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SUPERSTABLE THEORIES AND REPRESENTATION

SAHARON SHELAH

ABSTRACT. In this paper we give an additional characterizations ef filst
order complete superstable theories, in terms of an extproperty called rep-
resentation. In the sense of the representation propagynentioned class of
first-order theories can be regarded as “not very compli¢afehis was done for
"stable” and for Ty-stable.” Here we give a complete answer for "superstable”.

1. INTRODUCTION

Our motivation to investigate the properties under comsittn in this paper
comes from the following

Thesis Itis very interesting to find dividing lines and it is a fruitfapproach
in investigating quite general classes of models. A “ndtuligiding prop-
erty “should” have equivalent internal, syntactical, anteenal properties.
(see [She:EL3] and lately [She:1151], [Bal88] for more)

Of course, we expect the natural dividing lines will have snaguivalent defi-
nitions by internal and external properties.

The class of stable (complete first order theoriesd well known (see [She:c]),
it has many equivalent definitions by “internal, syntadtigaroperties, such as
the order property. As for external properties, one may gay éveryA > |T|
for some modeM of T we haveS(M) has cardinality> A” is such a property
(characterizing instability). Anyhow, the property “naiving manyk-resplendent
models (or equivalently, having at most one in each caritjfyais certainly such
an external property (see [She:363])).

Here we deal with another external propergpresentability This notion was
a try to formalize the intuition that "the class of models dftable first order the-
ory is not much more complicated than the class of moliels (A, ... E,...)s
whereEM is an equivalence relation okrefining EM for s<t ; andl is a linear
order of cardinality< |T| . It was first defined in Cohen-Shelah [CohShe:919],
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where it was shown that one may characterize stability@gwdtability by means
of representability. In this paper we give a complete ansiser for the superstable
case. IfT is uncountable we may consider other valueg(df). That is, recall that
for a stable (complete first order) thedfyk(T ) can be any cardinal in the interval
[Do,|T|™). SoifT is countable there are two possible valugs; (1, the second

is dealt with in [CohShe:919] and the firstin Theorem 3.1. iBiitis uncountable,
the result above gives a representation in a class whiclndepgest onT|, so it is
natural to suspect thatkf{(T) < |T|" we can restrict this class further. We hope to
consider this later.

The results are phrased below, and the full definition agp@aDefinition 2.1,

but first consider a simplified version. We say that a a métle ¢-representable
for a classt when there exists a structutes £ with the universe extendiniyl
such that for any and two sequences of lengtHrom M, if they realize the same
quantifier free type ith then they realize the same (first order) typ&inOf course,
T is t-representable if every model ®fis ¢-representable. We prove, e.g. thais
superstable iff for some, it is representable in the class of locally finite strucsure
with exactlyk unary functions (and nothing else), see Definition 2.5.

This raises various further questions

Problem
1) Can we characterize, by representabilify i$ strongly dependent ”,
similarly for the various relatives (see [Sh:863])
2) For a natural numbaer, what is the class of representable b§}} of
structures with jusk n-place functions (or relations)
3) What about strong representability (meaning we demaradidition
that
(x) if a,b €| realise the same qgf-type Inthenac M +» b e M.
Concerning the last demand, even for general staltas fail for | =
Ak (1") for I € £°9, but a relative called ‘medium” we can but this is
delayed

The main result presented in this paper is:
Characterization of superstable theories (Theorem 3.1):

In the attempt to extend the framework of representatioadtrsed natural, ini-
tially, to conjecture that if we consider representatiorrdinear orders rather than
over sets, we could find an analogous characterizations dpertient theories.
However, such characterizations would imply strong thexsren existence of in-
discernible sequences. In [KapShe:946], some dependmori¢l were discovered
for which it is provably “quite hard to find indiscernible sdguences”, implying
that this conjecture would fail in its original formulatiorlowever in [She:863] it
was proved that such results hold for strongly dependient

The reader that would like to avoid the reference [CohStg3:6a&n restrict Th
3.1 to the equivalence of clauses (1), (2), (5) there; wiiy?=- (2) holds by Th
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3.3 by the definitions(2) = (5) is immediate, and lastly5) = (1) holds by Th
3.2(2). A related work of Halevi, Kaplan and the author onldayproblem for
stable graphs.

