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THE CARDINALS OF SIMPLE MODELS FOR
UNIVERSAL THEORIES

RALPH McKENZIE AND SAHARON SHELAH

Some results about spectra of cardinals of simple algebras in varieties and, more
generally, about the cardinals of T-simple models where T is a universal theory are
obtained and applications discussed. It is shown that if the language of T has power
« and if there exists a 7-simple model whose power exceeds 2°, then T-simple
models exist in all powers 4 = «. It is further shown that if the language of 7 is
countable, and if there exists an uncountable T-simple model, then there exists a
T-simple model with the power 2“.

Introduction. The concept of a simple algebra is familiar and important in many
branches of algebra, especially general algebra. Nonetheless, published work
touching on the general problem to be discussed here is hard to find.! The problem
(suggested by Walter Taylor) is: to characterize the class of cardinals in which a
variety (or equational class) contains simple algebras.

Let « be an infinite cardinal and ¥ be a variety of algebras with at most «
operations. We denote by SC*(¥V) (or SC,(V)) the class of cardinals 8 = « (or
B = «) such that ¥ has a simple algebra with 8 elements, and we put SC(V) =
SC*(V) U SC(¥). Our problem is to characterize the family of classes SC(V’) that
arise from varieties with at most « operations.

We obtain results which give a complete solution of this problem, assuming the
Generalized Continuum Hypothesis (GCH). Namely, SC(¥) does not include 0 or
1, and SC*(V) = &, {«}, [k, 2], or {#:B = «}; there are no other restrictions.
Without the GCH, the above characterization still holds for « = w (the least infinite
cardinal), and for every « itis true that SC, (V) can be any set of cardinals < « that

1 The paper by Magari, [4], deserves mention. He proves that each nontrivial variety possesses
a simple algebra (which has at least two elements).
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excludes 0 and 1. However, for uncountable « we can only show that when SC,.(V)
does not include all 8 = «, then it must be an interval [«, 1) where 2 < (2")*.

Our methods are model theoretic and combinatorial. In order to afford full
scope to the methods, we shall deal throughout with a somewhat generalized notion
of simplicity. In fact, the above results will be proved for the so-called T-simple
models where T is a set of universal sentences defined in a first order language. The
models may possess relations as well as operations among their fundamental terms.

By using this generalized notion of simplicity, we obtain with one sweep the main
results for simple algebras; also the same results for subdirectly irreducible alge-
bras;* and, finally, a new condition on the size of the “minimum compact” models
defined by Taylor in [9].

0. Preliminaries. By a model we shall here mean a system
A= (4, F, Rt)seS;teT

consisting of a nonempty set A (the universe of the model, usually written ||), and
for each s € S an operation on A of finite rank u°(s) and for each ¢t € T a finitary
relation over A of rank p!(t). The pair of functions u = (u°, u') is called the type
of the model; two models are similar if they have the same type. If T = & the
model is an algebra. By the language of A we mean the formal first order language
appropriate for models of type u. The theory of U, or Th(Y), is the set of all
sentences of this language that are true in . A theory is a set T of sentences such
that T = Cn(T), the set of all logical consequences of T (in the same language).
A theory is called universal (or existential, or whatever) if it is equivalent to a set
of universal (or existential, or whatever) sentences.

Our considerations are framed within the Bernays-Godel version of set theory.
We use «, A as symbols for infinite cardinals, i,j, &, B,y, 6 forordinals, k, [, m, n
for natural numbers, |X| for the cardinal (or power) of the set X a, b, ¢, d for
elements of models, x, y, z for variables, and %, j, Z for finite sequences of variables.
We denote by w the least infinite cardinal (aleph zero). By the cardinal of a model
we mean that of its universe, written |2]|; by the cardinal of a language, written
|L|, we mean the number of formulas of L. (This is the same as the cardinality of
each theory formulated in the language.) The cardinal successor to a cardinal « is
denoted by «*.

Concerning first order languages and model theory in general, consult [1].
Concerning algebras, varieties, and equational theories, see [7]. We must assume
that the reader knows some basic concepts in these fields.

1. Relative simple models. In this section, we define the generalized concept
of simplicity serving to unify the results, and we present the easier facts. We con-
clude with some fundamental examples. The two sections that follow contain proofs

? We note that Taylor [10] first determined the Hanf number for subdirectly irreducible algebras
in a variety.
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for the deepest results of this paper, which concern relative simple models for
universal theories. In §4, we review what has been accomplished and give applica-
tions. In §5, we study the cardinalities of relative simple models for arbitrary
elementary theories.

Let A and B be similar models. By writing f: U — B, we denote that f'is a homo-
morphism from W into B ; that is, fis a mapping of |A| into |B| and it carries each of
the basic operations and relations of % into the corresponding operation or relation
of B. An embedding is a homomorphism that constitutes an isomorphism of U
with a submodel of B. (“Submodel” has the usual meaning.) Thus, for a homo-
morphism we require that

AER[ay,...,a,]=BER[f(a),...,f(a)]

for each basic relation symbol R; for an embedding the above implication becomes
an equivalence.

Let K be a class of similar models. We consider a model U to be K-simple if A €
K, %) > 1, and if every homomorphism f: U — B, with B € K, is either a con-
stant map or an embedding. We are mainly interested in this notion for the case that
K is an elementary class, say the class of all models satisfying the set of sentences 7.
In this case, we use the phrase T-simple. We define the classes of cardinals SC*(T")
and SC,(7) just as in the introduction, assuming always that « is a cardinal not
exceeded by the cardinal of the language of T.

ReMARK 1.1.  Let T be an equational theory. Then 7-simple models are just the
simple algebras that satisfy T.

A more intrinsic characterization of 7T-simple models is the content of the lemma
below.

DErINITION 1.2, Let U be a model, with associated first order language L.

(1) By #() we denote the set of formulas of L that are conjunctions of atomic
formulae.

(2) By L(Y) is meant the language derived from L by adding new constant
symbols to denote the members of 2. (We shall customarily not distinguish in
writing between an element a € [%| and the constant symbol for it.)

(3) By PD(¥), or the positive diagram of U, we denote the set consisting of all
atomic sentences of L() that are true in the model (U, @)gey;-

LemMa 1.3, Let T be a theory of L and |U| > 1. An equivalent condition for A
to be T-simple is: Wk T and, for all a # b in |A|, PD(N) is a maximal set of atomic
sentences of L(N) consistent with T U { —a ~ b}.

ProoF. We note that atomic sentences are positive. The proof follows trivially
from the completeness theorem for first order logic.

