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SUPERSTABLE THEORIES AND REPRESENTATION

SAHARON SHELAH

ABSTRACT. In this paper we give an additional characterizations of the first
order complete superstable theories, in terms of an external property called rep-
resentation. In the sense of the representation property, the mentioned class of
first-order theories can be regarded as “not very complicated”. This was done for
”stable” and for ”ℵ0-stable.” Here we give a complete answer for ”superstable”.

1. INTRODUCTION

Our motivation to investigate the properties under consideration in this paper
comes from the following

Thesis: It is very interesting to find dividing lines and it is a fruitful approach
in investigating quite general classes of models. A “natural” dividing prop-
erty “should” have equivalent internal, syntactical, and external properties.
(see [She:E53] and lately [She:1151], [Bal88] for more)

Of course, we expect the natural dividing lines will have many equivalent defi-
nitions by internal and external properties.

The class of stable (complete first order theories)T is well known (see [She:c]),
it has many equivalent definitions by “internal, syntactical” properties, such as
the order property. As for external properties, one may say “for every λ ≥ |T|
for some modelM of T we haveS(M) has cardinality> λ” is such a property
(characterizing instability). Anyhow, the property “not having manyκ-resplendent
models (or equivalently, having at most one in each cardinality)” is certainly such
an external property (see [She:363]).

Here we deal with another external property,representability. This notion was
a try to formalize the intuition that ”the class of models of astable first order the-
ory is not much more complicated than the class of modelsM = (A, . . . ,Et , . . . )s∈I

whereEM
t is an equivalence relation onA refiningEM

s for s< t ; andI is a linear
order of cardinality≤ |T| . It was first defined in Cohen-Shelah [CohShe:919],

2010Mathematics Subject Classification.Primary:03C45; Secondary:03C55.
Key words and phrases.model theory, classification theory, stability, representation, superstable.
The author thanks Alice Leonhardt for the beautiful typing.

Research supported by European Research Council (ERC) advanced grant. Publication 1043.

Sh:1043



72 SAHARON SHELAH

where it was shown that one may characterize stability andℵ0-stability by means
of representability. In this paper we give a complete answeralso for the superstable
case. IfT is uncountable we may consider other values ofκ(T). That is, recall that
for a stable (complete first order) theoryT, κ(T) can be any cardinal in the interval
[ℵ0, |T|+). So if T is countable there are two possible values-ℵ0,ℵ1, the second
is dealt with in [CohShe:919] and the first in Theorem 3.1. Butif T is uncountable,
the result above gives a representation in a class which depends just on|T|, so it is
natural to suspect that ifκ(T)< |T|+ we can restrict this class further. We hope to
consider this later.

The results are phrased below, and the full definition appears in Definition 2.1,
but first consider a simplified version. We say that a a modelM is k-representable
for a classk when there exists a structureI ∈ k with the universe extendingM
such that for anyn and two sequences of lengthn from M, if they realize the same
quantifier free type inI then they realize the same (first order) type inM. Of course,
T is k-representable if every model ofT is k-representable. We prove, e.g. thatT is
superstable iff for someκ, it is representable in the class of locally finite structures
with exactlyκ unary functions (and nothing else), see Definition 2.5.

This raises various further questions

Problem:
1) Can we characterize, by representability “T is strongly dependent ”,

similarly for the various relatives (see [Sh:863])
2) For a natural numbern , what is the class ofT representable bykn

κ of
structures with justκ n-place functions (or relations)

3) What about strong representability (meaning we demand inaddition
that
(∗) if a,b∈ I realise the same qf-type inI thena∈ M ↔ b∈ M.

Concerning the last demand, even for general stableT this fail for I =
Mµ,κ(I ′) for I ′ ∈ k

eq, but a relative called ‘medium” we can but this is
delayed

The main result presented in this paper is:

Characterization of superstable theories (Theorem 3.1):
In the attempt to extend the framework of representation it seemed natural, ini-

tially, to conjecture that if we consider representation over linear orders rather than
over sets, we could find an analogous characterizations for dependent theories.
However, such characterizations would imply strong theorems on existence of in-
discernible sequences. In [KapShe:946], some dependent theories were discovered
for which it is provably “quite hard to find indiscernible subsequences”, implying
that this conjecture would fail in its original formulation. However in [She:863] it
was proved that such results hold for strongly dependentT.

