CATEGORICITY OF UNCOUNTABLE THEORIES

SAHARON SHELAH¹

Introduction. This article is devoted to the proof of the following theorem.

THEOREM 0.1. If a (first-order complete) theory T is categorical in one cardinal $\lambda > |T|$ then T is categorical in every cardinal $\mu > |T|$ where

DEFINITION 0.1. T is categorical in the cardinal λ if T has a model of cardinality λ , and any two models of T of cardinality λ are isomorphic.

Los [L 1] conjectured this for countable T. Morley [M 1] proved the conjecture. Successive and independent approximations for uncountable T are Rowbottom [Ro 1], Ressayre [Re 1] and [S 1], [S 2]. A discussion on the proofs will appear at the end of the introduction.

From these investigations the notion of stability arises. A list of all results connected with stability and categoricity, with historical remarks, appears in [S 9]. As this list is concise and long, we shall give a more informal discussion here on stability and the number of nonisomorphic models. But a reader interested in all results, exact credits, etc., should consult [S 9].

Let T be a complete theory in L, and $D_n(T)$ be the set of complete n-types consistent with T (i.e. maximal sets of formulas $\varphi(x_1, \ldots, x_n)$, $\varphi \in L$, which are consistent with T). $D(T) = \bigcup_{n < \omega} D_n(T)$. Ehrenfeucht [E 2] proved, in fact, that

THEOREM 0.2. If $\mu = |D_n(T)| > |T|$ for some n, then in every $\lambda \ge |T|$, T has at least μ nonisomorphic models.

However, there are theories which fail to satisfy the conditions of the theorem, because of trivial reasons; for example, for the theory $T_{\rm ord}$ of the rational order

¹ This work was partially supported by NSF grant GP-22794.

I would like to thank M. Brown for writing the notes [S 6], on which §4 is based.

Sh:31

 $|D_n(T)| < \aleph_0$, but if the rationals are denoted by constants in the language, then for each real number, we have a different complete 1-type, so $|D_1(T)| = 2^{\aleph_0}$. This should motivate the following definition:

DEFINITION 0.2. L_{λ} is L when we add λ new individual constants. T is stable in λ (or λ -stable) if, for every complete extension T^* of T in L_{λ} , $|D_1(T^*)| \leq \lambda$.

Another notion was suggested by [E 1].

DEFINITION 0.3. T has the property (E) if T has a model M, with an infinite subset A and a formula $\varphi(x_1, \ldots, x_n)$ such that for every distinct $a_1, \ldots, a_n \in A$ there is a permutation θ such that $M \models \varphi[a_{\theta(1)}, \ldots, a_{\theta(n)}]$, and there is a permutation θ such that $M \models \neg \varphi[a_{\theta(1)}, \ldots, a_{\theta(n)}]$.

The idea was that (E) is a generalization of order, and hence implies T is complicated. He proves in [E 1] that for most $\lambda > |T|$, (E) implies T is not categorical in λ . Morley [M 1] proved that (E) implies T is not \aleph_0 -stable, and the proof implies T is not λ -stable for every λ .

To me, this suggests the following questions.

- (A) What can the stability-spectrum of a theory be? [I.e. the class $\{\lambda \mid T \text{ is } \lambda\text{-stable}\}$.]
 - (B) What is the connection between stability and order?

The answers are the following:

THEOREM 0.3. For every T one of the following holds.

- (1) For every λ , T is not stable in λ ; we stipulate $\kappa(T) = \infty$.
- (2) There is a cardinal $\kappa = \kappa(T) \leq |T|^+$ such that T is λ -stable iff $\lambda = \lambda^{\xi} + |D(T)|$ (where $\lambda^{\xi} = \sum_{\mu < \kappa} \lambda^{\mu}$).
- (3) There is a cardinal $\kappa = \kappa(T) \leq |T|^+$ such that T is λ -stable iff $\lambda = \lambda^5 + |D(T)| + 2^{\aleph_0}$.

See [S 3], [S 7] for proof. If $\kappa(T) = \infty$, T is called unstable; if $\kappa(T) < \infty$, T is called stable; and if $\kappa(T) = \aleph_0$, T is superstable.

Note that if T^* is a complete extension of T in L_{λ} , then $\kappa(T) = \kappa(T^*)$.

THEOREM 0.4. T is unstable iff T has a formula $\varphi(\bar{x}, \bar{y})$, a model M, and sequences \bar{a}^n from M such that $M \models \varphi[\bar{a}^n, \bar{a}^m] \Leftrightarrow n < m$.

(See [S 9]; and for a stronger result see [S 5].)

The following results show that $\kappa(T)$ is significant for some problems.

THEOREM 0.5. (1) T has a saturated model of cardinality λ iff $\lambda = \lambda^{\lambda} + |D(T)|$ or T is λ -stable

(2) If M_i , $i < \delta$, is an elementary increasing chain of models of T, each M_i is λ -saturated and the cofinality of δ is $\geq \kappa(T)$ then $\bigcup_{i < \delta} M_i$ is λ -saturated.

(See [S 9, §0.B] for references.)

THEOREM 0.6. If $\lambda \ge \kappa(T) + \aleph_1$, then among the λ -saturated models of T there is a prime one. If the cofinality of λ is $\ge \kappa(T)$, $\lambda > \aleph_0$, this model is unique and can be characterized.

(See [S 7], [S 10].) (This is true also for prime models over sets.)

The question of categoricity is a particular case of the question of the number of nonisomorphic models in a cardinality. The following show the relevancy of stability to this problem. For $T_1 \supset T$ let $PC(T_1, T)$ be the class of reducts of models of T_1 to L.

THEOREM 0.7. Suppose T is not superstable. Then in every regular $\lambda > |T|$, T has 2^{λ} nonisomorphic models. Moreover, it has 2^{λ} models of cardinality λ , such that no one of them can be elementarily embedded into another. If $T_1 \supset T$, $|T_1| < \lambda$, we can demand that those models be in $PC(T_1, T)$.*

Let us introduce another important notion from Keisler [K 1].

DEFINITION 0.4. T has the f.c.p. if it has a formula $\varphi(x, \bar{y})$ such that, for arbitrarily large n,

$$(\exists \bar{y}_1 \cdots \bar{y}_n) \left[\neg (\exists x) \bigwedge_{i=1}^n \varphi(x, \bar{y}_i) \land \bigwedge_{j=1}^n (\exists x) \bigwedge_{i=1; i \neq j}^n \varphi(x, \bar{y}_i) \right] \in T.$$

DEFINITION 0.5. $I(\lambda, T_1, T)$ is the number of nonisomorphic models in $PC(T_1, T)$ of cardinality λ .

Theorem 0.8. If a stable T has the f.c.p., $\aleph_{\alpha} = \min(2^{\aleph_0}, |T|), \ \aleph_{\beta} \ge |T_1|, \ then$ $I(\aleph_{\beta}, T_1, T) \ge 2^{|\beta - \alpha|}.$

(See [S 11].)

Sh:31

One may ask whether the conditions in Theorems 0.7 and 0.8 are artificial. They are not.

THEOREM 0.9. If T is countable, superstable and without the f.c.p., then there is $T_1 \supset T$, $|T_1| = 2^{\aleph_0}$, such that $I(\lambda, T_1, T) = 1$ for every $\lambda \ge 2^{\aleph_0}$.

(See [S 11].)

Another use of the f.c.p. is for the order ⊲ of Keisler [K 1]. For example,

THEOREM 0.10. For countable T the following are equivalent:

- (A) For every model M of T and regular ultrafilter D over λ , M^{λ}/D is λ^+ -saturated.
- (B) T does not have the f.c.p.

(See [K 1] for \neg (B) \rightarrow \neg (A) and [S 11] for the converse.)

The following answer questions of Keisler and are generalizations of our main theorem here.

THEOREM 0.11. If every model of T of cardinality λ is $|T|^+$ -universal [= embeds elementarily every model of T of power $\leq |T|^+$, then T is categorical in λ .

^{*} Added in proof 12 January 1973. It has been proved that if T is unsuperstable, $\lambda \ge |T_1| + \aleph_1$, but $I(\lambda, T_1, T) < 2^{\lambda}$ then (1) T is stable, (2) $T_1 \ne T$, (3) $\lambda = |T_1|$, (4) $\lambda^{\aleph_0} > \lambda$ and even more severe restrictions on λ .

THEOREM 0.12. If every model of T of power $\lambda \geq \aleph_1 + |T|$ is homogeneous, then every model of T of power μ , $\mu > |D(T)|$, is homogeneous; and, for every μ , $|T| + \aleph_1 \leq \mu \leq |D(T)|$, T has a nonhomogeneous model in μ .

Like many other cases, the solution of a problem raises many new ones, and I would like to draw attention to some of them.

Problem 1. What can the function $I(\lambda, T, T)$ be?

A detailed conjecture appears in [S 9, p. 283, 13]. There is a small error in it, and it can be reformulated in a simplified form as follows: For every T, either $I(\lambda, T, T) = 2^{\lambda}$ for every $\lambda > |T|$ or there are $\mu \le 2^{2|T|}$, $0 \le \kappa \le 2^{|T|}$, $0 \le \gamma < |T|^+$, γ a successor or zero such that $I(\aleph_{\alpha}, T, T) = \Im(|\alpha|^{\kappa}, \gamma) + \mu$ for every $\alpha \ge 2^{2|T|}$. If T is countable $\kappa \in \{0, 1, \aleph_0, 2^{\aleph_0}\}$. Its simplest case is: If, for some λ , $I(\lambda, T, T) > 2^{2|T|}$, then, for every $\aleph_{\alpha} \ge |T|$, $I(\aleph_{\alpha}, T, T) \ge |\alpha + 1|$.

