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2 SAHARON SHELAH

Annotated Content

§1 Constructing ℵk(∗)+1-free Abelian group

[We introduce “x is a combinatorial k(∗)-parameter”. We also give a short
cut for getting only “there is a non-Whitehead ℵk(∗)+1-free non-free abelian
group” (this is from 1.6 on). This is similar to [Sh 771, §5], so proofs are
put in an appendix, except 1.14, note that 1.14(3) really belongs to §3.]

§2 Black boxes

[We prove that we have black boxes in this context, see 2.1; it is based on
the simple black box. Now 2.3 belongs to the short cut.]

§3 Constructing abelian groups from combinatorial parameter

[For x ∈ Kcb
k(∗)+1 we define a class Gx of abelian groups constructed from it

and a black box. We prove they are all ℵk(∗)+1-free of cardinality |Γ|x + ℵ0

and some G ∈ Gx satisfies Hom(G,Z) = {0}.]

§4 Appendix 1

[We give adaptation of the proofs from [Sh 771, §5] with the relevant
changes.]
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ℵn-FREE ABELIAN GROUP, ETC. 3

§0 Introduction

For regular θ = ℵn we look for a θ-free abelian group G with Hom(G,Z) = {0}.
We first construct G and a pure subgroup Zz ⊆ G which is not a direct summand.
If instead “not direct product” we ask “not free” so naturally of cardinality θ, we
know much: see [EM02].

We can ask further questions on abelian groups, their endormorphism rings,
similarly on modules; naturally questions whose answer is known when we demand
ℵ1-free instead ℵn-free; see [GbTl06] . But we feel those two cases can serve as
a base for significant number of such problems (or we can immitate the proofs).
Also these cases are reasonable for sorting out the set theoretical situation. Why
not θ = ℵω and higher cardinals? (there are more reasonable cardinals for which
such results are not excluded), we do not fully know: note that also in previous
questions historically this was harder.

Note that there is such an abelian group of cardinality ℵ1, by [Sh:98, §4] and see
more in Göbel-Shelah-Struüngman [GShS 785]. However, if MA then ℵ2 < 2ℵ0 ⇒
any ℵ2-free abelian group of cardinality < 2ℵ0 fail the question.

The groups we construct are in a sense complete, like ωZ. They are close to
the ones from [Sh 771, §5] but there S = {0, 1} as there we are interested in Borel
abelian groups. See earlier [Sh 161], see representations of [Sh 161] in [Sh 523, §3],
[EM02].

However we still like to have θ = ℵω, i.e. ℵω-free abelian groups. Concerning
this we continue in [Sh 898].

We thank Ester Sternfield and Rüdiger Göbel for corrections.

We shall use freely the well known theorem saying

0.1 Theorem. A subgroup of a free abelian group is a free abelian group.

0.2 Definition. 1) Pr(λ, κ): means that for some Ḡ we have:

(a) Ḡ = 〈Gα : α ≤ κ+ 1〉
(b) Ḡ is an increasing continuous sequence of free abelian groups

(c) |Gκ+1| ≤ λ,

(d) Gκ+1/Gα is free for α < κ,

(e) G0 = {0}
(f) Gβ/Gα is free if α ≤ β ≤ κ
(g) some h ∈ Hom(Gκ;Z) cannot be extended to ĥ ∈ Hom(Gκ+1,Z).

2) We let Pr−(λ, θ, κ) be defined as above, only replacing “Gκ+1/Gα is free for
α < κ” by “Gκ+1/Gκ is θ-free.
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4 SAHARON SHELAH

§1 Constructing ℵk(∗)+1-free abelian groups

1.1 Definition. 1) We say x is a combinatorial parameter if x = (k, S,Λ) =
(kx, Sx,Λx) and they satisfy clauses (a)-(c)

(a) k < ω

(b) S is a set (in [Sh 771], S = {0, 1}),
(c) Λ ⊆ k+1(ωS) and for simplicity |Λ| ≥ ℵ0 if not said otherwise.

1A) We say x is an abelian group k-parameter when x = (k, S,Λ,a) such that
(a),(b),(c) from part (1) and:

(d) a is a function from Λ× ω to Z.

2) Let x = (kx, Sx,Λx) or x = (kx, Sx,Λx,ax). A parameter is a k-parameter for
some k andKcb

k(∗)/K
gr
k(∗) is the class of combinatorial/abelian group k(∗)-parameters.

3) We may write ax
η̄,n instead ax(η, n). Let wk,m = w(k,m) = {` ≤ k : ` 6= m}.

4) We say x is full when Λx = k(∗)(ωS).
5) If Λ ⊆ Λx let x � Λ be (kx, Sx,Λ) or (kx, Sx,Λ,a � (Λ×ω)) as suitable. We may
write x = (y,a) if a = ax,y = (kx, Sx,Λx).

1.2 Convention. If x is clear from the context we may write k or k(∗), S,Λ,a instead
of kx, Ss,Λx,ax.

A variant of the above is

1.3 Definition. 1) For S̄ = 〈Sm : m ≤ k〉 we define when x is a S̄-parameter:
η̄ ∈ Λx ∧m ≤ kx ⇒ ηm ∈ ω(Sm).
2) We say ᾱ is a (x, χ̄)-black box or ᾱ witness Qr(x, χ̄) when:

(a) χ̄ = 〈χm : m ≤ kx〉
(b) ᾱ = 〈ᾱη̄ : η̄ ∈ Λx〉
(c) ᾱη̄ = 〈αη̄,m,n : m ≤ kx, n < ω〉 and αη̄,m,n < χm

(d) if hm : Λx
m → χm for m ≤ kx then for some η̄ ∈ Λx we have: m ≤ kx ∧ n <

ω ⇒ hm(η̄ � 〈m,n〉) = αη̄,m,n, see clause (a) of Definition 1.4 below on
“η̄ � 〈m,n〉” and Λx

m.
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ℵn-FREE ABELIAN GROUP, ETC. 5

2A) We may replace χ̄ by χ if χ̄ = 〈χ : ` ≤ kx〉. We may replace x by Λx (so say
Qr(Λx, χ̄) or say ᾱ is a (Λ, χ̄)-black box).
3) We say a parameter x is S̄-full or x is a full (S̄, k)-parameter when Λx =∏
m≤k

ω(Sm).

1.4 Definition. For a k(∗)-parameter x and for m ≤ k(∗) let

(a) Λx
m = Λx,m = {η̄ : η̄ = 〈η` : ` ≤ k(∗)〉 and ηm ∈ ω>S and ` ≤ k(∗) ∧ ` 6=

m⇒ η` ∈ ωS and for some η̄′ ∈ Λ we have n < ω, η̄ = η̄′ � 〈m,n〉} where
η̄ = η̄′ � 〈m,n〉 means ηm = η′m � n and ` ≤ k(∗) ∧ ` 6= m⇒ η` = η′`}

(b) Λx
≤k(∗) is ∪{Λx

m : m ≤ k(∗)}
(c) m(η̄) = m if η̄ ∈ Λx

m.

1.5 Definition. 1) We say a combinatorial k(∗)-parameter x is free when there is
a list 〈η̄α : α < α(∗)〉 of Λx such that for every α for some m ≤ k(∗) and some
n < ω we have

(∗) η̄αm � 〈m,n〉 /∈ {ηβm � 〈m,n〉 : β < α}.

2) We say a combinatorial k-parameter x is θ-free when x � Λ = (k, Sx,Λ) is free
for every Λ ⊆ Λx of cardinality < θ.

Remark. 1) We can require in (∗) even (∃∞n)[ηαm(n) /∈ ∪{ηβ` (n′) : ` ≤ k, β <
α, n′ < ω}].

At present this seems an immaterial change.

1.6 Definition. For k(∗) < ω and an abelian group k(∗)-parameter x we define
an abelian group G = Gx as follows: it is generated by {xη̄ : m ≤ k(∗) and η̄ ∈
Λx
m} ∪ {yη̄,n : n < ω and η̄ ∈ Λx} ∪ {z} freely except the equations:

�η̄,n (n!)yη̄,n+1 = yη̄,n + ax
η̄,nz +

∑
{xη̄�<m,n> : m ≤ k(∗)}.

1.7 Explanation. A canonical example of a non-free group is (Q,+). Other examples
are related to it after we divide by something. The y’s here play the role of providing
(hidden) copies of Q. What about x’s? For η̄ ∈ Λ we consider 〈yη̄,n : n < ω〉, as
a candidate to represent (Q,+), k(∗) + 1, “opportunities” to avoid having (Q,+)
as a quotient, say by dividing K by a subgroup generated by some of the x’s.

Paper Sh:883, version 2009-03-05 10. See https://shelah.logic.at/papers/883/ for possible updates.