The reader that would like to avoid the reference [CohShe:919] can restrict Th
3.1 to the equivalence of clauses (1), (2), (5) there; why?(1) ⇒ (2) holds by Th
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3.3 by the definitions,(2) ⇒ (5) is immediate, and lastly(5) ⇒ (1) holds by Th
3.2(2). A related work of Halevi, Kaplan and the author on Taylor problem for
stable graphs.

The author thanks Yatir Halevi for doing much to improve the presentation and
the referees for good advice.

2. STRUCTURE CLASSES ANDREPRESENTATIONS

We recall some needed definitions and properties from [CohShe:919].

Convention2.1. (1) The vocabulary is a set of individual constants, (partial) func-
tion symbols and relation symbols (=predicates), each withthe number of places
(=arity) being finite except in the modelsMµ,κ, so for a modelM, the occurance
number, oc(M) is ℵ0. Individual constants may be considered as 0-place function
symbols.

Let arityτ(P) be the arity of the predicateP in the vocabularyτ, similarly for
function symbols. The occurrence number of the vocabularyτ that is oc(τ), is the
minimal cardinalθ such that every symbolP from τ has arity< θ. We shall allow
function symbolsF to be interpreted in a modelM as partial functions but then
demand that dom(FM) is PM

F for some predicatePF ∈ τ.
(2) A structureI = 〈τ, I , |=〉 is a triple of vocabulary, universe (=domain) and the

interpretation relation for the vocabulary: let|I | = I , ‖I‖ the cardinality ofI and
τI = τ; I is called aτ-structure.

(3) k denotes a class of structures in a given vocabularyτk, soI ∈ k⇒ I is aτk−
structure.

(4) L(τ) is first order logic for the vocanularyτ, Lτ = L(τ) is f.o. logic in the
vocabularyτ; Lτ

qf denotes all the quantifier-free formulas with terms fromτk. That
is, finite Boolean combinations of atomic formulas, where atomic formulas (forτ)
have the formP(σ0, . . . ,σn−1) or σ0 = σ1 for somen-ary predicateP∈ τ, σ0 . . . are
terms, i.e. they are in the closure of the set of variables by function (and partial
function) symbols.

(5) If I a τ-structure, ¯a= 〈ai : i < α〉 ∈α|I |, then

tpqf (ā,B, I) =
{

ϕ(x̄, b̄) : ϕ(x̄, ȳ) ∈ L
τ
qf : I |= ϕ(ā, b̄), b̄∈ lg(ȳ)B

}

2.1. Defining representations

We recall the definition of a representation.

Definition 2.1. Consider a model M.

1) For a structureJ and a function f: M → |J| is called a representation of M in
J if

tpqf( f (a), /0,J) = tpqf( f (b), /0,J) ⇒ tp(a, /0,M) = tp(b, /0,M)

for any two sequencesa,b∈<ωM
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2) We say that M is represented in a class of modelsk if there exists aJ ∈ k such
that M is represented inJ.

3) For two classes of structuresk0,k we say thatk0 is represented ink if everyI ∈ k0

is represented ink.
4) We say that a first-order theory T is represented ink if the elementary class

EC(T) of models of T is represented ink.

Definition 2.2. keq denotes the class of structures of the vocabulary{=}, whereeq
stands for equality.

2.2. The free algebrasMµ,κ

Definition 2.3. Let µ≥ κ = cf(κ). For a given structureI , we define the structure
M = Mµ,κ(I) as the structure whose vocabulary isτI ∪{Fα,β : α < µ,β < κ}, with
a β-ary function symbol Fα,β for all α < µ,β < κ. (the vocabulary ofI includes a
unary relation symbol I for the structure’s universe, and wewill assume Fα,β /∈ τI )
and we have Pζ ∈ τ(I) is a predicate with arityζ and PM

ζ = ζI when ζ is the arity

of some P∈ τζ or ζ = 1. The universe for this structure is1:

Mµ,κ(I) =
⋃

γ∈Ord

Mµ,κ,γ(I)

WhereMζ = Mµ,κ,ζ(I) is defined as follows:

• M0(I) := |I |
• For limit ζ: Mζ(I) =

⋃
ξ<ζ Mξ(I)

• For ζ = γ+1

Mζ = Mγ ∪
{

Fα,β(b) : b∈β
Mγ, α < µ, β < κ

}

WhereFα,β(b) is treated as a formal object. The symbols inτI have the same
interpretation as inI . In particular,α-ary functions may be interpreted as(α+1)−
ary relations. Theβ-ary functionFα,β(x) is interpreted as the mappinga 7→ Fα,β(a)
for all a∈β

∣

∣Mµ,κ(I)
∣

∣, whereFα,β(a) on the right side of the mapping is the formal
object. Ifµ= κ = ℵ0 we may omit them.

Remark2.1. It is shown in [CohShe:919] thatMµ,κ(S) is a set (though defined as
a class).

2.3. Extensions of classes of structures

Discussion2.2. For a class of structuresk, we define several classes of structures
that are based onk.

1This defines a set and not a proper class by remark 2.1.

Sh:1043



SUPERSTABLE THEORIES AND REPRESENTATION 75

Definition 2.4. Letting µ≥ κ, Ex0
µ,κ(k) is the class of structuresI+ which, for

someI ∈ k satisfy|I+| = |I |;τI+ = τI ∪{Pα : α < µ}∪
{

Fβ : β < κ
}

for new unary
relation symbols Pα and new unary function symbols Fβ; such that if µ> 0 then
〈

PI+
α : α < µ

〉

is a partition of|I |, and
〈

F I+
β : β < κ

〉

arepartial unary functions.

Definition 2.5. Ex0,lf
µ,κ(k) is the class of structures inEx0

µ,κ(k) for which the closure
of every element under the new functions is finite; (lf stands for “locally finite”).

Definition 2.6. Ex1
µ,κ(k) is the class of structures inEx0

µ,κ(k) for which Fβ(Pα) ⊆
P<α :=

⋃
γ<α Pγ holds for everyα < µ,β < κ.

Definition 2.7. 1) Ex1.5
µ,κ (k) is the class of structures of the formI+ = Mµ,κ(I), for

someI ∈ k (cf. Definition 2.3 ).

2) LetEx2
µ,κ(k) is the class2 of structuresM+ =M+

µ,κ(I) which means thatI ∈ k

and the modelM+ is M = Mµ,κ(I) expanded by FM
+

α,β,i for α < µ,β < κ, i < β
where

FM+

α,i (a) is: bi if Mµ,κ(I) |= “a= Fα,β,i(b̄)” for some sequencēb= 〈b j : j < β〉;
and if there is no such sequence then FM+

(a) = a.

3) Ex2.5
µ,κ(k) is defined as in part (2) omitting the functions Fα,β so consisting of

M 2.5
µ,κ (I) for I ∈ k.

Fact 2.3. 1) If I ∈ k
eq has cardinality≥ κ for transparency,M = Mµ,κ(I) and

M+ ∈ Ex2
µ,κ(k

eq) as above so expandingM and c̄, d̄ realize the same qf-type in
M+ then there is a permutationπ of I such that the automorphism̌π of M+ which
it induce maps ¯c to d̄; recallκ = cf(κ)≤ µ.

2) Above, any automorphism ofMµ,κ(I) is also an automorphism ofM+
µ,κ(I)

3) If M+ = M+
µ,κ(I) andN + ∈ Ex2.5

µ,κ is the reduct ofM+ from 2.7(3) then
M+,N + have the same automorphisms

Proof. 2.3 Easy. �

Convention2.4. Exµ,κ will denote one of the above classes.

3. SUPERSTABLE THEORIES

The main theorem is

Theorem 3.1. For a first-order, complete theory T the following are equivalent:

1) T is superstable.

2Probably should be use also in [CohShe:919]; also we may omittheFα,β,-s.
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2) T is representable inEx2
2|T|,ℵ0

(teq)

3) T is representable inEx1
2|T|,2(t

eq) so using unary functions only

4) T is representable inEx0,lf
2|T|,2

(teq)

5) T is representable inEx2
µ,ℵ0

(keq) for some cardinal µ

6) T is representable inEx0,lf
µ,κ(k

eq) for some cardinals µ,κ.

