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POSITIVE PARTITION RELATIONS FOR P,())

PIERRE MATET and SAHARON SHELAH*

Abstract. Let s a regular uncountable cardinal and A\ a cardinal > k, and suppose A<F is less than
K

the covering number for category cov(My ). Then (a) I\ —=(I\,w+1)%, (b) [T, —=[[F,]2, if x is a

limit cardinal, and (c) I;AQ(I:)\)Q if k is weakly compact.

0. Introduction

Let x be a weakly compact cardinal. Then x—(k)? and more generally for any cardinal A\ > &,
{PH(A)}Q(I;A)z ([M4]), which means that for any F : k x P,(A)—2, there is A C P,()) such that A

does not belong to I,; » (the ideal of noncofinal subsets of P.())) and F is constant on
{(U(ank),b):a,be Aand U(ank) <UbNEk)}.

Now if J is the ideal of noncofinal subsets of r, then J*—(J¥)? since (A, <) is isomorphic to (x, <) for
any A € J*. So it is natural to ask whether I, 5 (I,)? for every A > k. It turns out that the answer is

negative. This is not surprising since it is well-known that some members of I: » may be quite different from
P, (N\). To give an example , if the GCH holds and A is the successor of a cardinal of cofinality < k, then
cof(I.x | A) < cof(I ) for some A € I,j,x ([MPéS2 ]). We prove that IIAQ(IZA)Q if and only if A<" is

less than cov(My ) (a generalization of the covering number for category cov(M)).

Let x be an arbitrary regular uncountable cardinal. Dushnik and Miller [DMi] established that x—(x,w)?.

This was improved to k—(k,w + 1)? by Erdés and Rado [ER]. The Erdés-Rado result generalizes ([M3]) :

for every cardinal A > k, {PH(A)}Q(IZ/\,w—i- 1)? (i.e. forany F :k x P,(\)—2, there is either A € IZ/\
such that F' is identically 0 on

{(U(ank),b):a,b€ Aand U(ank) <UbNEK)},
or ag,ai1,...,a, in Py(A) suchthat ag Ca; C ... Cay,,U(agNk) <U(a1NK) <...<U(a,Nk) and F
is identically 1 on {(U(an, NK),aq) : 1 < ¢ <w}). Here we show that I;AQ(IZA,M +1)2 if A< s less
than cov(My ). In the other direction we prove that I::/\j/» (I;/\, 3)? if X is greater than or equal to

0. (oreven 0y).

It is a result of [M5] that {P.(\)} -5 [I:/\]?\ for any A >k if k is a successor cardinal such that k—/ [k]2.
In contrast to this, we show that I : A%[I:) W2+ if K is a limit cardinal and X a cardinal > k with

A<F < cov(My ). It is also shown that I;:A% [Ij/\]i if A\>0,.

Throughout the remainder of this paper & will denote a regular uncountable cardinal and A
a cardinal > k.

The paper is organized as follows. Section 1 reviews a number of standard definitions concerning ideals
on k and P,(A). Sections 2-7 give results about combinatorics on £ that are needed for our study of
P.()\). Sections 2 and 3 review some facts concerning, respectively, the dominating number 0, and the
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covering number for category cov(M, ). Section 4 deals with the problem of determining the value of the
unequality number 4, in the case where & is a successor cardinal. In Section 5 we show that if 2<% =k
and U, < k™, then I, = non,(weakly selective). Sections 6 and 7 review some material concerning,
respectively, the unbalanced partition relation JT—(JT,p)? and the square bracket partition relation

Jt—[JT]2

Sections 8-15 are concerned with combinatorial properties of ideals on P, (). Section 8 gives two char-
acterizations of 0y  : one as the least cofinality of any r-complete fine ideal on P, ()) that is not a weak
m-point, and the other as the least cofinality of any k-complete fine ideal on P,(\) that admits a maxi-
mal almost disjoint family of size k. In Section 9 we show that any x-complete fine ideal on P, (A) with
cofinality < cov(M,, ,) is a weak y-point. Conversely if x is inaccessible and I, is a weak x-point,
then cof(I;x) < cov(My ). Sections 10-13 deal with unbalanced partition relations. Given an infinite
cardinal 6 < k such that s — (k,6)?, we show that (a) u(k,)) - mon,(J*—(JF,0)?) is the least
cofinality of any k-complete fine ideal H on P,()\) such that H+-5 (H*;0)?, (b)If H isa k-complete
fine ideal on P.(\) with cof(H) < cov(M, ) (respectively, cof(H) < mnon,(weakly selective)), then
HT—(H*,0)? (respectively, HT-"3(H*,0)?), and (c) Conversely, if § = and I:’)\i> (H*,0)2, then
cof(I; ) < cov(My ). The last two sections are concerned with square bracket partition relations. We
show that if  is a limit cardinal, then H*-5[HT]?, (respectively, HT-3[H*]2) for every ideal H
on P.(\) such that cof(H) < cov(M, ) (respectively, cof(H) < mon,(J"—[J*]2)). In the other
direction, A > 0, implies that I:)\ﬁ% [I:)\]i (and I;A% [I;A]2 if x is a limit cardinal such that

2<F = g).

1. Ideals
In this section we review some standard definitions and a few basic facts concerning ideals on k and Py ().
Given a cardinal p and a set A, let P,(A) = {a C A :|a|< p}.

Given an infinite set S, an ideal on S is a collection K of subsets of S such that (i) {s} € K for every s € S,
(ii) P(A) C K for every A € K, (iii) AU B € K whenever A, B € K, and (iv) S ¢ K.

Given an ideal K on S, let KT = P(S)— K and K | A={BCS:BNA€K} for Ae K*. sat(K) is

the least cardinal T with the property that for every Y C KT with |Y |= 7, there exist A, B € Y such that
A#Band ANBe K.

cof(K) is the least cardinality of any X C K such that K = U P(A). K is k-complete if | JX € K for
Aex

every X € P,(K). Assuming that K is s-complete and |JY € K for some Y C K with |Y |= &, cof(K) is

the least cardinality of any X C K such that K = [J{P(Uz) : 2 € P,(X)}.

We adopt the convention that the phrase “ideal on k” means “

k-complete ideal on K”.
Note that the smallest ideal on & is P, (k).
Given two sets A and B and f € 4B, f is regressive if f(a) € a for all a € A.

An ideal J on & is normal if given A € J* and a regressive f € 4k, there is B € J* N P(A) such that f is
constant on B.

NS, denotes the nonstationary ideal on k.

k is inaccessible if 2" < i for every cardinal u < k.
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Let [A]2 = {(o,B) € Ax A:a < B} for any A C k. Given an ordinal o > 2, k—(k,a)> means that for
every f:[k]?*—2, thereis A C k such that either A has order type x and f is identically 0 on [A]?,

or A hasorder type a and f isidentically 1 on [A]?. The negation of this and other partition relations

is indicated by crossing the arrow. rx—s(k)? means that xk—(k, k)%

K is weakly compact if k—(k)2.

If k is weakly compact, then it is inaccessible (see e.g. Proposition 4.4 in [Kal).

Anideal J on k is a weak P-pointif given A€ J¥ and f €4k with {f~'({a}):a <k} CJ, there
is Be€ JTNP(A) such that f is < s-to-one on B. J is a local Q-point if given g € ®r, there is
B € J* such that g(a) < B for any (a,) € [B]2. J isa weak Q-pointif J| A is alocal Q-point for
every Ae JT.

It is well-known (see [M1] for a proof) that an ideal J on & is a weak @Q-point if and only if given A € J*
and a < k-to-one f: A—k, thereis B € J" N P(A) such that f is one-to-one on B.

Anideal J on k is weakly selective if it is both a weak P-point and a weak @Q-point.

Given a cardinal p with 2 < p < k and an ideal J on &, J+—>[J+],2) means that for every A €
Jt and every f :[A]>—p, thereis B € JT N P(A) such that f”[B]*> # p. k—[s]; means that
(Pe(r))F—[(Pe(k)*]5-

Note that x—[x]3 if and only if xk—s(k)2.

Let P be a property such that at least one ideal on & does not satisfy P. Then non,(P) (respectively,
non, (P)) denotes the least cardinal 7 for which one can find an ideal J on & such that cof(J) =17
(respectively, cof(J)=7) and J does not satisy P.

Notice that A<® < mon,(P) if and only if A<* < non,(P).