6 SAHARON SHELAH

This is used to prove Gx is not free even not ℵk(∗)+2-free, which is necessary. But
for each m ≤ k(∗) if 〈xη̄�(m,n) : n < ω〉 are not in K, or at least xη�(m,n) for n
large enough then Q is not represented using 〈yη̄,n : n < ω〉; so we have k(∗) + 1
“opportunities” to avoid having 〈yη̄,n : n < ω〉 represent (Q,+) in the quotient,
one for each infinite cardinal ≤ ℵk(∗). This helps us prove ℵk(∗)-freeness. More
specifically, for each m(∗) ≤ k(∗) if H ⊆ G is the subgroup which is generated by
X = {xη̄�<m,n> : m 6= m(∗) and η̄ ∈ k(∗)+1(ωS) and m ≤ k(∗)}, still in G/H the set
{yη̄,n : n < ω} does not generate a copy of Q, as witnessed by {xη̄�<m(∗),n> : n < ω}.

As a warm up we note:

1.8 Claim. For k(∗) < ω and k(∗)-parameter x the abelian group Gx is an ℵ1-free
abelian group.

Now systematically

1.9 Definition. Let x be a k(∗)-parameter.
1) For U ⊆ ωS let GU = Gx

U be the subgroup of G generated by YU = Y x
U = {z} ∪

{yη̄,n : η̄ ∈ Λ∩k(∗)+1(U) and n < ω}∪{xη̄�<m,n> : m ≤ k(∗) and η̄ ∈ Λ∩(k(∗)+1)(U)

and n < ω}. Let G+
U = Gx,+

U be the divisible hull of GU and G+ = G+
(ωS).

2) For U ⊆ ωS and finite u ⊆ ωS let GU,u be the subgroup1 of G generated by

∪{GU∪(u\{η}) : η ∈ u}; and for η̄ ∈ k(∗)≥U let GU,η̄ be the subgroup of G generated
by ∪{GU∪{ηk:k<`g(η̄) and k 6=`} : ` < `g(η̄)}.
3) For U ⊆ ωS let ΞU = Ξx

U = {the equation �η̄,n : η̄ ∈ Λ ∩ k(∗)+1U and n < ω}.
Let ΞU,u = Ξx

U,u = ∪{ΞU∪(u\{β}) : β ∈ u}.

1.10 Claim. Let x ∈ Kk(∗).

0) If U1 ⊆ U2 ⊆ ωS then G+
U1
⊆ G+

U2
⊆ G+.

1) For any n(∗) < ω, the abelian group G+
U (which is a vector space over Q), has

the basis Y
n(∗)
U := {z} ∪ {yη̄,n(∗) : η̄ ∈ Λ ∩ k(∗)+1(U)} ∪ {xη̄�<m,n> : m ≤ k(∗), η̄ ∈

Λ ∩ k(∗)+1(U) and n < ω}.
2) For U ⊆ ωS the abelian group GU is generated by YU freely (as an abelian group)
except the set ΞU of equations.
3) If m(∗) < ω and Um ⊆ ωS for m < m(∗) then the subgroup GU0 + . . .+GUm(∗)−1

of G is generated by YU0 ∪ YU1 ∪ . . . ∪ YUm(∗)−1
freely (as an abelian group) except

the equations in ΞU0
∪ ΞU1

∪ . . . ∪ ΞUm(∗)−1
.

3A) Moreover G/(GU0
+ . . .+GUm(∗)+1

) is ℵ1-free provided that

~ if η0, . . . , ηk(∗) ∈ ∪{Um : m < m(∗)} are such that

1note that if u = {η} then GU,u = GU
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ℵn-FREE ABELIAN GROUP, ETC. 7

(∀` ≤ k(∗))(∃m < m(∗))[{η0, . . . , ηk(∗)}\{η`} ⊆ Um)

then for some m < m(∗) we have {η0, . . . , ηk(∗)} ⊆ Um.

4) If m(∗) ≤ k(∗) and U` = U\U ′` for ` < m(∗) and 〈U ′` : ` < m(∗)〉 are pairwise
disjoint then ~ holds.
5) GU,u ⊆ GU∪u if U ⊆ ωS and u ⊆ ωS\U is finite; moreover GU,u ⊆pr GU∪u ⊆pr

G.
6) If 〈Uα : α < α(∗)〉 is ⊆-increasing continuous then also 〈GUα : α < α(∗)〉 is
⊆-increasing continuous.
7) If U1 ⊆ U2 ⊆ U ⊆ ωS and u ⊆ ωS\U is finite, |u| < k(∗) and U2\U1 = {η} and
v = u ∪ {η} then (GU,u +GU2∪u)/(GU,u +GU1∪u) is isomorphic to GU1∪v/GU1,v.
8) If U ⊆ ωS and u ⊆ ωS\U has ≤ k(∗) members then (GU,u + Gu)/GU,u is
isomorphic to Gu/G∅,u.

1.11 Discussion: For the reader’s benefit we write what the group Gx is for the case
k(∗) = 0. So, omitting constant indexes and replacing sequences of length one by
the unique entry we get that it is generated by yη,n (for η ∈ ωS, n < ω) and xν (for
ν ∈ ω>S) freely as an abelian group except the equations (n!)yη,n+1 = yη,n + xη�n.
Note that if K is the countable subgroup generated by {xν : ν ∈ ω>2} then G/K
is a divisible group of cardinality continuum hence G is not free. So G is ℵ1-free
but not free.

Now we have the abelian group version of freeness, the positive results in 1.12, 1.13
and the negative results in 1.13.

1.12 The Freeness Claim. Let x ∈ Kk(∗).
1) The abelian group GU∪u/GU,u is free if U ⊆ ωS, u ⊆ ωS\U and |u| ≤ k ≤ k(∗)
and |U | ≤ ℵk(∗)−k.
2) If U ⊆ ωS and |U | ≤ ℵk(∗), then GU is free.

1.13 Claim. 1) If x is a combinatorial k(∗)-parameter then x is ℵk(∗)+1-free.
2) If x is an abelian group k(∗)-parameter and (kx, Sx,Λx) is free, then Gx is free.

Proof. 1) Easily follows by (2).
2) Similar and follows from 3.2 as easily G belongs to G(k(∗),Sx,Λx), see Definition
3.3.
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8 SAHARON SHELAH

1.14 Claim. Assume x ∈ Kcb
k(∗) is full (i.e. Λx = k(∗)+1(ω(Sx))).

1) If U ⊆ ωS and |U | ≥ (|S|+ ℵ0)+(k(∗)+1), the (k(∗) + 1)-th successor of |S|+ ℵ0.
Then Gx

U is not free.
2) If |Sx| ≥ ℵk(∗)+1 then Gx is not free.

3) Assume x ∈ Kcb
k(∗), |S

x
` | + λ` < λ`+1 for ` < k(∗) and |Λx| ≥ λk(∗) and G ∈ Gx

(see Definition 3.3) then G is not free.

Proof. 1) Let ℵα = |S|. Assume toward contradiction that GU is free and let χ
be large enough; for notational simplicity assume |U | = ℵα+k(∗)+1, this is O.K.
as a subgroup of a free abelian group is a free abelian group. We choose N` by
downward induction on ` ≤ k(∗) such that

(a) N` is an elementary submodel2 of (H (χ),∈, <∗χ)

(b) ‖N`‖ = |N` ∩ ℵα+k(∗)| = ℵα+` and {ζ : ζ ≤ ℵα+`} ⊆ N`
(c) 〈xη̄ : η̄ ∈ Λx

≤k(∗)〉, 〈yη̄,n : η̄ ∈ Λx and n < ω〉, U and GU belong to N` and

N`+1, . . . , Nk(∗) ∈ N`.

Let G` = GU ∩N`, a subgroup of GU . Now

(∗)0 GU/(Σ{G` : ` ≤ k(∗)}) is a free (abelian) group
[easy or see [Sh 52], that is:
asGU is free we can prove by induction on k ≤ k(∗)+1 thenG/(Σ{Gk(∗)+1−` :
` < k}) is free, for k = 0 this is the assumption toward contradiction, the
induction step is by Ax VI in [Sh 52] for abelian groups and for k = k(∗)+1
we get the desired conclusion.]

Now

(∗)1 letting U1
` be U for ` = k(∗) + 1 and

k(∗)⋂
m=`

(Nm ∩ U) for ` ≤ k(∗); we have:

U1
` has cardinality ℵα+` for ` ≤ k(∗) + 1

[Why? By downward induction on `. For ` = k(∗) + 1 this holds by an
assumption. For ` = k(∗) this holds by clause (b). For ` < k(∗) this holds

by the choice of N` as the set

k(∗)⋂
m=`+1

(Nm ∩ U) has cardinality ℵα+`+1 ≥ ℵ`

and belong to N` and clause (b) above.]