Problem 2. What can the function

$$m(\lambda, \mu, T) = \min\{I(\lambda, T_1, T): T_1 \supset T, |T_1| = \mu\}$$

be?

[See [S 9, p. 288, Conjecture 19].]

Problem 3. The same as Problem 1, for the class of $|T|^+$ -saturated models.

REMARK. In general $I(\lambda, T_1, T)$ depends on set theoretic considerations (e.g. on the function $2^{\aleph \alpha}$), so there is not much hope for a characterization of $I(\lambda, T_1, T)$. There has been some progress. E.g. Problem 1 is essentially solved for \aleph_0 -stable (= totally transcendental) theories.**

Let us now remark, where [Ro 1], [Re 1], [S 1] and [S 2] were stuck and how here we avoid it. Let T be categorical in $\lambda > |T|$. The first step was to note the proof in [M 1] implies T is stable in μ , $|T| \leq \mu < \lambda$. The second step was to prove from this that T has a saturated model in λ . This works for most λ . The third step was to show that if M is a model of T, μ -saturated, not μ^+ -saturated of power $>\mu$, then T has a nonsaturated model in λ . For this it was needed to show M contains a large set of indiscernibles over a set of power μ , and the existence of a prime model among the μ -saturated models over any set.

Now in the second step, if $\lambda^{\aleph_0} > \lambda$, and $\lambda > \mu \ge |T| \Rightarrow \mu^{\aleph_0} = \mu$, then it cannot be done. T may be stable in μ for $\lambda > \mu \ge |T|$, but not have a saturated model in λ , if it is not superstable. In the third step, the existence of prime models among the μ -saturated ones was established by |T|-stability only for $2^{\mu} > |T|$. In fact, the existence of μ -saturated models of T over sets, for T satisfying conditions (1), (2), (3) of §4, can be shown in general only for $\mu \ge \aleph_1$. So we are left with the case of a not |T|-saturated model M. The fourth step was to note $\|M\| < \lambda$, so in every $\mu \ge \lambda$, T has only saturated models; hence T is categorical in μ . In [Re 1], [S 1] and [S 2] it was noted that [M 2] implies $\|M\|$ cannot be too large (< the Hanf number of omitting a type).

^{**} Added in proof 12 January 1973. It seems that Problem 3 is solved, if we restrict ourselves to λ 's satisfying $\lambda^{|T|} = \lambda$.

Sh:31

However there was no way to go from a small non- \aleph_1 -saturated model upward. So how do we go? In $\S 2$ we establish that T is stable, and every model of T is locally saturated. We use here [S 9] on Δ -types (Δ finite) and the existence of prime models over sets among the $|T^+|$ -saturated models.

In §3 we define a degree on formulas, and show it is always $< \infty$. For stable T this is equivalent to the superstability of T. So we could prove that T is stable in λ , hence has a saturated model in λ ; but we prefer not to do so.

Marsh [Ma] uses minimal formulas to simplify Morley's proof. We use a generalization of this concept—weakly minimal formulas. First we prove that in every model of cardinality > |T| there is a weakly minimal formula $\theta(x, \bar{a})$ provided that the model is locally saturated. Then we prove that over every set $A \subset |M|$, $M \models T$ which satisfies the Tarski-Vaught test for formulas $(\exists x)[\theta(x, \bar{a}) \land \varphi(x, \bar{z})]$ there is a model N of T, $A \subseteq N \prec |M|$, $\{b \mid b \in N, N \models \theta[b, \bar{a}]\} \subseteq A$. This N is our substitute for the prime model. Those two theorems are the crux of the matter. Now we prove that if M is a nonsaturated model of T of cardinality > |T|, $\theta(x, \bar{a})$ a weakly minimal formula, then M omits some type which contains $\theta(x, \bar{a})$. This enables us to prove the existence of a saturated model in every $\mu > |T|$. Then if M is not saturated, we extend $\theta(x, \bar{a})$ properly and take a "prime" model, thus pushing upward the cardinality of the nonsaturated model. Remembering that every two saturated models of T of the same power are isomorphic, we conclude.²

The proof here is somewhat different from the one in the notes [S 6], as this article is not self-contained, and the proof that $\text{Deg }[x=x] < \infty$ has been changed, and hopefully simplified. The theorems appearing here are not the best possible. We prove only the ones needed; e.g. in §4 we are interested only in models > |T|, but corresponding results hold without such restrictions.

1. Notation. Let λ , μ , κ denote (infinite) cardinals, α , β , γ , i, j ordinals, δ a limit ordinal, and k, l, m, n natural numbers. Let η , ν denote sequences of ordinals, $l(\eta)$ the length of η , $\eta(i)$ the ith element of η , and ${}^{\beta}\alpha = \{\eta | l(\eta) = \beta, (\forall i < \beta)\eta(i) < \alpha\}$, ${}^{\beta>}\alpha = \bigcup_{\gamma<\beta}{}^{\gamma}\alpha$. |X| is the cardinality of X. $\bar{a} \hat{b}$ is the concatenation of the sequences \bar{a} , \bar{b} .

L will be a first-order language. T a complete theory in L, φ , ψ , θ , χ , ρ will be formulas of L, x, y, z variables and \bar{x} , \bar{y} , \bar{z} finite sequences of variables. Let \bar{M} be a $\bar{\kappa}$ -saturated model of T, where $\bar{\kappa}$ is greater than the cardinalities of any other model of T we shall deal with. So we can restrict ourselves to elementary submodels of \bar{M} of cardinality $\langle \bar{\kappa}$, and we denote them by M, N. $M \models \varphi[\bar{a}]$ means satisfaction. As $M \models \varphi[\bar{a}] \Leftrightarrow \bar{M} \models \varphi[\bar{a}]$ we omit M. Let $\varphi(M, \bar{a}) = \{c \mid c \in |M|, \models \varphi[c, \bar{a}]\}$. |M| is the universe of M so ||M|| is the cardinality of M. A, B, C will be subsets of $|\bar{M}|$ of cardinality $\langle \bar{\kappa}$. Let a, b, c, d, e be elements of \bar{M} . If $\bar{a} = \langle a_0 \cdots a_n \rangle$, $a_0, \ldots, a_n \in A$, we write $\bar{a} \in A$. Let φ^i be φ for i = 0 and $\neg \varphi$ for i = 1.

A Δ -m-type over A is a set of formulas $\varphi(x_0, \ldots, x_{m-1}, \bar{a})^i$ $[\bar{a} \in A, \varphi \in \Delta, i \in 2]$ which is finitely satisfied in \overline{M} . If m = 1 we write x instead of x_0 . If $\Delta = L$ we

² For information on the models of categorical theory see also [H 1].

Sh:31

omit it, if m=1 we omit it. The type \bar{a} realizes over B is $\{\varphi(\bar{x}, \bar{b}) \mid \bar{b} \in B, \models \varphi[\bar{a}, \bar{b}]\}$. $S^m_{\Delta}(A)$ is the set of maximal Δ -m-types over A, $S^m(A) = S^m_L(A)$. $\{\bar{a}^i \mid i < \alpha\}$ is Δ -n-indiscernible over B, if the lengths of the sequences \bar{a}^i are equal, and $\varphi(\bar{x}^1, \ldots, \bar{x}^n; \bar{y}) \in \Delta$, θ a permutation of $\{1, \ldots, n\}$, $i(1) < \cdots < i(n) < \alpha$, $j(1) < \cdots < j(n) < \alpha$, $\bar{b} \in B$ implies $\models \varphi[\bar{a}^{i(\theta(1))}, \ldots, \bar{a}^{i(\theta(n))}; \bar{b}] \equiv [\bar{a}^{j(\theta(1))}, \ldots, \bar{a}^{j(\theta(n))}; \bar{b}]$. If $\Delta = L$ we omit it; if it holds for every n, we omit it.

- **2. Stability and local saturation.** The main results are: if T is categorical in $\lambda > |T|$, then
 - (1) T is μ -stable for $|T| \leq \mu < \lambda$,
 - (2) every model of T is locally saturated.

THEOREM 2.1. For $\lambda > |T|$, T has a model M of cardinality λ , such that for all $m < \omega$, $A \subset |M|$, $|\{p \mid p \in S^m(A), p \text{ realized in } M\}| \leq |A| + |T|$.

PROOF. Take M as an Ehrenfeucht-Mostowski model, which is the closure of a well-ordered set (see [Mo 1]).

CONCLUSION 2.2. If T is categorical in λ , $|T| \le \mu < \lambda$, then T is stable in μ . REMARK. Morley [Mo 1] proved 2.1, 2.2 for $|T| = \mu = \aleph_0$, and the proof works as well for the other cases as noted in [Ro 1], [Re 1], [S 1], [S 2].

DEFINITION 2.1. M is locally saturated if for every finite Δ , and a Δ -m-type p over |M| of cardinality < ||M||, p is realized in M.

Theorem 2.3. If T is categorical in $\lambda > |T|$, then every model of T is locally saturated.

PROOF. By 2.2, T is stable in |T|; so by [S 9, Theorem 2.13] for every finite Δ , m and for every A, $|S_{\Delta}^{m}(A)| \leq |A| + \aleph_{0}$. Let M be a model of cardinality λ . Define M_{i} , $i \leq \lambda$, such that $M_{0} = M$, $M_{\delta} = \bigcup_{i < \delta} M_{i}$, and M_{i+1} is an (elementary) extension of M_{i} , in which, for every finite Δ , m, every $p \in S_{\Delta}^{m}(|M_{i}|)$ is realized. Now, for every $\mu < \lambda$, and finite Δ , m, $M_{\mu^{+}}$ is a model of T of power λ and every Δ -m-type over it of cardinality $\leq \mu$ is realized (as it is a type over some $|M_{i}|$, $i < \mu^{+}$). As T is categorical in λ , and this holds for every $\mu < \lambda$ it follows that every model of T of cardinality λ is locally saturated.