The author thanks Yatir Halevi for doing much to improve thesentation and
the referees for good advice.

2. STRUCTURECLASSES AND REPRESENTATIONS

We recall some needed definitions and properties from [Ce{ed8].

Conventior2.1 (1) The vocabulary is a set of individual constants, (partiatck
tion symbols and relation symbols (=predicates), each thighnumber of places
(=arity) being finite except in the modef#,,, so for a modeM, the occurance
number, o€M) is . Individual constants may be considered as 0-place fumctio
symbols.

Let arity,(P) be the arity of the predicate in the vocabularyt, similarly for
function symbols. The occurrence number of the vocabuldhat is 0¢1), is the
minimal cardinal® such that every symbd®? from T has arity< 8. We shall allow
function symbolsF to be interpreted in a modéll as partial functions but then
demand that dofiF™) is PM for some predicat®: < t.

(2) A structurel = (1,1, =) is a triple of vocabulary, universe (=domain) and the
interpretation relation for the vocabulary: lét = I, ||l || the cardinality ofl and
T) =T; | is called at-structure.

(3) t denotes a class of structures in a given vocabulgrgol € =1 is at, —
structure.

(4) L(1) is first order logic for the vocanulary, L, = LL(1) is f.0. logic in the
vocabularyr; Léf denotes all the quantifier-free formulas with terms fromThat
is, finite Boolean combinations of atomic formulas, whemat formulas (fort)
have the fornP(0oy,...,0n_1) Or 0o = 03 for somen-ary predicaté® € T, 0p. .. are
terms, i.e. they are in the closure of the set of variablesugtfon (and partial
function) symbols.

(5) If I at-structurea= (a; ;i < a) €%l|, then

I
tpyr (@ B.1) = {0(XD): §(XY) € L1 1 = 0(@b), be "B}
2.1. Defining representations

We recall the definition of a representation.

Definition 2.1. Consider a model M.
1) For a structured and a function f: M — |J| is called a representation of M in
Jif
tqu(f(a)aoa‘J) = tqu(f(5)707‘]) = tp(a7 07 M) = tp(B7 07 M)

for any two sequencesb € <M
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2) We say that M is represented in a class of modéighere exists al € £ such
that M is represented id.

3) Fortwo classes of structuresg, £ we say that is represented if if everyl € €
is represented if.

4) We say that a first-order theory T is represented iif the elementary class
EC(T) of models of T is representedfin

Definition 2.2. £€°9denotes the class of structures of the vocabufasy, whereeq
stands for equality.

2.2. The free algebrasi,

Definition 2.3. Let u> k = cf(k). For a given structurd, we define the structure
M = My« (1) as the structure whose vocabularytjsJ {Fy g : o < W, < K}, with
a B-ary function symbol £ for all a <, < k. (the vocabulary of includes a
unary relation symbol | for the structure’s universe, andwik assume kg ¢ 1;)

and we have Pc 1(l) is a predicate with arity{ and F{/f = ¢ when Z is the arity
of some Re 1; or = 1. The universe for this structure'is

Mp.K(I): U MLLKN(I)

yeOrd
WhereM; = M, (1) is defined as follows:
o Mo(l) := |l
o Forlimit {: Mz (1) = Ug¢ Mz (1)
e For(=vy+1

MzzMyu{Fa_B(B):BeBMy, a<p B<K}

WhereF, g(b) is treated as a formal object. The symbolstjinhave the same
interpretation as ih. In particular,a-ary functions may be interpreted @s+ 1) —
ary relations. The-ary functionF, g(X) is interpreted as the mappiag— Fy g(a)
forallach | My (1)], whereF, g(a) on the right side of the mapping is the formal
object. Ifu= Kk = g we may omit them.

Remark2.1 It is shown in [CohShe:919] that,,« (S) is a set (though defined as
a class).