2H (χ) is {x: the transitive closure of x has cardinality < χ} and <∗χ is a well ordering of

H (χ)
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ℵn-FREE ABELIAN GROUP, ETC. 9

(∗)2 U2
` =: U1

`+1\(N` ∩ U) has cardinality ℵα+`+1 for ` ≤ k(∗)
[Why? As |U1

`+1| = ℵ`+1 > ℵ` = ‖N`‖ ≥ |N` ∩ U |.]

(∗)3 for m < ` ≤ k(∗) the set U3
m,` =: U2

` ∩
`−1⋂
r=m

Nr has cardinality ℵα+m

[Why? By downward induction on m. For m = ` − 1 as U2
` ∈ Nm and

|U2
` | = ℵα+`+1 and clause (b). For m < `− 1 similarly.]

Now for ` = 0 choose η∗` ∈ U2
` , possible by (∗)2 above. Then for ` > 0, ` ≤ k(∗)

choose η∗` ∈ U3
0,`. This is possible by (∗)3. So clearly

(∗)4 η∗` ∈ U and η∗` ∈ Nm ∩ U ⇔ ` 6= m for `,m ≤ k(∗).
[Why? If ` = 0, then by its choice, η∗` ∈ U2

` , hence by the definition of U2
` in

(∗)2 we have η∗` /∈ N`, and η∗` ∈ U1
`+1 hence η∗` ∈ N`+1 ∩ . . . ∩Nk(∗) by (∗)1

so (∗)4 holds for ` = 0. If ` > 0 then by its choice, η∗` ∈ U3
0,` but U3

m,` ⊆ U2
`

by (∗)3 so η∗` ∈ U2
` hence as before η∗` ∈ N`+1 ∩ . . . ∩ Nk(∗) and η∗` /∈ N`.

Also by (∗)3 we have η∗` ∈
`−1⋂
r=0

N` so (∗)4 really holds.]

Let η̄∗ = 〈η∗` : ` ≤ k(∗)〉 and let G′ be the subgroup of GU generated by {xη̄�<m,n> :

m ≤ k(∗) and η̄ ∈ k(∗)+1U and n < ω}∪{yη̄,n : η̄ ∈ k(∗)+1U but η̄ 6= η̄∗ and n < ω}.
Easily G` ⊆ G′ recalling G` = N`∩GU hence Σ{G` : ` ≤ k(∗)} ⊆ G′, but yη̄∗,0 /∈ G′
hence

(∗)5 yη̄∗,0 /∈
∑
{G` : ` ≤ k(∗)}.

But for every n

(∗)6 n̄!yη̄∗,n+1 − yη̄∗,n = Σ{xη̄∗�<m,n> : m ≤ k(∗)} ∈ Σ{G` : ` ≤ k(∗)}.
[Why? xη̄∗�<m,n> ∈ Gm as η̄∗ � (k(∗)) + 1\{m}) ∈ Nm by (∗)4.]

We can conclude that in GU/
∑
{G` : ` ≤ k(∗)}, the element yη̄∗,0 +

∑
{G` : ` ≤

k(∗)} is not zero (by (∗)5) but is divisible by every natural number by (∗)6.
This contradicts (∗)0 so we are done.
2),3) Left to the reader. �1.14
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10 SAHARON SHELAH

§2 Black Boxes

2.1 Claim. 1) Assume k(∗) < ω,χ = χℵ0 , λ = ik(∗)(χ) and S = λ,Λ = k(∗)+1(ωS)

or just S` = λ` = χ`,i`(χ) = λℵ0

` = χ` for ` ≤ k(∗) and Λ =
∏

`≤k(∗)

ω(S`) and

x = (k(∗), λ,Λ) so x is a full combinatorial 〈S` : ` ≤ k(∗)〉-parameter. Then Λ has
a χ-black box, i.e. Qr(Λxk(∗) , χ), see Definition 1.3.
2) Moreover, x has the 〈χ` : ` ≤ k(∗)〉-black box, i.e. for every B̄ = 〈Bη̄ : η̄ ∈
Λx
≤k(∗)〉 satisfying clause (c) below we can find 〈hη̄ : η̄ ∈ Λ〉 such that:

(a) hη̄ is a function with domain {η̄ � 〈m,n〉 : m ≤ k(∗), 2 ≤ n < ω}

(b) hη̄(η̄ � 〈m,n〉) ∈ Bη̄�<m,n>
(c) Bη̄�〈m,n〉 is a set of cardinality χm

(d) if h is a function with domain Λx
≤k(∗), see Definition 1.4 such that h(η̄ �

〈m,n〉) ∈ B(η̄�<m,n>) for η̄ ∈ Λ,m ≤ k(∗), n < ω and α` < λ` for ` ≤ k(∗)
then for some η̄ ∈ Λx, hη̄ ⊆ h and η`(0) = α` for ` ≤ k(∗).

3) Assume χ` = λℵ0

` , χ`+1 = χχ``+1 for ` ≤ k(∗). If S` = λ` for simplicity, for

` ≤ k(∗),x is a full combinatorial (S̄, k(∗))-parameter, and |Bη̄�<m,n>| ≤ χk(∗) for
η̄ ∈ Λx then we can find 〈hη̄ : η̄ ∈ Λx〉 as in part (2), moreover such that:

(e) if η̄ ∈ Λ then η` is increasing

(f) if λ` is regular then we can in clause (d) above add: if E` is a club of λ` for
` ≤ k(∗) then we can demand: if η̄ ∈ Λx then for each ` for some α∗` < λ`
we have η` ∈ ω(E` ∪ {α∗`})

(g) if λ` is singular of uncountable cofinality, λ` = Σ{λ`,i : i < cf(λ`)},
cf(λi,`) = λi,` increasing with i we can add: if u` ⊆ cf(λ`) is unbounded,
E`,i a club of λ`,i then η` ∈ ω(Ei,` ∪ {α∗`}) for some i ∈ u`.

Proof. Part (1) follows form part (2) which follows from part (3), so let us prove
part (3). To uniformize the notation in 2.1(1), i.e. 1.3(2) and 2.1(2),(3) we shall
denote:

�1 hη̄(η̄ � 〈m,n〉) = α
k(∗)
η̄,m,n.
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ℵn-FREE ABELIAN GROUP, ETC. 11

Note that without loss of generality3 ν̄ ∈ Λx
≤k(∗) ⇒ Bν̄ = |Bν̄ |, i.e. without loss

of generality η̄ ∈ Λx ∧ n < ω ∧m ≤ k(∗) ⇒ Bη�<m,n> = χn and we use α
k(∗)
η̄,m,n =

hη̄(η̄ � 〈m,n〉) for η̄ ∈ Λx,m ≤ k(∗) and n < ω. We prove part (3) by induction on
k(∗). Let Λk = Λx and without loss of generalityS` = λ`.

Case 1: k(∗) = 0.
By the simple black box, see [Sh 300, III,§4], or better [Sh:e, VI,§2], see below

for details on such a proof.

Case 2: k(∗) = k + 1.
Let

�2 αk = 〈αkη̄,m,n : η̄ ∈ Λk, n < ω,m ≤ k〉 witness parts (2),(3) for k, i.e. for xk,

hence no need to assume xk is full.

So λ = λk(∗), χ = χk(∗) and let H = {h : h is a function from Λk to χ}. So

|H| ≤ (λ)λ
ℵ0
k = χ. By the simple black box, see below, we can find 〈h̄η : η ∈ ωλ〉

such that

�3 (α) h̄η = 〈hη,n : n < ω〉 and hη,n ∈ H for η ∈ ωλ

(β) if f̄ = 〈fν : ν ∈ ω>λ〉 and fν ∈ H for every such ν and α < λ
and ρ ∈ ω>λ is increasing then for some increasing η ∈ ωλ
we have ρ / η and n < ω ⇒ hη,n = fη�n

(γ) if cf(λ) > ℵ0 and E is a club of λ then we can add ∪{η(n) : n < ω}
∈ E.

