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CATEGORICITY OF UNCOUNTABLE THEORIES

SAHARON SHELAH!

Introduction. This article is devoted to the proof of the following theorem.

THEOREM 0.1. If a (first-order complete) theory T is categorical in one cardinal
A > |T| then T is categorical in every cardinal yu > |T| where

DerINITION 0.1, T'is categorical in the cardinal A if T has a model of cardinality
A, and any two models of T of cardinality i are isomorphic.

Los [L 1] conjectured this for countable T. Morley [M 1] proved the conjecture.
Successive and independent approximations for uncountable T are Rowbottom
[Ro 1], Ressayre [Re 1} and [S 1], [S 2]. A discussion on the proofs will appear at
the end of the introduction.

From these investigations the notion of stability arises. A list of all results con-
nected with stability and categoricity, with historical remarks, appears in (S 9].
As this list is. concise and long, we shall give a more informal discussion here on
stability and the number of nonisomorphic models. But a reader interested in all
results, exact credits, etc., should consult [S 9].

Let T be a complete theory in L, and D, (T) be the set of complete n-types con-
sistent with 7" (i.e. maximal sets of formulas ¢(x,, ..., x,), ¢ € L, which are con-
sistent with T). D(T) = |, <, D.(T). Ehrenfeucht [E 2] proved, in fact, that

THEOREM 0.2. If u = |D,(T)| > |T| for some n, then in every A = |T|, T has
at least p nonisomorphic models.

However, there are theories which fail to satisfy the conditions of the theorem,
because of trivial reasons; for example, for the theory T,,4 of the rational order

! This work was partially supported by NSF grant GP-22794.
I would like to thank M. Brown for writing the notes [S 6], on which §4 is based.
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| D, (T)] < Ry, but if the rationals are denoted by constants in the language, then
for each real number, we have a different complete 1-type, so | D,(T)| = 2%, This
should motivate the following definition:

DerINITION 0.2. L, is L when we add A new individual constants. T is stable
in 4 (or A-stable) if, for every complete extension T* of T'in L,, |D,(T*)| < A.

Another notion was suggested by [E 1].

DEerFINITION 0.3. T has the property (E) if T has a model M, with an infinite
subset 4 and a formula ¢(x,, . . ., x,) such that for every distincta,, ..., a,€ 4
there is a permutation 6 such that M F ¢[ag(y), - . . , @y(n)], and there is a permuta-
tion 6 such that M E 1 ¢[agy, . - . , Ga(m]-

The idea was that (E) is a generalization of order, and hence implies T is com-
plicated. He proves in [E 1] that for most 2 > [T, (E) implies T is not categorical
in 2. Morley [M 1] proved that (E) implies 7 is not X,-stable, and the proof implies
T is not A-stable for every A.

To me, this suggests the following questions.

(A) What can the stability-spectrum of a theory be? [I.e. the class {l| T is
A-stable}.]

(B) What is the connection between stability and order ?

The answers are the following:

THEOREM 0.3.  For every T one of the following holds.
(1) For every A, T is not stable in A; we stipulate «(T) = 0.

(2) There is a cardinal « = k(T) = |T|* such that T is A-stable iff 2 = A° +
|D(T)| (where 2° =3, ., 2¥).

(3) There is a cardinal « = «(T) = |T|* such that T is A-stable iff 2 = A° +
[D(T)| + 2%.

See [S 3], [S 7] for proof. If «(T) = oo, T is called unstable; if «(T) < o, T'is
called stable; and if x(T) = R,, T is superstable.

Note that if T* is a complete extension of T'in L,, then «(T) = «(T*).

THEOREM 0.4. T is unstable iff T has a formula ¢(x,y), a model M, and
sequences @~ from M such that M F p[a", a"] <>n < m.

(See [S 9]; and for a stronger result see [S 5].)
The following results show that «(7) is significant for some problems.

THEOREM 0.5. (1) T has a saturated model of cardinality 4 iff 2 = A% + |D(T)|
or T is A-stable

(2) If M,, i < 9, is an elementary increasing chain of models of T, each M, is -
saturated and the cofinality of 6 is Z«(T) then J; s M; is A-saturated.

(See [S 9, §0.B] for references.)

THEOREM 0.6. If 2 = «(T) + V,, then among the A-saturated models of T there
is a prime one. If the cofinality of A is Z«(T), A > R, this model is unique and can be
characterized.
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(See [S 7], [S 10}.) (This is true also for prime models over sets.)

The question of categoricity is a particular case of the question of the number of
nonisomorphic models in a cardinality. The following show the relevancy of sta-
bility to this problem. For T, = Tlet PC(T;, T) be the class of reducts of models of
T, to L.

THEOREM 0.7. Suppose T is not superstable. Then in every regular A > |T|, T
has 2* nonisomorphic models. Moreover, it has 2* models of cardinality A, such that no
one of them can be elementarily embedded into another. If T, = T, |Ty| < A, we can
demand that those models be in PC(T,, T).*

Let us introduce another important notion from Keisler [K 1].
DErFINITION 0.4. T has the f.c.p. if it has a formula ¢(x, ) such that, for
arbitrarily large n,
@5 2 @A st A A@9 A g 3)] e
= i= 1=1;4#7
DEeFNITION 0.5, I(A, Ty, T)is the number of nonisomorphic models in PC(Ty, T)
of cardinality A.

THEOREM 0.8. If a stable T has the f.c.p., R, = min(2¥°, |T|), R, = |T}|, then

IR,, Ty, T) = 21—,
(See [S 11].)
One may ask whether the conditions in Theorems 0.7 and 0.8 are artificial.
They are not.

THEOREM 0.9. If T is countable, superstable and without the f.c.p., then there is
T, > T, |Ty| = 2%, such that I(A, Ty, T) = 1 for every 1 = 2%.

(See [S 11])
Another use of the f.c.p. is for the order <] of Keisler [K 1]. For example,

THEOREM 0.10. For countable T the following are equivalent :
(A) For every model M of T and regular ultrafilter D over A, M*| D isA+-saturated.
(B) T does not have the f.c.p.