2.3. Extensions of classes of structures

Discussion2.2 For a class of structurels we define several classes of structures
that are based oh

IThis defines a set and not a proper class by remark 2.1.
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Definition 2.4. Letting u> K, ExﬁvK(E) is the class of structures™ which, for

somel € ¢ satisfy|I 7| = |I[;1j+ =T U{Py:a < u} U {Fg : B <K} for new unary

relation symbols £ and new unary function symbolg;Fsuch that if > 0 then

<P(')(+ < p> is a partition of|l|, and<F£'5+ B< K> are partial unary functions.
0,If

Definition 2.5. Ex; (£) is the class of structures IEX&K(E) for which the closure
of every element under the new functions is finifestands for “locally finite”).

Definition 2.6. Ex (&) is the class of structures i) (t) for which F(Py) C
P-q := Uy<q Py holds for everyor < p,B <k.

Definition 2.7. 1) Ex;; (€) is the class of structures of the foim = 94, (1), for
somel € ¢ (cf. Definition 2.3).

2) LetExj . (€) is the clas€ of structures 7+ = A, (1) which means that e ¢
and the model* is .# = .#,«(1) expanded by £ for o < B <K,i <P
where B B

F.7"(a) is: by if 4. (1) = "a=Fyp,(b)” for some sequende= (b : j < B);
and if there is no such sequence theff Ha) = a.

3) Exﬁfz(%) is defined as in part (2) omitting the functiong g=so consisting of
AE() for | et

Fact 2.3 1) If | € €9 has cardinality> k for transparency,# = .#,«(l) and
MT € ExﬁvK(Eeq) as above so expandingZ andc,d realize the same qgf-type in
/" then there is a permutatianof | such that the automorphisinof .#* which

it induce mapg to d; recallk = cf(k) < .

2) Above, any automorphism o#,« (1) is also an automorphism o}, (1)

I =5 (1) and AT € Exﬁ;ﬁ is the reduct of #* from 2.7(3) then
AT, AT have the same automorphisms

Proof. 2.3 Easy. O

Conventiorn2.4. Ex,« will denote one of the above classes.

3. SUPERSTABLE THEORIES
The main theorem is

Theorem 3.1. For a first-order, complete theory T the following are equeéve:

1) T is superstable.

2Probably should be use also in [CohShe:919]; also we maytbel g -s.



Sh:1043

76 SAHARON SHELAH

2) T is representable iEx%T‘.DO(teq)
3) T is representable iEx%m ,(t%9) so using unary functions only

4) T is representable X0, (t%9)
5) T is representable iExﬁ.DO(Eeq) for some cardinal p
6) T is representable iExﬁj:I (€%9) for some cardinals Jx.
Proof. 3.1 2= 5,4 = 6 are immediate.
2 =3 is direct from [CohShe:919, 1.30]
3 =4 direct from [CohShe:919, 1.24]
5=6
This follows since E&DO(EGQ) is gf-representable in Iﬁ;g(éeq) by [CohShe:919,

1.30] and E%ﬁz(Eeq) - Exﬁ:g (€°9) by [CohShe:919, 1.24] with 2 here standing for
K there.

The rest follows from Theorem 3.3 below giving=t 2 and Theorem 3.2 below
giving 6=- 1. Together we are done proving 3.1. O

Remark3.1 It may be notationaly better to use insteadt®d but the later was
used in [CohShe:919].

Theorem 3.2.1) If T is representable iExﬁj:I (£°9) for some cardinals jx then T

is superstable; moreover stable in every cardikat |, recalling > K.
2) If T is representable iExﬁ.K(Eeq) andk =g then T is superstable; moreover
is stable in every cardinal which satisfiea > p.

Proof. 3.2 Similar to the proof of Propositions [CohShe:919, Th25] but we
shall elaborate on part (2).

ChooseA such thath > p and letM be a model ofT of cardinality x > A,
e.g. X =A" andA C M be a set of cardinalitp . We shall prove that the set
{tp(c,A,M) : c € M} is of cardinality at mosh; this suffice.