[Why? First assume χ = λ. Let 〈ḡα = 〈gα,` : ` < nα〉 : α < λ〉 enumerate ω>H
such that for each ḡ ∈ ω>H the set {α < λ : ḡα = ḡ} is unbounded in λ. Now
for η ∈ ωλ and n < ω let hη,n = gη(k),n for every k large enough if well defined
and gη�(n+1),n otherwise. So clause (α) of �3 holds and as for clause (β) of �3, let

f̄ = 〈fν : ν ∈ ω>λ〉 be given, fν ∈ H.
Assume ρ ∈ ω>λ is increasing. We choose αn by induction on n < ω such that:

�4 (α) αn = ρ(n) if n < `g(ρ)

3Why? (As doubts were cast we shall elaborate.) For η̄ ∈ Λ≤k(∗) let B′η̄ = {i : i < |Bη̄ |} for η̄ ∈
Λ≤k(∗) and let gη̄ be a one-to-one function from B′η onto Bη̄ . Now assume that 〈h′η̄ : η̄ ∈ Λ≤k(∗)〉
is as required in the claim for 〈B′η̄ : η̄ ∈ Λ〉 and define a fucntion hη with domain Dom(h′η) =

{η̄ � 〈m,n〉 : m ≤ k(∗) and n < ω} such that hη̄(η̄ � 〈m,n〉) = gη(hη(η̄ � 〈m,n〉)) ∈ Bη̄�<m,n> for

η̄ ∈ Λ,m ≤ k(∗), n < ω. Define the function h′ with domain Λ≤k(∗) by h′(η̄) = g−1
η̄ ◦h, so h′ is well

defined with domain λ≤k(∗) such that h′(η̄) ∈ B′η̄ . By the choice of 〈h′η̄ : η̄ ∈ Λ≤k(∗)〉 there is η̄ ∈ Λ

such that m ≤ k(∗)∧n < ω ⇒ h′(η̄ � 〈m,n〉) = h′(η̄ � 〈m,n〉). But by the choice of hη̄ , h′ we have

m ≤ k(∗) ∧ n < ω ⇒ hη̄(η̄ � 〈m,n〉) = g−1
η̄ (h′η̄(η̄ � 〈m,n〉)) = g−1

η̄ (h′(η̄ � 〈m,n〉) = h(η̄ � 〈m,n〉)
as required.
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12 SAHARON SHELAH

(β) αn < λ and αn > αm if n = m+ 1

(γ) if n ≥ `g(ρ) then αn satisfies ḡαn = 〈f〈α`:`<m〉 : m ≤ n〉.

Now η =: 〈αn : n < ω〉 is as required in clause (β) of �3; to get also clause (γ) of
�3 we should add in clause (β) of �4 then αn > min(E\αm).

Second, if χ > λ but still χ ≤ λℵ0 , let 〈ḡα : α < χℵ0〉 list ω>H, and let hn : χ→ λ
for n < ω be such4 that α < β < χ⇒ (∀∞n)(hn(α) 6= hn(β)) and let cd: λ→ ω>λ
be one to one onto. Now for η ∈ ωλ and n < ω let hη,n be gα where α is the unique
ordinal α < χ such that for every k < ω large enough (cd(η(k)))(n) = hn(α) so in
particular 〈`g(cd(η(k)) : k < ω〉 is going to infinity or hη,n is not well defined; in
fact, we can use only the case `g(cd(η(k)) = k; stipulating hη,n ∈ ω{0} when not
defined. So we have defined 〈hη,n : η ∈ ωλ, n < ω〉. Now we immitate the previous
argument: clause (β) of ~2 holds.

Next we shall define ᾱk(∗) = 〈αk(∗)
η̄,m,n : η̄ ∈ Λk+1,m ≤ k(∗), n < ω〉 as required;

so let η̄ = 〈η` : ` ≤ k(∗)〉 ∈ Λk(∗) we define ᾱ
k(∗)
η̄ = 〈αk(∗)

η̄,m,n : m ≤ k(∗), n < ω〉 as
follows:

�5 if ηk(∗) ∈ ωλ and 〈η0, . . . , ηk(∗)−1〉 ∈ Λk then for m ≤ k(∗) and n < ω

(α) if m = k(∗) then α
k(∗)
η̄,m,n = hηk(∗),n(〈η0, . . . , ηk(∗)−1〉) < λm

(β) if m < k(∗), i.e. m ≤ k then α
k(∗)
η̄,m,n = αkη̄�k(∗),m,n < λm.

Clearly α
k(∗)
η̄,m,n < λm in all cases, as required, (in clause (a),(b),(c) of 2.1(2) and

(e) of 2.1(3). But we still have to prove that 〈ᾱk(∗)
η̄,m,n : η̄ ∈ Λk+1,m ≤ k(∗), n <

ω〉 witness Qr(xk(∗), χ), see Definition 1.3(2) this suffices for 2.1(2), little more is
needed for 2.1(3); just using (γ) of �3 and the induction hypothesis.

Why does this hold? Let h be a function with domain Λxk(∗)

≤k(∗) as in part (3) and

α∗` < λ` for ` ≤ k(∗).
For ν ∈ ω>λ let fν : Λk → λ = λk(∗) be defined by: fν(〈η` : ` ≤ k〉) =: h(〈η` :

` ≤ k〉ˆ〈ν〉). So by �3 above for some increasing η∗k(∗) ∈
ωλ we have η∗k(∗)(0) = α∗k(∗)

and

�6 n < ω ⇒ fη∗
k(∗)�n

= hη∗
k(∗),n

.

Now substituting the definition of f̄ we have

�7 〈η0, . . . , ηk〉 ∈ Λk ∧ n < ω ⇒ hη∗
k(∗),n

(η0, . . . , ηk) = h(〈η0, . . . , ηk, η
∗
η(∗) � n〉).

4recall (∀∞N) means “for every large enough n < ω”
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ℵn-FREE ABELIAN GROUP, ETC. 13

Substituting the definition of ᾱk we have

�8 if 〈η0, . . . , ηk〉 ∈ Λk and n < ω then α
k(∗)
<η0,...,ηk,η∗k(∗)>

= h(〈η0, . . . , ηk, η
∗
k(∗) �

n〉).

Now we define a function h′ with domain Λxk

≤k by: if η̄ ∈ Λxk

≤k then h′(η̄) =

h(η̄ˆ〈η∗k(∗)〉).
So by the choice of ᾱk in �2 we can find 〈η∗0 , . . . , η∗k〉 ∈ Λk with no repetitions

such that η∗` (0) = α∗` for ` ≤ k and in �2

�9 m ≤ k ∧ n < ω ⇒ αk〈η∗0 ,...,η∗k〉,m,n
= h′(〈η∗0 , . . . , η∗k〉 � (m,n)〉).

Let η̄∗ = 〈η∗0 , . . . , η∗k, η∗k+1〉, η̄′ = 〈η∗0 , . . . , η∗i 〉.
Note that

�10 if m ≤ k, n < ω then h′(η̄′ � 〈k,m〉) = h((η̄′ � 〈m,n〉)ˆ〈η∗k(∗)〉) = h(η̄∗ �
〈m,n〉).

Now by �9 +�10 and �5(β) this means

�11 if m ≤ k and n < ω then α
k(∗)
η̄∗,m,n = h(η̄∗ � 〈k,m〉).

So by putting together �8 + �11 we are clearly done, i.e. we can check that
〈η∗0 , . . . , η∗k, η∗k(∗)〉 is as required. �2.1

2.2 Conclusion. For every k < ω there is an ℵk+1-free abelian group G of cardinality
ik+1 and pure (non-zero) subgroup Zz ⊆ G such that Zz is not a direct summand
of G.

Proof. Let χ = 2ℵ0 and x be a combinatorial k-parmeter as guaranteed by 2.1.
Now by 2.3(2) below we can expand x to an abelian group k-parameter, so Gx is
as required.

2.3 Claim. 1) If x is a combinatorial k-parameter such that Qr(x, 2ℵ0) then for
some a,y := (x,a) is an abelian group k-parameter such that h ∈ Hom(Gy,Z) ⇒
h(z) = 0.
2) For every k there is an ℵk+1-free abelian group G of cardinality ik+1 and z ∈ G
a pure z ∈ G as above.

Proof. 1) Let ᾱ witness Qr(x, 2ℵ0). We define a function ι:Ord → Z by: ι(α) in α
if α < ω, is −n if α = ω + n < ω + ω and is zero otherwise. For each η̄ ∈ Λx we
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14 SAHARON SHELAH

shall choose a sequence 〈aη̄,n : n < ω〉 of integers such that for any b ∈ Z\{0} for
no c̄ ∈ ωZ do we have:

�η̄ for each n < ω we have

n!cn+1 = cn + aη̄,nb+ Σ{ι(αη̄,m,n) : m ≤ k(∗)}.

This is easy: for each pair (b, c0) ∈ Z × Z the set of 〈an : n < ω〉 ∈ ωZ such that
there is at least one sequence (and always at most one sequence) 〈c0, c1, c2, . . . 〉 of
integers such that �η̄ holds for them, is meagre, even no-where dense so the choice
of 〈aη̄,n : n < ω〉 is possible.