Suppose now M is a nonlocally saturated model of T. Let Δ , m be finite, p a Δ -m-type over |M| which is not realized, |p| < ||M||. If $\Delta = \{\varphi_i(\bar{x}, \bar{y}^i) \mid i < |\Delta|\}$, let

$$\varphi(\bar{x}, \bar{y}) = \bigwedge_{i < |\Delta|; j \in 2} [y_j^{i,1} = y_j^{i,2} \rightarrow \varphi_i(\bar{x}, \bar{y}^i)^j].$$

Clearly for every $i < |\Delta|$, $j \in 2$ and $\bar{a} \in |M|$, there is a $\bar{b} \in |M|$ such that $\models (\forall \bar{x})[\varphi_i(\bar{x}, \bar{a})^j \equiv \varphi(\bar{x}, \bar{b})]$. So w.l.o.g. let $p = \{\varphi(\bar{x}, \tilde{a}^i) \mid i < |p|\};$

$$A = \bigcup \{ \text{Rang } \bar{a}^i \mid i < |p| \},$$

so $|A| \leq |p| \cdot \aleph_0 < ||M||$. So by [S 9, Theorem 5.8] for every finite Δ , n there is in M an infinite Δ -indiscernible set over A. Hence, by the compactness theorem (using extra predicates), T has a $|T|^+$ -saturated model N, $q = \{\varphi(\bar{x}, \bar{b}_i): i < |q|\}$ a

type over |N|, omitted by N and $\{c_i \mid i < |T|^+\}$ an indiscernible set over $B = \bigcup \{\text{Rang } \bar{b}_i \mid i < |q|\}$. Let $\mu \geq \beth_{\alpha+\infty}$, $\beth_{\alpha} \geq |B|$ for some α . Define $c_i \mid T|^+ \leq i < \mu$ such that $\{c_i \mid i < \mu\}$ is indiscernible over B. By [Re 1] or [S 2], there is a $|T|^+$ -prime model over $B \cup \{c_i \mid i < \mu\}$, and it omits q. Using Vaught's two-cardinal theorem for cardinals far apart (see Vaught [V 1] or [Mo 2] or [C 1]) (adding the predicate $p^M = \{\bar{b}_i \mid i < |q|\}$) we get a non-locally-saturated model of T in λ ; a contradiction.

THEOREM 2.4. If T is categorical in $\lambda > |T|$, M, N models of T, $|M| \subseteq |N|$, $\bar{a} \in |M|$, and $\varphi(x, \bar{a})$ is not algebraic, then there is $c \in |N| - |M|$, $\models \varphi[c, \bar{a}]$.

PROOF. If M_1 is locally saturated $\tilde{a} \in |M_1|$ and $\varphi(x, \tilde{a})$ is not algebraic, then

$$\{\varphi(x, \bar{a}) \land x \neq c \mid c \in \varphi(M_1, \bar{a})\}$$

is a type over $|M_1|$ which M_1 omits, hence its cardinality is $||M_1||$, so $|\varphi(M_1, \bar{a})| = ||M_1||$.

Now if M, N, $\varphi(x, \bar{a})$ are a counterexample to 2.4, we get a contradiction as in the proof of 2.3, using Vaught's two-cardinal theorem (see [Mo 3] or [Be 1] or [C 1]).

LEMMA 2.5. The following properties contradict the stability of T.

- (A) For some $\phi(\bar{x}, \bar{y})$ there are sequences \bar{a}^n , $n < \omega$, such that, for all subsets w of ω , $\{\varphi(\bar{x}, \bar{a}^n) \mid n \in w\} \cup \{\neg \varphi(x, \bar{a}^n) \mid n \notin w\}$ is consistent.
- (B) For some $\varphi(\bar{x}, \bar{y})$ there are sequences \bar{a}^n , $n < \omega$, such that for every $m, p_m = \{\varphi(\bar{x}, \bar{a}^n) \mid n < m\} \cup \{\neg \varphi(\bar{x}, \bar{a}^n) \mid n \geq m\}$ is consistent.
 - (C) T has the property (E) defined in the Introduction.

PROOF. If (A) holds then (B) holds with the same φ and \bar{a}^n . If (B) holds let \bar{c}^m realize p_m , and let $\bar{b}^m = \bar{c}^m \hat{a}^m$. Let $\psi(\bar{z}, \bar{z}^1) = \psi(\bar{x}^{\hat{}}\bar{y}, \bar{x}^1\hat{\bar{y}}^1) = \varphi(\bar{x}, \bar{y}^1)$. As $\models \varphi[\bar{c}^m, \bar{a}^n]$ iff $m \leq n$, clearly $\models \psi[\bar{b}^m, \bar{b}^n]$ iff $\psi[\bar{c}^m, \bar{a}^n]$ iff $m \leq n$. So $\psi(\bar{z}, \bar{z}^1)$ shows (E) holds. If (E) holds by [S 9, Theorem 5.3B], T is unstable.

3. Here we define for every formula $\varphi(x, \bar{a})$ a degree which measures the complexity of $\varphi(\bar{M}, \bar{a})$. We prove that if T is categorical in $\lambda > |T|$, then the degree of every formula is $< \infty$. Lemma 3.1 and Theorem 3.2 have appeared in [S 9, §6].

DEFINITION 3.1. We define $\text{Deg}[\varphi(x,\bar{a})]$ as an ordinal, or ∞ (stipulating $\alpha < \infty$ for any ordinal). So it suffices to define by induction on α when $\text{Deg}[\varphi(x,\bar{a})] \ge \alpha$:

- (A) $\alpha = 0$: Deg $[\varphi(x, \bar{a})] \ge 0$ iff $\models (\exists x) \varphi(x, \bar{a})$ (otherwise the degree is not defined or treated as -1).
 - (B) $\alpha = \delta$: $\text{Deg}[\varphi(x, \bar{a})] \ge \delta$ iff for every $\beta < \delta$, $\text{Deg}[\varphi(x, \bar{a})] \ge \beta$.
- (C) $\alpha = \beta + 1$: Deg $[\varphi(x, \bar{a})] \ge \alpha$ iff there is a formula $\psi(x, \bar{y})$ and sequences \bar{c}^i , $i < |T|^+$, such that
 - (1) $\operatorname{Deg}[\varphi(x,\bar{a}) \land \psi(x,\bar{c}^i)] \ge \beta$ for every i,
 - (2) the $\psi(x, \tilde{c}^i)$'s are almost contradictory; that is, there is $m < \omega$ such that,

Sh:31

for every set w of $\geq m$ ordinals $< |T|^+$,

$$\models \neg (\exists x) \left[\bigwedge_{i \in w} \psi(x, \, \bar{c}^i) \right].$$

We say $\{\psi(x, \bar{c}^i)| i < |T|^+\}$ is *m*-almost contradictory.

LEMMA 3.1. (A) If $\models (\forall x)[\varphi(x,\bar{a}) \to \psi(x,\bar{b})]$ then $\text{Deg}[\varphi(x,\bar{a})] \leq \text{Deg}[\psi(x,\bar{b})]$.

- (B) If \bar{a} and \bar{b} realize the same type then $\text{Deg}[\varphi(x,\bar{a})] = \text{Deg}[\varphi(x,\bar{b})]$.
- (C) There is an ordinal $\alpha_0 < (2^{|T|})^+$ such that for no $\varphi(x, \bar{a})$, $\text{Deg}[\varphi(x, \bar{a})] = \alpha_0$. Hence $\text{Deg}[\psi] \ge \alpha_0$ implies $\text{Deg}[\psi] > \alpha_0$.

PROOF. (A) It can be easily shown by induction on α that $\text{Deg}[\varphi(x, \bar{a})] \ge \alpha \Rightarrow \text{Deg}[\psi(x, \bar{b})] \ge \alpha$.

- (B) It can be easily shown by induction on α that $\text{Deg}[\varphi(x, \bar{a})] \ge \alpha$ iff $\text{Deg}[\varphi(x, \bar{b})] \ge \alpha$.
- (C) follows easily from (B), as the number of $\varphi(x, \bar{y})$ and complete *n*-types is $\leq |T| \cdot 2^{|T|} = 2^{|T|}$.

By the way, [S 9, Theorem 6.4] says that in fact $\alpha_0 \leq |T|^+$.

THEOREM 3.2. If $\text{Deg}[x=x] > \alpha_0$, then there are formulas $\varphi_{\eta}(x, \bar{a}_{\eta}), \eta \in {}^{\omega >} \mu$, where $\mu = |T|^+$ such that

- (A) for every $0 < k < l < \omega$, $\eta \in {}^{l}\mu$, $\models (\forall x)[\varphi_{\eta}(x, \bar{a}_{\eta}) \rightarrow \varphi_{\eta|k}(x, \bar{a}_{\eta|k})]$,
- (B) for every $\eta \in {}^{\omega} > \mu$, $\text{Deg}[\varphi_{\eta}(x, \bar{a}_{\eta})] \geq \alpha_0$,
- (C) for every $\eta \in {}^{\omega} > \mu$, $\{\varphi_{\eta} \wedge_{\langle i \rangle}(x, \bar{a}_{\eta} \wedge_{\langle i \rangle}) \mid i < \mu\}$ is almost-contradictory,
- (D) for every $\eta \in {}^{\omega} > \mu$, $i < \mu$, $\varphi_{\eta} \land_{\langle i \rangle} = \varphi_{\eta} \land_{\langle 0 \rangle}$.