CoNcLusION 1.4.  Wis T-simple iff WE T, || > 1, and for every atomic formula
a(X)of L, and a, b € |\U|, and sequence ¢ from || such that Ak —0(C), there exists a
Sformula ¢(yy, ys, %, Z) € () such that

Ak @A2)gla, b,¢,2] and TF @y, yo, X, 2) A 6(X) = y; & V,.
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CoNcLusIoN 1.5, If Wis T-simple and B is an elementary submodel of U, then B
is T-simple.

CONCLUSION 1.6, If the class of models of T is closed under unions of chains of
models, then the class of T-simple models is likewise closed under chain unions.

From the second conclusion, using the downward Lowenheim-Skolem theorem,
we infer

Tueorem 1.7.  SCH(T) is a convex set of cardinals. Thus either it consists of all
cardinals  Z |L| or else it takes the form of an interval [|L|, 2).

The next two theorems give easy constructive results.

THEOREM 1.8.  For every infinite cardinal « there is a simple algebra U, with «
operations, | W = 2%, such that no simple algebra that satisfies all equations U,
satisfies has a cardinality exceeding 2.

Proor. We define U, as the algebra
<S(K)) +, Yy Ty Céa F6>6<x

where (S(«), +, -, —) is the Boolean algebra of all subsets of «; where C; is the
constant, or nullary operation, with value {d}; and where F; is the endomorphism of
the Boolean part satisfying F5(C;) = « (the Boolean unit element). We will not
prove that this algebra is simple, since it is very easy to do so.

Suppose that B is a simple algebra satisfying all equations U, does. That means,
inter alia, the equations defining Boolean algebras, equations expressing that each
function F} is an endomorphism, as well as (for each < «):

Cs x = F(Cs - x),

F5(Cs) ~ x + —x,

F(C)~x-—x (ford #y,y <«),
FsF,(x) ~ F,(x) (for all y < «).

(To be accurate, the above should be preceded by universal quantifiers; following
custom and convenience, we suppress them.)

Those equations, due to the simplicity of 8B, imply that the value of each constant
C; is an atom of B. In fact, if 0 < a < C; for some a, then the principal ideal
determined by Fj(a) is proper (since a < Fs(a), C;- —a < Fs(—a), and 0 =
Fs(a) - F5(—a)), and is closed under application of all the operators, so it gives a
proper homomorphism from B. Further, they imply that the map a — {6: Cj' < a}
is a homomorphism from B into %,. Because B is simple, this map embeds it into
A,. Thus we conclude the proof that the cardinal of B does not exceed 2*.

THEOREM 1.9.  For every infinite cardinal « there is a simple algebra W, with_«
operations, | U, || = «, such that every simple algebra satisfying the equations valid in
A, is isomorphic with UA,..
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Proor. Let U, = (V, +, p, (a €|$F|)) be a one-dimensional vector space over
a x-element field J.

THEOREM 1.10.  For every infinite cardinal x there is a variety V, with « operations
such that SC(V,) = {f: = «}.

ProoF. Let A, = (F, +, -, ¢ (c € F)) where (F, +, *) is a x-element field. Let
V, be the variety of all algebras of the same type as %, that satisfy all the equations
valid in A,.

ReMARK 1.11. Tt would be interesting to have examples like those above, for
k = w, manifested by some familiar kind of algebras with finitely many operations.

2. T-simple models in powers exceeding 2'7\. Our aim is

THEOREM 2.1. Let T be a universal theory in a first order language of power «. If
there is a T-simple model whose power exceeds 2" then there exists, for each A Z «,
a T-simple model of power A.

Throughout this section, T is a universal theory of power «, and % denotes a
fixed T-simple model of power exceeding 2. By Theorem 1.7, all we need is the
existence of T-simple extensions of U having arbitrarily large power.

We shall hold to the following conventions: a and b are distinct (fixed) elements
of A; L(a, b) is the language of the model (A, a, b), a fragment of L(A) (Definition
1.2(2)); I1 = #[(A, a, b)] (Definition 1.2(1)).

DErFINITION 2.2. (1) X, p, Xg, - . - s Xpm, - . . (m < w) are distinct variables of
L(a, b). & is the set of all sequences I' = (T",,:n < w) € “II such that (for all n)

(A) TET = Aicicarcica {0; ~ 0;« 0, &~ 0}, where gy, ..., 03 are the
respective terms a, b, x and y.

(B,) All variables appearing in I", are among x, y, Xp, . . . , Xpp, - - - .

C) THT  Aa~b—arx,.

(2) yrand y;;.m (m < w and k < I < w) is another system of distinct variables
of L(a, b). If T" belongs to %, then I'* is the set constituted by the formulas listed
below:

Lolye 215 Yem (m < w)], Wk R
for k < I < w and n < w. (The first formula is derived from I, by substituting y,
for x, y, for y, and y, ; , for x,,.)

LEMMA 2.3.  Suppose that there exists a sequence I' € & such that the set T'* is
consistent with the first order theory of the model (U, a, b). For every cardinal 2,
there exists a T-simple model B = U that satisfies |B|| = A.

Proor. Let I' be such a sequence and 4 be an infinite cardinal. Expand the
language L(A) by adding a system of new constants, d,and d, 4 ,, (« < f < A and
m < w); call the new language L,. Let I be the set consisting of the following
sentences of L, (for « < f < A2and n < w):

(1) Pn[da’ dﬂ; du.ﬁ.m (m < 0.))],

(2) —d, ~ dp.
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Now an easy application of the compactness theorem shows that the positive
diagram of U is consistent with the set 7 U I U {—1a ~ b}. Let ¥ be a set of
atomic sentences of L, maximal with respect to the conditions: PD() = ¥';
Y uUTuUl' U {—=a~ b}is consistent (call this set X).

Since X is equivalent to a set of universal sentences, there exists a model of 2
whose every element is named by a term of the language L,. Let B’ denote such a
model and B denote the reduct of B’ to the language of the theory 7.

First, we note that 9 is isomorphic to the submodel of B formed by elements that
have a name in L(Y). This is so because PD(A) was already maximal (see Lemma
1.3). So we put A = B by the natural identification.

Next we note that since B’ satisfies IV, the elements d2 are all distinct; so
1Bl = A. Also, B E T, since B’ does.

To conclude, we show that B is T-simple. Assume that #:B — D where D F 7,
and that A is not an embedding. Then let'¥" be the set of all atomic sentences of L,
that are true in the model

D' = (D, h(c), H(dy )y h(dy p.m))oelstisa<p<iim<o-

Because 4 is not an embedding, and B is generated by the elements named in L,
¥ must be strictly larger than ¥'. Therefore, by the maximality of ¥, the above
model for L, does not satisfy ' U . We note that this model does satisfy' ¥ U T,
and also the positive sentences of I'” listed as (1). Hence we can conclude that either
h(d,) = h(d,) for some « < B or that h(a) = h(b).

