of integers is the largest one possible. This contrasts
the countable case and also the abelian case.

Basics and notations

Let I be an arbitrary set. For groups Gi (i ∈ I), the free product is denoted
by ∗i∈IGi (for details on free products see [M]).
Given arbitrary subsets X ⊂ Y of I we put ρXY : ∗i∈YGi → ∗i∈XGi to
be the canonical homomorphism. Moreover, we use the notation X b I for
finite subsets X of I. Then the set {∗i∈XGi : X b I} together with the
homomorphisms ρXY (X ⊂ Y b I) form an inverse system; its inverse limit
lim
←

(∗i∈XGi, ρXY : X ⊂ Y b I) is called the unrestricted free product of the

Gi’s (see [H]).
Eda [E1] introduced an infinite version of free products and defined the free
complete product ××i∈IGi of the groups Gi (for the exact definition see 1.2); it
is isomorphic to the subgroup

⋂
FbI{∗i∈FGi ∗ lim← (∗i∈XGi, ρXY : X ⊂ Y b I)}

of the unrestricted free product.
For the convenience of the reader who is not familiar with the notion of a free
complete product we recall the definition of words of infinite length and also
the definition of and some basic facts about××i∈IGi as can be found in [E1].

Definition 1.1 Let Gi (i ∈ I) be non-trivial groups such that Gi ∩Gj = {e}
for i 6= j ∈ I. The elements of

⋃
i∈I Gi are called letters.

A word W is a function W : W →
⋃
i∈I Gi from a linearly ordered set W into

the set of all letters
⋃
i∈I Gi such that W−1(Gi) is finite for any i ∈ I. If the

domain W of the word W is countable then we say that W is a σ-word.
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The class of all words is denoted by W(Gi : i ∈ I) (abbreviated by W) and the
class of all σ-words is denoted by Wσ(Gi : i ∈ I) (abbreviated by Wσ).

Two words U and V are said to be isomorphic (U ∼= V ) if there exists an order-
isomorphism ϕ : U → V between the linearly ordered sets U and V such that
U(α) = V (ϕ(α)) for all α ∈ U . Identifying isomorphic words it is easily seen
that W is, in fact, a set. Moreover, for words of finite length (i.e. with finite
domain) the above definition obviously coincides with the usual definition of
words.
For a subset X of the set I the restricted word (or subword) WX of W is given
by the function WX : WX →

⋃
i∈X Gi with WX = {α ∈ W : W (α) ∈

⋃
i∈X

Gi}

and WX(α) = W (α) for all α ∈ WX . Therefore WX ∈ W. Using restricted
words with respect to finite subsets of I we define an equivalence relation on
W by saying that two words U and V are equivalent (U ∼ V ) if UF = VF
for all F b I where we may consider UF and VF as elements of the free
product ∗i∈FGi. The equivalence class of a word W is denoted by [W ] and the
composition of two words as well as the inverse of a word are defined naturally.
Thus W/ ∼ = {[W ] : W ∈ W} together with the representative-wise defined
composition form a group.

Definition 1.2 Given groups Gi (i ∈ I) the free complete product ××i∈IGi is
defined to be the group W(Gi : i ∈ I)/ ∼ as described above. Moreover, the
free σ-product ××σi∈IGi is the group Wσ(Gi : i ∈ I)/ ∼ which is a subgroup of
××i∈IGi.
If Gi is isomorphic to a fixed group G for all i ∈ I then we write××IG and××σIG
instead of ××i∈IGi and××σi∈IGi, respectively.

Note, for a finite set I, we obviously have that××i∈IGi and××σi∈IGi are isomor-
phic to ∗i∈IGi. In general we have, by [E1, Proposition 1.8], the free complete
product××i∈IGi is isomorphic to the subgroup

⋂
FbI{∗i∈FGi∗lim← (∗i∈XGi, ρXY :

X ⊂ Y b I)} of the unrestricted free product. Moreover, Eda [E1] proved that
each equivalence class [W ] is determined uniquely by a reduced word; a word
W ∈ W(Gi : i ∈ I) is said to be reduced if W ∼= UXV implies [X] 6= e for any
non-empty word X, where e is the identity, and it never occurs that the letters
W (α) and W (β) belong to the same Gi for neighbouring elements α and β of
W .