Now toward contradiction assume that h is a homomorphism from Gx to zZ
such that h(z) = bz, b ∈ Z\{0}. We define h′ : Λx

≤k → χ by h′(η̄) = n if n < ω and

h(xη̄) = nz and h′(η̄) = ω + n if n < ω and h(xη̄) = (−n)z.
By the choice of ᾱ, for some η̄ ∈ Λx we have: m ≤ k ∧n < ω ⇒ h′(η̄ � 〈m,n〉) =

αη̄,m,n. Hence h(xη̄�(m,n)) = ι(αη̄,m,n)z for m ≤ k, n < ω.
Let cn ∈ Z be such that h(yη̄,n) = cnz. Now the equation �η̄,n in Definition 1.6

is mapped to the n-th equation in �η̄, so an obvious contradiction.
2) By part (1) and 2.2. �2.3

2.4 Remark. 1) We can replace χ by a set of cardinality χ in Definition 1.3. Using
Zz instead of χ simplify the notation in the proof of 2.3.
2) We have not tried to save in the cardinality of G in 2.3(2), using as basic of the
induction the abelian group of cardinality ℵ0 or ℵ1.

2.5 Claim. 1) If χ0 = χℵ0
0 , χm+1 = 2χm and λm = χm for m ≤ k for the χ̄-full

combinatorial k-parameter x, the (x, χ̄)-black box exist.

2.6 Conclusion. Assume µ0 < . . . < µk(∗) are strong limit of cofinality ℵ0 (or

µ0 = ℵ0), λ` = µ+
` , χ` = 2µ` .

Then in 2.1 for η̄ ∈ Λx we can let hη̄,m has domain {ν̄ ∈ Λx
m : [ν` = η` for

` = m+ 1, . . . , k(∗)}.
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ℵn-FREE ABELIAN GROUP, ETC. 15

§3 Constructing abelian groups from combinatorial parameters

3.1 Definition. 1) We say F is a µ-regressive function on a combinatorial param-
eter x ∈ Kcb

k(∗) when Sx is a set of ordinals and:

(a) Dom(F ) is Λx

(b) Rang(F ) ⊆ [Λx ∪ Λx
≤k(∗)]

≤ℵ0

(c) for every η̄ ∈ Λx and m ≤ k(∗) we5 have sup Rang(ηm) > sup(∪{Rang(νm) :
ν̄ ∈ F (η̄)}); note ν̄` ∈ Λx or ν̄ ∈ Λx

≤k(∗) as F (η̄) is a set of such objects.

1A) We say F is finitary when F (η̄) is finite for every η̄.
1B) We say F is simple if ηk(∗)(0) determined F (η̄) for η̄ ∈ Λx.
2) For x, F as above and Λ ⊆ Λx we say that Λ is free for (x, F ) when: Λ ⊆ Λx and
there is a sequence 〈η̄α : α < α(∗)〉 listing Λ′ = Λ ∪

⋃
{F (η̄) : η̄ ∈ Λ} and sequence

〈`α : α < α(∗)〉 such that

(a) `α ≤ k(∗)
(b) if α < α(∗) and η̄α ∈ Λ then F (η̄α) ⊆ {η̄β : β < α} ∪ {η̄γ � 〈m,n〉 : γ < α

is such that η̄γ ∈ Λx and n < ω,m ≤ k(∗)}
(c) if α < α(∗) and η̄α ∈ Λ then for some n < ω we have η̄α � 〈`α, n〉 /∈ {η̄β �
〈`α, n〉 : β < α, ηβ ∈ Λ} ∪ {η̄β : β < α}.

3) We say x is θ-free for F is (x, F ) is µ-free when x, F are as in part (1) and every
Λ ⊆ Λx of cardinality < θ is free for (x, F ).

3.2 Claim. 1) If x ∈ Kcb
k(∗) and F is a regressive function on x then (x, F ) is

ℵk(∗)+1-free provided that F is finitary or simple.
2) In addition: if k ≤ k(∗),Λ ⊆ Λx has cardinality ≤ ℵk and ū = 〈uη̄ : η̄ ∈ Λ〉
satisfies uη̄ ⊆ {0, . . . , k(∗)}, |uη| > k, then we can find 〈η̄α : α < ℵk〉, 〈`α : α <
ℵk〉, 〈nα : α < ℵk〉 such that:

(a) Λ ⊆ {η̄α : α < ℵk}
(b) if η̄α ∈ Λx then `α ∈ uη̄α , nα < ω

(c) η̄α � 〈`α, nα〉 /∈ {η̄β � 〈`α, nα〉 : β < α} ∪ {η̄β : β < α}.

Remark. We may wonder:

5actually, suffice to have it for ` = k(∗)
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Ruedeger Question: Assume F (η̄) ∈ [Λ≤k(∗)]
≤ℵ0 for η̄ ∈ Λx is as in Definition 3.1.

Is this O.K. in the proof of 3.2, particularly Case 1?

Answer: Seems not. Assume ν̄ 6= ρ̄ ∈ Λ and

(A) uρ̄ = {`1}, F (ν̄) = {ρ̄ � 〈`1, n〉 : n < ω}
(B) uν̄ = {`2}, F (ρ̄) = {ν̄ � 〈`2, n〉 : n < ω}.

So if (ν, ρ̄) = (ηα4
, ηα2

), we have α0 6= α1 as ν̄ 6= ρ̄,¬(α1 < α2) by (B), and
¬(α2 < α1) by (A).

Proof. 1) Follows by part (2) for the case k = k(∗), uη̄ = {0, . . . , k(∗)} for every
η̄ ∈ Λ.
2) So we are assuming x ∈ Kcb

k(∗), F is a regressive function on x which is finitary

or simple, k ≤ k(∗),Λ ⊆ Λx has cardinality ≤ ℵk and without loss of generality Λ
is closed under η̄ 7→ F (η̄) ∩ Λx. We prove this by induction on k.

Case 1: k = 0.

Subcase 1A: Ignoring F .
Let 〈η̄α : α < |Λ|〉 list Λ with no repetitions (so α < |Λ| ⇒ α < ℵk = ℵ0). Now

α < |Λ| ⇒ uη̄α 6= ∅ and let `α = min(uη̄α) ≤ k(∗). Hence for each α < |Λ| we know
that β < α ⇒ η̄β 6= η̄α, hence for some n = nα,β < ω we have η̄β � 〈`α, nα,β〉 6=
η̄α � 〈`α, nα,β〉.

Let nα = sup{nα,β : β < α〉, it is < ω as α < ω. Now 〈(`α, nα) : α < |Λ|〉 is as
required.

Subcase 1B: η̄ ∈ Λ⇒ F (η̄) is finite6.
Let 〈ηα : α < |Λ|〉 list Λ, we choose wj by induction on j ≤ j(∗), j(∗) ≤ ω such

that:

~ (a) wj ⊆ |Λ| is finite for j < ω

(b) j ∈ wj+1

(c) if α ∈ wj then F (η̄α) ∩ Λ ⊆ {η̄α : β ∈ wj}
(d) wj(∗) = |Λ| and w0 = ∅
(e) wj ⊆ wj+1

(f) if j(∗) = ω then wj(∗) = ∪{wj : j < j(∗)}.
6If we assume for η̄ ∈ Λ⇒ F (η̄) ⊆ Λ≤k(∗) then any list 〈η̄α : α < |Λ|〉 with no repetitions and

¯̀= 〈`α : α < |Λ|〉, `α ∈ uη̄α will do. Why? Because Yα := ∪{F (η̄β) : β < α} is a finite subset of

Λ≤k(∗). Now for α < |Λ| the set u1
α := {n < ω : η̄α � 〈`α, n〉 belongs to Yα} is finite, and also for

each β < α the set ur, Yα,β := {n < ω : η̄α � 〈`α, n〉 = η̄β � 〈`α, n〉} is finite. As α is finite we can

find n = nα ∈ ω\Yα\ ∪ {Yα,β : β < α}. Now 〈nα : α < |Λ|〉 is as required.
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ℵn-FREE ABELIAN GROUP, ETC. 17

No problem to do this; for clause (c) use “F is regressive, the ordinals well ordered
but we elaborate. Assume that the finite wj ⊆ |Λ| has been chosen. We define
wj,m by induction on m such that wj,m ⊆ |Λ| is finite and ⊆-increasing with m.
For m = 0 let wj,m = wj ∪ {α}. If wj,m is defined let

wj,m+1 = wj,m ∪ {β < |Λ| : for some α ∈ wj,m we have

η̄β ∈ F (η̄α) ∩ Λ}.