PROOF. We shall define the $\varphi_{\eta}(x, \bar{a}_{\eta})$ by induction on $\varphi(\eta)$; let, for $\eta = \langle \ \rangle =$ the empty sequence, $\varphi_{\langle \ \rangle}(x, \bar{a}_{\eta}) = [x = x]$. If $\varphi_{\eta}(x, \bar{a}_{\eta})$ is defined, then, by (B), $\operatorname{Deg}[\varphi_{\eta}(x, \bar{a}_{\eta})] \geq \alpha_{0}$. Hence, by Lemma 3.1(C), $\operatorname{Deg}[\varphi_{\eta}(x, \bar{a}_{\eta})] > \alpha_{0}$; hence by the definition of degree there are almost-contradictory formulas $\psi(x, \bar{c}^{i})$, $i < \mu$, such that $\operatorname{Deg}[\varphi_{\eta}(x, \bar{a}_{\eta}) \wedge \psi(x, \bar{c}^{i})] \geq \alpha_{0}$. So define $\varphi_{\eta} \wedge_{\langle i \rangle}(x, \bar{a}_{\eta} \wedge_{\langle i \rangle}) = \varphi_{\eta}(x, \bar{a}_{\eta}) \wedge \psi(x, \bar{c}^{i})$.

Theorem 3.3. Suppose T is categorical in $\lambda > |T|$. Then $\text{Deg}[x = x] < \infty$, hence by 3.1(A) the degree of every formula is $< \infty$.

PROOF. There is a theory $T_{\rm sk} \supset T$ in a language $L_{\rm sk} \supset T$ such that $|T_{\rm sk}| = |L_{\rm sk}| = |T|$ and $T_{\rm sk}$ has Skolem functions. Also there is a model M^* for $L_{\rm sk}$ such that $|M^*|$ is the closure of $\{y_i \mid i < \lambda\}$ which is an indiscernible sequence (see Ehrenfeucht and Mostowski [E 3] or [Mo 1] or [C 1] or [Be 1]). So for every $a \in |M^*|$ there is a term $\tau \in L_{\rm sk}$ and $i_1 < \cdots < i_n < \lambda$ such that $M^* \models a = \tau[y_{i_1}, \ldots, y_{i_n}]$. Let $\bar{\tau}$ denote a finite sequence of terms; hence, for every $\bar{a} \in |M^*|$, there is $\bar{\tau}$ and $i_1 < \cdots < i_n < \lambda$ for which $M^* \models \bar{a} = \bar{\tau}[y_{i_1}, \ldots, y_{i_n}]$. We say i, j realize the same cut over $X \subset \lambda = \{i \mid i < \lambda\}, i = j \pmod{X}$, if for every $k \in X$, $i < k \Leftrightarrow j < k$; or equivalently $\min\{k \mid k \in X, i < k\} = \min\{k \mid k \in X, j < k\}$. Note that this is an equivalence relation with $\leq |X| + \aleph_0$ equivalence classes.

Suppose $\text{Deg}[x=x]=\infty$. Then, by Theorem 3.2, there are φ_{η} , a_{η} for $\eta \in {}^{\omega} > \mu$ which satisfy (A), (B), (C), (D) from 3.2, $\mu=|T|^+$. By adding unnecessary constants we can assume $\eta \neq \nu \Rightarrow \bar{a}_{\eta} \neq \bar{a}_{\nu}$. Let W be a subset of ${}^{\omega}\mu$ of cardinality μ

such that for every limit ordinal $\delta < \mu$ of cofinality ω there is $\eta_{\delta} = \eta \in W$ such that $\delta > \eta(n+1) > \eta(n)$ for every n > 0, and $\delta = \sup\{\eta(n) \mid n < \omega\}$. Let c_{η} realize $p_{\eta} = \{\varphi_{\eta|n}(x, \tilde{a}_{\eta|n}) \mid n < \omega\}$ and $A = \bigcup \{\text{Rang } \tilde{a}_{\eta} \mid \eta \in {}^{\omega} > \mu\} \cup \{c_{\eta} \mid \eta \in W\}$.

Clearly $|A| \leq \mu = |T|^+ \leq \lambda$, so there is a model M of T of cardinality λ , $A \subset |M|$. By the categoricity of T in λ , M is isomorphic to the reduct of M^* to L. So w.l.o.g., $A \subset |M^*|$.

Now we define subsets X_{α} of $\lambda = \{i \mid i < \lambda\}$ for $\alpha < \mu$ by induction on α such that [denote $B_{\alpha} = \text{cl}\{y_i \mid i \in X_{\alpha}\}$, cl-under the functions of L_{sk}]

- (i) X_0 is empty, $X_{\delta} = \bigcup_{i < \delta} X_i$ and $|X_{\alpha}| \leq |T|$.
- (ii) For every α there is η such that $\bar{a}_{\eta} \in B_{\alpha+1}$, $\bar{a}_{\eta} \notin B_{\alpha}$.
- (iii) If $\bar{a}_{\eta} \in B_{\alpha}$, $\beta = \sup\{\eta(n) + 1 \mid n < \omega\}$, and $\nu \in {}^{\omega} > \beta$, then $\bar{a}_{\nu} \in B_{\alpha}$.
- (iv) If $\bar{a}_{\eta} \in B_{\alpha+1}$, and for some $i < \mu$, $\bar{a}_{\eta} \wedge_{\langle i \rangle} = \bar{\tau}(y_{i_1}, \ldots, y_{i_n}) \notin B_{\alpha+1}$, $i_1 < \cdots < i_n$, then for infinitely many $j < \mu$, there are $j_1 < \cdots < j_n$, $j_l = i_l \pmod{X_{\alpha}}$ for $1 \leq l \leq n$, such that $\bar{a}_{\eta} \wedge_{\langle j \rangle} = \bar{\tau}(y_{j_1}, \ldots, y_{j_n}) \in B_{\alpha+1}$.

The construction is straightforward. Note that $|X_{\alpha}| < \mu$ implies $|B_{\alpha}| < \mu$, hence $|\{\eta \mid \bar{a}_{\eta} \in B_{\alpha}\}| < \mu$ (as $\eta \neq \nu \Rightarrow \bar{a}_{\eta} \neq \bar{a}_{\nu}$).

Define $\delta = \sup\{\eta(n) \mid n < \omega, \ \bar{a}_{\eta} \in B_{\omega}\}$. By (ii), δ is a limit ordinal of cofinality ω (as $X_{\omega} = \bigcup_{n < \omega} X_n$). So by the definition of W there is $\eta = \eta_{\delta} \in W$, $\delta > \eta(n+1) > \eta(n)$, $\delta = \sup\{\eta(n) \mid n < \omega\}$, and so $c_{\eta} \in A \subset |M^*|$ realizes p_{η} . Let $c_{\eta} = \tau(y_{i(1)}, \ldots, y_{i(\eta)})$, $i(1) < \cdots < i(n)$. For $l, 1 \le l \le n$, let

$$j(l) = \inf\{j \mid j \in X_{\omega}, j \ge i(l)\}\$$

and $k_0 < \omega$ be such that $j(1), \ldots, j(n) \in X_{k_0}$ and $\bar{a}_{\eta|1} \in B_{k_0}$. W.l.o.g., $k_0 = 1$, and let k be maximal such that $\bar{a}_{\eta|k} \in B_2$ (there is such k as $\sup\{\eta(n) \mid n < \omega, \bar{a}_{\eta|n} \in B_2\} < \delta$ by (ii)). Let $\nu = \eta \mid k$, $\eta(k) = i$, and $\bar{a}_{\nu} \wedge_{\langle i \rangle} = \bar{\tau}^*(y_{k_1}, \ldots, y_{k_n})$. By (iv) for infinitely many $\beta < \mu$, there are $j(l, \beta)$ for $1 \le l \le m$, $j(l, \beta) = k_l \pmod{X_1}$ and $\bar{a}_{\nu} \wedge_{\langle \beta \rangle} = \bar{\tau}^*(y_{j(1,\beta)}, \ldots, y_{j(m,\beta)}) \in B_2$. Clearly also

$$j(l, \beta) = k_1 \pmod{X_1 \cup \{i(1), \ldots, i(n)\}}.$$

Hence in M^* , $\bar{a}_{\nu} \wedge_{\langle i \rangle}$, $\bar{a}_{\nu} \wedge_{\langle \beta \rangle}$ realize the same type (in $L_{\rm sk}$) over $\{y_{\alpha}: \alpha \in X_1 \text{ or } \alpha = i(l), 1 \leq l \leq n\}$ hence over c_{η} . So for infinitely many $\beta < \mu$, $\models \varphi_{\nu} \wedge_{\langle i \rangle} [c_{\eta}, \bar{a}_{\nu} \wedge_{\langle \beta \rangle}]$; but, by 3.2(D), $\varphi_{\nu} \wedge_{\langle i \rangle} = \varphi_{\nu} \wedge_{\langle \beta \rangle}$ so $\models \varphi_{\nu} \wedge_{\langle \beta \rangle} [c_{\eta}, \bar{a}_{\nu} \wedge_{\langle \beta \rangle}]$. So c_{η} satisfies infinitely many formulas $\varphi_{\nu} \wedge_{\langle \beta \rangle} (x, \bar{a}_{\nu} \wedge_{\langle \beta \rangle})$, $\beta < \mu$. But they are almost-contradictory by 3.2(C); a contradiction. Hence $\text{Deg}[x = x] < \infty$.

REMARK. In fact $\text{Deg}[x=x] < \omega$; and for every T, $\text{Deg}[\varphi] < \infty \Rightarrow \text{Deg}[\varphi] < |T|^+$. For countable T, Baldwin [Ba 2], [Ba 3] proves that $\text{Deg}[x=x] < \omega$ provided that T is categorical in \aleph_1 .

- 4. Suppose through this section that the following conditions hold:
- (1) T is stable in |T|,
- (2) every model of T is locally saturated, and $M \prec N$, $\bar{a} \in |M|, \theta(x, \bar{a})$ nonalgebraic implies $\theta(N, \bar{a}) \in |M|$,
 - (3) $\text{Deg}[x=x] < \infty$.