Lemma 1.3 (Eda, [E1]) For any word W ∈ W(Gi : i ∈ I) there exists a
reduced word V ∈ W(Gi : i ∈ I) such that [W ] = [V ] and V is unique up to
isomorphism.

Furthermore, Eda [E1] showed the following lemma where a word W ∈ W(Gi :
i ∈ I) is called quasi-reduced if the reduced word of W can be obtained by
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multiplying neighbouring elements without cancellation.

Lemma 1.4 (Eda, [E1]) For any two reduced words W,V ∈ W(Gi : i ∈ I)
there exist reduced words V1,W1,M ∈ W(Gi : i ∈ I) such that W ∼= W1M ,
V ∼= M−1V1 and W1V1 is quasi-reduced.

We would like to remark that the free σ-product ××σIZ is isomorphic to the
fundamental group (see [E1]) and the free complete product××IZ is isomorphic
to the big fundamental group of the Hawaiian earring with I-many circles (see
[CC]). Hence free complete products are also of topological interest.

The uncountable Specker Phenomenon

In 1950 E. Specker [S] proved that, for any homomorphism h from the direct
product Zω of countably many copies of Z into the additive group of the ring of
integers Z, there exist a finite subset F of ω and a homomorphism h : ZF → Z
satisfying h = hρF where ρF : Zω → ZF is the canonical projection. This result
is called the Specker Phenomenon. It can be easily seen that Specker’s result
still holds if one considers homomorphisms into any free abelian groupG instead
of homomorphisms into Z, i.e. free abelian groups are slender. In general, an
abelian group G is said to be slender if G satisfies the above property for any
homomorphisms h : Zω → G. For generalizations to products of uncountably
many copies of Z within the category of abelian groups we refer to [EM] or
[F1].
In [E2] Eda introduced a non-commutative version of slenderness and that is
exactly what we shall consider here.

Definition 2.1 A group G is non-commutatively slender if, for any homomor-
phism h :××ωZ→ G, there exists a natural number n such that h(××ω\{1,··· ,n}Z) =
{e} where e denotes the identity element of G.

Eda proved that non-commutatively slender groups are torsion-free and that
non-commuative slenderness for abelian groups is the same as the ordinary
(commutative) slenderness (see [E1, Theorem 3.3. and Corollary 3.4.]). More-
over, he proved that non-commutatively slender groups have the following nice
property:

Proposition 2.2 (Eda, [E1]) Let Gi (i ∈ I) be non-trivial groups, let S be a
non-commutatively slender group, and let h :××σi∈IGi → S be a homomorphism.

Then there exist a finite subset F of I and a homomorphism h : ∗i∈FGi → S
such that h = hρF where ρF is the canonical map from ××σi∈IGi to ∗i∈FGi.
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Another interesting result is that the restricted direct product and the free
product of non-commutatively slender groups Sj (j ∈ J) are non-commutatively
slender (see [E1, Theorem 3.6.]). However, the first fundamental result on the
class of non-commutatively slender groups was already obtained by Higman [H]
in 1952; it is stated below.

Theorem 2.3 (Higman, [H]) Every free group is non-commutatively slender.

Contrary to Higman’s result above we will show that the non-commutative
Specker Phenomenon fails if one replaces the product of countably many groups
by products of uncountably many. To be more precise: we actually show that,

for an uncountable cardinal λ, there are 22
λ

homomorphisms from the free
complete product ××α∈λGα of non-trivial groups Gα (α ∈ λ) into the additive
group of the ring of integers.
To make the proof more transparent we first construct one homomorphism
for which the Specker Phenomenon fails and then modify the construction to
obtain our main result.