(See [K 1] for =1 (B) — —1(A) and [S 11] for the converse.)
The following answer questions of Keisler and are generalizations of our main
theorem here.

THEOREM 0.11.  If every model of T of cardinality 1 is |\T|*-universal [= embeds
elementarily every model of T of power < |T|*], then T is categorical in 2.

* Added in proof 12 January 1973. It has been proved that if T is unsuperstable, A > |T;| +
N, but I(A, Ty, T) < 2* then (1) T is stable, 2) T, # T, (3) A = |T,|, (4) ARo > 1 and even
more severe restrictions on 4.
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THEOREM 0.12.  If every model of T of power A Z R, + |T| is homogeneous,
then every model of T of power u, u > |D(T)|, is homogeneous; and, for every y,
IT| + R, < u = |D(T)|, T has a nonhomogeneous model in p.

Like many other cases, the solution of a problem raises many new ones, and I
would like to draw attention to some of them.

Problem 1. What can the function I(2, T, T) be ?

A detailed conjecture appears in [S 9, p. 283, 13]. There is a small error in it,
and it can be reformulated in a simplified form as follows: For every T, either
IA, T, T) = 2* for every A > |T|or thereare £ 22", 0=« 227,05y <
|T|*+, y a successor or zero such that I(X,, T, T) = 3(|«|%, y) + u for every o =
2271 If T is countable « € {0, 1, X,, 2%}, Its simplest case is: If, for some 4,
I(A, T, T) > 2%7%, then, for every R, = |T|, I(X,, T, T) = |« + 1.

Problem 2. What can the function

m(}" M, T) = mln{I(Aa Tla T):Tl = Tv ]Tl = l“'}
be?
[See [S 9, p. 288, Conjecture 19].]
Problem 3. The same as Problem 1, for the class of |T|*-saturated models.

REeMARK. In general I(4, T;, T) depends on set theoretic considerations (e.g.
on the function 2%%), so there is not much hope for a characterization of I(4, T}, T).

There has been some progress. E.g. Problem 1 is essentially solved for X,-stable
(= totally transcendental) theories. **

Let us now remark, where [Ro 1], [Re 1], [S1] and [S 2] were stuck and how
here we avoid it. Let T be categorical in 2 > |T|. The first step was to note the
proof in (M 1] implies T is stable in u, |T} = u < A. The second step was to prove
from this that T has a saturated model in 4. This works for most 4. The third step
was to show that if M is a model of T, u-saturated, not ut-saturated of power >pu,
then 7 has a nonsaturated model in 4. For this it was needed to show M contains a
large set of indiscernibles over a set of power u, and the existence of a prime model
among the u-saturated models over any set.

Now in the second step, if A% > 4, and 4 > u = |T|=> u® = pu, then it
cannot be done. 7 may be stable in x4 for 4 > u = |T|, but not have a saturated
model in A, if it is not superstable. In the third step, the existence of prime models
among the u-saturated ones was established by |T|-stability only for 2* > |T.
In fact, the existence of u-saturated models of T over sets, for T satisfying con-
ditions (1), (2), (3) of §4, can be shown in general only for u = X,. So we are
left with the case of a not |7T|-saturated model M. The fourth step was to note
M|l < 4, soinevery u = 4, T has only saturated models; hence T is categorical
in x#. In [Re 1], [S1] and [S 2] it was noted that [M 2] implies | M| cannot be
too large (< the Hanf number of omitting a type).

** Added in proof 12 January 1973. It seems that Problem 3 is solved, if we restrict ourselves to
X's satisfying ATl = 4.
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However there was no way to go from a small non-X,-saturated model upward.
So how do we go? In §2 we establish that T is stable, and every model of T is
locally saturated. We use here [S 9] on A-types (A finite) and the existence of prime
models over sets among the |7*|-saturated models.

In §3 we define a degree on formulas, and show it is always < . For stable T
this is equivalent to the superstability of 7. So we could prove that T is stable in 4,
hence has a saturated model in 4; but we prefer not to do so.

Marsh [Ma] uses minimal formulas to simplify Morley’s proof. We use a general-
ization of this concept—weakly minimal formulas. First we prove that in every
model of cardinality > |T] there is a weakly minimal formula 6(x, a) provided
that the model is locally saturated. Then we prove that over every set 4 < [M|,
M E T which satisfies the Tarski-Vaught test for formulas (3x)[0(x, @) A ¢(x, 2)]
thereisamodel Nof T, 4 = N < |[M|,{b|be N, N F@[b, al} < A. This N is our
substitute for the prime model. Those two theorems are the crux of the matter. Now
we prove that if M is a nonsaturated model of T of cardinality > |7, 0(x, a) a
weakly minimal formula, then M omits some type which contains 6(x, @). This
enables us to prove the existence of a saturated model in every x4 > |T|. Then if M
is not saturated, we extend 6(x, @) properly and take a “prime” model, thus
pushing upward the cardinality of the nonsaturated model. Remembering that
every two saturated models of T of the same power are isomorphic, we conclude.?

The proof here is somewhat different from the one in the notes [S 6], as this
article is not self-contained, and the proof that Deg [x = x] < co has been
changed, and hopefully simplified. The theorems appearing here are not the best
possible. We prove only the ones needed; e.g. in §4 we are interested only in models
> |T|, but corresponding results hold without such restrictions.

1. Notation. Let 4, u, « denote (infinite) cardinals, «, 8, v, i, j ordinals, 6 a
limit ordinal, and k, /, m, n natural numbers. Let #, v denote sequences of ordinals,
I(n) the length of 7, 5 (i) the ith element of 7, and Px = {n|l(n) = B, (Vi < B)n(i) <
o}, P> = (J,<p " |X| is the cardinality of X. @ b is the concatenation of the
sequences 4, b.