By our assumption,

(x)1 there are a structure?*® and representatioh: M — .#* where

(a) for part (1),#° € Ex;¢ (1) wherel ¢ ¢4
(b) for part (2),.#° € Ex3, (£ so.* is the expansions,, (1) of .,,(1)
described in 2.7(2) above where £°9

Fora e M let J; be the closure of f(a)} in | so is a finite set in both cases and
let (sar : ¢ < na=n(a)) list J; with no repetitions. and so we can choose a term
0 = 04 such thaio = o((Xo, . - ., Xa(a)—1) belongs tal.(t(.Z*) and.Z* |= f(a) =
O-(as(ap) B 7as(a7n(a)—1))-

Next letd = U{J. : c € A} soJ is a subset of of cardinality at mosh.

We now define an equivalence relatigron M as follows:
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(x)2 cEdiff the following hold:
(@ c,deM,
(b) nc=ny
(c) forf < ncwe haves., € Jiff s5, € Jand if they holds thes;, = sy
(d) the sequenceS:, : ¢ < nc) and(sq, : ¢ < ne) realize the same qf-free type
inl®
Note that clause (d) actually follows from the earlier clegibecauses,  : £ <
Np) IS with no repetitions for everlg € M. Clearly:

()3 we have

(a) indeecE is an equivalence relation dvi
(b) the equivalence relatida has at mosh equivalence classes.

[Why? For the first clause, just read the definitiorEofFor the second clause,
i.e. clause (b) first there are at mst [y = p triples of the form(na, 04, Us) for
ac M whereu, = {¢ < n,: sy, € J}. Second there are at mdssequences of the
form (sa 1 ¢ € uy) forae M.

Lastly

(x)4if c,d € M areE-equivalence then there is a automorphismzt mapping
f(c) to f(d) and being the identity ofif (a)a € M}.

[Why? Lettp be the function with domaid U {s;, : ¢ < na} which is the
identity onJ and maps to sq¢ for £ < nc. By our present assumptions it is one
to one, with domain and range includedlimnd of cardinality< A < |I|. AsJ
has cardinality< A < |I|, we can extendy to a permutatiorrt of I. and letit be
the automorphism of#Z* which tinduce. Clearly it maps(c) to f(d), so we are
done proving clause (b)]

(x)s If cEdthen

(a) the gf-types tp(f(c),J,.#*) and tps(f(d),J,.#*) are equal.

(b) the types tfc, A,M) and tgd,A,M) are equal.

[Why? For clause (a), the elemerft&), f (d) realize the same qf-free type over
Jinl® by (x%)a.

Then clause (b) follows by the assumptionfgrbeing a representation, s@e;
and Def 2.1 ]

So clearly we are done proving part (2).]
O

Theorem 3.3. Every superstable T is representablﬁx@n Do(Eeq).

Proof. 3.3 Let T be superstable anil = 2/TI. Let M < ¢1. We shall choose
Bn, (as,Us : S€ §,) by induction omn < w such that:

®o (@) SHiNS=0 (fork<n)
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(b) {as:seS}CM

(¢) Bn={as:se S} €M, whereS.:=U{&: k< n}, as usual

(d) (as:se Sy) is without repetitions, disjoint fronfas: s€ Scp} and
independent oves,,

(e) forallse SusC Sy is finite such that € us = u C us and
tp(as, Bn) does not fork ovefa; : t € us}

(f) (as:se€S,) is maximal under conditions 1-5.
Here we make a convention that, w vary on.# defined below:

®1 SinceT is superstable, it is possible to carry the induction.
®2 (@) let # ={u:ucC Sufinite}, whereS=$,
n

(b) forve .# letcl(v) be the minimalu D v such that; C u holds
forallt e u;

(c) wedefines® ={uc .7 u=cl(u)};
(d) forse Sletud = cl(us) U{s}.
@3 (@) ifue . thenuCcl(u) €.
(b) vCu=cl(v) Ccl(u);
(c) cl(upUu) =cl(ur)Ucl(up);
(d) cl({s}) =ud =usU{s} =uU{cl({t}):t eus} U{s};
(e) cl(cl(u)) =cl(u);
(