I,; » denotes the set of all A C P,,(A) such that AN {b € P,(\):a C b} = ¢ for some a € P,(\). An ideal H
on P,(\) is fine if I,, » C H.
13

We adopt the convention that the phrase “ideal on P,(\)” means
P.(N)”.

k-complete fine ideal on

Note that I, » is the smallest ideal on P, (A).
u(k, \) denotes the least cardinality of any A € Iz)\.

The following facts are well-known (see e.g. [MPéS1]) : (1) u(k,A) > A ; (2) A<F = 2<F . u(k,\) ; (3)
u(k, A) = cof (I x| A) for every A € I::/\ i (4) u(k, k™) = kT whenever 0 < n < w.

K(k,A) denotes the set of all cardinals o > A with the property that thereis T C P, (\) such that |T|=0¢
and |TNP(a)|< k for every a € Pg(N).

It is simple to see that o < u(k,\) for every o € K(k,A). Notice that A € K(k,A). More generally, if 7
is an infinite cardinal < x such that |P;(v)|< & for every infinite cardinal v < k, then A<7 € K(k, \).
It follows that A<* € K(k,A) if s is inaccessible. It can be shown (see Remark 11.4 in [To 2] and Theorem
4.1 in [CFMag]) that AT € K(k, ) if O holds and cf(\) < k.

An ideal H on P.()) is k-normal if given A € HT and a regressive f € 45, there is B € HT N P(A) such
that f is constant on B. The smallest x-normal ideal on P,;()) is denoted by NS ;.
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2. Domination
In this section we recall some characterizations of the dominating number 0,.

Definition. 0, is the least cardinality of any X C "k with the property that for every ¢ € “k, there is
f € X suchthat g(a) < f(a) forall a < k.
0, is the least cardinality of any X C "k with the property that for every ¢ € k, thereis z € P(X)

such that g(a) < U f(a) forall a< k.
fex

PROPOSITION 2.1.
(1) (L1]) 0. =cof(NS).

(i) ([MRoS]) 0. = cof(NS,).

Definition. Given an ideal J on &, M?” is the set of all @ C J* such that (i) |Q|> &, (ii)) ANB € J
forall A,B €@ with A# B, and (iii) for every C € J¥, thereis A€ Q with ANC e J+.
a; is the least cardinality of any member of M?” if M?” # ¢, and (2%)T otherwise.

THEOREM 2.2. ([Laf], [MP2]) 0, = mnon,(a; > x) = non,(weak P-point).

PROPOSITION 2.3. 0 > mon,(a; > ) > mon,(weak P-point).

Proof. The first inequality follows from Proposition 2.1 (ii) since ayg, = & ([MP2]). To prove the second
inequality, argue as for Lemma 8.5 below. O

QUESTION. Is it consistent that 0, > mon,(weak P-point) ?

3. Covering for category
Throughout this section v will denote a fixed regular infinite cardinal.

We will review some basic facts concerning the covering number cov(M, , ).

Definition. Suppose p is a cardinal > v.

Let Fn(p,2,v) =U{"2:a € P,(p)}. Fn(p,2,v) is ordered by : p < ¢ if and only if ¢ C p.

P2 is endowed with the topology obtained by taking as basic open sets ¢ and Of for s € Fn(p,2,v),
where O? ={fe€r2:sC f}.

M, , is the set of all W C”2 such that W N (NX)= ¢ for some collection X of dense open subsets of
P2 with 0<|X|< v

cov(M, ) is the least cardinality of any Y C M, , such that P2 =UY.

PROPOSITION 3.1.
(i) ([L2],Mil2]) cov(M, ,) > vt for every cardinal p > v.

(i) ([L2],[Mil2]) Suppose that p and p are two cardinals such that v < p < p. Then cov(M, ,) >
cov(M, ,).
)

(iii) ([L2]) Suppose 2<% >wv. Then cov(M,,)=rvt.
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PROPOSITION 3.2. Suppose that p is a cardinal > v and V = 2<¥ = v. Then setting P =
Fn(p,2,v) :

(i) ([L2],Mil2]) VP = cov(M,,) > p.
(i) ([L2],Mil2]) If cf(p) <wv, then VI |=cov(M,,) > p. B B
(iii) Let p be any regular cardinal > v. Then (DM)VP =0,)V and (DM)VP <(0,)V.

Proof. (iii) : The conclusion easily follows from the following observation : Suppose that o is a cardinal
>0 and F € VP isa function from oxu to y. Then by Lemma VIL6.8 of [K], thereis H : oxu—sP,+(p)

such that H € V and F(a,p) € H(a, ) (so F(o,B) <UH(a,B)) for every (o,8) € o X . O

Remark. It is not known whether it is consistent that cf(cov(M, ) < r.

4. Unequality

Our main concern in this section is with the problem of evaluating the unequality number i, when & is
a successor cardinal.

Definition. il (respectively, Ll;) is the least cardinality of any F' C "k with the property that for every
g € "k, thereis f € F suchthat {a € k: f(a) =g(a)} =¢ (respectively |{a € r: f(a)=g(a)}|< k).

The following is readily checked.

PROPOSITION 4.1. cov(M, ) <, <0,.

Remark. It is shown in [MRoS]| that if V = GCH, then there is a r-complete x*—cc forcing notion P
such that B
VP = 9, =k and cov(M,, ) = 2% = kT @D,

For models where 0, > k™ see also [CS].

PROPOSITION 4.2. i, =4[ .
Proof. Fix F C "k with the property that for every g € “k, there is f € F' such that

Haer: fla)=gla)}|< k.

For f € F and v,0 < k, define f, 5 € "k by : f,s(e) = f(a) if & > ~, and f, 5(«
every g € "k, there are f € F and v, < k such that {a € k : f, 5(a) = g(a)} =

) = § otherwise. Then for
¢. d
The following is due to Landver [L2].

PROPOSITION 4.3. cf(ih,.) > k.

Proof. Suppose otherwise. Set v = cf(4l,) and fix F C "k so that | F'|= 4, and for every g € "k, there
exists f € F with {a € r: f(a) = g(a)} = ¢. Let < Fz: B < v > be such that (a) | Fz|< i, for any 3, and
) U Fg = F. Select Ag C & for § < v so that (i) | Ag|= « for every 8 < v, (ii) Ag N Ay = ¢ whenever
B<v
v < B < v, and (iii) U Ag = k. For each 3 < v, there is gg : Ag—~ such that
B<v

faedg: (f 1 Ap)(a) =gs()} # ¢

for every f € Fg. Set g = U gs. Then clearly, {a € k : f(a) = g(a)} # ¢ for all f € F. This is a

B<v
contradiction. O
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We now turn our attention to the task of computing .. We begin with the case when x is a successor
cardinal.

THEOREM 4.4. Suppose k is the successor of a regular infinite cardinal v. Then

. > min(d,, cov(M, ).

Proof. Fix F C "k with 0 <|F|< min(0.,cov(M, ,)). Pick k:k—~K — v so that

Ha <k :k(a) > f(@)}=r

for every f € F. Select a bijection j:k X v—k and a bijection i, : k(a)—v for each a < k. Given

ACk and t €42, define a partial function 7 from s to s by stipulating that #(a) =+ if and only if
(2) 7 < (@), (b) {j(arm) : 1 < ia(n)} € £1({0}), and (c) j(@,in(y)) € t1({1}). For f€F, let Dy be
the set of all s € F'n(x,2,v) such that there is o € dom(3) with k(a) > f(«) and 5(«) = f(a). Clearly,
each Dy is a dense subset of Fn(k,2,v), so we can find g € *2 with the property that for every f € F,
there is a € P,(k) with ¢g [ a € D;. Then

{a € dom(g) : g(a) = fla)} # ¢

for every f € F. O

THEOREM 4.5. Suppose k is a successor cardinal. Then , >,.

Proof. Fix F C*k with 0<|F|<0,. Set x=wv". Pick k:x—k—v so that

{a < x: f(a) < k(a)} =«

for every f € F. For a < k, select a bijection 7, : k(a)—v. Given f € F, there exists iy € v such
that the set
Ar={a <k f(a) < k(@) and ma(f(@)) = is}

has size k. Define gy € "k by
g¢(B) = least o € Ay such that a > §.