Theorem 2.4 Let λ be any uncountable cardinal and Gα (α ∈ λ) non-trivial
groups. Then there exists a homomorphism ϕ : ××α∈λGα → Z for which the
Specker Phenomenon fails.

Proof. Let Gα (α ∈ λ) be a collection of non-trivial groups with identity
elements eα and choose elements gα 6= eα of Gα for each α ∈ λ. For any regular
uncountable cardinal κ ≤ λ we define the word Mκ ∈××α∈λGα as follows:

Mκ : (κ,<) −→
⋃
α∈λ

Gα via β 7→ gβ

where < is the natural ordering of λ. Note that Mκ is a word of uncountable
cofinality (i.e. the domain of Mκ has uncountable cofinality) since κ is regular
and uncountable. For β < κ we put Mκ,β to be the subword Mκ �[β,κ) of Mκ.

Now, let X be any reduced word in××α∈λGα and recall that a subset J ⊆ (X,<)
is called convex if x < y < z and x, z ∈ J imply y ∈ J . We define

Occ+κ (X) := {J ⊆ (X,<) : J is convex and X �J ∼= Mκ,β for some β < κ}.

Thus Occ+κ (X) counts the occurencies of end segments of Mκ in X.
Similarly we let

Occ−κ (X) := {J ⊆ (X,<) : J is convex and X �J ∼= M−1κ,β for some β < κ}.

In order to avoid counting subsets of (X,<) more often than necessary we
define the following equivalence relation on Occ+κ (X) and Occ−κ (X):
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Dealing with Occ+ two convex subsets J1, J2 of (X,<) are said to be equivalent
(J1 ∼κ J2) if they have a common end segment; in other words J1 ∼κ J2 if
there exist j1 ∈ J1, j2 ∈ J2 such that X �S1

∼= X �S2
where Si = {j ∈ Ji : j ≥

ji} (i = 1, 2). Similarly, if we deal with Occ−, we define the equivalence relation
substituting end segments by initial segments. For simplicity we denote both
equivalence relations by ∼κ but the reader should keep in mind that ∼κ is
defined differently for Occ+ and Occ−.
First we prove that two subsets J1, J2 ∈ Occ+κ (X) are either disjoint or equiv-
alent. To do so assume that J1, J2 ∈ Occ+κ (X) are not disjoint and let j∗ ∈
J1 ∩ J2 ( 6= ∅). Moreover, there are ordinals β1, β2 < κ(≤ λ) and isomorphisms
hi : Mκ,βi −→ X �Ji (i = 1, 2) since J1, J2 are elements of Occ+κ (X). Thus we
can find γi ≥ βi such that hi(γi) = j∗ and therefore X(j∗) = gγi for i = 1, 2.
Hence γ1 = γ2 and by transfinite induction we conclude X �T1

∼= X �T2
, where

Ti = {j ∈ Ji : j ≥ j∗}. Note that hi is an isomorphism of linearly ordered sets
and hence hi commutes with limits and the successor-function.
Similarly, two subsets J1, J2 of Occ−κ (X) are either disjoint or equivalent.
Next we show that the set Occ+κ (X)/ ∼κ is finite; by similar arguments it then
also follows that Occ−κ (X)/ ∼κ is finite. Let us assume the contrary, that is,
there exist infinitely many pairwise non-equivalent Jn ∈ Occ+κ (X) (n ∈ ω).
Then Jn and Jm are disjoint for any n 6= m by the above. For each n ∈ ω let
X �Jn ∼= Mκ,βn for some βn < κ. Thus β =

⋃
n∈ω βn is strictly less than κ as

κ is regular uncountable and hence cf(κ) > ℵ0. Since β ∈ [βn, κ) for all n ∈ ω
we can find jn ∈ Jn such that