From this it follows by Definition 2.2(A) and (C,), and since D’ satisfies 7 and
the instances (1) of formulae I',,, that h(a) = h(b) and in fact

h(a) = h(d,) = h(d,,p,m)
for all indices «, 8, and m. Then, since U is T-simple,
h(|U]) = {h(a)}.
Thus the set {#(a)} is closed for all operations; and it follows that
h(|B)) = {h(a)}

since B is generated by the elements which map into this singleton set. This con-
cludes the proof that 4 is a constant map and also the proof of the lemma.
Before proceeding to prove that the hypothesis of the above lemma is satisfied,
we record a combinatorial fact which has a crucial part in the argument.
DEFINITION 2.4. A sequence {(c,:« < y) of elements of a model B will be called
an almost indiscernible sequence for B provided the terms of the sequence are dis-
tinct, and whenever « < § < y, the elements c, and c; satisfy the same first order
formulas (with one free variable) in the language of the model (B, ¢;)5,.
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THEOREM 2.5.3  Suppose that B is a model whose power exceeds 2* and whose
language has power not exceeding . Then B has an almost indiscernible sequence of
length «*.

Proor. We first well order |B| by a relation <. For each b € |B|, we define a
one-to-one sequence u(b) as follows. The length of u(b) will be «* or some ordinal
y < k%, depending on b.

Suppose that u,(b) has been defined forall « < #,and 0 = f < «+. If b = u,(b)
for some « < §, then u,(b) is not to be defined—we put u(b) = w,(b):y = «) in
this case. If b 5 u,(b) for all « < B, then let ug(b) be the <-least element of |B|
that has the same elementary type in (B, (b)), as does b. If the construction
persists through all # < «*, then we put u(d) = (uy(d): < «*).

Clearly, u(d) is almost indiscernible for each b € |B|. We shall prove the existence
of b such that u(b) has length «™.

Suppose that no such element exists. Then, for each § < «*, let L(f) be the
language of B with distinct constants ¢,, « < 8, adjoined. Given b € |B|, we define
a new sequence &(b). The length of u(b) is a successor ordinal, y + 1, where
u,(b) = b. We put

£(b) = (5(0):8 = 7),
in which &5(b) is the type of b in the model (B, u,(b)), .. (This type is constructed
as a set of formulas of L(f).)
Now for each f there are, independently of b, at most 2° possible values for
&p(b). The number of sequences £(b) is thus at most
z (2 = (2¢) - kT = 2~
7<K
But it is easy to see that &(b,) = &(b,) implies b; = b,. This contradicts the assump-
tion [B] > 2.

LEMMA 2.6. There exists I' € & such that T'* is consistent with the theory of
(A, a, b).

Proor. We let (c,:a < «*) be an almost indiscernible sequence for the model
(U, a, b) (existence is assured by Theorem 2.5). We assume, without loss of gener-
ality, that all terms of the sequence are different from a and b.

We shall construct by induction on nonnegative integers n the following:
formulas T',; integers p(0) < p(1) < :-- < p(n) < ---; and for each n an in-
creasing sequence of ordinals (x(n):« < «*). The construction will ensure that, for
each n, I, satisfies the applicable parts of Definition 2.2, and the variables appear-
ing in it are among x, y, Xy, . . . , Xp(n)s further
S.) each pair (C,n), Ca(nyp1) Where a« < k™ satisfies in (U, a, b) the

» formula 3x;, - - X, (T A -+ - AT))(x, p).

Wlth our first (somewhat weaker) version of Theorem 2.1, we used the partition relation
2 )+ — (x*‘)2 (from Erdos [3]) for the proof Theorem 2.5 is suggested by the work of Erdés and
his collaborators, but we have not found it in the literature.
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We note that since (C,(n)s Ca(my+1) aNA {Co(ny» Cp(ny) (for & < ) have the same 2-
type, condition (S,) implies that every pair of increasing terms from the sequence
(Cu(ny 1 < ) satisfies that formula. Thus, clearly, every finite subset of I'*,
where I" = (I'y, Ty, .. . ), will be simultaneously satisfiable in (%, a, b). This is
exactly what the lemma requires.

To begin with n = 0, we first associate to each « < «* a formula ¢* in II, say
@*(x, y; Xqs - - - » X,,), which satisfies condition (A) for I'y in Definition 2.2(1), and
so that

W, a, b) FIxy - - x,¢%[Cas Car1} Xo» - - - 5 Xp)-
This is done by several applications of 1.4, taking for o there the formula x ~ y.
There are only « formulas altogether, consequently there exists an increasing
sequence (x(0):ax < «*) with all formulas ¢*© identical. Let

Ty =Tolx, y; X5 - - - s Xp(0))
be this formula. Now (S,) is satisfied.
Suppose that m = 0 and that T',, p(n), and (x(n):« < «*) have been obtained
for all n = m, satisfying statement (S,). Let I'(,,, be the conjunction of T', . ..,
I,.. By (S,,), we can assign to each « < «*a member d, ,, € || so that the formula

P(m)[ca(m)! ca(m)+l; xOs L daz.m’ LR xp(m)]
is satisfiable in (¥, a, b). Using 1.4 again, we correlate with each « a formula ¢* in
I1, say ¢*(z; zg, - - . , Zg—1), ¢ = 1, so that

Tto*Aharb—oar z;

and

W, a,b)FIzy -z, 1 0%[dy s Zgs - - - 5 Zg)-
By a cardinality argument, we select a single formula ¢ = ¢(z; 2, . . . , z,_;) and
an increasing sequence of ordinals (85:8 < «*) so that ¢#s = ¢ for all 6.

Now we put p(m + 1) = p(m) + ¢,
Lo = 0% Xpimyt1s -+ + > Xp(my+a)
and
a(m + 1) = B,(m) for a < «t.

Statement (S,,,1) and clause (C,,) of Definition 2.2(1) are clearly satisfied. This
completes the argument.

Lemmas 2.3 and 2.6 combined give the proof of Theorem 2.1.

RemArRK. The full force of Theorem 2.5 is not needed to prove the last lemma.
We only used the fact that whenever « < f < 6, the pairs (c,, ¢;) and (c,, c;) have
the same type in (%, a, b). This remark can be applied also to strengthen Theorem
3.2 in the next section.