It is shown in [MRoS] that 0, is the least cardinality of any X C "k with the property that for every

h € "k, thereis x € P,(X) such that the set {8 < k: h(3) > U f(B)} is nonstationary in x. Hence

fex
there is h € ®k such that the set

B, ={B8<k:h(B)> U gr(B)}

fex

is stationary in k for every z € P,(F).

Define J C P(k) by: D € J if and only if there is = € P,,(F) such that DN B, € NS,. Then J isan
ideal on k. Since sat(J) > v by a result of Ulam (see [Kal, 16.3), there exist pairwise disjoint D; € J*
for i <v with UDi:/@.

i<v

Let C be the set of all infinite limit ordinals 0 < k such that h(§) < § for every £ < d. Then C isa
closed unbounded subset of . Define t € "k so that for every 7 < x,t(n) < k(n) and ¢, € Dy (i(y)),
where ¢, =U(CNn).
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Now fix f € F. Pick (€ D;; NCN By andset 1= gs(¢). Notice that ¢ <7 by the definition of g;.
Also, 7 < h({) since ¢ € Byy. Hence ¢, = ( by the definition of C' and the fact that ¢ € C. It now
follows from the definition of ¢ and the fact that ¢ € D;, that m,(t(n)) =14s. On the other hand, n € Ay

since n=gs(¢), so f(n) <k(n) and m,(f(n)) =ir. Thus t(n) = f(n). O

Remark. It follows from Proposition 4.1 and Theorem 4.5 that i, =0, if s is a successor cardinal and
0, < kT,

THEOREM 4.6. Suppose that s is a successor cardinal and 2<% = x. Then U, =0,.

Proof. By Proposition 4.1 it suffices to prove that i, > 0.. Set x = vt and select a one-to-one

j: U [sotv) e .

a<k

Now fix F C "k with 0 <|F|<0,. Select g € "k so that for every f € F, thereis f; <k with

J(f 1 1Br, Br +v)) < g(By).

Let C be the set of all v < k such that f+v <+ and ¢(8) <~ for every § <~. Then C is a closed
unbounded subset of k. Let < ~s:J < k> be the increasing enumeration of C. For § < k, set

Ws = {t € U et : j(t) < ’Y§+1}~

Vs Sa<vs41

Then define ks € D57+, so that for every t € Ws, thereis ¢ € dom(t) with ks(¢) = ¢(¢). Set

kE=Us<, ks
Given f € F, let 0y < besuchthat v5;, < By < vs5,41. Then f | [By,By+v) € W;s,. Hence k(¢) = f(¢)
for some ¢ € [Bf, B + V). 0O

QUESTION. Is it consistent that & is a successor cardinal and i, < 0, ?

QUESTION. Is it consistent that x is a successor cardinal such that 2<* = x and cov(M, ) <, ?
Let us now consider the case when &k is a limit cardinal. By a result of Bartoszyriski [B] and Miller [Mill],
U, = cov(M,, ). Landver [L2] was able to show that this fact generalizes to uncountable inaccessible
cardinals :

THEOREM 4.7. If k is an inaccessible cardinal, then i, = cov(M, ,).

QUESTION. Is it consistent that » is a limit cardinal and cov(M, .) < i, ?

5. Weak selectivity

The following is due to Baumgartner, Taylor and Wagon [BauTW].

PROPOSITION 5.1. If k is a successor cardinal, then every ideal on k is a weak Q-point.

By Proposition 5.1 and Theorem 2.2 mnon,(weakly selective) = 0, if k is a successor cardinal. The
remainder of the section is primarily concerned with the value of mnon,(weakly selective) in the case when

Kk 1s a limit cardinal.

Remark. It is easy to see that x* < mnom,(weak Q-point) if & is a limit cardinal.
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Definition. An ideal J on & is a weak semi-Q-point if given A € J* and a < k-to-one function f
from A to k, thereis C € J¥ N P(A) such that |CnN f~1({a})|<|a| for every « € k.

J is weakly semiselective if J is both a weak semi-Q-point and a weak P-point.

J is weakly rapid if given A € J* and f € "k, thereis C € J*NP(A) such that o.t.(CNf(a)) <a+1
for every « € k.

Remark. It is simple to see that every weak @Q-point ideal on « is weakly rapid, and every weakly rapid
ideal on Kk is a weak semi-Q)-point.

Every weak semi-@Q-point ideal on w is weakly rapid ([MP1]). We will show that this does not generalize.

Definition. Anideal J on k is a semi-Q-point if given a < k-to-one function f from k to &, there
is B € J suchthat |f~1({a}) — B|<|a| for every « € k.

PROPOSITION 5.2. Suppose k is a limit cardinal. Then there exists a semi-Q-point ideal on r that
is not weakly rapid.

Proof. Let Y be the set of all infinite cardinals < . Select h € Yk so that (a) h(u) is a regular infinite
cardinal < pu for every p €Y, and (b) {u €Y : h(u) > 0} is stationary in & for every 6 € Y. For
ACk and 0 €Y, let T betheset of all u €Y suchthat h(u) >0 and |AN [, pu+ h(p))|= h(w).
Now let J;, be the set of all A C k such that TOA is a nonstationary subset of x for some 6 €Y. It is
simple to check that J, is an ideal on k.

Let us remark in passing that if x is weakly Mahlo and & is defined by : h(u) =w if p is singular, and
h(p) = p otherwise, then a subset A of k liesin J, if and only if the set of all g €Y such that p is
regular and | AN [u, 1+ ) |= g is nonstationary in &.

Let us show that Jp, is a semi-@Q-point. Thus fix a < k-to-one function f:k—k. Then

C ={u eY:ip=J f‘l({a})}

a<p

is a closed unbounded subset of k. Set Q = U [, o+ h(p)). It is immediate that & — Q € Jy,. Now fix
nec
a €k such that QN f~1({a}) # ¢. Pick v € C so that

v,v + 1) N {a}) # ¢.
Clearly, a > v and v f~!'({a}) =¢. Let p be the least element of C' that is >v. Then a < p and

f7'({a}) S p. Thus
QN ({a}) S [v,v+ h(v))

and consequently

QN f({a)|< h(v) < v <lal.
It remains to show that J is not weakly rapid. Fix D € J ;Z' . Then
S={peT) T Npl=u}
is a stationary subset of k. Given p € S, |[DNu|=p since

Dnlp,p+h(p)) cDNp

for every p € pNTP, and hence
ot.(DN(p+h(p) >p+1.

THEOREM 5.3. Suppose & is a limit cardinal. Then i, < mon,(weak semi-Q-point).
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Proof. Let J beanideal on x with cof(J) < il.. Let us show that J is a weak semi-Q-point. Thus fix
A€ Jt and a < k-to-one function f: A—k. Select Bg € J for § < cof(J) so that J = U P(B).

B<cof(J)
For § < cof(J), define gg € " by :

gs(a) = least element of ( U f'{"}) - Bs.

>

Thereis h € " such that {a € K : gg(a) = h(a)} # ¢ for every 5 < cof(J). Define C C ran(h) by : h(a) € C
just in case h(«) € U F7({7}). Then clearly C' € J+ N P(A). Moreover, C N f~*({a}) C {h(y): v < a}

Y>>
for every a < k. O

THEOREM 5.4. Suppose that k is a limit cardinal and 2<% = k. Then

non,, (weakly semiselective) < il < nom,(weak Q-point).

Proof. The proof of the first inequality is an easy modification of that of Lemma 6.1 in [MP1] (which
should be corrected by substituting “e € [w]<“ such that B C U wFi U U By” for “e € [U w¥<% such
jEe fez jEW
that B CeU U By”). The second inequality is proved as Proposition 5.3 in [MP1]. O
fez

Remark. Suppose that & is a limit cardinal, 2<% = x and non,(weakly semiselective) < k*“. Then
by Proposition 4.1 and Theorems 2.2 and 5.4,

i, = mnon, (weakly selective) = non, (weakly semiselective).

Remark. It is consistent (see [MP1]) that 41, < nom,(weak @-point), and that non,(weak @Q-point)
< non, (weak semi-Q-point). We do not know whether these results can be generalized.

QUESTION. Is it consistent that x is a limit cardinal, 2<% > x and k% < non,(weak Q-point) ?

QUESTION. By a result of [MP1], c¢f( non,(weak Q-point)) > w. Does this generalize ?

6. non,.(JT—(J*,0)?)

In this section we use standard material to discuss the value of mon, (J*—(JT,0)?) for a cardinal 0 € [3, x].