L will be a first-order language. T a complete theory in L, ¢, y, 8, x, p will be
formulas of L, x, y, z variables and X, y, Z finite sequences of variables. Let # be a
k-saturated model of T, where « is greater than the cardinalities of any other model
of T we shall deal with. So we can restrict ourselves to elementary submodels of M
of cardinality <k, and we denote them by M, N. M F ¢[a] means satisfaction. As
M E gla)<=> M F p[a] we omit M. Let ¢(M, a) = {c|ce|M|, F ¢lc,al}. IM] is
the universe of M so | M| is the cardinality of M. 4, B, C will be subsets of |#] of

cardinality <&. Leta, b, c, d, e be elements of M. Ifd = (a,- " a,), a, . .., 4, €
A, we write G€A. Let ¢?be ¢ fori =0and -7 ¢ for /= 1.
A A-m-type over A4 is a set of formulas @(x,, ..., X, ;,d) [deA, €A,

i € 2] which is finitely satisfied in M. If m = 1 we write x instead of x,. If A = L we

? For information on the models of categorical theory see also [H 1].
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omit it, if m = 1 we omit it. The type d realizes over Bis {@(%, b) | b € B, F ¢4, b]}.

A (A) is the set of maximal A-m-types over 4, S™(4) = ST.(A). {@ | i < a}is A-n-
indiscernible over B, if the lengths of the sequences a‘ are equal, and ¢(&, . ..,x"; )
€A, 6 a permutationof {1, ... ,n},i(1}) < - <i(n) < a, j(1) < -+ < jn) < a,
b € B implies k g[a"®™", ..., @™ p] = [a7D), ..., @™ b IfA =L we
omit it; if it holds for every n, we omit it.

2. Stability and local saturation. The main results are: if T is categorical in
A > |T|, then

(1) Tis u-stable for |T| S pu < 4,

(2) every model of T is locally saturated.

THEOREM 2.1. For A > |T|, T has a model M of cardinality A, such that for all
m< w, A< M|, |{p|pecS™(A), p realized in M}| < |A| + |T|.

PrOOF. Take M as an Ehrenfeucht-Mostowski model, which is the closure
of a well-ordered set (see [Mo 1]).

ConcLusion 2.2. If T is categorical in A, |T| = u < A, then T is stable in u.

REMARK. Morley [Mo 1] proved 2.1, 2.2 for |T] = u = X,, and the proof
works as well for the other cases as noted in [Ro 1], [Re 1], [S 1], [S 2].

DEFINITION 2.1. M is locally saturated if for every finite A, and a A-m-type p
over [ M| of cardinality < | M|}, p is realized in M.

THEOREM 2.3. If T is categorical in A > |T|, then every model of T is locally
saturated.

Proor. By 2.2, Tisstable in |T[; so by [S 9, Theorem 2.13] for every finite A,
m and for every A4, |Sx(A4)] = |4| + R,. Let M be a model of cardinality 4. Define
M;, i £ A, such that My = M, M; = ;.5 M,;, and M, , is an (elementary) ex-
tension of M, in which, for every finite A, m, every p € S(|M,|) is realized. Now,
for every 4 < 4, and finite A, m, M. is a model of T of power 4 and every A-m-
type over it of cardinality Su is realized (as it is a type over some [M,}, i < u*).
As T is categorical in A, and this holds for every u < 4 it follows that every model
of T of cardinality 4 is locally saturated.

Suppose now M is a nonlocally saturated model of 7. Let A, m be finite, p a A-
m-type over | M| which is not realized, |p| < |M|. If A = {@,(%, ) | i < |Al}, let
o 7)) = A Di'=yi"> ol% 5]

i<|Alije2 :

Clearly for every i< |A], je2 and a€|M|, there is a b €|M| such that

E(V®)[p:(%, ay = ¢(%, b)]. So w.lo.g. let p = {@(x, a) |7 <ipl};

A= {Ranga'|i<|pl},
so |[4] = |p| - R, < [[M]. So by [S9, Theorem 5.8] for every finite A, » there is in
M an infinite A-indiscernible set over 4. Hence, by the compactness theorem
(using extra predicates), T has a | T|+-saturated model N, ¢ = {@(%, b,):i < |g|} a
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type over |N|, omitted by N and {c; [ i < |T|*} an indiscernible set over B =
U {Rangb,|i < |gl}. Let u = 2,4, 2, = |B| for some «. Define ¢, [T|* S i < p
such that {c, | i < u} is indiscernible over B. By [Re 1] or [S 2], there is a |T|*-
prime model over B U {c;|i < u}, and it omits g. Using Vaught’s two-cardinal
theorem for cardinals far apart (see Vaught [V 1] or [Mo 2] or [C 1]) (adding the
predicate p* = {b, | i < |gl}) we get a non-locally-saturated model of T in 4; a
contradiction.

THEOREM 2.4. If T is categorical in A > |T|, M, N models of T, |M| < |N]|,
a € |M|, and ¢(x, 4) is not algebraic, then there is c € |N| — | M|, F ¢{c, al.

Proor. If M, is locally saturated 4 € |M,| and ¢(x, @) is not algebraic, then
{p(x, @) Ax # c|cep(My,a)}

is a type over |M,| which M, omits, hence its cardinality is || M,]|, so |p(M,, a)| =
| Ml

Now if M, N, ¢(x, ) are a counterexample to 2.4, we get a contradiction as in
the proof of 2.3, using Vaught’s two-cardinal theorem (see [Mo 3] or [Be 1] or
[C1]).

LeMMA 2.5.  The following properties contradict the stability of T.

(A) For some ¢(X, y) there are sequences a", n < w, such that, for all subsets w
of w, {p(X, @) |new} U {71 @(x, @) | n ¢ w} is consistent.

(B) For some @(X, y) there are sequences a", n < w, such that for every m, p,, =
{p(%, @) |n < m} U {-1@(x, a") | n Z m} is consistent.

(C) T has the property (E) defined in the Introduction.

Proor. If (A) holds then (B) holds with the same ¢ and a”. If (B) holds let
¢™ realize p,,, and let ™ = em"am. Let p(Z, %) = w(fA)?, ) = @(%, 7).
As F @lé™, am] iff m < n, clearly Fy[b™, b"] iff g[é™, a*] iff m = n. So y(z, 29)
shows (E) holds. If (E) holds by [S 9, Theorem 5.3B], T is unstable.

3. Here we define for every formula ¢(x, @) a degree which measures the com-
plexity of ¢(#M, a). We prove that if T is categorical in 4 > | T, then the degree of
every formula is < co. Lemma 3.1 and Theorem 3.2 have appeared in [S 9, §61.