Proof. 3.1 2⇒ 5,4⇒ 6 are immediate.
2⇒ 3 is direct from [CohShe:919, 1.30]
3⇒ 4 direct from [CohShe:919, 1.24]
5⇒ 6
This follows since Ex2µ,ℵ0

(keq) is qf-representable in Ex1
µ,2(k

eq) by [CohShe:919,

1.30] and Ex1µ,2(k
eq) ⊆ Ex0,lf

µ,2(k
eq) by [CohShe:919, 1.24] with 2 here standing for

κ there.
The rest follows from Theorem 3.3 below giving 1⇒ 2 and Theorem 3.2 below

giving 6⇒ 1. Together we are done proving 3.1. �

Remark3.1. It may be notationaly better to usek= insteadkeq but the later was
used in [CohShe:919].

Theorem 3.2. 1) If T is representable inEx0,lf
µ,κ(k

eq) for some cardinals µ,κ then T
is superstable; moreover stable in every cardinalλ ≥ µ, recalling µ≥ κ.

2) If T is representable inEx2
µ,κ(k

eq) andκ=ℵ0 then T is superstable; moreover
is stable in every cardinalλ which satisfiesλ ≥ µ.

Proof. 3.2 Similar to the proof of Propositions [CohShe:919, Th.2.4,2.5] but we
shall elaborate on part (2).

Chooseλ such thatλ ≥ µ and letM be a model ofT of cardinality χ > λ,
e.g. χ = λ+ and A ⊆ M be a set of cardinalityλ . We shall prove that the set
{tp(c,A,M) : c∈ M} is of cardinality at mostλ; this suffice.

By our assumption,

(∗)1 there are a structureM • and representationf : M → M • where

(a) for part (1),M • ∈ Ex1,lf
µ,κ(I) whereI ∈ k

eq

(b) for part (2),M • ∈ Ex2
µ,κ(k

eq) soM • is the expansionM+
µ,κ(I) of Mµ,κ(I)

described in 2.7(2) above whereI ∈ k
eq

For a∈ M let Ja be the closure of{ f (a)} in I so is a finite set in both cases and
let 〈sa,ℓ : ℓ < na = n(a)〉 list Ja with no repetitions. and so we can choose a term
σ = σa such thatσ = σ((x0, . . . ,xn(a)−1) belongs toL(τ(M •) andM • |= f (a) =
σ(as(a,0) . . . ,as(a,n(a)−1)).

Next letJ = ∪{Jc : c∈ A} soJ is a subset ofI of cardinality at mostλ.
We now define an equivalence relationE on M as follows:
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SUPERSTABLE THEORIES AND REPRESENTATION 77

(∗)2 cEd iff the following hold:

(a) c,d ∈ M,
(b) nc = nd

(c) for ℓ < nc we havesc,ℓ ∈ J iff sd,ℓ ∈ J and if they holds thensc,ℓ = sd,ℓ

(d) the sequences〈sc,ℓ : ℓ < nc〉 and〈sd,ℓ : ℓ < nc〉 realize the same qf-free type
in I•

Note that clause (d) actually follows from the earlier clauses because〈sb,ℓ : ℓ <
nb〉 is with no repetitions for everyb∈ M. Clearly:

(∗)3 we have

(a) indeedE is an equivalence relation onM
(b) the equivalence relationE has at mostλ equivalence classes.

[Why? For the first clause, just read the definition ofE. For the second clause,
i.e. clause (b) first there are at mostµ+ℵ0 = µ triples of the form(na,σa,ua) for
a∈ M whereua = {ℓ < na : sa,ℓ ∈ J}. Second there are at mostλ sequences of the
form 〈sa,ℓ : ℓ ∈ ua〉 for a∈ M.

Lastly

(∗)4 if c,d∈M areE-equivalence then there is a automorphism ofM • mapping
f (c) to f (d) and being the identity on{ f (a)a∈ M}.