3. Uncountable T-simple models, |[T| = w. We shall prove

THEOREM 3.1. Let T be a universal theory in a denumerable first order language.
If W is an uncountable T-simple model, then there exists a T-simple model B = U
such that | B[ = 2°.
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Throughout this section, T denotes a universal theory. We lose no generality by
dealing only with models that have at least two elements that are individual con-
stants. The first three results hold for theories of any cardinality.

We first note two results which follow respectively from the arguments of the
preceding section and from Conclusion 1.6.

THEOREM 3.2. Let N be a T-simple model with two individual constants. If A con-
tains an almost indiscernible sequence of length |T|*, then N has T-simple extensions
with unbounded cardinalities.

PROPOSITION 3.3.  The class of T-simple models is closed under union of ascending
sequences. Hence either there is no bound to the size of such models or else every
T-simple model can be extended to a maximal T-simple model.

Thus, in proving Theorem 3.1, we can limit the discussion to maximal T-simple
models. We remark it follows by Theorems 2.5 and 3.2 that every such model has
power at most 2!71.

DEerINITION 3.4.  (A) A pe (positive existential) formula is a formula of the form
3% Vicn Aj<n, 0;; where 8;; are atomic formulas. Note that a conjunction of pe
formulas is equivalent to a pe formula.

(B) Let @ = (a;:i < iy) be a finite sequence of elements belonging to an arbi-
trary model UA. The pe type a realizes in A, or pe(a), is the set of pe formulas
@(xo, - . . , X;,—1) in the language of A such that A F ¢[ay, ..., a, 1] If 4 = ¥,
the pe type a realizes over A in U, or pe(d, A) is the pe type that it realizes in
(A, ¢)ecqa. We write g, in place of (a;:i < 1).

(C) A pe n-type for A is a consistent (with Th(A)) set of pe formulas with
Xos - - - » X,_1 s the only free variables. The pe n-types over a subset are defined in
the natural way. A pe n-type p is realized in 2 iff there exists an » tuple 4 from ||
such that p < pe(a).

LeEMMA 3.5. Let A be a maximal T-simple model with two individual constants.
Let {ag:p < 6) and (bs:B < 0) be systems of members of W, where ¢ is an ordinal.
If every pe formula satisfied by some terms of the first system is satisfied by the corre-
sponding terms of the second, then there exists an automorphism f of W such that

f(a) = by for all B < 8.

Proor. (This lemma has a precursor in [9, Theorem 1.13(i)].) The hypothesis
implies that there is an elementary extension U, of A and a homomorphism f from
A into A, suchthat f(ag) = by forall § < 4. Let A, be the submodel of U, generated
by || U Range f. Choose @ and b as distinct individual constants of A. Let V'
be a set of atomic sentences of L(UAy), PD(A,) < ¥, maximal consistent with
T U {—a~ b}

Y determines a model of T, call it B, together with a homomorphism from A,
onto B, call this g. Since g(a) # g(b) and A is T-simple, A is identified with a
submodel of B via g. We may thus assume that 2 < B and that g acts on U as the
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identity map. Further, every homomorphism A:8B — €, where € F T, is either an
embedding or has h(a) = h(b).

We claim that B is T-simple. To prove this, suppose that #:B — €, that € F T,
and that A is not an embedding. Then h(a) = h(b), and consequently A(|U|) =
{h(a)} since A is T-simple. Likewise, hgf(a) = hgf(b) (gf (@) = a since a is an
individual constant; same for b); and so hgf (|%|) = {hgf(a)} = {h(a)}. Since |A] is
closed under the operations, so is {#(@)} in €. Since B is generated by |A| U gf (|A]),
all of B maps into {h(a)}. Thus 4 is a constant map.

It follows from the claim (and the maximality of o) that % = B. Hence gf'is an
endomorphism of U (mapping a4 to b, for each B). Because of the existence of two
individual constants, and the 7-simplicity of %, gfis an embedding. Since U has no
proper T-simple extensions, it is not isomorphic to a proper submodel of itself, so
the map is an automorphism. The proof is complete.

We deduce from the above lemma that the pe type realized in a maximal model
by any finite sequence determines the (elementary) type of the same sequence, i.e.,
the set formed of all formulas the sequence satisfies.

In the remainder of this section, 7" denotes an arbitrary denumerable universal
theory.

LemMA 3.6.  Let A be a maximal T-simple model with two individual constants a
and b. Let p be any pe 1-type for . For p to be realized in U, it is necessary and suffici-
ent that there exists a set ® = w(N) [see Definition 1.2} such that @ is closed under
conjunction and contains only the variables x,, n' < w, and

(A) Th(W) U O is consistent and © implies p;

(B) for every n, there is ¢ € ® such that

TramnbAop—>x,~a.

Proor. If p is realized in U, then such a @ can easily be constructed by a re-
peated use of Conclusion 1.4. Suppose now that such @ exists. Then by (A) there is
an elementary extension U, of W in which, say, (a,:n < w) realizes ®. Let U, be the
submodel of U, generated by |A| U {a,:n < w}. The remainder of the argument
follows almost verbatim the proof of Lemma 3.5.

LemMa 3.7. If p = pe(c) and if p and @ are related as in the preceding lemma,
then p is identical with the set of positive existential consequences of ® that have only
X free.

Proor. By Lemma 3.6(A), the set ¥ constituted by all of these formulas is a
pe 1-type for U, and it is obviously related to @ as in the lemma. Therefore there
exists d in A such that'¥" = pe(d). Since @ F p, so obviously V' F p and by Theorem
3.6(A), pe(c) < pe(d). We conclude from this, using Lemma 3.5, that pe(c) =
pe(d); thus¥ < p. But p = ¥ by 3.6(A), so we are done.

Lemma 3.8.  Let U be a maximal T-simple model with two individual constants.
Letb', ¢’ €|U|. If p, = pe(b’)  p, = pe(c’), then'Y = Th(N) U p, U p,is incon-
sistent.
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ProOF. Assume that 'V is consistent. Let @, (®,) satisfy (A) (B) of Lemma 3.6
for the realized type p, (p,). Define ®' as @, when, for / > 0, x, is replaced by
Xg;; and define @2 as @, when, for / > 0, x, is replaced by x,;_;. Put ® = @1 U P2
and p = p; U p,. Using Lemma 3.7 and consistency of V" we easily verify that p
and @ are related as required by Lemma 3.6. Hence p is realized in % by an element
a’. Now it follows (by two applications of Lemma 3.5) that pe(d’) = pe(a’) =
pe(c"). This is a contradiction.

THEOREM 3.9. Let N be a maximal T-simple model with two individual constants.
Let A < |U, |4] = w, and let

S(A4) = {pe(c, A):c € |U]}.
Either S(A) is countable, or else it has the power of the continuum.