DEerINITION 3.1.  We define Deg[g(x, @)] as an ordinal, or oo (stipulating « < oo
for any ordinal). So it suffices to define by induction on « when Degl¢(x, 4)] = «:

(A) a = 0: Degl[e(x, @)} Z 0 iff F(Ix)p(x,d) (otherwise the degree is not
defined or treated as —1).

(B) a = d: Deg[o(x, a)] = 0 iff for every § < 6, Deglo(x, a)] Z B.

(C) « = + 1: Deglo(x, d)] = « iff there is a formula y(x, ) and sequences
¢, i < |T|*, such that

(1) Deglo(x, @) A w(x, )] = B for every i,
(2) the p(x, ¢%)’s are almost contradictory; that is, there is m < w such that,
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for every set w of = m ordinals < |7+,

E= (Elx)[ A w(x, c")].

We say {y(x, ¢%)| i < |T|*} is m-almost contradictory.

LemMma 3.1.  (A) IfF (Vx)[@(x, @) — w(x, b)] then Deg[¢(x, )] < Deg[y(x, b)].

(B) If a and b realize the same type then Deglg(x, a)] = Deglo(x, b)].

(C) There is an ordinal oy < (2'TV)* such that for no ¢(x, a), Deglo(x, )] = o,
Hence Degly] Z «, implies Degly] > a,.

PrROOF. (A) It can be easily shown by induction on o that Deg[g(x, a)] =
« = Deg[y(x, b)] = o.

(B) It can be easily shown by induction on « that Degle(x, a)] = « iff
Degle(x,b)] Z «.

(C) follows easily from (B), as the number of ¢(x, ) and complete n-types
is < [T]- 271 — o7l

By the way, [S 9, Theorem 6.4] says that in fact o, < |T|*.

THEOREM 3.2. If Deglx = x] > o, then there are formulas ¢,(x, a,), n € “~u,
where u = |T|* such that

(A) for every 0 < k <1< w, n€'u, F(¥x)g,(x, d,) > ou(x, dy)]s

(B) for every 5 € “Zu, Degle,(x, a,)] Z o,

(C) for every n €, {@,~ (X, @y* (i) | i < u} is almost-contradictory,

(D) for every n €7, i < p, @u* iy = @p* 0y

ProOF. We shall define the ¢,(x, 4,) by induction on ¢(7); let, for n = ( ) =
the empty sequence, ¢ ,(x, 4,) = [x = x]. If ¢,(x, a,) is defined, then, by (B),
Deg[@,(x, a,)] Z «,. Hence, by Lemma 3.1(C), Deg[¢,(x, 4,)] > «,; hence by the
definition of degree there are almost-contradictory formulas y(x, ¢?), i < u, such
that Deg[o,(x,d,) A p(x, ¢)] = «,. So define ¢, i, (x, @y~ i) = @,(x, d,) A p(x, &).

THEOREM 3.3. Suppose T is categorical in A > |T|. Then Deg[x = x] < o,
hence by 3.1(A) the degree of every formulais < co.

Proor. There is a theory Ty = T in a language L, > T such that |Ty| =
|Lg] = |T| and T, has Skolem functions. Also there is a model M* for L, such
that |M*| is the closure of {y, | i < A} which is an indisceérnible sequence (see
Ehrenfeucht and Mostowski [E 3] or [Mo 1} or [C 1] or [Be 1]). So for every
ac|M*| there is a term 7€ Ly and i; < --- < i, < A such that M*Fa =
T[yi - - - » Vi, ). Let 7 denote a finite sequence of terms; hence, for every a € |[M*|,
there is 7 and iy < -+ < i, < 4 for which M*kFd = 7[y;,...,y; ] We sayi,j
realize the same cut over X < A = {/ | i < A}, i = j(mod X), if for every k € X,
i < k<>j<k; or equivalently min{k | ke X, i < k} = min{k |k € X, j < k}.
Note that this is an equivalence relation with < |X| + X, equivalence classes.

Suppose Deg[x = x] = oo. Then, by Theorem 3.2, there are ¢,, a, for 5 € “>pu
which satisfy (A), (B), (C), (D) from 3.2, 4 = |T|*. By adding unnecessary con-
stants we can assume 7 # » =4, # 4,. Let W be a subset of “u of cardinality u
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such that for every limit ordinal 6 < u of cofinality w there is #; = 5 € W such
that 6 > n(n + 1) > n(n) for every n > 0, and ¢ = sup{n(n) |n < w}. Let ¢,
realize p, = {@,,(x, d,,) | n < w}and 4 = |J {Rang g, | ne“>u} U {c,| ne W}

Clearly [4] = u = |T|T £ 4, so there is a model M of T of cardinality A,
A < |M|. By the categoricity of T in A, M is isomorphic to the reduct of M* to L.
So wlo.g., 4 < |[M*.

Now we define subsets X, of A = {i | i < 4} for « < u by induction on « such
that [denote B, = cl{y, | i € X,}, cl-under the functions of L]

(i) X, is empty, X; = {J:<s X; and |X,| = |T).

(if) For every « there is # such that @, € B,,, 4, ¢ B,.

(iii) If g, € B,, B = sup{n(n) + 1 | n < w}, and » € B, then g, € B,.

(iv) If G, € B,,,, and for some i < p, @7 = F(Yiys oo+ 5 Vi) € Bpyn h <0 <
i,, then for infinitely many j < u, there are j, < -:- <j,, j, = i, (mod X,) for
1 =1 = n, such that @, ;, = 7(y;,, - - - » ;) € By

The construction is straightforward. Note that |X,| < # implies |B,| < u,
hence [{n | d, € B,}| < u (as n # » =4, #* a,).