[Why? Let π0 be the function with domainJ∪ {sc,ℓ : ℓ < na} which is the
identity onJ and mapssc,ℓ to sd,ℓ for ℓ < nc. By our present assumptions it is one
to one, with domain and range included inI and of cardinality≤ λ < |I |. As J
has cardinality≤ λ < |I |, we can extendf0 to a permutationπ of I . and letπ̌ be
the automorphism ofM • which π induce. Clearly it mapsf (c) to f (d), so we are
done proving clause (b)]

(∗)5 If cEd then
(a) the qf-types tpqf( f (c),J,M •) and tpqf( f (d),J,M •) are equal.
(b) the types tp(c,A,M) and tp(d,A,M) are equal.

[Why? For clause (a), the elementsf (c), f (d) realize the same qf-free type over
J in I• by (∗)4.

Then clause (b) follows by the assumption onf , being a representation, see(∗)1

and Def 2.1 ]
So clearly we are done proving part (2).]

�

Theorem 3.3. Every superstable T is representable inEx2
2|T|,ℵ0

(keq).

Proof. 3.3 Let T be superstable andλ = 2|T|. Let M ≺ CT . We shall choose
Bn,〈as,us : s∈ Sn〉 by induction onn< ω such that:

⊛0 (a) Sn∩Sk = /0 (for k< n )
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(b) {as : s∈ Sn} ⊆ M

(c) Bn = {as : s∈ S<n} ⊆ M, whereS<n := ∪{Sk : k< n}, as usual

(d) 〈as : s∈ Sn〉 is without repetitions, disjoint from{as : s∈ S<n} and
independent overBn,

(e) for all s∈ S,us ⊆ S<n is finite such thatt ∈ us ⇒ ut ⊆ us and
tp(as,Bn) does not fork over{at : t ∈ us}

( f ) 〈as : s∈ Sn〉 is maximal under conditions 1-5.

Here we make a convention thatu,v,w vary onI defined below:

⊛1 SinceT is superstable, it is possible to carry the induction.

⊛2 (a) let I = {u : u⊆ S,u finite}, whereS=
⋃
n

Sn

(b) for v∈ I let cl(v) be the minimalu⊇ v such thatut ⊆ u holds
for all t ∈ u;

(c) we defineI cl = {u∈ I : u= cl(u)};
(d) for s∈ S let u+s = cl(us)∪{s}.

⊛3 (a) if u∈ I thenu⊆ cl(u) ∈ I

(b) v⊆ u⇒ cl(v)⊆ cl(u);

(c) cl(u1∪u2) = cl(u1)∪cl(u2);

(d) cl({s}) = u+s = us∪{s}= ∪{cl({t}) : t ∈ us}∪{s};

(e) cl(cl(u)) = cl(u);

( f ) cl(u) =
⋃
{u+s : s∈ u}= ∪{cl({t} : t ∈ us for somes∈ u}

(g) us = cl(us),u+s = cl(u+s )

[Why? e.g. clause (g) by⊛0(e)]

⊛4 |M|= {as : s∈ S}

[Why? Otherwise, there existsa∈ |M|\{as : s∈S}, now we can choose (sinceT is
superstable) a finitev⊆Ssuch that tp(a,{as : s∈S}) does not fork over{as : s∈ v}.
Let u= cl(v), sou∈ I cl and letn be such thatu⊆ Sn and we get a contradiction
to the maximality of{as : s∈ Sn}.]

⊛5 Let 〈vα : α < α(∗)〉 enumerateI (without repetition) such that:

(a) vα ⊆ vβ ⇒ α ≤ β;

(b) α < β∧vβ ⊆ S<n ⇒ vα ⊆ S<n.

We choose a modelMvα and setAvα ⊆ Mvα by induction onα such that:

⊛6 (a) Mvα ≺ CT has cardinalityλ;

(b) vβ ⊆ vα implies thatβ ≤ α andMvβ ≺ Mvα ;

(c) Avα =
⋃
{Mvβ : β < α∧vβ ⊆ vα} ⊆ Mvα ;
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(d) if s∈ vα andus ⊆ vα thenas ∈ Mvα ;

(e) tp(Mvα ,∪{Mvβ : β < α}∪M) does not fork over
Bvα := ∪{Mvβ : vβ ⊆ vα, β < α}∪{as : cl({s}) ⊆ vα}

( f ) (Mvα ,c)c∈Avα is saturated, henceAvα ( Mvα .