Sh:31

We have proved in §§2 and 3 that they are satisfied if T is categorical in some $\lambda > |T|$.

DEFINITION 4.1. (A) $\psi^0(x, \bar{a}^0), \ldots, \psi^n(x, \bar{a}^n)$ are a φ -partition of $\theta(x, \bar{a})$ (where $\varphi = \varphi(x, \bar{y})$) if

- $(1) \models (\forall x)[\theta(x,\bar{a}) \longleftrightarrow \bigvee_{i \leq n} \psi_i^i(x,\bar{a}^i)].$
- (2) For $i \neq j$, $\models \neg (\exists x) [\overline{\psi}^i(\hat{x}, \bar{a}^i) \land \psi^j(x, \bar{a}^j)].$
- (3) $\psi^i(x, \bar{a}^i)$ is φ -minimal; that is,
 - (B) for no $\varphi(x, \bar{b})$,

$$|\{c \mid \models \psi^i[c, \tilde{a}^i] \land \varphi[c, \tilde{b}]\}| \geq \aleph_0$$

and

$$|\{c \mid \models \psi^i[c, \bar{a}] \land \neg \varphi[\bar{c}, \bar{b}]\}| \geq \aleph_0.$$

(C) If $\models \psi^{l}[c, \bar{a}^{l}]$, then $\psi^{l}[x, \bar{a}^{l}]$ is the φ -piece of c.

REMARK. (1) If $\theta(x, \bar{a})$ has a φ -partition, then it has a φ -partition of the form $\psi(x, \bar{a}^0), \ldots, \psi(x, \bar{a}^n)$.

(2) If $\theta[c, \bar{a}]$, $\psi^l(x, \bar{a}^l)$, $0 \le l \le n$, is a φ -partition of $\theta(x, \bar{a})$, then some $\psi^l(x, \bar{a}^l)$ is the φ -piece of c.

DEFINITION 4.2. $\theta(x, \bar{a})$ is weakly minimal if, for every φ , it has a φ -partition. B partitions $\theta(x, \bar{a})$, if, for every φ , $\theta(x, \bar{a})$ has a φ -partition $\psi(x, \bar{a}^i)$, $i = 0, \ldots, n$, such that $\bar{a}^i \in B$, and $\bar{a} \in B$.

REMARK. We sometimes speak as if this partition were unique and denote it by $\psi_{\omega}(x, \bar{a}^i)$, $i \leq n = n_{\omega}$, $\bar{a}^i = \bar{a}^i_{\omega}$.

DEFINITION 4.3. A type p is minimal if, for no $\varphi(x, \bar{a})$, both $p \cup \{\varphi(x, \bar{a})\}$ and $p \cup \{\neg \varphi(x, \bar{a})\}$ are nonalgebraic types.

LEMMA 4.1. (A) If $\theta(x, \bar{a})$ is weakly minimal, $\bar{a} \in |M|$, then there is $A \subseteq |M|$, $|A| \leq |T|$ which partitions $\theta(x, \bar{a})$.

(B) If A partitions $\theta(x, \bar{a})$, $\theta(x, \bar{a}) \in p \in S(A)$, then p is minimal.

PROOF. Immediate.

THEOREM 4.2. If ||M|| > |T|, and $\theta(x, \bar{a})$ is a nonalgebraic formula with minimal degree (≥ 0) , $\bar{a} \in |M|$ then $\theta(x, \bar{a})$ is weakly minimal.

PROOF. Define, by induction on $l(\eta)$, \bar{a}_{η} for $\eta \in {}^{\omega} > 2$, such that if \bar{a}_{η} is defined, $\eta \in {}^{n}2$, then, for $\nu = \eta \hat{a}_{\eta} > 1$, and $\nu = \eta \hat{a}_{\eta} > 1$, $\nu = \{\theta(x, \bar{a}) \land \varphi(x, \bar{a}_{\nu|l})^{\eta(l)} \mid l \leq n\}$ is a nonalgebraic type.

If, for $l < l(\eta)$, $\bar{a}_{\eta|l}$ is defined, and there is \bar{b} such that $p_{\eta} \cup \{\varphi(x, \bar{b})\}$ and $p_{\eta} \cup \{\neg \varphi(x, \bar{b})\}$ are nonalgebraic types, then we define $\bar{a}_{\eta} = \bar{b}$. Otherwise \bar{a}_{η} is not defined. If, only for finitely many η 's, \bar{a}_{η} is defined, then clearly our conclusion holds.

So assume \bar{a}_{η} is defined for infinitely many η 's. Clearly if \bar{a}_{η} is defined, $l \leq l(\eta)$, then $\bar{a}_{\eta|l}$ is defined. Hence by König's lemma, there is an $\eta \in {}^{\omega}2$ such that, for every $l < \omega$, $\bar{a}_{\eta|l}$ is defined. W.l.o.g. $\aleph_0 = |\{l \mid l < \omega, \eta(l) = 0\}|$ let l_k be the kth $l < \omega$ such that $\eta(l) = 0$, and $\bar{a}^n = \bar{a}_{\eta|l_k}$. So for every $n < \omega$, $\{\theta(x, \bar{a})\} \cup \{\varphi(x, \bar{a}^i) \mid i < n\} \cup \{\neg \varphi(x, \bar{a}^n)\}$ is a nonalgebraic type, and let c^n realize this type.

196

By Ramsey's theorem [Ra 1], we can assume that, for n < i, $\models \varphi[c^n, \bar{a}^i] \equiv \varphi[c^0, \bar{a}^1]$. As by definition $\models \varphi[c^n, \bar{a}^i]$ for n > i, by Lemma 2.5(B) and condition (1), clearly $i \neq n \Rightarrow \models \varphi[c^n, \bar{a}^i]$.

By Lemma 2.5(A) and compactness, there exists m' such that there are no sequences $\bar{a}_0, \ldots, \bar{a}_{m'-1}$ which make $\{\varphi(x, \bar{a}_k): k \in w\} \cup \{\neg \varphi(x, \bar{a}_k): k \notin w \text{ and } k < m'\}$ consistent for every choice of $w \subseteq \{0, 1, \ldots, m'-1\}$.

Another application of Ramsey's theorem shows that we can assume w.l.o.g. that, for every $w \subseteq \{0, 1, \ldots, m'-1\}$, either, for every $i_0 < \cdots < i_{m',m'-1} < \omega$,

(*)
$$\models (\exists x) \left[\bigwedge_{k \in w} \varphi(x, \, \tilde{a}^{ik}) \wedge \bigwedge_{k \notin w; k < m'} \neg \varphi(x, \, \tilde{a}^{ik}) \right]$$

or, for every $i_0 < \cdots < i_{m'-1} < \omega$,

If there were $w_1 \neq w_2$ such that $|w_1| = |w_2|$ and (*) holds for w_1 and fails for w_2 , then

$$(\exists x) \bigg[\bigwedge_{k \in w_1} \varphi(x, \, \bar{y}^{ik}) \wedge \bigwedge_{k \notin w_1; k < \, m'} \neg \, \varphi(x, \, \bar{y}^{ik}) \bigg]$$

would be connected and antisymmetric over $\{\bar{a}^0, \ldots, \bar{a}^m, \ldots\}$ since w_2 is obtained from w_1 by a permutation. That would contradict the stability of T by Lemma 2.5(C), so (*) must hold or fail depending only on |w|. By our choice of m', there is a w_0 s.t. (*) fails. So (**) holds for all w s.t. $|w| = |w_0|$. Then there is no b which

- (1) satisfies at least $|w_0|$ of the $\varphi(x, \bar{a}^n)$, and
- (2) fails to satisfy at least $m' |w_0|$ of the $\varphi(x, \bar{a}^n)$.

Define ψ by $\psi(x, \bar{b}^n) = \neg \varphi(x, \bar{a}^{n+m'}) \wedge \bigwedge_{k < m'} \varphi(x, \bar{a}^k) \wedge \theta(x, \bar{a})$, where \bar{b}^n is $\bar{a} \hat{a}^1 \hat{c} \cdots \hat{a}^{m'-1} \hat{a}^{n+m'}$. If an element satisfies m' of the $\psi(x, \bar{b}^n)$'s, then it satisfies m' of the $\varphi(x, \bar{a}^k)$ and m' of the $\neg \varphi(x, \bar{a}^k)$, which is impossible. So the formulas $\psi(x, \bar{b}^n)$ are almost contradictory, as in the definition of degree; but there are only ω many of them, rather than $|T|^+$ many. We now use condition (2).

Clearly each $\psi(x, \bar{b}^n)$ is realized infinitely many times. We claim that there is an m_{ψ} corresponding to ψ such that for every sequence $\bar{e} \in |M|$, if $|\psi(M, \bar{e})| \geq m_{\psi}$, then $|\psi(M, \bar{e})| \geq \aleph_0$.

If it were not the case, let M be a model of T of cardinality $> 2^{\aleph_0}$. We are assuming that for all $n \in \omega$ there is an \bar{e}^n such that $n < |\psi(M, \bar{e}^n)| < \aleph_0$.

Let D be an ultrafilter over ω and let $N = M^{\omega}/D$, and let $\bar{e} = \langle \dots, \bar{e}^n, \dots \rangle/D$. Clearly $|\psi(N, \bar{e})| = \pi |\psi(M, \bar{e}^n)|/D = 2^{\aleph_0} < ||N||$. But $\{\psi(x, \bar{e}) \land x \neq a : a \in \psi(N, \bar{e})\}$ is a type of cardinality < ||N|| involving only one kind of formula, hence it is realized, by condition (2). This is a contradiction.