Define & = sup{y(n) | n < w, g, € B,}. By (ii), 0 is a limit ordinal of cofinality
o (as X, = Un<eo Xn)- So by the definition of W there is n = n;e W, 6 >
n(n + 1) > 5(n), 6 = sup{n(n) | n < w}, and so ¢, € A = |M*| realizes p,. Let
Cy = T(Piays - -+ 5 Yitmy)s (1) <+ »+ <i(n). For I, 1 £ 1= n, let

jO) = inf{j|je X, j Z i}

and ky < @ be such that j(1), .. ., j(n) € X, and g, € B,. W.Lo.g., k, =1, and
let k be maximal such that a,; € B, (there is such k as sup{#(n) [ n < w,d,,€By} <
6 by (ii)). Let v =9 |k, n(k) =1, and d,~,, = 7*(ys,, - - - , Vx,)- By (iv) for
infinitely many § < u, there are j(/, B) for 1 = 1= m, j(/, ) = k, (mod X;) and
a,~y = T*Vicnpy» - - + » Viem.p)) € Be. Clearly also

JU, B) = ky (mod X; U {i(1), . ..., i(m}).

Hence in M*, d,~;,, d,~ 4, realize the same type (in Lg,) over {y,:a € X, or « = i(l),
1 =/ < n} hence over ¢,. So for infinitely many 8 < u, F ¢, ;,[cys 4,4 5,]; but,
by 3.2(D), @aciy = Puacpy, SO F @8 p0c, @, 4]. SO c, satisfies infinitely many
formulas @,~4,(x, d,~(5,), p < u. But they are almost-contradictory by 3.2(C);
a contradiction. Hence Deg[x = x] < 0.

REMARK. Infact Deg[x = x] < w;and forevery T, Deg[¢] < oo = Deg[p] <
|T|+. For countable 7, Baldwin [Ba 2], [Ba 3] proves that Deg[x = x] <
provided that T is categorical in X,.

4. Suppose through this section that the following conditions hold:

(1) Tis stable in | T,

(2) every model of T is locally saturated, and M < N, d € |M |,6(x, 4) nonalge-
braic implies 8(N, a) ¢ [M|,

(3) Deglx = x} < .
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We have proved in §§2 and 3 that they are satisfied if T is categorical in some
A>T

DEFINITION 4.1. (A) %°(x,a%, ..., y"(x,a") are a g-partition of 6(x, a)
(where ¢ = ¢(x, p)) if

1) E(v0)[6(x, a) & Vg, pi(x, @)

(2) For i # j, k = @x)[i(¥, @) A v/(x, @)].

(3) vyi(x, a®) is p-minimal; that is,

(B) for no ¢(x, b),
l{e | Fye, @ A gle, BTH 2 X,
and
lc | Ewile, @] A = glé, B} Z R,

(O) If F ¢*[c, @], then 9'[x, '] is the g-piece of c.

REMARK. (1) If 6(x, @) has a g-partition, then it has a g-partition of the form
w(x, a,...,plx,a".

) If EBlc,al, pu(x,a"), 0=1=n, is a gp-partition of 0(x, d), then some
yp'(x, @) is the g-piece of c.

DEFINITION 4.2. 6(x, @) is weakly minimal if, for every ¢, it has a g-partition.
B partitions 6(x, a), if, for every ¢, 6(x, ) has a p-partition ¢(x,4a%),i =0, ...,
n, such that @€ B, and g€ B.

REMARK. We sometimes speak as if this partition were unique and denote it
by 9, (x,3), i S n=n,d =a,

DEFINITION 4.3. A type p is minimal if, for no ¢(x, @), both p U {¢(x, 4)} and
P U {—1 ¢(x, @)} are nonalgebraic types.

Lemma 4.1, (A) If 6(x, 4) is weakly minimal, G € |M|, then there is A < |M|,
|A| < |T) which partitions 6(x, a).
(B) If A partitions 0(x, a), 8(x, @) € p € S(A), then p is minimal.

Proor. Immediate.

THeoREM 4.2. If | M| > |T|, and 6(x, ) is a nonalgebraic formula with minimal
degree (Z 0), a € | M| then 0(x, @) is weakly minimal.

PrOOF. Define, by induction on /(7), 4, for n € “>2, such that if 4, is defined,
7 € "2, then, for » = n‘(l), and v = r)A(0>,p, = {6(x, a) A p(x, d,,ll)"‘” | I =n}
is a nonalgebraic type.

If, for I < I(n), d,, is defined, and there is b such that p, U {g(x, b)} and
Pn Y {—1 ¢(x, b)} are nonalgebraic types, then we define 4, = b. Otherwise g, is not
defined. If, only for finitely many #’s, 4, is defined, then clearly our conclusion
holds.

So assume &, is defined for infinitely many 7’s. Clearly if g, is defined, | < I(%),
then 4, is defined. Hence by K&nig’s lemma, there is an 7 € “2 such that, for
every | < w, 4y, is defined. W.Lo.g. R, = |[{{|/ < w, n(l) = 0} let ], be the kth
I < w such that 5(/) =0, and 4" = d,,,. So for every n < w, {6(x,a)} U
{p(x, @) |i < n} U {—1¢(x, @)} is a nonalgebraic type, and let c” realize this type.
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By Ramsey’s theorem [Ra 1], we can assume that, for n <i, Eglc", a]l =
@[c®, a']. As by definition F ¢[c®, &°] for n > i, by Lemma 2.5(B) and condition
(1), clearly i # n=>F g[c", @*].

By Lemma 2.5(A) and compactness, there exists m’ such that there are no sequen-
ces dy, .. ., d,_, which make {p(x, a,):kew} U {Tp(x,a):k¢wandk < m'}
consistent for every choice of w < {0, 1,...,m' —1}.

Another application of Ramsey’s theorem shows that we can assume w.Lo.g.

that, for every w < {0, 1, ..., m'—1}, either, for every iy < *** < i, w1 < ®,
* F@0 Aot a)n A o a)]

kew k¢w;k<m’
or,forevery iy < - < iy <o,
(**) E9(3x) [A o(x, @A AN =g, a"‘)]

kéw;k<m’

If there were w; # w, such that |w,| = |w,| and (*) holds for w, and fails for w,,
then

(ax>[/\ g6 7N A =g, i"*)]

kewy kfwyik<m’
would be connected and antisymmetric over {@°, . .., @™, . . .} since w, is obtained
from w, by a permutation. That would contradict the stability of T by Lemma
2.5(C), so (*) must hold or fail depending only on |w|. By our choice of m’, there is
a w, s.t. (*) fails. So (**) holds for all w s.t. |w] = |w,|. Then there is no b which

(1) satisfies at least |w,| of the @(x, "), and

(2) fails to satisfy at least m’ — |w,| of the @(x, a").