As wj,m is finite and ⊆ |Λ| and each F (η̄α) is finite and ⊆ {η̄γ : γ < |Λ|} clearly
wj,m+1 is finite ⊆ |Λ|.

Lastly, we let wj+1 be ∪{wj,m : m < ω}. If it is finite we have carried the
inductive step on j. If not, then 〈wj,m : m < ω〉 is ⊂-increasing and we let
γj,m = sup{ηα,0(i) : i < ω, α ∈ wj,m+1\wj+m} and it suffices to prove

(∗) γj,m > γj,m+1 (both are ordinals!).

Why (∗) is true? As by the definition of γj,m+1 for some i∗ < ω and β∗ ∈
wj,m+2\wj,m+1 we have ηβ,0(i∗) = γj,m+1. By the definition of wj,m+2 as β∗ /∈
wj,m+1, there is α∗ ∈ wj,m+1 such that η̄β ∈ F (η̄α) ∩ Λ.

As β∗ /∈ wj,m+1 necessarily α∗ /∈ wj,m hence by the definition of γj,m we know
that (∀i < ω)(ηα,0(i) < γj,m). By clause (c) of Definition 3.1(1) as η̄β ∈ F (η̄α) we
know that ηβ,0(i∗) < sup{ηα,0(i) : i < ω}. By the last two sentences we are done
proving (∗), so we are done defining wj+1 hence we finish justifying ~.

Now let 〈β(j, i) : i < i∗j 〉 list wj+1\wj such that: if i1, i2 < i∗j and η̄β(j,i1) ∈
F (η̄β(j,i2)) then i1 < i2; we prove existence by F being regressive. Let 〈ν̄j,i : i < i∗∗j 〉
list ∪{F (η̄α) : α ∈ wj+1\wj}\Λx\{F (η̄α) : α ∈ wj}.

Let α∗j = Σ{i∗∗j(1) + i∗j(1) : j(1) < j}. Now we choose ρ̄ε for ε < α∗j for j < j(∗) as

follows:

(a) ρα∗j+i = νj,i if i < i∗∗j

(b) ρ̄α∗j+i∗∗j +i = η̄β(j,i) if i < i∗j .

Lastly, we choose nαj+i < ω for i < i∗j as in case 1A.
Now check.

Subcase 1C: F is simple.
Note that F (η̄) when defined is determined by ηk(∗)(0) and is included in {ν̄ ∈

Λx
≤k(∗) ∪ Λx : sup Rang(νk(∗)) < ηk(∗)(0)}. So let u = {ηk(∗)(0) : η̄ ∈ Λ} and

u∗ = u∪{sup(u) + 1} and for α ∈ u let Λα = {η̄ ∈ Λ : ηk(∗)(0) = α} and for α ∈ u∗
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let Λ<α = ∪{Λβ : β ∈ u}. Now by induction on β ∈ u∗ we choose 〈(η̄ε, `ε) : ε < εβ〉
such that it is a required for Λ<β . For β = min(u) this is trivial and if otp(u ∩ β)
is a limit ordinal this is obvious. So assume α = max(u ∩ β), we use Subcase 1A
on Λα, and combine them naturally promising `α = k(∗)⇒ nα > 1.

Case 2: k = k∗ + 1 and |Λ| = ℵk.
Let 〈Λε : ε < ℵk〉 be ⊆-increasing continuous with union Λ, |Λ1+ε| = ℵk∗ ,Λ0 = ∅,

each Λε closed enough, mainly:

~1 if η̄i ∈ Λε for i < i(∗) < ω, ρ̄ ∈ Λ and {ρ` : ` ≤ k(∗)} ⊆ {ηi` : ` ≤ k(∗), i <
i(∗)} then ρ̄ ∈ Λε

~2 Λε is closed under η̄ 7→ F (η̄) ∩ Λx.

Next

� if ε < ℵk, η̄ ∈ Λε+1\Λε then u′η̄ = {` ∈ uη̄: for every or just some n < ω for
some ν̄ ∈ Λε we have η̄ � 〈`, n〉 = ν̄ � 〈`, n〉} has at most one member.

[Why? So assume toward contradiction that η̄ ∈ Λε+1 and `(1) 6= `(2) belong to
u′η̄. Hence by the definition of u′η̄ there are ν̄1, ν̄2 ∈ Λε and n1, n2 < ω such that

η̄ � 〈`1, n1〉 ∈ ν̄1 � 〈`1, n1〉 and η̄ � 〈`1, n2〉 = ν̄2 � 〈`2, n2〉. Now m ≤ k(∗) ⇒ for
some i ∈ {1, 2},m ≤ `i ⇒ for some i ∈ {1, 2}, ηm is (η̄ � 〈`i, ni〉)m ⇒ ηm ∈ {ρ` :
ρ̄ ∈ Λε}. Hence {η` : ` ≤ k(∗)} ⊆ {ρ` : ` ≤ k(∗) and ρ̄ ∈ Λε}. So by ~1 we have
η̄ ∈ Λε, so we are done.]

Apply the induction hypothesis to Λε+1\Λε for each ε and get 〈(η̄ε,α, `ε,α,nε,α) :

α < α(ε)〉 such that η̄ε,α � 〈`εε,`, nε,α〉 /∈ {η̄ε,β � 〈`ε,β , nε,β〉 : β < α〉.
Let α∗ = Σ{α(ε) : ε < |Λ|} and α = Σ{α(ζ) : ζ < ε} + β, β < α(ε) let

ηα = ηε,β , `α = `ε,β , ηα = ηε,β . I.e. we combine but for Λε+1\Λε we use 〈uη̄\u′η̄ :
η̄ ∈ Λε+1\Λε〉, so |uη̄\u′η̄| ≥ k − 1 = k∗. �3.2

3.3 Definition. For a combinatorial parameter x we define Gx, the class of abelian
groups derived from x as follows: G ∈ Gx if there is a simple (or finitary) regressive
F on Λx and G is generated by {yη̄,n : η ∈ Λx, n < ω} ∪ {xη̄ : η̄ ∈ Λx

≤k(∗)} freely
except

�η̄,n (n!)yη̄,n+1 = yη̄,n + bη̄,nzη̄,n +
∑
{xη̄�<m,n> : m ≤ k(∗)}

where

� (a) bη̄,n ∈ Z
(b) zη̄,n is a linear combination of
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{xν̄ : ν̄ ∈ F (η̄)\Λx} ∪ {yη̄,n :η̄ ∈ F (η̄) ∩ Λx and

(∀m ≤ k(∗))(η̄ � 〈m,n〉) ∈ F (η̄)}.

3.4 Claim. If x ∈ Kcb
k(∗) and G ∈ Gx (i.e. G is an abelian group derived from x),

then G is ℵk(∗)+1-free.

Proof. We use claim 3.2. So let H be a subgroup of G of cardinality ≤ ℵk(∗). We
can find Λ such that

(∗) (a) Λ ⊆ Λx has cardinality ≤ ℵk(∗)

(b) every equation which XΛ = {xη̄�<m,n>, yη̄,n : m ≤ k(∗), n < ω, η̄ ∈ Λ}
satisfies in G, is implied by the equations from ΓΛ = ∪{�η̄,n:
η̄ ∈ Λ}

(c) H ⊆ GΛ = 〈xη̄�<m,n>, yη̄,n : η̄ ∈ Λ,m ≤ k(∗), n < ω〉G
(d) if η̄ ∈ Λ then F (η̄) is included in Λ ∪ {ν̄ � (`, n) : ν̄ ∈ Λ, ` ≤ k(∗) and

n < ω}.

So it sufices to prove that GΛ is a free (abelian) group.
Let the sequence 〈(η̄α, `α) : α < α(∗)〉 be as proved to exist in 3.2. Let U =

{α < α(∗) : η̄α ∈ Λ} ∪ {α(∗)} and for α ≤ α(∗) let X0
α = {xη̄β�<m,n> : β ∈

α ∩U ,m ≤ k(∗) and n < ω} and X1
α = X0

α ∪ {η̄β : β ∈ α\U }. So for each α ∈ U
there is n̄α = 〈nα,` : ` ∈ vα〉 such that: `α ∈ vα ⊆ {0, . . . , k(∗)}, nα,` < ω and
X1
α+1\X1

α = {xη̄�<`,n> : ` ∈ vα and n ∈ [nα,`, ω)}.
For α ≤ α(∗) let GΛ,α = 〈{yη̄β ,n, xν̄ : β ∈ U ∩ α and ν̄ ∈ X1

β}〉GΛ
. Clearly

〈GΛ,α : α ≤ α(∗)〉 is purely increasing continuous with union GΛ, and GΛ,0 = {0}.
So it suffices to prove that GΛ,α+1/GΛ,α is free. If α /∈ U the quotient is trivially a
free group, and if α ∈ U we can use `α ∈ vα to prove that it is free giving a basis.