[Why can we carry the induction? Arriving to the ordinalβ, first, as an approxima-
tion choose a modelM′

vβ
satisfying clauses (a),(b),(c),(d). Second we chooseM′′

vy
≺

CT of cardinalityλ extendingM′
vα

such that the model(M′′
vα
,c)c∈Avα ) is saturated,

possible becauseT is stable inλ. Third and lastly choose aCT -elementary map-
ping fvα with domainM′′

vα
which is the identity onBvya and tp( fvα(M

′′
vα
),
⋃
{Mvβ :

β < α}∪M) does not fork overBvα . ClearlyMvα = fvα(M
′′
vα) is as required.]

⊛7 (a) α < β ⇒ Mvα 6= Mvβ .
(b) v( u⇒ Mv ( Mu

(c) M ⊆
⋃
{Mu : u∈ I }

(d) the setMu\Au has cardinalityλ
[Why? e.g. clause (a) holds by⊛6(c),(f)]

A major point is

⊛8 tp(Mvα ,∪{Mvβ : β < α}) does not fork overAvα := ∪{Mvβ : vβ ( vα}.

[ Why? If vα = /0 this is trivial so assumevα 6= /0.
Let n be such thatvα ⊆ S≤n,vα * S<n and

⊛8.1 let 〈tℓ : ℓ < k〉= 〈tα
ℓ : ℓ < kα〉 list {s∈ vα : s /∈ S<n and cl({s}) ⊆ vα}.

First, assumek = 0. So if s∈ vα and cl({s}) ⊆ vα thens∈ vα ∩S<n, this im-
plies thatus∪{s} = cl({s}) ⊆ S<n, hence by⊛6(d), as ∈ Mvα∩S<n ⊆ Avα because
vα (. This implies thatBvα ⊆ Avα (in fact equal - see their definitions in⊛6(e),⊛8

resp,). Now⊛6(e) says that tp(Mvα ,∪{Mvβ : β < α}) does not fork overBvα , so
by monotonicity of non-forking and the last sentence, it does not fork overAvα as
desired.

Second, assumek = 1 and(∀β < α)
(

cl({t0})* vβ
)

. Hence necessarilyvα =
cl({t0}) soBvα =Avα ∪{at0} hence by⊛0 the type tp(at0,{as : s∈S≤n\{t0}}) does
not fork over{as : s∈ ut0}. Next note that forβ ≤ α the type tp(at0,{as : s∈ S≤n\
{t0}}∪

⋃
{Mγ : γ < β}) does not fork over{as : s∈ ut0}, this is proved by induction

on β. But clearly{as : s∈ ut0} ⊆ Avα hence clearly tp(at0,∪{Mvβ : β < α}) does
not fork overAvα , together with⊛6(e) we get that tp(Mvα ,∪{Mvβ : β < α}) does
not fork overAvα , as desired in⊛8.

Third, assumek = 1,β < α and cl({t0}) ⊆ vβ. Without loss of generalityβ is
minimal with these properties, so necessarilyvβ = cl({t0}) and so again,Bvα =Avα

and we continue as in “First” above.
Fourth, assumek ≥ 2. In this case, for eachℓ < k,cl({tℓ}) is vβ(ℓ) for some

uniqueβ(ℓ) < α, soatℓ ∈ Mvβ(ℓ) ⊆ Avα , hence,Bvα ⊆ Avα (in fact equal) and again
⊛6(e) gives the desired conclusion. ]
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Together we have finished proving⊕8.

Now define

⊛9 (a) the sequence〈Mv : v ∈ I 〉 is a stable system, of models (defined in
[She:c, Ch.XII, 2.1]holds by , [She:c, Ch.XII, 2.3(1)] and⊛7(c)+⊛8)
(b) let M• =

⋃
{Mu : u∈ I }, soM• ≺ CT and it suffice to prove that this

model has a representation as promised.

A major point is (but we need only clause (a) for which the saturation is not
necessary)

⊞1 for everyv ∈ I and finite sequencēb ∈ ω>(Mv \Av)) we can find a finite
sequence ¯cb̄ ∈

ω>(Av) such that:

(a) tp(b̄,Av) has a unique extension to a complete types over
⋃
{Mu : v( u,u∈

I } which does not fork overAv

(b) tp(b̄,Av) is stationary over ¯cb̄ which means that: tp(b̄,Av) does not fork
over c̄b̄

(c) tp(b̄,Av) is the unique extension of tp(b̄, c̄b̄) in Slg(b̄(Av) which do not fork
over c̄b̄

(d) moreover tp(b̄,
⋃
{Mu : u∈ I }) is stationary over ¯cb̄ that is: is the unique

extension of tp(b̄, c̄b̄) in Slg(b̄)(
⋃
{Mu : u∈ I ,v( u}) which does not fork

over c̄b̄.