REMARK. This was proved, in fact, in Keisler [K 1]. We shall now define by induction b^{α} , $\alpha < \|M\|$, such that $(\exists^{\geq m\psi}x)\psi(x, \bar{b}_{\alpha})$ and for every $\alpha_1 < \cdots < \alpha_{m'}$, we have $\neg (\exists x)[\bigwedge_{1 \leq k \leq m'} \psi(x, \bar{b}^{\alpha_k})]$.

For α , suppose that, for all $\beta < \alpha$, the above holds. It is clearly sufficient to

Sh:31

define \bar{b}^{α} so that it realizes the type

198

$$p = \{(\exists^{\geq m_{\psi}} x) \psi(x, \bar{y})\}$$

$$\cup \left\{ \neg (\exists x) \left[\bigwedge_{1 \leq k \leq m'-1} \psi(x, \bar{b}^{\beta_k}) \wedge \psi(x, \bar{y}) \right] : \beta_1 < \beta_2 < \dots < \alpha \right\}.$$

p is consistent: For any finite subset q of p, there is a \bar{b}^n which does not appear in q. Thus \bar{b}^n satisfies q. So every finite subset of p is consistent. By condition (2), p must be realized. So we can define \bar{b}^a , $\alpha < \|M\|$, as specified. Hence each $\psi(x, \bar{b}^a)$ is not algebraic.

Let $\beta = \text{Deg}[\theta(x, \bar{a})]$. We defined θ to have minimal degree among nonalgebraic formulas, so $\text{Deg}[\psi(\bar{x}, \bar{b}^a)] \geq \beta$, for all α . But look at the definition of degree—we have these $\psi(x, \bar{b}^a)$, $\alpha < \|M\|$, of degree $\geq \beta$, which are almost contradictory, so $\text{Deg}[\theta(\bar{x}, \bar{a})] \geq \beta + 1$. A contradiction.

Theorem 4.3. Suppose A partitions the weakly minimal formula $\theta(x, \bar{a})$. For every φ , $\psi_{\varphi}(x, \bar{a}^i)$, $i \leq n_{\varphi}$, $\bar{a}^i \in A$ is a φ -partition of $\theta(x, \bar{a})$. If $A \subseteq B$, and $|\{c \in B \mid \models \psi_{\varphi}[c, \bar{a}^i]\}| > |T|$ for every φ , i, and B satisfies

(*)
$$\models (\exists x)[\psi(x,\bar{b}) \land \theta(x,\bar{a})], \quad \bar{b} \in B,$$

implies there is $c \in B$, $\models \psi[c, \bar{b}] \land \theta[c, \bar{a}]$ then there is $M \supset B$, $\theta(M, \bar{a}) \subseteq B$.

PROOF. The set of $B' \supset B$ satisfying the condition (*) mentioned in the theorem such that no element of B' - B realizes $\theta(x, \bar{a})$ is closed under union of increasing sequences of sets ordered by \subset . So, by Zorn's lemma, there is a maximal one, B^* . We shall show that B^* is the universe of an elementary submodel of \overline{M} by means of the Tarski-Vaught test.

Suppose that $\models (\exists x)\varphi_1(x, \bar{b}_1)$ where $\bar{b}_1 \in B^*$. Pick $\varphi(x, \bar{b})$ so that $\bar{b} \in B^*$, $\models \varphi(x, \bar{b}) \to \varphi_1(x, \bar{b}_1)$ and $\text{Deg}[\varphi(x, \bar{b})]$ is minimal (≥ 0) . Let a realize $\varphi(x, \bar{b})$. If we can show that $B^* \cup \{a\}$ satisfies (*), then by the maximality of B^* , $a \in B^*$, so that the Tarski-Vaught test will be satisfied. (If $\models \theta[a, \bar{a}]$, by (*), we can choose $a \in B^*$, so we can assume $a \notin \theta(\bar{M}, \bar{a})$.)

So assume there is a formula $\rho_1(x, a, \bar{c}_1)$, $\bar{c}_1 \in B^*$, such that $\models (\exists x) \rho(x, a, \bar{c})$ (where $\rho(x, a, \bar{c}) = \rho_1(x, a, \bar{c}_1) \land \theta(x, \bar{a})$) but no element of B^* satisfies $\rho(x, a, \bar{c})$. Let $d \in |\overline{M}|$ satisfy it, and $\psi_{\varphi}(x, \bar{a}_{\varphi})$ be the ρ -piece of d. So $\rho(x, a, \bar{c}) \land \psi_{\varphi}(x, \bar{a}_{\varphi})$ is consistent and either $\rho(x, a, \bar{c}) \land \psi_{\varphi}(x, \bar{a}_{\varphi})$ is algebraic or $\neg \rho(x, a, \bar{c}) \land \psi_{\varphi}(x, \bar{a}_{\varphi})$ is algebraic. In the second case all but finitely many elements of $\psi_{\varphi}(\overline{M}, \bar{a}_{\varphi})$ are in $\rho(\overline{M}, a, \bar{c})$, and as $|\psi_{\varphi}(\overline{M}, \bar{a}_{\varphi}) \cap B| > |T|$, $\rho(x, a, \bar{c})$ will be realized by some element of $B \subset B^*$, a contradiction (w.l.o.g. $\models \rho(x, y, \bar{a}) \rightarrow \psi_{\varphi}$). Hence, for some $m < \omega, \models (\exists \leq^m x) \rho(x, a, \bar{c})$. Let

$$\chi(z,\bar{b},\bar{c}) = (\exists x)[\varphi(x,\bar{b}) \land (\exists^{\leq m} y)\rho(y,x,\bar{c}) \land \rho(z,x,\bar{c})].$$

Clearly $\models \chi(d, \bar{b}, \bar{c})$ (let x = a), $d \notin B^*$ (by definition of ρ). Let $\psi_{\chi}(x, \bar{a}_{\chi})$ be the χ -piece of d, and $\chi_1(x, \bar{a}^*) = \chi(x, \bar{b}, \bar{c}) \land \psi_{\chi}(x, \bar{a}_{\chi})$, so $\bar{a}^* \in B^*$ and $\models \chi_1(d, \bar{a}^*)$.

Now $\chi_1(x, \bar{a}^*)$ is not algebraic, for define by induction distinct $d_n \in B^*$: d satisfies $\chi_1(x, \bar{a}^*) \wedge \bigwedge_{i < n} x \neq d_i \wedge \theta(x, \bar{a})$, so some $d_n \in B^*$ satisfies it (remember

 $d \notin B^*$ and (*)). As $\psi_{\gamma}(x, \bar{a}_{\gamma})$ is χ -minimal it follows $\neg \chi(x, \bar{b}, \bar{c}) \land \psi_{\gamma}(x, \bar{a}_{\gamma})$ is algebraic. So all but finitely many of the elements of $\psi_*(\bar{M}, \bar{a}_*) \cap B^*$ realize $\chi_1(x,\bar{a}^*)$. So by the hypothesis on B, $\chi(z,\bar{b},\bar{c})$ is realized by $\geq |T|^+$ elements of $B \subseteq B^*$, say $\{b_k \mid k < |T|^+\}$. Now

$$\{\varphi(x,\hat{b}) \land (\mathbf{3}^{\leq m}y)\rho(y,x,\hat{c}) \land \rho(b_k,x,\hat{c}) \mid k < |T|^+\}$$

is a set of consistent formulas (as b_k satisfies $\chi(z, \bar{b}, \bar{c})$) with parameters from B^* which is almost contradictory, because any m + 1 of the formulas says that only m y's satisfy $\rho(y, x, \bar{c})$, but m+1 different b_k 's satisfy it. By definition this implies

 $\operatorname{Deg}[\varphi(x,\bar{b})] > \inf\{\operatorname{Deg}[\varphi(x,\bar{b}) \land (\exists^{\leq m} y) \rho(y,x,\bar{c}) \land \rho(b_k,x,\bar{c})] \mid k < |T|^+\}.$

But this violates the minimality of $Deg[\varphi(x, b)]$. A contradiction.

THEOREM 4.4. Let M be a model of T, $A \subseteq |M|$, $|A| \leq |T|$, A partition the weakly minimal $\theta(x, \bar{a})$. Suppose ||M|| > |T| and every nonalgebraic $p \in S(A)$ containing $\theta(x, \bar{a})$ is realized ||M|| times in M. Then M is saturated.

PROOF. Suppose that M is not saturated, and let p be a type such that |p| < ||M||and M omits p. Choose $\varphi(x, b)$ with $b \in |M|$ such that

- (1) $p \cup \{\varphi(x, \bar{b})\}$ is consistent, and
- (2) among φ' satisfying (1), $\text{Deg}(\varphi(x, \bar{b}))$ is minimal.

Let $p' = p \cup \{\varphi(x, \bar{b})\}\$ and let a realize $p', a \notin |M|$. If $|M| \cup \{a\}$ satisfies the condition (*) of Theorem 4.3 (i.e., that for every φ and every $\bar{b} \in |M|$, if $\models (\exists x)(\theta(x, \bar{a}) \land \theta(x, \bar{a}))$ $\varphi(x, a, b)$ then $\theta(x, \bar{a}) \land \varphi(x, a, \bar{b})$ is satisfied in $|M| \cup \{a\}$, then by Theorem 4.3 there is a model N such that $|M| \cup \{a\} \subset |N|$ and for all $c \in |N|$, if $\models \theta[c, \bar{a}]$ then $c \in |M| \cup \{a\}$. Since $M \prec N$ and $\theta(x, \bar{a})$ is satisfied by infinitely many elements of |M|, this is possible only if $\models \theta[a, \bar{a}]$, by condition (2).