X(jn) = Mκ,βn(β) = Mκ,β(β)

for all n ∈ ω. But all Jn are pairwise disjoint and therefore X−1(Gβ) is infinite
which contradicts the definition of a word (see 1.1). Thus Occ+κ (X)/ ∼κ and
also Occ−κ (X)/ ∼κ are finite sets.
We now define ϕκ :××α∈λGα −→ Z as follows:

W 7→ |Occ+κ (X)/ ∼κ | − |Occ−κ (X)/ ∼κ |

where X is the reduced word corresponding to W . Note that ϕκ is well de-
fined by Lemma 1.3. Moreover, it follows immediately from the definition that
ϕκ(X−1) = −ϕκ(X) and also the Specker Phenomenon obviously fails for ϕκ.
Note that in general the sets Occ+κ (X) and Occ−κ (X) are not of the same size,
e.g. ϕ(Mκ,β) = 1. It remains to show, however, that ϕκ is a homomorphism.
Therefore let X and Y be reduced words. By Lemma 1.4 there exist reduced
words X1, Y1 and M such that X ∼= X1M and Y ∼= M−1Y1 and X1Y1 is quasi-
reduced. Now it is easy to check that ϕκ(XY ) = ϕκ(X1Y1) by definition and
the fact that XY = X1MM−1Y1. Hence

ϕκ(XY ) = ϕκ(X1Y1) = ϕκ(X1) + ϕκ(Y1) = ϕκ(X) + ϕκ(Y ),
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asX1Y1 is quasi-reduced and thus the reduced word ofX1Y1 is obtained without
cancellation. 2

We would like to remark that the uncountability of κ in Theorem 2.4 is essential
for the definition of the homomorphism ϕκ and can not be omitted because of
Higman’s theorem. Modifying the proof of Theorem 2.4 we obtain:

Theorem 2.5 Let λ be any uncountable cardinal and Gα (α ∈ λ) be non-trivial

groups. Then there are 22
λ

homomorphisms from the free complete product of
the Gα’s into the additive group of the ring of integers. In fact there is an
epimorphism from ××α∈λGα onto the free abelian group of 2λ copies of the
integers.

Proof. Let λ be uncountable and {Gα : α ∈ λ} be given as stated. We
choose the following family of reduced words Mα for α ∈ 2λ. First we choose
non-trivial elements eγ 6= gγ ∈ Gγ for γ ∈ λ. Let {Iε : ε ∈ ω1} be a family of
pairwise disjoint subsets of λ each of which has cardinality λ. It is well-known
(see e.g. [EK]) that for every ε ∈ ω1 we can find a family {Iε,α ⊆ Iε : α ∈ 2λ} of
subsets of Iε such that any finite Boolean combination of them is of cardinality
λ and moreover there is γε ∈ Iε that belongs to each Iε,α for every α ∈ 2λ. For
every ε ∈ ω1 and for every α ∈ 2λ we choose a word Mε,α such that its domain
M ε,α equals Iε,α and Mε,α(σ) = gσ for σ ∈ Iε,α.
Then the compositionMα =

∑
ε∈ω1

Mε,α is a well-defined reduced word inW(Gγ :

γ ∈ λ) for every α ∈ 2λ. Before defining the claimed homomorphism let us first
state the crucial condition satisfied by the Mα’s (α ∈ 2λ):

(i) the domain Mα of Mα is well-ordered of order type λω1 (the ordinal
product) for each α ∈ 2λ and therefore has uncountable cofinality.

Now we repeat the construction given in Theorem 2.4 replacing κ by Mα and
for a reduced word X and α ∈ 2λ we define