Proor. We first note that the assumptions remain true if U is replaced by
(A, ¢)eea, Tis replaced by the theory in the language of the enriched model that has
the sentences of T as its axioms, and 4 is replaced by the empty set. Thus we can
assume that 4 = & without losing generality.

We put S = S(g), and for every p € S we choose @, so that p, @, satisfy (A),
(B) of Lemma 3.6. Letting T = {®,:pe S}, weput F=JSand G =Y T, and
we note that F and G are countable. Let

forgeF, S,={p:peS,pep}, Fi={p:p€eF,I[S,|=w};
foryeG, SY={ppeS, ped}, G ={y:peqG,|SY £ w};
S, =S-Us,-Usv
3 veG1
Clearly, [S — S,| = w; also, whenever p € S; and ¢ € p and y € @, there are un-
countably many q € S, such that ¢ € q and y € ®,. (To see this, one must recall
that @, is closed under conjunction and implies p.)

We now assume that S is uncountable, that is, S, is not empty. Let # denote an

arbitrary sequence of ones and zeroes of length /(%) and, if n < I(7),

n|n=(n),..., 70— 1)
We shall define S,, @, for all finite % by induction on /(7), so that

(1) for every 7, there is g €S; such that p, = q and @, = ®;

(@) vy, D, are finite;

(3) @, Fp,;

@) if n = I(n), then @, = D,, Py, < Py3

(5) Th(A) Y pyncoy Y Pynqry IS inconsistent;

6)ifl(m)=n+1,then TUD, Fa~b—>x,~ a.

For n = () let p,, ®, be empty. Suppose that p,, @, have been defined, /() =
n. Using (1), we choose q € S, such that p, < g and @, < @,. As T' U @, implies
a~ b— x, ~ a, there is a finite ! < <I)q, T U ®impliesa~ b— x, ~ a. As
q, @, are closed under conjunctions

p=Ap,€q and p=A D, AA D D,
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Since q € S,, there is a p € S, different from q, such that ¢ € p and y € ®,—and
consequently p, < p and ®, UP' < @, By Lemma 3.8, Th(A) Up U q is
inconsistent. Thus, we can take finite p, < p, g, < g such that Th(A) Up, U g
is inconsistent. We put

Prrcoy =Py U P and pyra, =9, Y aqr
Since @, implies p, we can take a finite ®* < @, that implies p,. Then we put
Doy = D, U {y} U O

Similarly, we define @, ., (using q).

It is obvious that the sets we have constructed satisfy the above-stated conditions
(1) through (6).

For # of length w we now define

Py = U pyym; ?,=U Dy

n<ow n<w
By Lemma 3.6 and conditions (1)-(6) above, each p, is realized by an element q,
of A. (The assumption that @ be closed under conjunctions is not necessary for the
conclusion.) It follows by condition (5) that if /(7)) = I(7,) = w and 7, # 7,
then pe(a, ) # pe(a,,). So |S| = 2”, and this must be an equality because the
language is countable. The proof is complete.

ProoF oF THEOREM 3.1. A proof can be obtained by combining Lemma 3.5,
Theorem 3.9, and [6, Theorem 3.4, p. 85]. But we shall prove it directly for
completeness.

Assume that % is a maximal 7-simple model with two individual constants (and
T is denumerable), and also that || > . By Theorem 3.9, we can further assume
that, for each countable 4 < ||, the set S(4) is countable. Therefore there exists
some p € S(A4) which is realized by uncountably many elements of A. We shall call
such a p ““large.”

Case 1. There is countable 4 < || and a large p € S(4) such that, for every
countable B, A < B < ||, p has at most one large extension q € S(B).

In this case, we define a sequence a,, « < w; (= w*), by recursion. If, for
a < B, a, is defined, let B = A4 U {a,:« < f}. As |S(B)| £ w, some qz € S(B) is
realized by uncountably many elements that realize p. By assumption, q, is uniquely
determined. We choose a; to be any element realizing g, (and therefore realizing p).

The sequence (a,:a < w,) is almost indiscernible. In fact, it follows readily that,
for « < B < w,, we have pe(a,, C,) = pe(a;, C,) where C, = {a;:6 < a}. Hence
by Lemma 3.5, g, and «; have the same elementary type over C,.

By Theorem 3.2, U is not maximal T-simple. This is a contradiction.

Case II. Not Case 1.

We can obviously construct by induction onn < w a system of sets B, < |%] and,
for every finite O1-sequence 7, a pe type p,, so that

(A) |B,| = @, py € S(Byy)s

(B) Bn < Bn+la pn]n < pr, if l("]) g n,

(C) ny # 7, implies p, # p,,.
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Now let B = |Jn<o Bn, and for 7 of length w let p, = |J, <o Pyyn- Now one can
show, by applying Lemmas 3.6 and 3.7 to the model (2, b),cg (Which is maximal
T’-simple for T the inessential extension of T in the language of this model), that
all types p, are realized. Since these types are all different, by (C) above, then
|S(B)| Z 2%; again a contradiction.

4. Simple and subdirectly irreducible algebras; Hanf numbers; minimum compact
models. An algebra is simple if (it has more than one element and) every homo-
morphism from it is either an embedding or a constant map. In general algebra, a
related concept is more frequently met. An algebra is called subdirectly irreducible
if there exist in it elements a, b such that a % b and every homomorphism ffrom the
algebra is an embedding, or satisfies f(a) = f(b). A variety, or equational class, of
algebras is a class consisting of all models of some equational theory.

THEOREM 4.1. Let V be a variety of algebras,  be the cardinal of its language, C
be the class of cardinals B Z r in which V has a simple member (or, respectively,
subdirectly irreducible member). Assume that C is nonempty and does not include all
B > k. Then C = [k, &), where A < (2°)*; if k = w, then A must be w* or (2°)*.

Proor. We let T be the equational theory whose class of models is V. We enrich
the language of T by two new constants a, b, and let " be the theory whose axioms
are T U {—a ~ b}. Now T and 7" are universal theories. Moreover, C = SC*(T)
in the case of simple algebras; and one sees easily that C = SC*(T") in the case of
subdirectly irreducible algebras. So the theorem follows by Theorems 1.7, 2.1 and
3.1.

The analogue of Theorem 2.1 for subdirectly irreducible algebras was first proved
by Taylor [10, Theorem 1.2], by methods similar to ours.

Now let M denote any family of classes of models. We define the Hanf number of
I (if it exists) as the least cardinal % such that every member of I, if it contains a
model in some power § = 7, must contain models of arbitrarily great power.