THEOREM 6.1.

(i) 0, > mon,(JT—(JT,3)%).

(i) 0, > mon, (J*—(J*,3)2).

(iii) mom,(weak P-point) > mon,(J"—(J,w)?).

Proof. (i) and (ii) : By a straightforward generalization of Lemma 4.4 in [M2], there exists an ideal J on
k such that cof(J) < 0,,cof(J) <0, and J*—4 (J*+,3)%

(iii) : Baumgartner, Taylor and Wagon [BauTW] established that if J is an ideal on k such that
Jt—(J*,w)?, then J is a weak P-point. O
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Definition. Given an ideal J on k, A € J* and F : k x k—2, (J,A,F) is 0-good if there is
D e JTNP(A) such that {8 € D: F(a,B) =1} € J for every a € D.

The following is readily checked.

LEMMA 6.2. Suppose that J is weakly selective and (J, A, F) is 0-good, where J is an ideal on
k, A€ Jt and F:kx k—2. Then thereis B € J" N P(A) such that F is constantly 0 on [B]?.

LEMMA 6.3. Suppose that (J, A, F) is not O-good, where J isanidealon k, A€ JT and F : kxKxk—2.
Then :

(i) Thereis B C A such that ot.(B) =w+1 and F is identically 1 on [B]2.

(ii) Suppose that a; >k and 0 is an uncountable cardinal < k such that k—(k,0)%. Then there
is C C A such that 0.t.(C)=60+1 and F is identically 1 on [C]>.

Proof. The proof is similar to that of Lemma 10.4 below. O

THEOREM 6.4.

(i) mon,(JT—(J*,w+1)%) > non, (weakly selective).

(ii) Suppose that 6 is an infinite cardinal < k such that k—(k,0)?. Then

non,, (JT—(J",0 +1)?) > non, (weakly selective).

Proof. (i) : Baumgartner, Taylor and Wagon [BauTW] showed that J*—(J*,w+1)? for every weakly

selective ideal J on k.

il) : By Lemmas 6.2 and 6.3. O
(ii) : By

Remark. Suppose that x is a successor cardinal and 6 is cardinal > 2 such that xk—(x,6)%. Then
by Theorems 6.1 (i), 6.4 (ii) and 2.2 and Proposition 5.1, 0, = non,(J*—(J*,0+ 1)?).

Remark. It is consistent (see [M2]) that 0 > mnon, (JT—(JT,3)%). We do not know whether this can

be generalized.

THEOREM 6.5. Suppose k is a weakly compact cardinal. Then :

(i) mon,(weak Q-point) > men, (JT—(J T, K)?).

(ii) mnon,(JT—(J")?) = mnon,(JT—(J ", k)?) = non,(weakly selective).

Proof. The result follows from Theorems 2.2 and 6.1 (i) and the following two well-known facts : (1) Every
ideal J on s such that J*—(JT, k)2 is a weak Q-point ; (2) If s is weakly compact, then J+—(J*+)?

for every weakly selective ideal J on &k such that a; > k. O

10
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7. non,.(JT—[J1]?)

In this section we consider the cardinal non,(J*—[J"]2), where 3 < p <, about which little is known.

We begin with the case where p = 3. The following is due to Blass [Bl].

LEMMA 7.1. Suppose J is an ideal on x such that J*—[JT]3. Then J isa weak P-point.

Proof. Fix Ac Jt and f € 4k with {f7'({y}) :v € k} C J. Define g:[A]>—3 by stipulating

that g(a,f) =0 if and only if f(a) < f(5), and g(a,8) =1 if and only if f(a) = f(B8). There are
BeJ NP(A) and i <3 such that i ¢ ¢g”[B]?. It is simple to see that i # 0, so f is < k-to-one on
B. O

The following is proved by adapting an argument of Baumgartner and Taylor [BauT].

LEMMA 7.2. Suppose J is an ideal on  such that J*—[JT)3, and (J, A, F) is 0-good, where
A€ Jt and F :rk x k—2. Then either there exists C € JT N P(A) such that F is constantly 0 on
[C)?, or for every § < K, there exists Q C A such that 0.t.(Q) =9 and F is constantly 1 on [Q]°.

Proof. Select B € JtNP(A) sothat {8 € B: F(a,3) =1} € J for every a € B. By Lemma 7.1, there
exists S € JTNP(B) sothat [{#€S:F(a,f)=1}|<k forevery aw€ S. Define ¢ for £ <k by :
(i) 0o = NS;

(ii) dg41 = the least ¢ < x with the property that ( > § for every § € S such that F(a,5) =1 for
some o € SN ;

(iii) 6 = | J d¢ if ¢ is a limit ordinal > 0.
(<&
Let X be the set of all limit ordinals < k. For n € X, n€w and j <2, set

d} = S0 [Ont2n+jsOntantjt1)-

For j <2, let _ _
D) =u{d;, :n€ X and n € w}.

Select k < 2 so that D" € J*. Notice that F(a,8) =0 if (o, ) € [D*]* and {a,8} € df,, for all
neX and n€w.

Define h : [D¥]?—3 by stipulating that h(a,3) = 0 if and only if {a, 3} € df , forall n € X and

n € w, and h(a,B) =1 if and only if F(a,8) = 1. There are W € J* N P(D*) and i < 3 so that
i ¢ h"[W]2. Clearly, i #0. If i =1, F is identically 0 on [W]?. Now assume i =2. Let Z be the set
of all (n,m) € X xw such that W N d,’;m = ¢. Suppose that there is v < x such that o.t.(WnN dfyn) <~
for every (n,n) € Z. Then there exists C' € J* N P(W) such that |CNd,,|=1 forany (n,n) € Z.
Clearly, F takes the constant value 0 on [T]2. O

PROPOSITION 7.3. Suppose 0 € (2,k) is a cardinal such that r—(r,0)?. Then

non, (J"—[J"]3) < non,(J"T—(J",0+1)%).

Proof. By Theorem 2.2 and Lemmas 6.3, 7.1 and 7.2. O

Let us now consider the partition relation J*—[J*]2. We begin with the following observation.

11
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PROPOSITION 7.4. Suppose k Is inaccessible. Then there is an ideal J on &k such that (a)
Jt—4[JT)2, (b) J is not a weak semi-Q-point, (c) @y > K, and (d) J*—(JT,a)? for every a < k.

Proof. Let < p,:a < k> be the increasing enumeration of all strong limit infinite cardinals < k. let
Z be the set of all regular infinite cardinals < k. For u € Z, set v, = (p,)*". Then v,— [VN]?,“ by

a result of Todorcevic [Tol]. On the other hand, by a result of Erdés and Rado (see [EHMAR], Corollary
17.5), v,—(v,,7)? for every infinite cardinal 7 < p. Pick pairwise disjoint A, for pu € Z so that

|A,|=v, forany pe€Z, and U A, =~k. Let J bethe set of all B C s such that
nezZ

[{peZ:|BNnA,|=v,}I< k.

It is simple to see that J is an ideal on «.
For p € Z, pick g, : [A,]*—w, sothat g/[B]*> =wv, forevery BC A, with |B|=wv,. Let G: [s]*—k

be such that U gu € G. Then clearly G”[C])?> =k forany C € JT.

neZ
Define f € "k by stipulating that f~!'({u}) = 4, for every u € Z. Clearly, there isno S € JT so that
SN f~1({a}|<|a] forall a < k. Hence J is not a weak semi-Q-point.

Let us next show that a; > x. Thus suppose that B, € J* for a < k, and B, N Bs € J whenever
0 < a < k. Select a strictly increasing function k:x—Z so that

|(Ba — (| B#)) N Ak(a) |= v
B<a

for any a < k. Set

T=J(Ba— (| Bs)) N Akiw))-

a<k B<a

Then T € J* and moreover |T N B,|< Kk for every a < k.