Define y by y(x, by = "1p(x, @™) A Ak<m <p(x, a*) A 6(x, @), where b* is
a” @ ---"a 1"+ If an element satisfies m' of the w(x, b")’s, then it
satisfies m’ of the @(x, a¥) and m’ of the —1¢(x, a¥), which is impossible. So the
formulas y(x, b") are almost contradictory, as in the definition of degree; but
there are only w many of them, rather than |T|* many. We now use condition (2).

Clearly each y(x, b") is realized infinitely many times. We claim that there is an
m,, corresponding to y such that for every sequence ¢ € [M|, if (M, é&)| = m,,
then |[p(M, é)| = N,.

If it were not the case, let M be a model of T of cardinality > 2%. We are
assuming that for all n € w there is an é" such that n < |p(M, é")| < R,.

Let D be an ultrafilter over w and let N = M®/D,andleté= (..., é", ...)/D.

Clearly |p(N, é)] = w [p(M, e¥)||D = 2% < |[N|. But {p(x,@)Ax#a:wac
(N, &)} is a type of cardinality < |N| involving only one kind of formula, hence
it is realized, by condition (2). This is a contradiction.

ReMARK. This was proved, in fact, in Keisler [K 1]. We shall now define by
induction 3%, « < || M|, such that (3=™vx)yp(x, b,) and for every o; < * -+ < o,
we have 1 (Ax)[A; <k <m P(X, 5]

For «, suppose that, for all 8 < «, the above holds. It is clearly sufficient to
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define 5° so that it realizes the type
P = {@*™x)y(x, 7)}

ol _A v B”*)Aw(x,y)]:ﬁl<ﬂ2<~-<a}.

1Sk<m'—1
p is consistent: For any finite subset g of p, there is a 5" which does not appear in g.
Thus b” satisfies ¢. So every finite subset of p is consistent. By condition (2), p must
be realized. So we can define 5%, « < | M|, as specified. Hence each y(x, 5%) is not
algebraic.

Let = Deg[f(x, d)]. We defined 6 to have minimal degree among nonalgebraic
formulas, so Deg[y(%, 5%)] = B, for all «. But look at the definition of degree—we
have these y(x, %), « < || M|, of degree =B, which are almost contradictory, so
Deg[0(%, @)} = B + 1. A contradiction.

THEOREM 4.3. Suppose A partitions the weakly minimal formula 6(x, ). For
every @, y,(x,a’), i< n,, a‘€ A is a @-partition of 6(x,a). If A< B, and
{c € Bl Fy,lc, @1} | > |T| for every o, i, and B satisfies

™ F@x)[y(x, b) A 6(x, )], beB,
implies there is ¢ € B, kylc, b] A O[c, a] then there is M > B, 6(M, a) < B.

Proor. The set of B’ > B satisfying the condition (*) mentioned in the theorem
such that no element of B’ — B realizes 6(x, d) is closed under union of increasing
sequences of sets ordered by <. So, by Zorn’s lemma, there is a maximal one,
B*. We shall show that B* is the universe of an elementary submodel of M by
means of the Tarski-Vaught test.

Suppose that F (3x)g,(x, b)) where b, € B*. Pick ¢(x,b) so that be B*,
F @(x, b) — @1(x, b,) and Deg[p(x, b)] is minimal (=0). Let a realize ¢(x, b). If
we can show that B* U {a} satisfies (*), then by the maximality of B*, a € B*,
so that the Tarski-Vaught test will be satisfied. (If F 6{a, a], by (*), we can'choose
a € B*, so we can assume a ¢ 0(M, a).)

So assume there is a formula p,(x, a, ¢,), ¢ € B*, such that F (3x)p(x, a, ¢)
(where p(x, a, ¢) = py(x, a, &) A 0(x, @)) but no element of B* satisfies p(x, a, ¢).
Let d € | M| satisfy it, and y,(x, d,) be the p-piece of d. So p(x, a, &) A y,(x, 4,) is
consistent and either p(x, a, ¢) A y,(x, a,) is algebraic or T1p(x, a, ¢) A y,(x, d,) is
algebraic. In the second case all but finitely many elements of y,(M, a,) are in
p(M, a, ¢), and as |y,(M, d,) N B| > |T|, p(x,a, ) will be realized by some
element of B = B*, a contradiction (w.l.o.g. F p(x, y, @) — 9,). Hence, for some
m < o, F(3=™x)p(x, a, é). Let

x(z, b, &) = @x)[e(x, b) A @="P)p(y, x, &) A p(z, x, &)].
Clearly F x(d, b, ¢) (let x = a), d ¢ B* (by definition of p). Let p,(x, 4,) be the x-
piece of d, and x,(x, @*) = x(x, b, &) A p,(x, 4,), so a* € B* and F x,(d, a*).

Now y,(x, a*) is not algebraic, for define by induction distinct d, € B*: d

satisfies y;(x, @*) A A;<n. X # d; AO(x, d), so some d, € B* satisfies it (remember
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d¢ B* and (*). As y,(x,d,) is y-minimal it follows ~1y(x, b, ¢) A y,(x, a,) is
algebraic. So all but finitely many of the elements of y,(#, d,) N B* realize
x1(x, @*). So by the hypothesis on B, x(z, b, ¢) is realized by = |T|* elements of
B < B*, say {b, | k < |T|*}. Now

{p(x,6) A @="P)p(p, x, &) A plby, %, ©) |k < |T|*}

is a set of consistent formulas (as b, satisfies y(z, b, ¢)) with parameters from B*
which is almost contradictory, because any m -+ 1 of the formulas says that only
m y’s satisfy p(y, x, ¢), but m + 1 different b,’s satisfy it. By definition this implies

Deglo(x, b)] > inf{Deglo(x, 8) A @="p)p(y, x, &) A p(by, x, O] | k < |T*}.
But this violates the minimality of Deg[¢(x, b)]. A contradiction.