�3.4

3.5 Conclusion. For every k(∗) < ω there is an ℵk(∗)+1-free abelian group G of
cardinality λ = ik(∗)+1 such that Hom(G,Z) = {0}.

Proof. We use x and 〈hη̄ : η̄ ∈ Λx〉 from 2.1(3), and we shall choose G ∈ Gx. So G
is ℵk(∗)+1-free by 3.4.
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Let S = {〈(ai, η̄i) : i < i1〉ˆ〈(bj , ν̄j , nj) : j < j1〉 : i1 < ω, ai ∈ Z, η̄i ∈ Λx
≤k(∗)

and j1 < ω, bj ∈ Z, νj ∈ Λx, nj < ω} (actually S = Λx
≤k(∗) suffice noting ν̄j =

〈νj,` : ` ≤ k(∗)〉).
So |S | = λk(∗) and let p̄ be such that:

(a) p̄ = 〈pα : α < λ〉
(b) p̄ lists S

(c) pα = 〈(aαi , η̄αi ) : i < iα〉ˆ〈(bαj , ν̄αj , nαj ) : j < jα〉 so ν̄αj = 〈ναj,` : ` ≤ k(∗)〉
(d) sup Rang(ηαi,k(∗)) < α, sup Rang(ναj,k(∗)) < α if i < iα, j < jα.

Now to apply Definition 3.3 we have to choose zα (for Definition 3.3) as Σ{aαi xη̄i :
i < iα}+ Σ{bαj yν̄αj ,nαj : j < jα} and zη̄ = zη̄,n = zηk(∗)(0) for η̄ ∈ Λx, n < ω then for

η̄ ∈ Λx we choose 〈bη̄,n : n < ω〉 ∈ ωZ such that:

~ there is no function h from {zη̄}∪{yη̄,n : n < ω}∪{xη̄�<m,n> : m ≤ k(∗), n <
ω} into Z satisfying

~ (a) h(zη̄) 6= 0 and

(b) h(xη̄�<m,n>) = hη̄(η̄ � 〈m,n〉) for m ≤ k(∗), n < ω

(c) for every n sn

(∗)n n!h(yη̄,n+1) = h(yη̄,n) + bη̄,nh(zη̄) + Σ{{xη̄�<m,n>):

m ≤ k(∗)}.

E.g. for each ρ ∈ ω2 we can try bρn = ρ(n) and assume toward contradiction that
for each ρ ∈ ω2 there is hρ as above. Hence for some c ∈ Z\{0} the set {ρ ∈ ω2 :
hρ(zη̄) = c} is uncountable. So we can find ρ1 6= ρ2 such that hρ1

= c = hρ2
(xν)

and ρ1 � (|c| + 7) = ρ2 � (|c| + 7). So for some n ≥ |c| + 7, ρ1 � n = ρ2 � n and
ρ1(n) 6= ρ2(n). Now consider the equation (∗)n for hρ̄1 and hρ̄2 , subtract them and
get (ρ1(n)− ρ2(n))c is divisible by n!, clear contradiction.

So G ∈ Gx is well defined and is ℵk(∗)+1-free by 3.4. Suppose h ∈ Hom(G,Z) is

non-zero, so for some α < λk(∗), h(zα) 6= 0 (actually as G1 = 〈{xν̄ : ν̄ ∈ Λx
≤k(∗)}〉G

is a subgroup such that G/G1 is divisible necessarily h � G1 is not zero hence in
2.1(2) for some ν̄ ∈ Λx

≤k(∗) we have h(xν̄) 6= 0). So by the choice of 〈hη̄ : η̄ ∈ Λ〉
for some η̄ ∈ Λx, ηk(∗)(0) = α and we have hη̄ = h � {xη̄�<m,n> : m ≤ k(∗), n < ω}.
By ~ we clearly get a contradiction. �3.5

Remark. We can give more details as in the proof of 2.3.
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3.6 Conclusion. For every n ≤ m < ω there is a purely increasing sequence 〈Gα :
α ≤ ωn+1〉 of abelian groups, Gα, Gβ/Gα are free for α < β ≤ ωn and Gωn+1/Gωn
is ℵn-free and for some h ∈ Hom(Gκ,Z) has no extension in Hom(Gωn+1,Z).

Proof. Let G, z be as in 2.2. So also G/Zz is ℵn-free. Let Gα = 〈{z}〉G for
α ≤ ω2, Gωn+1 = G.
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§4 Appendix 1

4.1 Notation. If η̄∗ ∈ Λx
m and η̄ = η̄∗ � {` ≤ k(∗) : ` 6= m} and ν = η∗m then let

xm,η̄,ν := xη̄∗ . (See proof of 1.12).

Proof of 1.8. Let U ⊆ ωS be countable (and infinite) and define G′U like G re-
stricting ourselves to η` ∈ U ; by the Löwenheim-Skolem argument it suffices to
prove that G′U is a free abelian group. List Λ ∩ k(∗)+1U without repetitions as
〈η̄t : t < t∗ ≤ ω〉, and choose st < ω by induction on t < ω such that [r < t & η̄r �
k(∗) = η̄t � k(∗)⇒ ∅ = {ηt,k(∗) � ` : ` ∈ [st, ω)} ∩ {ηr,k(∗) � ` : ` ∈ [sr, ω)}].
Let

Y1 = {xm,η̄,ν : m < k(∗), η̄ ∈ k(∗)+1\{m}U and ν ∈ ω>2}

Y2 =

{
xm,η̄,ν :m = k(∗), η̄ ∈ k(∗)U and for no t < t∗ do we have

η̄ = η̄t � k(∗) & ν ∈ {ηt,k(∗) � ` : st ≤ ` < ω}
}

Y3 = {yη̄t,n : t < t∗ and n ∈ [st, ω)}.

Now

(∗)1 Y1 ∪ Y2 ∪ Y3 ∪ {z} generates G′U .

[Why? Let G′ be the subgroup of G′U which Y1 ∪ Y2 ∪ Y3 generates. First we prove

by induction on n < ω that for η̄ ∈ k(∗)U and ν ∈ nS we have xk(∗),η̄,ν ∈ G′. If
xk(∗),η̄,ν ∈ Y2 this is clear; otherwise, by the definition of Y2 for some ` < ω (in fact
` = n) and t < ω such that ` ≥ st we have η̄ = η̄t � k(∗), ν = ηt,k(∗) � `.

Now

(a) yη̄t,`+1
, yη̄t,` are in Y3 ⊆ G′.

Hence by the equation �η̄,n in Definition 1.6, clearly xk(∗),η̄,ν ∈ G′. So as Y1 ⊆
G′ ⊆ G′U , all the generators of the form xk(∗),η̄,ν with each η` ∈ U are in G′.

Next note that

(b) xm,η̄t�{i≤k(∗):i6=m},ν belong to Y1 ⊆ G′ if m < k(∗).
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Now for each t < ω we prove that all the generators yη̄t,n are in G′. If n ≥ st
then clearly yη̄t,n ∈ Y3 ⊆ G′. So it suffices to prove this for n ≤ st by downward
induction on n; for n = st by an earlier sentence, for n < st by �η̄,n. Together all
the generators are in this subgroup so we are done.]

(∗)2 Y1 ∪ Y2 ∪ Y3 ∪ {z} generates G′U freely.
[Why? Translate the equations, see more in [Sh 771, §5].]

�1.8

Proof of 1.10. 0), 1) Obvious.
2),3),4) Follows.
5) Let 〈η` : ` < m(∗)〉 list u, U` = U ∪ (u\{η`}) so GU,u = GU+

0
. . . + GUm(∗)−1

.

First, GU,u ⊆ GU∪u follows by the definitions. Second, we deal with proving
GU,u ⊆pr GU∪u. So assume z∗ ∈ G, a∗ ∈ Z and a∗z∗ belongs to GU0

+ . . .+GUm(∗)

so it has the form Σ{bixη̄′�<mi,ni> : i < i(∗)} + Σ{cjyη̄j ,nj : j < j(∗)} + az with

i(∗) < ω, j(∗) < ω and a∗, bi, cj ∈ Z and νi, η̄
i, η̄j are suitable sequences of members

of U`(i), U`(i), Uk(j) respectively where `(i), k(j) < m(∗). We continue as in [Sh 771].
6) Easy.
7) Clearly U1 ∪ v = U2 ∪ u hence GU1∪u ⊆ GU1∪v = GU2∪u hence GU,u +GU1∪u is
a subgroup of GU,u +GU2∪u, so the first quotient makes sense.