Occ+α (X) = {J ⊆ (X,<) : J convex, X �J ∼= Mα,σ for some σ ∈Mα}

and

Occ−α (X) := {J ⊆ (X,<) : J convex, X �J∼= M−1α,σ for some σ ∈Mα},

where Mα,σ is the end segment of Mα starting with the element σ, i.e. Mα,σ =
Mα �{ρ∈Mα:ρ≥σ}. As in the proof of Theorem 2.4 two equivalence relations are

defined on the sets Occ+α (X) and Occ−α (X) both denoted by ∼α.
We are now able to define homomorphisms ϕα from the free complete product
of the Gγ ’s to the integers for each α ∈ 2λ. As in the proof of Theorem 2.4
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we can see that the sets Occ+α (X)/ ∼α and Occ−α (X)/ ∼α are finite for any
reduced word X and α ∈ 2λ. Moreover, the maps ϕα :××β∈λGβ −→ Z defined
by

V 7→ |Occ+α (X)/ ∼α | − |Occ−α (X)/ ∼α |
where X is the reduced word corresponding to V , are well defined homomor-
phisms since γε ∈ Iε,α for every α ∈ 2λ.

To obtain 22
λ

homomorphisms we will show that there is a surjection onto the
free abelian group of 2λ copies of the integers. Define

Φ :××α∈λGα −→
∏
α∈2λ

Z

via
Φ(V )(α) = ϕα(X)

for a word V where X is the reduced word corresponding to V . As all the
ϕα’s (α ∈ 2λ) are homomorphisms, so is Φ and we claim that Φ is actually a
homomorphism from the free complete product of the Gα’s onto the direct sum
of 2λ copies of the integers

⊕
α∈2λ

Z. First assume that this mapping is not into,

then there is a reduced word X and a sequence of pairwise distinct ordinals αn
(n ∈ ω) such that Φαn(X) 6= 0 for all n ∈ ω. Thus for each n ∈ ω there is a
convex subset Jn ⊆ X such that w.l.o.g.

X �Jn∼= Mαn,σn

for some σn ∈ M εn,αn ⊆ Mαn (εn ∈ ω1). But now, if κ ∈ ω1 such that εn < κ
for all n ∈ ω, then the element gκ (since γκ belongs to all sets Iκ,αn) appears

infinitely many times in X, i.e. X
−1

(Gκ) is infinite - a contradiction. Thus the
image of Φ is contained in the direct sum of 2λ copies of the integers.
On the other hand, by the choice of the sets Iε,α we certainly have that

Occ+α (Mβ) = 0 = Occ−α (Mβ)

for distinct α, β ∈ 2λ. Moreover,

Occ+α (Mα) = 1 and Occ−α (Mα) = 0

for any α ∈ 2λ. Thus we obtain

Φ(Mα) = (0, · · · , 0, 1α, 0, · · · ) ∈
⊕
β∈2λ

Z

and therefore Φ is obviously surjective. Since there are 22
λ

homomorphisms
from the direct sum of copies of Z to Z itself we are done. 2

We have a short remark.
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Remark 2.6 Note that the above proof gives us that

(i) the free complete product G =××α∈λGα contains a free subgroup H (the
group generated by the words Mα) and;

(ii) there is a projection onto H.

The following theorem gives us a complete description of all ’interesting’ ho-
momorphisms from G =××α∈λGα to the integers for uncountable λ and groups
Gα (α ∈ λ). By interesting we mean interesting with respect to the Specker
Phenomenon, i.e. if W is a finite subset of λ, then all homomorphisms from
the subproduct GW = ××α∈WGα to the integers extend naturally to a homo-
morphism from G to Z but these homomorphisms are not of particular interest
for us and well-understood, hence we will restrict ourselves to homomorphisms
from G to Z which are already zero on every finite subproduct of G.
First note that the definition of ϕMα in the proof of Theorem 2.5 did not
really depend on the particular word Mα but only on the fact that Mα had
uncountable cofinality. It is immediate to see that for any word M such that
the domain M has uncountable cofinality we can define such a homomorphism
ϕM : G→ Z. Hence we define the following set:

IG = {M ∈ G : cf(M) ≥ ℵ1}

and let
ΦG : G→

∏
M∈IG

ZM

be defined by ΦG(V ) = (ϕM (X) : M ∈ IG) where X is the reduced word
corresponding to V . Now ΦG is well-defined and we have the following theorem.