THEOREM 4.4. Let M beamodel of T, A < |M|,|A] < |T|, A partition the weakly
minimal 6(x, @). Suppose ||M| > |T| and every nonalgebraic p € S(A) containing
0(x, a) is realized | M|| times in M. Then M is saturated.

ProOOF. Suppose that M is not saturated, and let p be a type such that | p| < || M|
and M omits p. Choose @(x, b) with b € | M| such that

(1) p U {p(x, b)} is consistent, and

(2) among ¢’ satisfying (1), Deg(g(x, b)) is minimal.
Let p' = p U {¢(x, b)} and let a realize p’, a ¢ |M|. If | M| U {a} satisfies the con-
dition (*) of Theorem 4.3 (i.e., that for every ¢ and every b €| M|, if F (Ax)(6(x, ) A
@(x, a, b)) then 8(x, d) A ¢(x, a, b) is satisfied in |M| U {a}), then by Theorem 4.3
there is a model N such that |[M| U {a} < |N| and for all ¢ € |N|, if F 8[c, a] then
c€|M| U {a}. Since M < N and 6(x, q) is satisfied by infinitely many elements of
| M|, this is possible only if F 0[a, 4], by condition (2).

Then either F 6{a, 4], or there exists a formula %(y, a, &) such that

F@ANIB(, @) A $(y, a, &)

and ¢, € |M|, but no element of M satisfies it. If F10]a, 4], let y(y, a, ¢) be this
0(y, ) A §(p, a, &), with é = &,"a. If  O[a, a], let y(p, a, ¢) be (8(y, @) A y = a).
In either case, y(y, a, ¢) is satisfied by some d € M but by nothing in M.

Let B be the union of 4 with the set of parameters from M occurring in p and
with the range of ¢.

Clearly B < |M| and |B| < |M]. Let g be the type which d realizes over B. Now
g cannot be algebraic, for if it were, everything satisfying it would be in M, since
B c |M|, but d ¢ | M.

g is a complete type over B, so the restriction g | 4 of ¢ to only formulas with
parameters in A is a complete type over 4.

Now, for every formula y(x, &) with & € M, either (¢ | 4) U {x(x, &)} is algebraic
or (7| 4) U {71x(x, é)} is algebraic, by 4.1.

For every x(x, €) ing, (g]|4) U {x(x, &)} is a type over B which is satisfied by
d ¢ | M|, and hence is not algebraic. Then (g | A) U {1y(x, )} must be algebraic.
Therefore each formula in ¢ is realized by all but at most finitely many of the
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elements of M which realize g | 4, so g is realized by all but at most [¢| < |B| of the
elements of M realizing q | 4.

Since (g | A) € S(4) and O(x, ) €q | 4, g | A is realized | M| times in M. So q
is realized |M| — B| = | M| times in M. [M| > [T, so let dy, k < |T|*, be
distinct elements of M satisfying q.

If (¢ | 4) Y {w(y, a, &)} were algebraic, then almost every element realizingg | A
in M would realize y(y, a, ¢), but nothing in M satisfies y(y, a4, ¢). So as before
(q| 4) Y {(y, a, &)} must be algebraic.

Then for some finite conjunction p(y, a*) of formulas from g | 4, ¥'(y, a, ¢') =
v(, a, &) A p(y, a*) is algebraic, so E (3="y)(y'(y, a, ¢")) for some m € w.

Then p” = p" U {@="p'(y, x, &) A ¥'(d, x, &')} is consistent, since it is satis-
fied by a. Each 4@, realizes exactly the same type over B that d does, so for k < |T|+,
pE=p v{@=™W (y, x, &)} U {§'(d, x, &)} is consistent. p* = p U {@(x,b) A
A=)y (y, x, &) A 9’ (dy, x, ¢')}. Since the d, are distinct, no more than m of the
formulas @(x, &) A @="pW'(y, x, &) A p'(dy, x, &'), k < |T|*, can be satisfied at
one time. Then by the definition of degree,

Deglg(x, b)] > Degl[g(x, b) A A= (y, x, &) A ' (dy, x, &)]
for some k, contradicting our choice of ¢(x, b).
THEOREM 4.5. For every A > |T|, T has a model of power A which is saturated.

Proor. Let M be any model of T of power A. Let 0(x, @) be weakly minimal,
and A partition 6(x, d); |4| = |T|. By condition (1), |S(4)| = |T|. Then the com-
plete diagram of M together with {¢(cf):i < A and ¢(x) € p for some p € S(4)
such that p is nonalgebraic} U {c¢f # c}:i < j < 4} is a consistent set of sentences
of power 4, so it has a model N of power 4, by the downward Lowenheim-Skolem
theorem.

So N> M and ||N|| = 4 and each nonalgebraic p € S(4) is realized by A ele-
ments of N.

6(x, a) and A retain in N the properties we required of them, since those prop-
erties are expressible in first-order sentences.

Then N is saturated, by Theorem 4.4.

THEOREM 4.6. Let M be a model of T, with |T| < A < |M|. Let A < |M|
partition 0(x, d), [A| = |T|, 6(x, @) weakly minimal, and let N> M. Let B =
|M| U {c €|N|:Fblc, a], and the type that c realizes over A is realized > times in
Mj}.

Then B satisfies the conditions of Theorem 4.3.

LemMMA 4.7. Suppose b realizes some algebraic type p € S(A). Then there is
a € A and a formula ¢ such that

(1) Folb, 4], and

(2) ifFglc, a), then b and c realize the same type over A.

Proor oF LEMMA. If p is algebraic, then by compactness, some finite subtype
of p is algebraic; its conjunction is an element of p, since p is complete. So for some
y(x, d) € p, FA="x)y(x, a).
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Let by, ..., b, be the elements realizing y(x, d), with b = b,. For each k,
1 = k = m, if b, and b, do not realize the same type over A4, let ,(x, @) be an
element of p such that k =1y, [b,, a*], if there is one. Otherwise let y,(x, *) be x = x.
Then (A <k<m ¥i(x, @) A p(x, @) has properties (1) and (2).