It remains to prove (d). Thus fix A € J* and F : Kk x k—2. Suppose that there is 1 < x such that

for every Q@ C A with o0.t.(Q) = n, F is not constantly 1 on [Q]%. Since by Theorem 17.1 of [EHM4R]
k—s(k,a)? for every a < k, it follows from Lemma 6.3 that (J, A, F) is 0-good. Select D € J* N P(A)

sothat {8 € D: F(a,B) =1} € J for every a € D. Define D, for v < k and a strictly increasing
function h:k—Z so that

(0) D,=D-(J |J {BeD:F(a,B)=1});

<y QGDgﬁAh((;)
(1) | Dy NV An(o) 1= Vi)
For ~ € (|n|*, k), select X, C DyN Ay sothat |X,|=uwy) and F is constantly 0 on [X,]%. Set

Y = U X.,. Then clearly Y € J* N P(A). Moreover, F takes the constant value 0 on [Y]2. O
In|t<vy<w

Remark. Jt—(J* k)% does not necessarily imply that JT—[J"]2. This follows from the following

two facts : (0) If s is weakly compact, then there exists a normal ideal J on  such that Jt—(JT K)?

([Baul], [Bau2]) ; (1) Assuming V = L, k is completely ineffable if and only if there is a normal ideal J
on k such that JT—[JT)2 ([M4]).

Recall that for S C &, Q5 (S) means that there are s, € Po+(a) for a €S such that for every A C k,
there exists a closed unbounded subset C' of x with the property that AN« € s, for every a € C'NS.

PROPOSITION 7.5.- Suppose that (%(S) holds for some stationary subset S of k. Then 0, >

non, (J*—[JT]?) and 0, > mon,(JT—[J1]2).

Proof. By a result of [M4], the hypothesis implies that NS —/ [NST]2. O

12
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Remark. It is shown in [S] that if (a) & is a successor cardinal > wy with 2<% = k, and (b) setting
k=vT, uT <v for every infinite cardinal p < v, where 7=y if cf(r) =w and 7 =Ry otherwise,
then there is a stationary subset S of k such that (%(S) holds.

Remark. We do not know whether it is consistent that the conclusion of Proposition 7.5 fails. Results of
Section 15 (below) imply that B
non, (J*—[J?) < (0,)~"

if k is a limit cardinal such that 2<% = k.

8. 0",
We now start our study of combinatorial properties of ideals on P, (A). The aim of this section is to present
a two-cardinal version of Theorem 2.2.

Definition.  0;, is the least cardinality of any F C *(P.()\)) with the property that for every
g € "(Ps())), thereis f € F such that g(a) C f(a) for all «a € k.

Remark. It is shown in [MPéS1] that 0\ = 0, - u(k™, ).

Definition. Given an ideal H on P,(\), MZ%" is the set of all @ C H* such that (i) |Q[> &, (ii)
ANB e H forall A,B e Q with A# B, and (iii) for every C € HT, thereis A € Q with ANC € HT.

ay is the least cardinality of any member of MIZ{H if MIZ{” # ¢, and 20T otherwise.

The following is proved as Proposition 11.2 of [MP2].

PROPOSITION 8.1. Given a k-normal ideal H on P,()\), the following are equivalent :
(i) g = K.
(ii) sat(H) > k.
COROLLARY 8.2. Let A€ (NSf )" and set H = NSf \ | A. Then 0y = k.
Proof. The result follows from Proposition 8.1 since sat(H) > x by a result of Abe [A]. O

The following is proved as Proposition 11.1 (ii) of [MP2].

PROPOSITION 8.3. Given an ideal H on P,()), the following are equivalent :

(i) Ay =K.
(ii) There exist A, € H" for a < k such that (a) A, C A whenever § < a < &, and (b) for every
C € HT, there is a < k such that C — A, € H™.

Definition. An ideal H on P,()\) is a weak m-point if given f € "H and A € HT, there is
B e Ht N P(A) such that BN f(a) € I\ for every a € k.

THEOREM 8.4. Let H be an ideal on P.(\) such that cof(H) <0 ,. Then ay >r and H isa
weak m-point.

Proof. Let A, € H* for o < k be such that A, C Ag for all 3 < a. Select X C H so that | X |= cof (H)
and H = U P(B). For B € X, define fg € *(P,()\)) so that fp(«) € A, — B. There is g € ®(P.()\)) such
BeX

13
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that {a < Kk : g(a) € fe(a)} # ¢ for every B € X. Set C = U{a € A, :g(a) Za}. Then C € HT, and

aEkR
moreover C — A, € I, for any a < k.

Definition. 5:)\ is the least cardinality of any X C "(P,()\)) with the property that for every

g € "(P:(N)), thereis z € P,(X) such that g(a) C U f(a) for every a < k.
fex

Remark. It is shown in [MRoS]| that 6';/\ =0, -cov(\, kT, k1, k), where cov(\,xt,kT, k) denotes the
least cardinality of any X C P.+(A) such that for every b € P+(A), thereis z € P,(X) with b C Uz.

Remark. It is immediate that I, x is a weak m-point. On the other hand a;_, > x does not necessarily
hold. In fact if ¢f(A) # k and 6:0_ < X for every cardinal o € [k, A), then a; , =& ([M6]).

LEMMA 8.5. Suppose that H is an ideal on P,(\) with ag = k. Then there is an ideal K on P.(\)
such that (a) K is not a weak m-point, (b) cof(K) < cof(H), and (c) cof(K) < cof(H).

Proof. Select A, € H' for a <k so that (o) A, C Ag whenever 3 < a < K, and (8) forany C € HT,
thereis a <k with C— A, € HT. Let K be the set of all B C P.(\) such that BN A, € H for some
a < k. It is simple to check that K is as desired. O

THEOREM 8.6.
(i) Thereis anideal H on P,(\) such that (a) g =k, (b) cof(H) =0y 5, and (c) cof(H) < 6:)\
(ii) There is an ideal K on P,(\) such that (a) K is not a weak w-point, (b) cof(K) =0y ,, and
(c) cof (K) <0
Proof. (i): Set H = NSf,. Then ay =r by Corollary 8.2. Moreover, cof(H) =0, , ([MPéS1]) and
cof (H) =0, , ([MRoS)).
(ii) : By (i), Lemma 8.5 and Theorem 8.4. O

Remark. Theorem 8.6 is not optimal, even under GCH. In fact, suppose that the GCH holds, A = o™,
where o is a cardinal of cofinality < &, and & is not the successor of a cardinal of cofinality < cf(c). Then

5:7>\ = A ([MRoS]). Moreover, there is A € (NSf ,)* such that H(NS:)\ | A) = o (]MPéS2]). Hence there
is by Corollary 8.2 an ideal H on P;(\) (namely H = NSF , | A) such that cof(H) < 6:)\ and Ay = K,
and by Lemma 8.5 an ideal K on P.()\) such that cof(K) < EZQ\ and K is not a weak m-point.

9. Weak y-pointness

Definition. An ideal H on P,()\) is a weak x-point if given A € HT and g € ®(P.(})), there is
B e H" N P(A) such that g(U(anN k) Cb for all a,b € B with U(aN k) < U(bN k).

Our primary concern in this section is with the problem of determining when I, is a weak x-point.
We will first give a sufficient condition and then prove that this condition is necessary if x is inaccessible.
The following is proved as Lemma 2.1 in [M2].

THEOREM 9.1. Let H be an ideal on P, ()\) such that cof (H) < cov(M,, ). Then H is a weak x-point.

QUESTION. Is it consistent that 2<% > k and I, .+ is a weak x-point ?

14
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THEOREM 9.2. Suppose that for all A € I;A with A C {a:U(aNk) € a}, thereis B €I, N P(A)

K

such that U(aNk) €b forall a,be B with U(aNk) <U(bNk). Then o < om,(weakly selective) for
every o € K(k, ).

Proof. Suppose that T'C P.(A— k) issuch that |T'NP(a)|< s for every a € P,()\), and J is an ideal
on k£ with cof(J) <|T|. Select Dy € J for d €T so that for every W € J, thereis u € P.(T) — {¢}

with W C U Dy. Now fix G, € J for a < k. Define A C P,(\) by stipulating that a € A if and only
deu
if there is 0 < £ such that (a) § = max(aNk), (b) 0 ¢ U Dy, and (¢) 0 ¢ G, for every a € ané.
deTNP(a)

Let us show that A € I,:)\. Given ¢ € P,()\), pick 6 < k so that 0 ¢ U D, and for every
deTNP(c)
a€cNk,0>a and § ¢ Go. Set e=cU{d}. Then e € A.

By our assumption thereis B € I:,/\QP(A) such that U(ank) € b for all a,b € B with U(aNk) < U(bNk).
Set C'={U(ank):a€ B}. Then C € J". Moreover, £ ¢ G: forall (,£€C with ¢ <¢. 0O

We mention the following partial converse to Theorem 9.2.