[Why? For clause (a) it follows from clauses (b),(c),(d); (alternatively it suffice to
recall that for every sequencēd from

⋃
{Mu : v( v,v∈ I } the types tp(d̄,Mv) is

finitely satisfiable inAv, see [She:c, Ch.XII, 2.5]). Clauses (b),(c) hold by [She:c,
Ch.XII,3.5,pag.608] recalling〈Mu : u ∈ I 〉 is a stable system,κ(T) = ℵ0 and
eachMu is saturated. Clause (d) follows by the properties of stablesystems of
ℵε-saturated models, see [She:c, Ch.XII, 2.12].]

We let

⊞2 (a)<S be a linear order ofS
(b) F = { f : f is a finite order preserving function fromS to S}

Now⊞3 by induction onn we choose〈b̄u : u∈ [S]n〉 and〈π f : f ∈F 〉 such that:

(a) b̄u = 〈bu,α : α < λ〉 list Mυ \Au without repetitions foru∈ I

(b) π f is aCT -elementary mapping forf ∈ F

(c) dom(π f ) =
⋃
{Mu : u⊆ dom( f )}= {bu,α : u⊆ Dom( f ),α < λ}

(d) if f ∈ F ,v1 ⊆ dom( f ),v2 = f ”(v1) andα < λ then f mapsbv1,α to bv2,α
(e) (follows) if f ∈ F andu⊆ dom( f ) thenπ f ↾u ⊆ πu

(f) (follows) if g= f−1 ∈ F thenπg = (π f )
−1

[Why? by ⊞0, (alternatively by uniqueness claims on stable systems in [She:c,
Ch.XII, 2.5 ]).]
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⊞4 for everyu∈ [S]n the type tp(b̄u,
⋃
{Mv : v∈S≤n,v 6= u}) does not fork over

Au and is the unique extension to a complete type over
⋃
{Mv : v∈ S≤n,v 6=

u} extending tp(b̄u,Au) not forking overAu.

[Why? By⊞1]
⊞5 we choose a tuple(I , I ,M ,M+, f ) witnessingf is a representation ofM as

promised, by:

(a) I ∈ k
eq has universeI = S

(b) M = Mλ,ℵ0
(I)

(c) f is a function with domainM• =
⋃
{Mu : u∈ I }

(d) for n < ω,s0 <S · · · <S sn−1 listing u ∈ [S]n and α < λ we let f (bu,α) =

FM
α,n(s0, . . . ,sn−1)

(e) M+ is the expansion ofM as in Def 2.7(2), in fact we need only the
following (well, after renaming)
(α) PM+

ζ,n = {FM

ζ,n (s0, . . . ,sn−1) : s0, . . . ,sn−1 ∈ S}

(β) FM+

ζ,n,i is the partial function mappingFM

ζ,n (s0, . . . ,sn−1) to si for i <
n< ω,α < λ

[Why are(I , I ,M ,M+, f ) as required? easy to check recalling⊞4. Note that the
range of the functionf is not preserved under automorphisms ofM , but this is
permissible] �

Discussion3.4. For superstableT, we may wonder about whether “the cardinal
2|T | is optimal”. Really,λ(T) is sufficient where

(∗)1.1 λ(T) = min{λ : T is stable inλ}.

Recall that (see [She:c])

(∗)1.2 If T is countable thenλ(T) = ℵ0 is equivalent toT is ℵ0-stable and

(∗)1.3 if T is countable andλ(T)> ℵ0 thenλ(T) = 2ℵ0.

Theorem 3.5. In Theorem 3.3,Ex2
λ(T),ℵ0

(keq) suffice.

Proof. 3.5 We repeat the proof of Theorem 3.3 with minor changes. We just choose
λ = λ

(

T) insteadλ = 2|T|. �
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