Then either $\models \theta[a, \bar{a}]$, or there exists a formula $\bar{\psi}(y, a, \bar{c}_0)$ such that

$$\models (\exists y) [\theta(y, \bar{a}) \land \bar{\psi}(y, a, \bar{c}_0)]$$

and $\bar{c}_0 \in |M|$, but no element of M satisfies it. If $\models \neg \theta[a, \bar{a}]$, let $\psi(y, a, \bar{c})$ be this $(\theta(y,\bar{a}) \land \bar{\psi}(y,a,\bar{c}_0))$, with $\bar{c} = \bar{c}_0 \hat{a}$. If $\models \theta[a,\bar{a}]$, let $\psi(y,a,\bar{c})$ be $(\theta(y,\bar{a}) \land y = a)$. In either case, $\psi(y, a, \bar{c})$ is satisfied by some $d \in \overline{M}$ but by nothing in M.

Let B be the union of A with the set of parameters from M occurring in p and with the range of \bar{c} .

Clearly $B \subset |M|$ and |B| < |M|. Let q be the type which d realizes over B. Now q cannot be algebraic, for if it were, everything satisfying it would be in M, since $B \subset |M|$, but $d \notin |M|$.

q is a complete type over B, so the restriction $q \mid A$ of q to only formulas with parameters in A is a complete type over A.

Now, for every formula $\chi(x,\bar{e})$ with $\bar{e} \in \bar{M}$, either $(q \mid A) \cup \{\chi(x,\bar{e})\}$ is algebraic or $(q \mid A) \cup \{ \neg \chi(x, \bar{e}) \}$ is algebraic, by 4.1.

For every $\chi(x, \bar{e})$ in q, $(q \mid A) \cup \{\chi(x, \bar{e})\}$ is a type over B which is satisfied by $d \notin |M|$, and hence is not algebraic. Then $(q \mid A) \cup \{ \neg \chi(x, \bar{e}) \}$ must be algebraic. Therefore each formula in q is realized by all but at most finitely many of the

Sh:31

elements of M which realize $q \mid A$, so q is realized by all but at most $|q| \leq |B|$ of the elements of M realizing $q \mid A$.

Since $(q \mid A) \in S(A)$ and $\theta(x, \bar{a}) \in q \mid A, q \mid A$ is realized ||M|| times in M. So q is realized ||M|| - |B| = ||M|| times in M. ||M|| > |T|, so let d_k , $k < |T|^+$, be distinct elements of M satisfying q.

If $(q \mid A) \cup \{ \neg \psi(y, a, \bar{c}) \}$ were algebraic, then almost every element realizing $q \mid A$ in M would realize $\psi(y, a, \bar{c})$, but nothing in M satisfies $\psi(y, a, \bar{c})$. So as before $(q \mid A) \cup \{ \psi(y, a, \bar{c}) \}$ must be algebraic.

Then for some finite conjunction $\rho(y, a^*)$ of formulas from $q \mid A, \psi'(y, a, \bar{c}') = \psi(y, a, \bar{c}) \land \rho(y, a^*)$ is algebraic, so $\models (\exists^{\leq m} y)(\psi'(y, a, \bar{c}'))$ for some $m \in \omega$.

Then $p'' = p' \cup \{(\exists^{\leq m}y)\psi'(y, x, \bar{c}') \land \psi'(d, x, \bar{c}')\}$ is consistent, since it is satisfied by a. Each d_k realizes exactly the same type over B that d does, so for $k < |T|^+$, $p^k = p' \cup \{(\exists^{\leq m}y)\psi'(y, x, \bar{c}')\} \cup \{\psi'(d_k, x, \bar{c}')\}$ is consistent. $p^k = p \cup \{\varphi(x, \bar{b}) \land (\exists^{\leq m}y)\psi'(y, x, \bar{c}') \land \psi'(d_k, x, \bar{c}')\}$. Since the d_k are distinct, no more than m of the formulas $\varphi(x, \bar{b}) \land (\exists^{\leq m}y)\psi'(y, x, \bar{c}') \land \psi'(d_k, x, \bar{c}'), k < |T|^+$, can be satisfied at one time. Then by the definition of degree,

 $\operatorname{Deg}[\varphi(x,\bar{b})] > \operatorname{Deg}[\varphi(x,\bar{b}) \wedge (\exists^{\leq m} y) \psi'(y,x,\bar{c}') \wedge \psi'(d_k,x,\bar{c}')]$ for some k, contradicting our choice of $\varphi(x,\bar{b})$.

THEOREM 4.5. For every $\lambda > |T|$, T has a model of power λ which is saturated.

PROOF. Let M be any model of T of power λ . Let $\theta(x, \bar{a})$ be weakly minimal, and A partition $\theta(x, \bar{a})$; |A| = |T|. By condition (1), |S(A)| = |T|. Then the complete diagram of M together with $\{\varphi(c_i^p): i < \lambda \text{ and } \varphi(x) \in p \text{ for some } p \in S(A) \text{ such that } p \text{ is nonalgebraic}\} \cup \{c_i^p \neq c_j^p: i < j < \lambda\} \text{ is a consistent set of sentences of power } \lambda$, so it has a model N of power λ , by the downward Lowenheim-Skolem theorem.

So N > M and $||N|| = \lambda$ and each nonalgebraic $p \in S(A)$ is realized by λ elements of N.

 $\theta(x, \bar{a})$ and A retain in N the properties we required of them, since those properties are expressible in first-order sentences.

Then N is saturated, by Theorem 4.4.

THEOREM 4.6. Let M be a model of T, with $|T| \le \lambda < ||M||$. Let $A \subset |M|$ partition $\theta(x, \bar{a})$, |A| = |T|, $\theta(x, \bar{a})$ weakly minimal, and let N > M. Let $B = |M| \cup \{c \in |N| : \models \theta[c, \bar{a}], \text{ and the type that c realizes over } A \text{ is realized } > \lambda \text{ times in } M\}$.

Then B satisfies the conditions of Theorem 4.3.

LEMMA 4.7. Suppose b realizes some algebraic type $p \in S(A)$. Then there is $\bar{a} \in A$ and a formula φ such that

- (1) $\models \varphi[b, \bar{a}]$, and
- (2) if $\varphi[c, \bar{a}]$, then b and c realize the same type over A.

PROOF OF LEMMA. If p is algebraic, then by compactness, some finite subtype of p is algebraic; its conjunction is an element of p, since p is complete. So for some $\psi(x, \bar{a}) \in p$, $\exists m x \in p$, $\psi(x, \bar{a})$.

Let b_1, \ldots, b_m be the elements realizing $\psi(x, \bar{a})$, with $b = b_1$. For each k, $1 \le k \le m$, if b_1 and b_k do not realize the same type over A, let $\psi_k(x, \bar{a}^k)$ be an element of p such that $\vdash \neg \psi_k[b_k, \bar{a}^k]$, if there is one. Otherwise let $\psi_k(x, \bar{a}^k)$ be x = x. Then $(\bigwedge_{1 \le k \le m} \psi_k(x, \bar{a}^k) \wedge \psi(x, \bar{a}))$ has properties (1) and (2).

PROOF OF THEOREM 4.6. If this set B did not satisfy the hypothesis of Theorem 4.3, then there would exist a φ' and $\bar{b}' \in |M|$ and $\bar{c} \in (|N| - |M|) \cap B$ such that $\in (\exists x)(\varphi'(x, \bar{b}', \bar{c}) \land \theta(x, \bar{a}))$, but there is no such x in B.

Suppose d realizes $\varphi'(x, \bar{b}', \bar{c}) \wedge \theta(x, \bar{a})$. Then since $\models \theta[d, \bar{a}]$, let $\psi_{\varphi'}(x, \bar{a})$ be the φ' -piece of d.

Let $\varphi(x, \bar{b}, \bar{c}) = \varphi'(x, \bar{b}', \bar{c}) \wedge \theta(x, \bar{a}) \wedge \psi_{\varphi'}(x, \bar{a}')$.

Sh:31

If $\varphi(x, \bar{b}, \bar{c})$ were not algebraic, then, by the definition of $\psi_{\varphi'}, \psi_{\varphi'}(x, \bar{a}) \land \neg \varphi'(x, \bar{b}', \bar{c})$ would be algebraic, so that all but finitely many of the elements satisfying $\psi_{\varphi'}(x, \bar{a})$ would satisfy $\varphi'(x, \bar{b}', \bar{c})$. Since $\psi_{\varphi'}(x, \bar{a})$ has parameters from M and is satisfied by $d \notin M$, it is satisfied by infinitely many elements of M, so we would have $\varphi'(x, \bar{b}', \bar{c})$ satisfied by elements of M, contrary to our choice of φ' . Hence $\varphi(x, \bar{b}, \bar{c})$ is algebraic.

Now let $\bar{c} = \langle c_0, \ldots, c_n \rangle$. We will define, by induction on $k \leq n$, a sequence $\bar{c}' \in |M|$ such that, for each $k \leq n$, $\langle c_0, \ldots, c_k \rangle$ and $\langle c'_0, \ldots, c'_k \rangle$ realize the same (k+1)-type over the set $A^* = A \cup \text{Range of } \bar{b} \cup \{\text{all elements of } M \text{ realizing } p$, for each p, such that $p \in S(A)$ and $\theta(x, \bar{a}) \in p$ and p is realized $\leq \lambda$ times in M. Suppose that we have c'_0, \ldots, c'_{k-1} as specified. Here is how we get c'_k .

Case 1. c_k realizes an algebraic type over $A^* \cup \{c_0, \ldots, c_{k-1}\}$. By Lemma 4.7, there is a $\rho(x, c_0, \ldots, c_{k-1}, \bar{e})$ with $\bar{e} \in A^*$ such that $\models \rho[c_k, c_0, \ldots, c_{k-1}, \bar{e}]$ and when $\models \rho[c, c_0, \ldots, c_{k-1}, \bar{e}]$, then c and c_k realize the same type over $A^* \cup \{c_0, \ldots, c_{k-1}\}$.