PROPOSITION 9.3. Suppose that 2<" = k and H is an ideal on P,()\) such that cof(H) <

non, (weakly selective). Then for all f € "x and A € HT, thereis B € HT N P(A) such that

f(Ulank)) Cb forall a,b € B with Ulank) <U(bNk).

Proof. Fix fe€”x and A€ HY. For D C P,(x), set Zp ={a € P,(\):anNk € D}. It is simple to

see that (a) Zp_ (x) = Px(}), (b) Z Zp for ® C P(P.(k)), (¢) Zp € I;» for every D C Py(r) with

|D|=1, and (d) Zp, € Zp for all D,D’ C P,(k) such that D" C D. Hence
K={DCP.r):Zp e H| A}

is a k-complete ideal on Py (k). For C C P.()\), let W¢e be the set of all d € P(x) such that

{a€P;(N):ank=d} CC.
If CeH|A, then Weg € K since Zy, C C. Moreover, if D C P,(k) and Zp C C C P,(A), then

D C We. Hence
cof (K) < cof (H | A) < cof (H).

For d € P.(k), let Sq be the set of all e € P;(k) such that f(Ud) Z e or Ue < Ud. Then Sy € K since
{a € Zg, : f(Ud) U{(Ud) + 1} C a} = ¢.

Select a bijection £ : P.(k)—k. Since cof(K) < non, (weakly selective), there is D € Kt such that
e¢ Sq forall d,e € D such that £(d) < {(e). Set

B=AnZp={acA:anke D}.
Then B € H'. Now fix a,b € B with U(anNk) < U(Nk). Then clearly ¢(aNk)# ¢(bNk). In fact
lank) <L(bNk) (since otherwise aNk ¢ Spny, and therefore U(aNk) > U(bNk)). Hence bNk & Sy,
so f(U(ank)) CbNk. O
Definition. For A C P.()\), let
[A]2 = {(U(aNk),b) :a,b€ Aand U(anNk) <UbNK)}

Remark.
[P.(V)]? = {(a,b) € k x Pe(\) e < U(bNK)}.

K
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Definition. For a,b € P,()\), let a <b justincase a Cb and U(aNk) <U(bNEK).

Definition. For A C P.()\), let
[A]%2 = {(U(aNk),b) :a,b € A and a < b}.

Remark. [P;(\)]% = [P.(\)]2.

THEOREM 9.4. Suppose that & is inaccessible and H is an ideal on P,(\) such that
cof(H) < cov(My,), andlet A€ H'. Then thereis C € Ht N P(A) such that [C]2 =[C]%.

K

Proof. For a <k, set A, ={a € A:U(aNk)=a}. By induction on «a < k, we define ¢ € {¢p} U A,
for k€ *2 as follows. Given k € *2, set

ex = | Jors: B ek ({1})}
and
Zr={a€ A, e Cal.
If Zy # ¢, let ¢ be an arbitrary member of Z;. Otherwise let ¢ = ¢.

Set v =cof(H) and pick Be € H for { <v sothat H = U P(Bg). Let £ <v. For a <k, let Dg
E<v
be the set of all s € (*¥12 such that (i) s(a) =1, and (i) thereis a € A, — B¢ with the property that

(VBeans 1({1})(Vk €P2) ¢ Ca.

Then let D, = U D? and Ug = U Oy . Let us prove that the open set Ug is dense. Thus let v < s
a<k s€D¢

and p €72, Pick a € ( U As) — Be so that
<6<k
(VB ep *({1})(Vk € P2) ¢ Ca.

Set a =U(aNk) and define s € ®tV2 by: sy =p, s(6) =0 if y <6 <a, and s(a)=1. Itis
immediate that s € Dg.

Select f € ﬂ Ue. For each & < v, thereis s; € D¢ such that s¢ C f. Let a¢ < k be such that
E<v
s¢ € D?g. Set T'={a¢:£<v} and define g € *2 so that ¢~ '({1}) =T. For & <wv, set

de = U{C-‘”B 1B € Tﬁ()zg}
and

Ce ={b€ A, : de Cb}.
Finally, let C = U Ct.
E<v
Let us verify that C' is as desired. It is clear that C' C A. Let § <w. Thereis a¢ € Ay, — Be such that
(V8 € ag s '({11)(Vk € P2) o C ag.

Put ke =g [ ag. Then ag € Zy, since s¢(f) = f(B) =1 forevery B € TNag. It follows that cx, € Zy,.
It is immediate that Zj, = C¢. Thus we have shown that (a) C¢ — B # ¢ for every & < v, and (b)
Cgtae € Ce for every ¢ <wv. It follows from (a) that C'€ HT, and from (b) that [C]2 =[C]% since given

§,¢ <v with as < a¢, we have ¢y, C b for every b € Cg. O

QUESTION. Is the assumption that k is inaccessible necessary in the statement of Theorem 9.4 7

Remark. Suppose & is inaccessible. Then by Theorems 9.1, 9.2, 9.4, 5.4 and 4.7, I, is a weak x-point
if and only if A<" < cov(M,,;) if and only if {C:[C]? = [C]%} is dense in (I,i)\, Q).
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10. H+ 55 (H*, a)?

Definition. Let H be an ideal on P,(\) and « an ordinal. H*-"5(H' a)? means that given
F:[P;(N)]2—2 and A € H*, thereis B C A such that either B € H* and F is identically 0 on
[B]2 or (B,<) has order type a and F is identically 1 on [B]?

K K*

In this section we show that H*-5(HT,w+1)? for every ideal H on P.(\) with cof(H) < cov(M, ).

Definition. Suppose that H is an ideal on P;(\),A € H" and F : Kk x P;(\)—2. Then (H, A, F) is
0-good if there is D € HT N P(A) such that {b€ D: F(U(aNk),b)=1} € H for any a € D.

The following is straightforward.

LEMMA 10.1. Suppose that (H,A,F) is O-good, where H is an ideal on P,()\) which is both a weak
m-point and a weak x-point, A€ HT and F :k x P,(\)—2. Then F is identically 0 on [C]2 for some

C € H* N P(A).

Definition. Given an ideal H on P.(\) and B € HT, let Mg,B be the set of all @ C HtNP(B) such
that (i) any two distinct members of @ are disjoint, and (ii) for every A € H* N P(B), thereis C € Q
with ANC e HT.

LEMMA 10.2. Suppose that (H,A,F) is not 0-good, where H is an ideal on P.(\), A € HY and
F:kx Pg(\)—2, and let B € H* N P(A). Then there exist Qp € Mg’B and ¢p:Qp— B such that

(i) (D) < b and F(U(pp(D)NkK),b) =1 whenever b€ D € Qp, and (ii) U(pp(D)Nk) # U(pp(D')Nk)
for any two distinct members D and D’ of Qp.

Proof. Set T = {U(aNk):a € B} and define ¢ : T x (H™ N P(B)) — P(B) by ¥(a,C)={be C:
F(a,b) = 1}. Now using induction, define n <k and as € T and Bs € HT N P(B) for § <n so that :

0 I d<n B-(|JB)eHT,
£<o

as = least a € T such that ¢ (o, B — (U Be)) e HT
£<o

and Bs = ¢ (as, B U BE
£<6

(1) I n<k B—(JB)eH
£<n

Notice that if v < d <n, then

Y(as, B UBf )) € ¥(as, B UBC

£<o (<o

and consequently o, < as. Infact o, <as as Y(a,, B U Be)) (since (B — U Be))NB,=¢
£<6 £<6
and B, ={be B~ (| B): Flay,b) =1}).
¢<v
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We claim that {Bs:d < n} € Mg,B. Suppose otherwise. Then there exists F € HT N P(B) such that
ENB: € H for every £ <mn. Since

E—(JBe) e H nP(B - (| Be)
£<6 £<6

for every 0 < k, we must have 1= k. Set
B = least a € T such that (o, E) € HY.

Then for each 0 < &,

Y(B,E)— (| Be) e HF n P(y(B, B — (| ] Be)))

£<6 £<9o

and therefore 8 > ag, which is a contradiction.
For each § <1, pick s5 € B so that U(ss Nk) = as, and put
S(;:{bEB(;:S(sU(O{(s-‘rQ)gb}.