Hence (GU,u+GU2∪u)/(GU,u+GU1∪u) is isomorphic to GU2∪u/(GU2∪u∩(GU,u+
GU1∪u)). Now GU1,v ⊆ GU1∪v = GU2∪v ⊆ GU,u + GU2,u and GU1,v ⊆ GU,v =
GU,v\U = GU,u ⊆ GU,u + GU2,u. Together GU1,v is included in their intersection,
i.e. GU2∪u ∩ (GU,u + GU1∪u) include GU1,v and using part (1) both has the same
divisible hull inside G+. But as GU1,v is a pure subgroup of G by part (5) hence of
GU1∪v. So necessarily GU1∪u ∩ (GU,u + GU1,u) = GU1,v, so as GU2∪u = GU1∪v we
are done.
8) See [Sh 771, §5]. �1.10

Proof of 1.12. 1) We prove this by induction on |U |; without loss of generality |u| =
k as also k′ = |u| satisfies the requirements.

Case 1: U is countable.
So let {ν∗` : ` < k} list u be with no repetitions, now if k = 0, i.e. u = ∅ then

GU∪u = GU = GU,u so the conclusion is trivial. Hence we assume u 6= ∅, and let
u` := u\{ν∗` } for ` < k.

Let 〈η̄t : t < t∗ ≤ ω〉 list with no repetitions the set ΛU,u := {η̄ ∈ Λx∩k(∗)+1(U ∪
u): for no ` < k does η̄ ∈ k(∗)+1(U ∪ u`)}. Now comes a crucial point: let t < t∗,
for each ` < k for some rt,` ≤ k(∗) we have ηt,rt,` = ν∗` by the definition of ΛU,u, so

Paper Sh:883, version 2009-03-05 10. See https://shelah.logic.at/papers/883/ for possible updates.



24 SAHARON SHELAH

|{rt,` : ` < k}| = k < k(∗) + 1 hence for some mt ≤ k(∗) we have ` < k ⇒ rt,` 6= mt

so for each ` < k the sequence η̄t � (k(∗) + 1\{mt}) is not from {〈ρs : s ≤ k(∗) and
s 6= mt〉 : ρs ∈ ω(U ∪ u`) for every s ≤ k(∗) such that s 6= mt}.

For each t < t∗ we define J(t) = {m ≤ k(∗): the set {ηt,s : s ≤ k(∗) & s 6= m}
is included in U ∪ u` for no ` ≤ k}. So mt ∈ J(t) ⊆ {0, . . . , k(∗)} and m ∈ J(t)⇒
η̄t � {j ≤ k(∗) : j 6= m} /∈ k(∗)+1\{m}(U ∪ u`) for every ` ≤ k. For m ≤ k(∗) let
η̄′t,m := η̄t � {j ≤ k(∗) : j 6= m} and η̄′t := η̄′t,mt . Now we can choose st < ω by
induction on t < t∗ such that

(∗) if t1 < t,m ≤ k(∗) and η̄′t1,m = η̄′t,m, then
ηt,m � st /∈ {ηt1,m � ` : ` < ω}.

Let Y ∗ = {xm,η̄,ν ∈ GU∪u : xm,η̄,ν /∈ GU∪u` for ` < k} ∪ {yη̄,n ∈ GU∪u : yη̄,n /∈
GU∪u` for ` < k}.
Let

Y1 = {xm,η̄,ν ∈ Y ∗: for no t < t∗ do we have m = mt & η̄ = η̄′t}.

Y2 = {xm,η̄,ν ∈ Y ∗ :xm,η̄,ν /∈ Y1 but for no

t < t∗ do we have m = mt & η̄ = η̄′t &

ηt,mt � st E ν / ηt,mt}

Y3 = {yη̄,n : yη̄,n ∈ Y ∗ and n ∈ [st, ω) for the t < t∗ such that η̄ = η̄t}.
Now the desired conclusion follows from

(∗)1 {y +GU,u : y ∈ Y1 ∪ Y2 ∪ Y3} generates GU∪u/GU,u

(∗)2 {y +GU,u : y ∈ Y1 ∪ Y2 ∪ Y3} generates GU∪u/GU,u freely.

Proof of (∗)1. It suffices to check that all the generators of GU∪u belong to G′U∪u =:
〈Y1 ∪ Y2 ∪ Y3 ∪GU,u〉G.

First consider x = xm,η̄,ν where η ∈ k(∗)+1(U ∪ u),m ≤ k(∗) and ν ∈ nS for
some n < ω. If x /∈ Y ∗ then x ∈ GU,u` for some ` < k but GU∪u` ⊆ GU,u ⊆ G′U∪u
so we are done, hence assume x ∈ Y ∗. If x ∈ Y1 ∪ Y2 ∪ Y3 we are done so assume
x /∈ Y1 ∪Y2 ∪Y3. As x /∈ Y1 for some t < t∗ we have m = mt & η̄ = η′t. As x /∈ Y2,
clearly for some t as above we have ηt,mt � st E ν / ηt,mt . Hence by Definition
1.6 the equation �η̄t,n from Definition 1.6 holds, now yη̄t,n, yη̄t,n+1 ∈ Y3 ⊆ G′U∪u.
So in order to deduce from the equation that x = xη̄′t�<mt,n> belongs to G′U∪u, it
suffices to show that xη̄′t,j�<j,n> ∈ G

′
U∪u for each j ≤ k(∗), j 6= mt. But each such

xη̄′t,j�<j,n> belong to G′U∪u as it belongs to Y1 ∪ Y2.
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[Why? Otherwise necessarily for some r < t∗ we have j = mr, η̄
′
t,j = η̄′r,mr and

ηr,mr � sr E ηt � n / ηr,mr so n ≥ sr and as said above n ≥ st. Clearly r 6= t as
mr = j 6= mt, now as η̄′t,mr = η̄′r,mr and η̄t 6= η̄r (as t 6= r) clearly ηt,mr 6= ηr,mr .
Also ¬(r < t) by (∗) above applied with r, t here standing for t1, t there as ηr,mr �
sr E ηt,j � n / ηr,mr . Lastly for if t < r, again (∗) applied with t, r here standing
for t1, t there as n ≥ mt gives contradiction.]
So indeed x ∈ G′U∪u.

Second consider y = yη̄,n ∈ GU∪u, if y /∈ Y ∗ then y ∈ GU,u ⊆ G′U∪u, so assume
y ∈ Y ∗. If y ∈ Y3 we are done, so assume y /∈ Y3, so for some t, η̄ = η̄t and
n < st. We prove by downward induction on s ≤ st that yη̄,s ∈ G′U∪u, this clearly
suffices. For s = st we have yη̄,s ∈ Y3 ⊆ G′U∪u; and if yη̄,s+1 ∈ G′U∪u use the
equation �η̄t,s from 1.6, in the equation yη̄,s+1 ∈ G′U∪u and the x’s appearing in
the equation belong to G′U∪u by the earlier part of the proof (of (∗)1) so necessarily
yη̄,s ∈ G′U∪u, so we are done.

Proof of (∗)2. We rewrite the equations in the new variables recalling that GU∪u
is generated by the relevant variables freely except the equations of �η̄,n from
Definition 1.6. After rewriting, all the equations disappear.

Case 2: U is uncountable.
As ℵ1 ≤ |U | ≤ ℵk(∗)−k, necessarily k < k(∗).
Let U = {ρα : α < µ} where µ = |U |, list U with no repetitions. Now for each

α ≤ |U | let Uα := {ρβ : β < α} and if α < |U | then uα = u ∪ {ρα}. Now

�1 〈(GU,u + GUα∪u)/GU,u : α < |U |〉 is an increasing continuous sequence of
subgroups of GU∪u/GU,u.
[Why? By 1.10(6).]

�2 GU,u +GU0∪u/GU,u is free.
[Why? This is (GU,u + G∅∪u)/GU,u = (GU,u + Gu)/GU,u which by 1.10(8)
is isomorphic to Gu/G∅,u which is free by Case 1.]

Hence it suffices to prove that for each α < |U | the group (GU,u+GUα+1∪u)/(GU,u+
GUα∪u) is free. But easily

�3 this group is isomorphic to GUα∪uα/GUα,uα .
[Why? By 1.10(7) with Uα, Uα+1, U, ρα, u here standing for U1, U2, U, η, u
there.]

�4 GUα∪uα/GUα,uα is free.
[Why? By the induction hypothesis, as ℵ0 + |Uα| < |U | ≤ ℵk(∗)−(k+1) and
|uα| = k + 1 ≤ k(∗).]
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2) If k(∗) = 0 just use 1.8, so assume k(∗) ≥ 1. Now the proof is similar to (but
easier than) the proof of case (2) inside the proof of part (1) above.

�1.12
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