If the members of 9t are the classes of all 7-simple models and T is allowed to
vary through all universal theories of power « then, by Theorems 1.8 and 2.1, the
Hanf number equals (2%)*. Likewise, the Hanf number for simple algebras, or for
subdirectly irreducible algebras in varieties of algebras with « operations, each
equals (2°)+.

The concept of minimum compact model was created by Taylor to provide a
fascinating connection between the better known concepts of atomic compact, and
of weakly atomic compact models (see [9]). He proved that the cardinality of any
minimum compact model with language of power « is at most 2. This is an easy
corollary of our results. To show why, we shall derive a stronger, new result for
models of countable type.

To avoid complications, we give a very direct definition of the concept in question,
which (it follows easily from the treatment in [9]) is equivalent with the original
definition. We call a model U minimum compact if for each homomorphism f: U —
B, where A and B satisfy precisely the same positive existential sentences, there
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exists g:B — U so that gfis the identity map on A. (This implies that fis an em-
bedding.)

THEOREM 4.2.  Suppose that W is minimum compact and infinite, and that its
language is countable. Then the cardinality of W is either w or 2°.

ProoF. Let T'be the theory whose axioms are all universal sentences thatare valid
in U (the universal theory of %). We claim that U is maximal T-simple.

In fact, if f:% — B where B F T, then f is an embedding. (Since the homo-
morphism preserves validity of positive existential sentences, B satisfies all those
satisfied by U; since B F 7, it satisfies no more.) Thus U is 7-simple. Suppose A <
@ properly and € is T-simple. Then € and U satisfy the same existential sentences.
Taking f as identity map of U into €, there exists g: € — A (by definition of mini-
mum compactness) so that gf = 1. This g can be neither constant nor an embedding.
So € is not T-simple—a contradiction. The contradiction implies that 2 is maximal.

Since U is maximal T-simple, the desired conclusion follows by §§2 and 3.

5. Other directions. Some related Hanf numbers have a common value that
greatly exceeds those just computed.

DEFINITION 5.0. Let A be an infinite cardinal. u(4) is the first cardinal u such
that if 2 is a model omitting a (elementary) type p—i.e. p is not realized in Y—and
if A has at most A operations and relations, and || = w, then there are arbitrarily
large models elementarily equivalent to A which omit p.

On u(4) see Morley [5] or Chang [2]. It is identical with what Chang calls the
Morley number, m;, and also with the Hanf number of infinitary languages
L ;+, having A nonlogical symbols. In particular, u(w) = 3,,.

In this section, we show that x(4) is the Hanf number of each of the families
P which we now define. (1) A member of M consists of all 7-simple models; T’
ranges over all positive theories of power 4. (2) A member of 9 consists of all
simple algebras satisfying T'; T ranges over universal theories in algebraic languages
of power A. (3) A member of I consists of all algebras A = (4, F;).g such that
(A, Fy)sey is simple and U satisfies T'; T is a theory with positive universal axioms,
Uc S, and |S| (= |T]) £ A. (For this last family, the question of the Hanf
number was asked by Chang.)

One easily verifies that the Hanf numbers for these families are bounded by
#(2). In fact, each member of one of the families is a class defined by a sentence of
the appropriate language L;.,. (Conclusion 1.4 should give you an idea how to
construct the infinitary sentences.)

We now present constructions that serve to push the numbers up to u(4).

Let U be a model for a first order language L, |[L| = 4, and say ||| = «, such
that % omits the type p and no model B elementarily equivalent with %, |B| > «,
omits p. We assume that U has its Skolem functions; thus Th(2) is implied by the
set of universal sentences satisfied by %. Further, we assume that

p={PX)} V{x~a;:i<i,
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and that A E P(e;) A —1a; ~ a; for all i <j < A. (These things can be arranged
without altering the other hypotheses.)

ExaMPLE 5.1. We construct a positive theory T and a T-simple (hence simple)
algebra U, such that || = «, |T| = 2 and there does not exist a 7-simple algebra

B with | B[l > «.
Let us define an algebra U, of cardinality « and with A operations. Let [%,| =
|2 U {c;:i < A} and the operations of it will be the following:

(1) For every formula ¢ = ¢(x,, ..., x,) € L an n-place operation F,:

Fo(by,...,b)=1¢, ifby,...,b,e|U, Ak @[by,...,b,],
=c¢ ifby,...,0,€|U,AE q@[by,...,b,]
= ¢, otherwise.

(2) A one-place operation I:
Ib) =b ifbe(¥|,
= g, otherwise.
(3) For every i < 4, a two-place operation J;:
Ji(by, by) = by if by # ¢;, and b, € |Y|,
=c¢, ifb, = c,orb,¢|Y|
(4) A one-place operation H:
H®b)=a;, ifb=c;,i<A,
=c, ifbel¥|.
(5) A two-place operation G:
G(by, by) = co if by 7 by by, by € 1U|,
= ¢, otherwise.
(6) For any distinct 7, j, kK = 4 a one-place function E, ; ;:
E, ,:0)=c¢ ifb=c,
Ck if b = Ci,
C; if b = Cp,
b if otherwise,

where we define ¢; = a,.

(7) For each i = 4, an individual constant c;, whose interpretation is c;.

Let T be the set of positive sentences U, satisfies. We should prove that there is
a T-simple model of power «, but there is no 7-simple model of power > «.

As a first step, we prove %, is a T-simple model hence T has a 7-simple model.
Clearly %, F T. Suppose we have a nontrivial identification =. Then there are
x#y,x,ye|l, x=y.

Casel. x=c;, y=c; (i #])).

Using (6), forany k < A, k # i, k # j,
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= E;;4(c;) = E; j4(c) = ¢;.
So all the ¢;’s are identified. Now for any z € ||,
x = Jo(cy, x) = Jo(co, X) = ¢

Hence all 9, is identified.
Case II. x,ye|¥|,
¢ = G(x,y) = G(x, x) = ¢,.

So we reduce this to Case I.
CaseIII. x€|¥U|, y =¢;,j < A Choose z € ||, z # x,

z=Ji(x,2)=J;(y,2)=¢; =y =X,

hence z = x, z, x € |¥|, so we reduce it to Case II.

Case IV. x =c¢;, i < A, y€|¥|. This is just like Case III.

It remains to prove there is no 7-simple model of cardinality > «. Suppose B isa
T-simple model of cardinality > «. As T is positive, the model is simple.

Let

A = {a:ae|B|,I(a) = a},
C={cf:i<a.
Note that as (Vx) I(I(x)) = I(x), the range of I® is A.

Claim1. |B|=A4 UC.