Finally, set Qp = {Ss:d <n} and define pp: Qp—B by pp(Ss) = ss. O

LEMMA 10.3. Suppose that H is anidealon P.()\) and A € H*. Suppose further that C € HTNP(A)
and Qg € Mg,A for o < B, where [ is a limit ordinal with 0 < 8 < k. Then

{acC:(vhe [[Qa) a¢ () hla)}eH.

a<f a<p

Proof. It suffices to observe that for each a € ﬂ (CN(UQ,)), thereis h € H Qo such that
a<f a<f

a € ﬂ h(a). O

a<f

LEMMA 10.4. Suppose that (H,A,F) is not 0-good, where H is an ideal on P.(\), A € HT and
F : kX P;(\)—2. Then :

(i) Thereis C C A such that (C,<) has order type w+1 and F is identically 1 on [C]?.

(ii) Suppose that ay > k and 6 is uncountable cardinal < k such that k—(k,0)%. Then there
is C C A such that (C,=<) has order type 0 +1 and F is identically 1 on [C]2.

K

Proof. We prove (ii) and leave the proof of (i) to the reader. By Corollary 19.7 in [EHM4R], we have that
u” < k whenever p and 7 are cardinals such that 6 < <k and 0 < 7 < 6. Using this and Lemmas

10.2 and 10.3, define Rg,Qp € {W € ngA W< k} and ¢g:Qs—A for <6 by:
0)  Ro={A};

1 Q= @s;

BeRg
(2) Rgy1=Qp ;

(3) Rg=H"nN{ ﬂ ha):h e H Qo) if B is alimit ordinal >0 ;
a<pf a<f
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(4) ¥p = U ¥B-

B€ERg

Select b e m (UQg). There must be k € H @p such that be m k(B). Then
B<o B<O B<o

C ={pp(k(B)) : B <0} U{b}

is as desired. O

THEOREM 10.5. Suppose @ is an infinite cardinal < k such that k—(k,0)?. Then
HY 55 (H*,0+1)? for every ideal H on P.(\) such that cof(H) < cov(M, ).

Proof. Let H be an ideal on P,(\) such that cof(H) < cov(My, ). Then H is a weak x-point by
Theorem 9.1. Moreover, H is a weak 7-point and @z > & by Theorem 8.4 since cov(M, ) <0y, by

Proposition 4.1. Hence, H+*-5(H*,0+1)?> by Lemmas 10.1 and 10.4. O

11. H+%> (H*,0)?
Definition. For A C P.()\), let
[A]2 . = {(U(ank),U(bNk)):a,be Aand U(ank) <UbNK)}

Remark. [P,(\)]2,. = [k]%

K,K

Definition. Let H be an ideal on P.()\) and « an ordinal. HT- (H*, a)?> means that given
F:[P.(\)2,—2 and A€ H", thereis B C A such that either B € H" and F is identically 0 on
[B)? .., or (B,=<) has order type o and F is identically 1 on [B]?

K,K? K,K*

We will show that H+- (Ht,w 4 1)% for every ideal H on P,.()\) such that cof(H) < non,(weakly

selective).

Definition. For an ideal H on P,(A\), Ju = {BCk:Up € H}, where
Up ={a€ P;(\) : UlaNk) € B}.
LEMMA 11.1. Let H beanideal on P,(\). Then Jg isan ideal on k. Moreover, cof(Ju) < cof(H).

Proof. 1t is simple to see that (a) Ux = Pi(A), (b) U g3 € U Up for B C P(k), (c) Uc C Up if
BB
CCBCK, and (d) Ug € I, for every B C k with |B|=1. The first assertion immediately follows.
For C C P,(A), let Yo be the set of all § € x such that
{a € P,(\):U(ank) =140} CC.

If C € H, then Yo € Jy since Uy, C C. Moreover if B C k and Up C C C P,(\), then B C Ye.
Hence cof(Ju) < cof(H). O
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Remark. Let H be anideal on P.(A). Then
{U(aﬂ H) ra € A} € (JH|A)+
for every A€ HT.

The following is readily checked.

LEMMA 11.2. Given an ideal H on P.()), the following are equivalent :
(i) Jg is alocal Q-point.
(ii) For every g € "k, thereis B € HT such that g(U(aNk)) <U(bNk) for all a,b € B with
UleNk) <UbNE).

Suppose k is a limit cardinal. If % < non,(weak @Q-point), then by Lemma 11.1 Jr .1a is alocal

Q-point for every A € I::’_#. The following shows that this implication can be reversed.

PROPOSITION 11.3. Suppose that r is a limit cardinal and Jj, ,|a is a local Q-point for every
Ae I,:)\. Then o < non,(weak Q-point) for every o € K(k, \).

Proof. Suppose that J isanidealon x and T C P,(\A—k) issuch that cof(J) <|T| and |TNP(a)|< &
for every a € P,;()\). Select By € J for d €T so that for every D € J, thereis u € P,(T) — {¢} with

D C U By. Let A Dbe the set of all a € P.(\) such that U(aNk) ¢ By for every d € TN P(a— k).
deu
It is simple to see that A € I;x Now fix ¢ € k. By Lemma 11.2, there is C € (I, | A)* such that
g(U(ank)) <UbNEk) forall a,be C with UlaNk) <UbNEK). Set
D={U(ank):aecCnNA}

Then D € J*. Moreover g(a) < 3 forall o,8€ D with a <. Hence J is a local Q-point. O

THEOREM 11.4. Suppose that 6 is an infinite cardinal < k such that rk—(k,0)%, and H is an
ideal on P,()\) with cof(H) < non,(weakly selective). Then H*-"(HT 60+ 1)2.

K

Proof. Fix G:xx k—2 and A€ H'. Define F:x x P.(A\)—2by F(a,b) = G(a,U(bNk)).

First suppose (H, A, F) is 0-good. Pick D € HT N P(A) so that
{beD:FU(ank),b)=1}e H
forany a € D. Set B, ={6 <r:G(a,0) =1} for a <k. Then Byunw) € Jup for every a € D since
DNUp,ny ={b€D:GUaNk),UbNk)) =1} ={be D: F(U(aNk),b) =1}.
By Lemma 11.1 cof(Jy|p) < non,(weak P-point) so there is G € (Jyp)T such that |G N Byne < K
for every a € D. Notice that DNUg € H*. Select g € "k so that U(bNk) ¢ By(ank)y forall a,b e DNUg

such that g(U(aNk)) <U(bNkK). By Lemma 11.1

cof(Ju|(pnug)) < non,(weak Q-point)
and hence by Lemma 11.2 there is R € (H | (D NUg))" such that g(U(anNk)) < U(bNk) for all

a,be R with U(ank) <U(bNk). Then RNDNUg € H" NP(A) and moreover F is identically 0 on
[RNDNUgZ .
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Finally, suppose (H, A, F') is not 0-good. Since @y > k by Theorems 2.2 and 8.4, there is by Lemma 10.4
C C A such that (C,<) has order type 6 +1 and F is identically 1 on [C]2. It is immediate that G

K

is constantly 1 on [C]? .. a

K,k

Remark. Suppose &~ 1is a successor cardinal. Then by Theorem 11.4 s+ < 0. implies that
I+ +i>( 6 + 1)* for every cardinal 6 > 2 such that r—(k,0)%. Conversely, it will be shown

Kkt
K

in the next section that IJr +—>(I .+>3)% implies that ¥ < D,.

12. H"‘%) (H*;)?

Definition. Given an ideal H on P,(A\) and an ordinal o, HT— (H *;a)? means that for all
F:[P.(\)]2,.,—2 and A€ H", thereis B C A such that either B € H+ and F is identically 0 on
[BI

K,K?

or {U(aNk):a€ B} hasorder type a and F is identically 1 on [B]?

K,K"

Remark. HT-5(H",a)? = HT-5(H,a)? = HT-5(HY;a)? = s— (K, )

K K

We will prove that I, —>(IF ,;@)? if and only if £* < mnon,(Jt—(J*,a)?).

THEOREM 12.1. Suppose that 3

< a < k and H is an ideal on P.()\) such that
cof(H) < non, (J*—(J*,a)?). Then H+—>( H*t;0)2.

Proof. By Lemma 11.1, (Jyja)"—((Juja)t,a)? for every A € HT. The desired conclusion easily
follows. O

THEOREM 12.2. Suppose that 3 < o < k and I:")\Q(I;A;a)? Then o < non,(Jt—(JT,a)?)
for every o € K(k, ).
Proof. The proof is an easy modification of that of Proposition 11.3. O

Remark. Suppose that x is inaccessible and 3 < a < k. Then by Theorems 12.1 and 12.2,
I+/\i>(I+>\; a)? if and only if A<* < non,(JT—(JT,a)?).