ProoOF OF THEOREM 4.6. If this set B did not satisfy the hypothesis of Theorem
4.3, then there would exist a ¢’ and b’ € |[M| and ¢ € (JN| — |M|) N B such that
F (Ax)(¢'(x, b’, €) A 6(x, @)), but there is no such x in B.

Suppose d realizes ¢’(x, b’, ¢) A 68(x, a). Then since F 6[d, ], let y,(x, d@) be the
¢’-piece of d.

Let ¢(x, b, &) = ¢'(x, 8, &) A B(x, d) A p,.(x, @).

If o(x,b,¢) were not algebraic, then, by the definition of vy, pe(x, @) A
—1¢’(x, b’, ) would be algebraic, so that all but finitely many of the elements
satisfying v,/(x, @) would satisfy ¢'(x, b, ¢). Since y,,(x, d) has parameters from
M and is satisfied by d ¢ M, it is satisfied by infinitely many elements of M, so we
would have ¢'(x, &', ¢) satisfied by elements of M, contrary to our choice of ¢'.
Hence ¢(x, b, ¢) is algebraic.

Now let ¢ = (¢, - . . , ¢,). We will define, by induction on k < n, a sequence
&' € | M| such that, for each k = n, {cy, ..., ) and {cg, . . . , cx) realize the same
(k + 1)-type over the set A* = 4 U Range of b U {all elements of M realizing p,
for each p, such that p € S(4) and 6(x, @) € p and p is realized <A times in M}.
Suppose that we have cq, . . . , ¢z, as specified. Here is how we get c;.

Case 1. ¢, realizes an algebraic type over A* U {c,, . . ., ¢_;}. By Lemma 4.7,
there is a p(x, ¢o, - . . , Cxy, €) With é € 4* such that F pl¢,, ¢y, . - . , ¢y, €] and
when F p[c, ¢y, - .., 41, €], then ¢ and ¢, realize the same type over A* U
{cos - - G}

By the induction hypothesis, F (3x)p(x, ¢, . . . , k1, €). Since all parameters
are from M, we can find some ¢; € |M| such that F p[cs, co, - . -, Cr—y, €]. SO
(cos . - ., ¢y and (cy, . . . , ¢;) realize the same (k + 1)-type over 4*.

Case 2. ¢, is not algebraic over 4* U {¢y, ..., ¢,_;}. Let p, be the type ¢,
realizes over A. Since ¢, € B — | M|, p, is realized >4 times in M. Let p be any
formula such that F p[c;, ¢y, . - . , ¢y, €], With € A*.

Now since p, is a complete type over 4, and F 6[c,, 4], there is some a* € 4 such
that u,(x, *) € p;, so either p, U {p(x, ¢y, . .., 3, &)} is algebraic or p, U

{Dp(x, cpy . . ., Cr1, €)} is algebraic. Since p, U {p(x, cq, . . . , Gy, €)} is a subtype
of the type of ¢, over A* U {¢cy,..., 4}, it is not algebraic, so p, U
{Pp(x, Coy - - - 5 Ci1, €)} is. Then p, U {T1p(x, co, - - . , Cr—, €)} is algebraic. So all

but finitely many of the elements realizing p, realize p(x, co, . . . , ¢z, €). There
are at most A such formulas p(x, ¢y, . . . , ¢4, €) to consider, since [4*| < |4| +
|S(4)| - 2 = A and |T| £ 4, and there are more than A elements satisfying p;, so
there must be elements in M satisfying p, and such that for all formulas such that
F plexs op - - - 5 €115 €], F pler, o, - - -, €1, €], as required.

Now since d satisfies an algebraic formula over 4* U {c,, . . ., ¢,}, we can, by
Case 1, find d’ € M such that (c,, . . . , ¢,, d) and {cq, . . . , ¢, d') satisfy the same
type over A*. If d’ werein A*, then d = d’, but d¢ M. So d’ ¢ A*. Then, by
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definition of 4*, the type that d’, and hence d, realizes over A4 is realized in M

more than A times. So {c € |N|:c realizes the same type as d} < B. d is algebraic

over B < |N|, so d €|N|. Then d € B. But we assumed that d ¢ B to begin with.
Then B must satisfy the conditions of Theorem 4.3 after all.

THEOREM 4.8.  If T'is categorical in power A for some A > |T|, then it is categorical
in every power u > |T|.

Proor. By Theorem 4.5, T has a saturated model of power u for each u > |T7.
Since any two saturated models of T of the same power are isomorphic, it suffices
to show T has no nonsaturated models of power > |T|.

Suppose M is a nonsaturated model of T and [|M| > |T|. Let 8(x, @) and 4 be
as before. By Theorem 4.4, since M is not saturated, there is some p, € S(4) such
that 6(x, d) € p, and p, is realized <« times in M, with X, < « < | M||. Pick any
A, > | M| and let N > M be a saturated model of T of power 4,.

Let B = |M| U {c€|N|:0[c,a] and the type of ¢ over A is realized > «
times in M}.

| Bl = 4,, for if p € S(A4) and 6(x, @) € p and p is realized >« times in M, then
p is realized 4, times in N, since N is saturated. There exist p € S(A) with 0()\(, aep
that are realized more than « times, for otherwise we would have

|6(M, a)| = > |{c € M ¢ realizes p}| = « - |S(4)| < [M]|;
7eS(A4).68(x.d)ep
by condition (2), applied to subsets of {(8(x,d) A x # c¢):c €|M|}, we have
16(M, @)| = | M]. So |B| = i,

By Theorem 4.6, B satisfies the hypotheses of Theorem 4.3, so there is a model
M’ of T'such that B < |M’| and 6(M’, @) < B. So if c € M’ realizes p,, then F 0[c,d],
hence ce€ B, hence ce€ M (since p, is realized <« times by assumption).
Also, |M'|| Z |B| = 4.

Since for fixed « this holds for all 4, = || M||, by the method of Morley [Mo 2}, T
has a model N’ of power 4 such that p, is realized < |T| times in N'. But T has a
saturated model of power 4 and T is categorical in A. A contradiction. (We do not
really need to use something as strong as Morley’s results here.)
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