Otherwise identify all elements of 4 U C; it suffices to prove that this does not
imply any more identifications. For most functions their range is included in
A U C. For I because [I(a,) = a,] € T. For F, trivial. For J; because (Vxy)
U(J(x, ) =Ji(x, ) VI, (x,y) = c;] € T. For H because (Vx)[[(H(x)) = H(x) v
H(x) = ¢o] € T. For G, immediate.

The only functions left are E; ; , which become the identity. So if |B| # 4 U C
then B is not simple, or |4 U C| = 1. If | 8| > 2 we can identify two elements of
|B| — (4 U O).

As T is a positive theory and B is T-simple, B is simple. Hence |B] < 2, con-
tradiction.

Claim1l. ANC=g.

Otherwise for some i< 2, I®(c) = ¢,. But [I(c,) = ao] € T, remembering
a, = ¢;, and that, forj £ i, j < 4,

(E;;.(c) = Gl AE; ;,3(c;) = I A [E; ;.(c;) =¢]eT

we get B F ¢, = ¢; = ¢,. As j was arbitrary all the ¢,’s are equal, and in particular
¢y =c¢,. Forany xe 4,
x = Jy(cy, X)
because
(Vx) Uoler, 1(x)) = I(x)] e T,

Jo(c1, X) = Jo(cg, X) as ¢; = ¢y,
Jo(eo, X) = ¢4
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because
(Vx) oo, ) = x] € T.

So x = ¢,, hence all 4 U C is identified with ¢y, so |Bf = 1, a contradiction.

Claim 11I. Fori <j < 2, cP # c}.

The proof is the same as that of the previous claim, with c; replacing c;.

DerFINITION. Define a2 model B*. |8* = A4 and, for any relation Re L,
RB" = {(by,...,b,):BEFg[by,...,b,] =cy, by,...,b, € A}. Define F3* for
the function symbol F € R similarly.

Clearly B* is an L-model.

Claim IV. For any formula ¢(x;,...,x,)€L,and b, ...,b, €4,

B* kb, ..., b,) 8 BEF,b,....b]=c,.

We prove this by induction on formulas
(A) ¢ atomic—by the definition of B*. (Assume w. 1. 0.g. it is of the form

R(x) or y = F(X).)

(B) p= "1 .
Letb;,...,b,€A.
B*F glby, ..., b,liff not B* Eplb,, ..., b,]Iiff (by induction hypothesis) not

B #Fw[bl,... bl = it BEF,[by,...,b,]=cq
The last iff follows from
(Vx1, oo, X)F(I(xy), - ., I(x,))
=cyV F,(I(xy),...,1(x,)) = ¢ €T,
(be R ] xn)[Fw(I(xl)s L ] I(xn))

=c VF,((xy),...,1(x,) =c,]€T,
VX, oo X)F(I(xy), - oo, (X))
=¢oV F,(I(xy), ..., I(x,)) = c;] €T,

Vxi, .o )P, (X)), - ., I(x,)
=c vV F,(I(xy),...,1(x;)) =c;]eT.

(C) ¢ = ¢, V @,—the same idea as in (B), only the sentences may have three
disjuncts.

D) ¢ = p(x1, ..., x,) = @AX)p(x, x4, . . . , x,,)—the same way.

Claim V. B* is elementarily equivalent to 2.

Apply Claim IV on sentences ¢.

Claim VI. B* omits the type p = {P(x)} U {x # a,:i < A}.

Suppose a realizes p.

As (Yx)@y) [H(y) = I(x) V Fp(I(x)) = ¢,]1 € T and I¥(a) = a, FE(I®(@) = «,,
there is ¢ € |B| such that H®(c) = a. As (Vx)[H(I(x)) = c,] clearly ¢ ¢ 4 hence
c € C; so forsome i < A, ¢ = ¢;. But [H(c;) = a;] € T so a = a,, a contradiction.

So B* is an L-model, elementarily equivalent to A, omitting p. So its power is
=«. Hence |B| = |4 U C| = k + A < «, a contradiction. So we prove also the

second part, and finish.
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ExaMPLE 5.2. We construct a simple algebra %, whose language is of power 4,
such that ||| = «, and there does not exist a simple algebra B, |B| > «, satis-
fying all the universal sentences U, satisfies.

We put |%,| = || U {¢;:i < A}. (The ¢, are new constants.) The operations of
A, are the following:

(1) The functions F, F;, i < A, where F(x, y,z,) = z, if x, y,z € |¥|, x # y and
F(x, y, z) = cyotherwise; and F;(x) = a; if a;, = ¢, for some j, and F;(x) = x other-
wise.

(2) The functions from (1) in 5.1, individual constants for a;, ¢; and all functions
of A, when we assign to them the value ¢, when they are undefined.

(3) A function A such that h(a,) = b, for all i and h(c) = ¢ otherwise.

(4) For each ordinal «, 0 < a« < A, an operation F, satisfying

Fa(b19b2)=b2 iﬁ‘b1=ca’
Fa(bI’ b2) = C, Otherwise.

(It is essential that 0 < « be assumed here.)

The verification is left for the reader.

ExAMPLE 5.3. We enrich U, of the first example by adding one Skolem func-
tion. Thus, the reduct of U; to the language of A, is simple. It is routine to verify
that if B is similar to UAs, |Bl| > «, and B satisfies all positive universal sentences
valid in %3, then the reduct of B similar to A, is not simple.

6. 7-simple models of small cardinality. In this section we characterize the
classes SC,(T) and show that the two parts SC(T) and SC*(T) are entirely un-
related, at least if 7" is an arbitrary universal theory.

THEOREM 6.1.  Let « be an infinite cardinal; let T be a universal theory, |T| = «;
and let C < «* be a set of cardinals, 0, 1 ¢ C. There exists a universal theory Ty,
|Ty| = «, such that SC(T,) = C U SC*(T); moreover, T, is equational, unless
x> w and SC(T) = [k, A) with kt < 2 = 2%,

Proor. The conclusion is obviously implied by the following three statements,
which we shall prove in turn:

I. There exists an equational theory 7™ such that |T*| £ « and SC(T") = C.
II. There exists a universal theory 72 such that SC(7?) = SC*(T) and |T?| = «.
T? is equational, unless « > w and SC*(T) = [«, 1), k¥ < 41 = 2",

III. Let 7 and T be universal theories. There exists a universal theory 72 such
that SC(73) = SC(T) U SC(T) and |73 < |T| + |T|. If T and T are both equa-
tional, so is 73.

Proor oF I.  We assume that C is nonempty and that « = 2 is its least member.
We put

P={4i:leCi<i=aora <i<Ail.
We take for the nonlogical symbols of 77 constants b, ; (for (4, i) € P) and binary
function symbols E; ; (for (x, 0) # (4, i) € P).
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As axioms for T* we take the following.