Let us finally observe that for 3 < a < k, there always exists an ideal H on P,(\) of the least possible
cofinality such that H* - (H*;a)?

PROPOSITION 12.3. Given 3 < o <k, thereis an ideal H on P.(\) such that (a) H* -5 (Ht; )2,
(b) cof(H) = u(k,\) -non,(J*—(J*,a)?), and (c) cof(H) < X -non,(Jt—(JT,a)?).

Proof. Argue as for Lemma 5.1 of [M2]. O
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13. H+5 (Ht)?

Definition. Given an ideal H on P,(\), H*"5(HT)? (respectively, HT—3(H™')?) means that for all

F : [P.(\)]2—2 (respectively, F:[P.(\)]Z.,—2) and A€ H™T, thereis B € H* N P(A) such that F
)

2
K

is constant on [B]2 (respectively, [B]i,n .

THEOREM 13.1. Suppose r is weakly compact. Then HT-"5(H*)? for every ideal H on P.(\) such
that cof (H) < cov(M,; ).

Proof. Suppose that H is an ideal on P,(A\) with cof(H) < cov(My ), F : £ X Po(\)—2 and A€ HT.

Then cof(H) < 0y, , by Proposition 4.1 and therefore by a result of [M5] there are B € HT N P(A) and
1 < 2 such that
{be B: F(U(aNk),b) #i} € I x

for every a € B. Since H is a weak y-point by Theorem 9.1, there is C' € HT N P(B) such that F
takes the constant value i on [C]2. O

Remark. It follows from Theorem 6.5 (ii) and Theorem 15.1 (below) that if x is weakly compact, then
HT-55(H')? for every ideal H on P.(\) such that cof(H) < non,(weakly selective).

K

COROLLARY 13.2. The following are equivalent :
(i) ~ is weakly compact and A<" < cov(My ).
(i) 17211,
(iii) I:A%(I:,,\;H)Q-
Proof. (i) — (ii) : By Theorem 13.1.

(ii) — (iii) : Trivial.
(iii) — (i) : By Theorems 12.2, 6.5 (i), 6.1 (iii), 5.4 and 4.7. O

+_5, [gH2
14. H*— [H*]
Definition. Given a cardinal p with 2 < p <A<* and anideal H on P.(\), Ht—>[H"]2 means that
for all F:[P.(\)]2—p and A€ HT, thereis B € H* N P(A) such that F”[B]% # p.
THEOREM 14.1. Suppose that &k is a limit cardinal and H is an ideal on P,(\) such that
cof(H) < cov(M,,;). Then HT-[H]?, .
Proof. Fix F :rkx Pi(A\)—~xt and A€ H. Since cof(H) < 0, by Proposition 4.1, there are

Be HtNP(A) and £ € k™ suchthat {be€ B: F(U(aNk),b) =&} € I, for every a € B ([M5]). Now
H is a weak x-point by Theorem 9.1 and so & ¢ F”[C]2 for some C € H N P(B). O

Let us now show that I, =% [I7\]3 if A >0,. We will need some definitions.

Definition. Given f € H(K —a), we define f € "k by stipulating that

ack
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(i) fF(E+1) = f(fE)+1;

(iii) £(¢) = |J F(¢) if & is a limit ordinal > 0.
¢<¢

Remark. f is a strictly increasing function.

Remark. If g € "k is a strictly increasing function such that g(a) < f(a) for all a < k, then

9(J(€) € [J(€), (¢ +1)) for every &< k.

Definition. Given f € H(Ii — ) and a cardinal 7 € (0,x), we define ¢y : f(r)—7 by stipulating

ack

that ¢y, takes the constant value { on [f(f), f(E+1)).

Definition. Suppose that T C P.(\ — k) is such that (a) |T|> 0., and (b) |T N P(a)|< s for every
a € P,(A).
Let 7 : T—"k be such that given g € "k, thereis u € Py(T) — {¢} such that

g(a) < |J (wr(@)(a)

deu

for all a < k.
For e € P,(A— k), let 7p. =|TNP(e)| and select a bijection kp. : 7p.—T N P(e).
Also, define fr. € *k by

fre(a) =max(a, ) (¥r(d)(a)).

deTNP(e)

Finally, let Ar be the set of all a € P,,(\) such that (i) TNP(a—k) # ¢, and (ii) U(aNk) > fT,a,n(TT@,H).

Remark. Ar € I:,x
THEOREM 14.2. Suppose that p € K(x,\) and p >0,. Then I::)\% [I;A]%.

Proof. Select T C P.(A— k) sothat |T|=p and |TNP(a)|< r for every a € P.(\). We define a
partial function F from k x Ar to T by stipulating that

F(ﬂa a) = kTya_R(CfT,a—K,7TT‘a—m(/B))
if a€ Ar and B8 < fT,a_R(TT,a_H).

Now fix B € I,:)\ NP(Ar) and z €T. Let g € "k be the increasing enumeration of the elements of the

set {U(bNkK):be€ B}. Select u € P,(T)—{¢} sothat g(a) < U (¥r(d))(a) for all a < k. Now pick
deu
a € B so that U (Uu) C a. Notice that g(a) < froa—x(a) for every a € k. Let € € 774, be such

that k7q—rx(§) =2. Then

fT,a—m(g) S g(fT,a—m(g)) < fNT,a—n(f + 1) S fT,a—n(TT,a—n) S U(a N K,).

Moreover,

F(g(fra—n(€)),a) = kpa_n(€) = z.

since

Cfra—rn,Tra x (g(fT,a—n(f))) =
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15. H+%> [H]?

Definition. Given a cardinal p € [2,x] and an ideal H on P.(\), HT—=[H]2 means that for all
F:[P;(\)]2,.—p and Ae HT, thereis B e H* N P(A) such that F”[B]2 # p.

Remark. s (k]2 = H" =5 [HY]2 = HT - [HF]2.

K

The following result shows that II:HJr?[I;HJr]?) if and only if x* < mnon,(J*—[JT]2).

THEOREM 15.1. Let p be a cardinal with 2 < p < k. Then :
(i) HT—[HT])2 for every ideal H on P.(\) such that cof(H) < non,(Jt—[JT]2).
K

(i) If 17,512

2, then o <mon,(Jt—[JT]2) for every o€ K(k,\).

Proof. (i) : Use Lemma 11.1.
(ii) : Argue as for Proposition 11.3. O

if and only if A<" < non,(J*—[JT]2).

. . . . + K + 2
Remark. Thus assuming & is inaccessible, IR,XT}[I&,)\] 5

Finally, we show that if A\ >0, and & is a limit cardinal such that 2<% = x, then I;A% [IIA]2

P

THEOREM 15.2. Suppose that (a) s is a limit cardinal such that 2<% = k, and (b) either A\ > 0,, or
0. € K(k,A). Then I[,—h[I}]2.

Proof. Select T C P.(\—k) sothat |T|=X-0, and |TNP(a)|<r forevery a € Py(\). Also, select

X k— U 7k sothat |x71({z})|=k forevery z € U k. Now let A be the set of all a € Ar such

Y<K Y<K
that

X(U(a n H)) = Cfra—n,TTa—r"
Notice that A € I:,A' We define a partial function F' from k x k to k by stipulating that F(d,n) =
(x(m)(6) if n€r and & € dom(x(n)).

Now fix B€I7,NP(A) and £ € k. Let g€ "k be the increasing enumeration of the elements of the set

{U(bNk):be B}. Select u € P,(T)—{¢} sothat g(a) < U (¥r(d))(a) for all a < k. Pick a € B so

deu
that Uu Ca and |TNP(a)|>¢. Then

9(fra—x(&) <U(anr)

and
§=Ctrurirra—n(9(f1.a=x(8))) = (X(U(a N k) (9(f1,0-x(£))) = F(g(fr,a—r(§)), U(a N K)).
O
Remark. Theorems 14.2; 15.1 and 15.2 (as well as e.g. Theorems 9.2, 9.4, 12.1 and 12.2, Propositions 9.3
and 11.3 and Corollary 13.2) are also true for x = w. This gives (a) 0 > non, (J*—[J*]2), and (b) if
A >0, then I;)\% [I:)\]i and I:,A% [I;)\]i
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