Theorem 2.7 Let G =××α∈λGα for some uncountable cardinal λ and groups
Gα (α ∈ λ). Then any homomorphism ψ : G→ Z which is zero on every finite
subproduct of G factors through ΦG.

Proof. For simplicity we assume that all words are already in reduced
form. First we will show that the kernel of ΦG is exactly Ker(ΦG) = {M ∈
G : M contains no monotonic sequence of length ω1}, where a monotonic se-
quence of length ω1 is just a subset of M which is isomorhic to ω1 or its inverse.
Clearly we have that Ker(ΦG) is contained in {M ∈ G : M contains no mono-
tonic sequence of length ω1}. Conversely, if M is a reduced word that contains
no monotonic sequence of length ω1 and ΦG(M) 6= 0, then there exists a re-
duced word N ∈ IG, i.e. N has uncountable cofinality, such that ϕN (M) 6= 0.
But then Occ+N (M) or Occ−N (M) is non-trivial and hence M must contain a
monotonic sequence of length ω1 - a contradiction. It is now enough to prove
that any homomorphism f : G −→ Z which is zero on any finite subproduct of
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G acts trivial on Ker(ΦG). For this assume that M is a reduced word which
contains no monotonic sequence of length ω1 such that f(M) 6= 0 for some
homomorphism f : G −→ Z. We distinguish between three cases:

Case a: There exist subwords Nn of M (n ∈ ω) such that

(i) Nn is a convex subset of M ;

(ii) the Nn’s (n ∈ ω) are pairwise (almost) disjoint;

(iii) f(Nn) 6= 0 (without loss of generality f(Nn) > 0).

Hence the composition N of the words Nn (n ∈ ω) is a well-defined word in
G and applying Theorem 2.3 together with [E1, Proposition 1.9] leads to a
contradiction.

Case b: There is an initial segment M
∗

of M such that

(i) f(M∗) 6= 0, where M∗ = M �M∗ ;

(ii) for every proper initial segment N of M
∗

we have f(N) = 0, where
N = M �N ;

(iii) M
∗

has no largest element or for every t ∈ M
∗

there exists a convex

subset N t ⊆ {m ∈M
∗

: m ≥ t} such that f(Nt) 6= 0, where Nt = M �Nt .

Then the cofinality of M
∗

has to be ℵ0 by the assumptions and we choose an
increasing, unbounded sequence {tn : n ∈ ω} in M

∗
and put

Nn = {m ∈M∗ : m ≥ tn} or Nn = Ntn (hence f(Nn) 6= 0).

In both cases we easily obtain a contradiction. Similarly we can use the same
arguments for the inverse of M to get a contradiction.

Case c: Neither case a nor case b is satisfied. Then it is easy to see that the set

J = {t ∈M : f(Mt) 6= 0}

is finite, where Mt = M �{t} (e.g. use Ramsey’s Theorem). So without loss of
generality we may assume that J is the empty set. We let

I = {A ⊂M : A convex and ∀B ⊆ A convex f(M �B) = 0}.

Then I contains all singletons t ∈M , the empty set and it is downwards closed.
Moreover, if A and B are elements of I and A ∪B is convex, then A ∪B ∈ I.
Finally every initial segment of M with no largest element has an end segment
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in I and hence M ∈ I - a contradiction. Similarly we obtain a contradiction
using the inverse M−1 instead of M . This finishes the proof. 2

For completeness let us state the following remark.

Remark 2.8 If h : G → Z is any homomorphism, then an application of
Theorem 2.3 shows that the set {α ∈ λ : h(Gα) 6= {0}} = F is finite. Hence,
regarding ∗α∈FGα as a subgroup of G we let h0 = (h �∗α∈FGα)ρF . Then h−h0
satisfies the assumptions of Theorem 2.7 and thus factors through ΦG.

Acknowledgement: The authors would like to thank the referee for his help-
ful comments and suggestions and in particular for his patience.
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