For all (,1), (0, j)eP — {{«, 0)},
(1) E; (%, E; (%, ) ~ E; i(x, ),
(2) E;,i(x, x) ~ x,
() E; (x, b, ) ~ E; i(b;,, X))~ b, ,,
4) E; i(x, E; ;(y, 2)) ~ E; (x, E; ;(E; %, ), Ej; i(x, 2))).

For all 2,0 # «,
() Epilbess ) =y (forj< o, 1 S i< aandizj),
(6) E; i(by.;, ) ~ y (forj # 1),
(7) Ea.l(bl,i’ y) i Ea,l(bl.i’ )’) (for x é l’] < )'),
(8) Ea,l(bi..au Ea.l(bé.a’ )’)) ~ ba.l (for A # 6)’
(%) E;i(bs,;, b, ~ b, s (fo" i #J).

To see that C = SC(7™*) we must define some algebras. Let 4 = {b, ;: (4, i) € P},
and for each (4, i) # («, 0), let F, ; be the operation on A defined by F; ,(x,y) = y
if x # b; ;3 F; (x,y) = b, ;if x = b, ;. Then for each y € C we put

A = (A47; b] ((4, i) € P); F} (6, j) € P — {{x, 0)})),

where
A’ = {b, € A:2€ {a, y}};
by, =b;,; ifAe{a, vy},
= b, if not;
and

F;.j(x’ y) = Fb,j(x’ y) ifde {(X., )"},
= F,4(x, y) if not.

It is easy to check the definitions and the axioms above to see that A’ has power
y and that A’ F T. We claim that %? is simple. In fact, the claim is obvious on the
grounds that, for any two distinct elements u, v € 4”, one of the basic operations
satisfies F(u, y) = y and F(v, y) = v for all y (or the same condition with « and v
interchanged).

To prove that SC(T*) < C is just a little harder. Each simple model of 7" is
isomorphic with one of the A” constructed above. For let B be a simple algebra,
B F 7. Then for any A, i, and x € B, the map h(y) = Ey(x, y) is a projection (by
equation (1)), and its kernel is a congruence relation on B (by equation (4)); thus
h is constant or one-to-one. If 4 is one-to-one, then A(y) = h(h(y)) so h(y) = y for
all y. From this we conclude (with the help of equations (2) and (3)) that

Exx,y)=y ifx#by,
(10) =%, ifx =02,

Now we have by equations (5) and (6) that b2, % b2, and that for all y € B —
{b%2:(4, i) € P}, and for all fundamental operations E,

E(,z) =z = E(bro, z) (for all z).
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So the map that collapses all nonconstant elements into b2, is a nonconstant
homomorphism of 8. This implies that B = {b},}. The remainder of the proof that
B ~ W for some y € C is straightforward. Use (5) through (10).

ProoF oF II. We note that by Theorems 1.7, 2.1, and 3.1, if this statement
requires 72 to be equational, then either Theorem 1.8, 1.9, or 1.10 will give the
desired result. (The theories produced there have no small simple models.) We
only need show here the existence of a universal theory with the prescribed prop-
erties. To minimize triviality, we assume that SC*(T) # &.

Let the operation and relation symbols of T be {F,},.y and {R,},.p. We can
describe T2 by its models. A model of T2 will be any system

‘2‘[ = <A! Fu, Rq;; ¢, H6>uEU;1;EV;6<K
in which Hj is a projection for all 6 < « (i.e., H;H;(x) = H(x)); H;H; = H;, for
all 9, 4; Hs(x) = c<=x = c;
F (x1,-..,xp) = HeF (%1, ...,x,) = F,(Hyxy, . .., Hyx,);
Ry(Xy, ...y Xp)=>Hyxy = x, & -+ - & Hyx,, = X5

the model

(Hy(A), F, | Hy(A), R,[Hy(A4)) F T;
and

Hyx) =H,(x)=>x=c ifdz7#A

The proof in detail is trivial.

Proor oF III. We can assume that 7 and T have disjoint sets of nonlogical
symbols, 7(T) and 7(T) respectively. We can also assume that each theory has
among its models all 1-element models of the same similarity type. We take for the
nonlogical symbols of 73 those in the set 7(T) U 7(T) U {P} where P is a “‘new”
binary operation symbol. We shall not write out axioms for 73, but their signifi-
cance is that a model € satisfies 72 just in case, for some A F T and Bk T,

CNDPB={AXB,P,...)
in which P({x, y), (u, v)) = (x, v); and
F«xla Y1>, LR ] <xnv yn>) = <Fm(x1’ LR ] xn)s J’1>,

G«xl: yl)r sty <xm’ ym» = <X1, G%(yb e ) Ym)>
if Fer(T)and G € 7(T); and the relations are also defined by their values on the

proper coordinates.
The details are straightforward.

7. Remarks and problems.

Problem 1. Characterize the classes SC(T), for T a universal theory of power
K> w.
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Problem 2. Study T-simple algebras for languages with finitely many operation
symbols, and for finitely axiomatizable T. In particular

(A) Does there exist an equational theory T of finite type such that SC(T) =
[w, 2917

(B) For finitely axiomatizable universal (or positive universal) theories T, what can
SC(T) or SC(T) be?

7.1. If we omit from the assumption of Lemma 3.5 the maximality of U, the
proof can yet be used to show the existence of “homogeneous™ T-simple models;
more exactly, let U be T-simple with two individual constants and 4 = A% =
(Al [A£ =3, A*]. Then A has an extension B which is T-simple, [|B| = A and

if {ag:p <6 < p), (by:p < 06 < ) are systems of members of B and
every pe formula satisfied by some terms of the first system is satisfied by
the corresponding terms of the second, then there is an automorphism
S of B, such that f(a;) = b, for all < 0.

7.2. Let L be, for simplicity, countable, T a universal theory and y(x) a X,
positive formula in L, ,,. Let K be the class of models A of T for which {a € |¥Y]:
A F p(a)} is a set of generators. The theorems of §§2 and 3 can be generalized to K-
simple models without difficulties.

DerINITION 7.3. A is (7, A)-simple, if A is a model of T and every homo-
morphism from U either is an embedding or has range of cardinality <A.

Let T be universal. By our method we can prove that if 7" has a (T, 4)-simple
model of cardinality > 2*"7!, then T has (T, | T|*)-simple models of arbitrarily
large cardinalities.

Problem 3. Characterize the classes

{(u, Ay:there is a (T, 2)-simple N, |A| = u}.
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