—
S~—

cl(u) = U{ud : se u} = u{cl({t} : t € us for somes € u}
(9) us=cl(us),us =cl(ug)
[Why? e.g. clause (g) bwo(e)]
®4 M| ={as:s€ S}
[Why? Otherwise, there existsc [M|\{as: s€ S}, now we can choose (sindeis
superstable) a finiteC Ssuch that tpa, {as: s€ S}) does not fork ovefas: se v}.
Letu=cl(v), soue 7 and letn be such that C S, and we get a contradiction
to the maximality of{as: s€ §,}.]
®s5 Let (v : 0 < a(x)) enumerates (without repetition) such that:
(@ VvaCvg=a<B
(b) a< BAVE C Scn = Vo € Scp.
We choose a modéll,, and setA,, C My, by induction ona such that:

®s (@) My, < €1 has cardinality\;
(b) vg C vy implies that < a andM\,B < My,;
(© Ay =U{My:B<anvgCvg} CMy;
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(d) if se vy andus C vy thenas € My, ;

(e tp(My,,U{M; : B < a}UM) does not fork over
By, i=U{My; 1 Vg C Vg, B<a}u{as:cl({s}) Cva}

(f)  (Myy,C)cen,, is saturated, henak,, C My,.

[Why can we carry the induction? Arriving to the ordirfilfirst, as an approxima-
tion choose a model;]’l\’,B satisfying clauses (a),(b),(c),(d). Second we chcb0§e<
¢t of cardinalityA extendingM{,, such that the modeM{, ,C)cca,, ) is Saturated,
possible becauseg is stable inA. Third and lastly choose @&r-elementary map-
ping fy, with domainMy, which is the identity orB, a and tg( fy, (My, ), U{My; :
B < a}UM) does not fork oveB,,. ClearlyM,, = fy, (M, ) is as required.]
®7 (@) a <PB= My, #My,.
(b) v u=M,CM,
©MCU{My:ue 7}
(d) the setM, \ A, has cardinality\
[Why? e.g. clause (a) holds lys(c),(f)]
A major point is
®g tp(My,,U{My; : B < a}) does not fork oveA,, := U{My, 1 Vg C Vq }.
[ Why? If vq = 0 this is trivial so assume, # 0.

Let n be such thaty C Scp, Ve € Scn and

®g1 let (t 10 <k) = (t]' : £ <kq) list {s€ vy :s¢ Sepand cl{s}) C vq}.

First, assumé& = 0. So ifse€ vy and cl{s}) C vy thens € vq N Sy, this im-
plies thatusU {s} = cl({s}) C Scp, hence by®g(d), as € My,ns_, C Ay, because
Vo C. Thisimplies thaB,, C Ay, (in fact equal - see their definitions #e(e), ®g
resp,). Now®sg(e) says that tpMy,,U{My, : B < a}) does not fork oveBy,, so
by monotonicity of non-forking and the last sentence, itsloet fork overA,, as
desired.

Second, assumie= 1 and (VB < o) (cl({to}) Z vg). Hence necessarily; =
cl({to}) soBy, = Ay, U{a, } hence by®g the type tga,, {as: s€ S<n\ {to} }) does
not fork over{as: s€ W, }. Next note that fof < a the type tga,, {as: s€ Scn\
{to} }UU{My : y< B}) does not fork ovefas : s€ W, }, this is proved by induction
on . Butclearly{as:se w,} C A, hence clearly tfe,,U{M, : B < a}) does
not fork overA,,, together with®s(e) we get that tpM,,,, U{My, : B < a}) does
not fork overA,,, as desired im®g.

Third, assumé = 1,8 < a and cl{to}) € vg. Without loss of generalityB is
minimal with these properties, so necessargly= cl({to}) and so agairB,, = A,
and we continue as in “First” above.

Fourth, assumé& > 2. In this case, for each < k,cl({t;}) is vp(, for some
uniqueB(¥) < a, soa, € My, € Ay, henceBy, C Ay, (in fact equal) and again
®s(€e) gives the desired conclusion. ]
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Together we have finished provirgs.

Now define

®g (a) the sequencéM, : v € .¥) is a stable system, of models (defined in
[She:c, Ch.XIl, 2.1]holds by, [She:c, Ch.XIl, 2.3(1)] agg(c) + ®g)
(b) letMy = U{M, :u e .#}, soM, < € and it suffice to prove that this
model has a representation as promised.

A major point is (but we need only clause (a) for which the s#ttan is not
necessary) B

H; for everyv € .# and finite sequenck € “~ (M, \ Ay)) we can find a finite
sequence;, € “~(Ay) such that:

(@) tp(b,Ay) has a unique extension to a complete types plf¥, : v u,u €
# } which does not fork oveA, B

(b) tp(b,Ay) is stationary ovecy which means that: {fp,A,) does not fork
overc, -

(c) tp(b,A,) is the unique extension of tip, G;) in S9°(A,) which do not fork
overcg _

(d) moreover tpb, U{My : ue .#}) is stationary ovec that is: is the unique
extension of tpb, ¢5) in S9P°)(J{My : u€ .#,v C u}) which does not fork
overc;.

[Why? For clause (a) it follows from clauses (b),(c),(d)tématively it suffice to
recall that for every sequencefrom J{M, : v C v,v € .#} the types tpd,M,) is
finitely satisfiable inA,, see [She:c, Ch.XII, 2.5]). Clauses (b),(c) hold by [She:c,
Ch.XIll,3.5,pag.608] recallingM, : u € .#) is a stable systenk(T) = 0o and
eachM, is saturated. Clause (d) follows by the properties of stagltems of
e-saturated models, see [She:c, Ch.XIl, 2.12].]

We let

H. (a) <sbe a linear order o
(b) # = {f : f is afinite order preserving function fro8to S}

Now 3 by induction om we chooséb, : u € [§") and(Tt : f € .%) such that:

(a) Eu = (byq : a < A) list My \ A, without repetitions fou € .#

(b) 17 is a€r-elementary mapping fof € .#

(c) dom(1ts) = U{My:uC dom(f)} = {byg :uC Dom(f),a <A}

d) if f € #,vy Cdom(f),v> = f"(v1) anda < A then f mapsby, o to by, «

(e) (follows) if f € .# andu C dom(f) thentts;y C T,

(f) (follows) if g= f~! € .7 thenmy = (1¢) ~*
[Why? by Hy, (alternatively by uniqueness claims on stable system$iec,
Ch.Xll, 2.51]).]
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H, for everyu € [§" the type tigby, U{M, : v € Sci,,v# u}) does not fork over
Ay and is the unigue extension to a complete type QYEVl, : v € Scp, v #
u} extending tpby,Ay) not forking overA,.
[Why? By ]
s we choose a tupld,|,.7,.#*, f) witnessingf is a representation &fl as
promised, by:
(@) | € t*9has universé = S
(b) A = )1, (1)
(c) fisa function with domaiM, = J{M,:ue .7}
(d) forn< w59 <s - <sS-1 listingu € [§" anda < A we let f(byq) =
Fa (S0, ,Sn-1)
(e) . is the expansion of# as in Def 2.7(2), in fact we need only the
following (well, after renaming)
(0) P = {F;%(s0,...,%-1) 1 S0, Sh-1 €S}
(B) FZ{{{; is the partial function mapping;% (s, ..,S-1) to s for i <
n<wa<A
[Why are(I,,.#,.# ", f) as required? easy to check recallifig. Note that the
range of the functiorf is not preserved under automorphisms.4f, but this is
permissible] O

Discussion3.4. For superstabld, we may wonder about whether “the cardinal
21Tl is optimal”. Really\(T) is sufficient where

()11 A(T) =min{\A : T is stable in\}.
Recall that (see [She:c])

(*)12 If T is countable theA(T) = g is equivalent tdT is Oo-stable and
(¥)13 if T is countable and(T) > Og thenA(T) = 2%,

Theorem 3.5. In Theorem 3.3EX; 1 1, (€% suffice.

Proof. 3.5 We repeat the proof of Theorem 3.3 with minor changes.udtechoose
A =A(T) instead\ = 2T O
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