By the induction hypothesis, $\models (\exists x) \rho(x, c'_0, \ldots, c'_{k-1}, \bar{e})$. Since all parameters are from M, we can find some $c'_k \in |M|$ such that $\models \rho[c'_k, c'_0, \ldots, c'_{k-1}, \bar{e}]$. So $\langle c_0, \ldots, c_k \rangle$ and $\langle c'_0, \ldots, c'_k \rangle$ realize the same (k+1)-type over A^* .

Case 2. c_k is not algebraic over $A^* \cup \{c_0, \ldots, c_{k-1}\}$. Let p_k be the type c_k realizes over A. Since $c_k \in B - |M|$, p_k is realized $> \lambda$ times in M. Let ρ be any formula such that $\models \rho[c_k, c_0, \ldots, c_{k-1}, \bar{e}]$, with $\bar{e} \in A^*$.

Now since p_k is a complete type over A, and $\models \theta[c_k, \bar{a}]$, there is some $\bar{a}^* \in A$ such that $\psi_\rho(x, \bar{a}^*) \in p_k$, so either $p_k \cup \{\rho(x, c_0, \ldots, c_{k-1}, \bar{e})\}$ is algebraic or $p_k \cup \{\neg \rho(x, c_0, \ldots, c_{k-1}, \bar{e})\}$ is algebraic. Since $p_k \cup \{\rho(x, c_0, \ldots, c_{k-1}, \bar{e})\}$ is a subtype of the type of c_k over $A^* \cup \{c_0, \ldots, c_{k-1}\}$, it is not algebraic, so $p_k \cup \{\neg \rho(x, c_0, \ldots, c_{k-1}, \bar{e})\}$ is. Then $p_k \cup \{\neg \rho(x, c_0', \ldots, c_{k-1}', \bar{e})\}$ is algebraic. So all but finitely many of the elements realizing p_k realize $\rho(x, c_0', \ldots, c_{k-1}', \bar{e})$. There are at most λ such formulas $\rho(x, c_0, \ldots, c_{k-1}, \bar{e})$ to consider, since $|A^*| \leq |A| + |S(A)| \cdot \lambda = \lambda$ and $|T| \leq \lambda$, and there are more than λ elements satisfying p_k , so there must be elements in M satisfying p_k and such that for all formulas such that $\models \rho[c_k, c_0, \ldots, c_{k-1}, \bar{e}], \models \rho[c_k', c_0', \ldots, c_{k-1}', \bar{e}]$, as required.

Now since d satisfies an algebraic formula over $A^* \cup \{c_0, \ldots, c_n\}$, we can, by Case 1, find $d' \in M$ such that $\langle c_0, \ldots, c_n, d \rangle$ and $\langle c'_0, \ldots, c'_n, d' \rangle$ satisfy the same type over A^* . If d' were in A^* , then d = d', but $d \notin M$. So $d' \notin A^*$. Then, by

Sh:31

definition of A^* , the type that d', and hence d, realizes over A is realized in M more than λ times. So $\{c \in |N| : c \text{ realizes the same type as } d\} \subseteq B$. d is algebraic over $B \subseteq |N|$, so $d \in |N|$. Then $d \in B$. But we assumed that $d \notin B$ to begin with. Then B must satisfy the conditions of Theorem 4.3 after all.

THEOREM 4.8. If T is categorical in power λ for some $\lambda > |T|$, then it is categorical in every power $\mu > |T|$.

PROOF. By Theorem 4.5, T has a saturated model of power μ for each $\mu > |T|$. Since any two saturated models of T of the same power are isomorphic, it suffices to show T has no nonsaturated models of power > |T|.

Suppose M is a nonsaturated model of T and ||M|| > |T|. Let $\theta(x, \bar{a})$ and A be as before. By Theorem 4.4, since M is not saturated, there is some $p_0 \in S(A)$ such that $\theta(x, \bar{a}) \in p_0$ and p_0 is realized $\leq \kappa$ times in M, with $\aleph_0 \leq \kappa < ||M||$. Pick any $\lambda_1 > ||M||$ and let N > M be a saturated model of T of power λ_1 .

Let $B = |M| \cup \{c \in |N| : \theta[c, \bar{a}] \text{ and the type of } c \text{ over } A \text{ is realized} > \kappa \text{ times in } M\}.$

 $|B| = \lambda_1$, for if $p \in S(A)$ and $\theta(x, \bar{a}) \in p$ and p is realized $> \kappa$ times in M, then p is realized λ_1 times in N, since N is saturated. There exist $p \in S(A)$ with $\theta(x, \bar{a}) \in p$ that are realized more than κ times, for otherwise we would have

$$|\theta(M, \bar{a})| \leq \sum_{p \in S(A), \theta(x, \bar{a}) \in p} |\{c \in M : c \text{ realizes } p\}| \leq \kappa \cdot |S(A)| < ||M||;$$

by condition (2), applied to subsets of $\{(\theta(x, \bar{a}) \land x \neq c) : c \in |M|\}$, we have $|\theta(M, \bar{a})| = ||M||$. So $|B| = \lambda_1$.

By Theorem 4.6, B satisfies the hypotheses of Theorem 4.3, so there is a model M' of T such that $B \subseteq |M'|$ and $\theta(M', \bar{a}) \subseteq B$. So if $c \in M'$ realizes p_0 , then $\models \theta[c, \bar{a}]$, hence $c \in M$ (since p_0 is realized $\leq \kappa$ times by assumption). Also, $||M'|| \geq |B| = \lambda_1$.

Since for fixed κ this holds for all $\lambda_1 \ge ||M||$, by the method of Morley [Mo 2], T has a model N' of power λ such that p_0 is realized $\le |T|$ times in N'. But T has a saturated model of power λ and T is categorical in λ . A contradiction. (We do not really need to use something as strong as Morley's results here.)

REFERENCES

[B 1] J. T. Baldwin and A. H. Lachlan, On strongly minimal sets, J. Symbolic Logic 36 (1971), 79-96.

[Ba 2] J. T. Baldwin, Countable theories categorical in uncountable power, Ph.D. Thesis, Simon Fraser University, 1970.

[Ba 3] ——, α_T is finite for \aleph_1 -categorical T, Notices Amer. Math. Soc. 17 (1970), 967. Abstract #70T-E80.

[Be 1] J. L. Bell and A. B. Slomson, Models and ultraproducts: An introduction, North-Holland, Amsterdam, 1969; MR 42 #4381.

[C 1] C. C. Chang and H. J. Keisler, Theory of models, North-Holland, Amsterdam, 1972.

[E 1] A. Ehrenfeucht, On theories categorical in power, Fund. Math. 44 (1957), 241-248. MR 20 #3089.

- [E 2] ——, Theories having at least continuum many nonisomorphic models in each infinite power, Notices Amer. Math. Soc. 5 (1958), 680. Abstract #550-23.
- [E 3] A. Ehrenfeucht and A. Mostowski, Models of axiomatic theories admitting automorphisms, Fund. Math. 43 (1956), 50-68. MR 18, 863.
- [H 1] V. Harnik and J. P. Ressayre, *Prime extensions and categoricity in power*, Israel J. Math. 10 (1971), 172–185.
- [H 2] V. Harnik, Stable theories and related concepts, Ph.D. Thesis, Hebrew University, Jerusalem, 1971.
- [K 1] H. J. Keisler, Ultraproducts which are not saturated, J. Symbolic Logic 32 (1967), 23-46. MR 36 #1312.
- [L 1] J. Łoś, On the categoricity in power of elementary deductive systems and some related problems, Colloq. Math. 3 (1954), 58-62. MR 15, 845.
- [Ma 1] W. D. Marsh, On ω_1 -categorical but not ω -categorical theories, Ph.D. Thesis, Dartmouth College, Hanover, New Hampshire, 1966.
- [Mo 1] M. D. Morley, Categoricity in power, Trans. Amer. Math. Soc. 114 (1965), 514-538. MR 31 #58.
- [Mo 2] ———, Omitting classes of elements, Theory of Models (Proc. 1963 Internat. Sympos., Berkeley), North-Holland, Amsterdam, 1965, pp. 265–273. MR 34 #1189.
- [Mo 3] M. D. Morley and R. L. Vaught, Homogeneous universal models, Math. Scand. 11 (1962), 37-57. MR 27 #37.
- [Ra 1] F. D. Ramsey, On a problem of formal logic, Proc. London Math. Soc. 30 (1929), 338-384.
- [Re 1] J, P. Ressayre, Sur les théories du premier ordre catégoriques en un cardinal, Trans. Amer. Math. Soc. 142 (1969), 481-505. MR 40 #32.
- [Ro 1] F. Rowbottom, The Łoś conjecture for uncountable theories, Notices Amer. Math. Soc. 11 (1964), 248-249. Abstract #64T-197.
- [S 1] S. Shelah, Categoricity of classes of models, Ph.D. Thesis, Hebrew University, Jerusalem, 969
- [S 2] _____, Stable theories, Israel J. Math. 7 (1969), 187-202. MR 40 #7102.
- [S 3] ——, Finite diagrams stable in power, Ann. Math. Logic 2 (1970), 69-118.
- [S 4] ——, The number of non-isomorphic models of an unstable first-order theory, Israel J. Math. 9 (1971), 473-487.
- [S 5] ———, A combinatorial problem; stability and order for models and theories in infinitary languages, Pacific J. Math. 4 (1972), 247–261.
- [S 6] ——, Proof of Łoś' conjecture for uncountable theories, Lecture Notes by M. Brown, University of California, Los Angeles, Calif., 1970.
- [S 7] ——, Lecture notes, written by R. Gail, University of California, Los Angeles, Calif., 1971.
- [S 8] ———, Categoricity in power, Notices Amer. Math. Soc. 15 (1968), 930-931. Abstract #68T-E17.
- [S 9] ——, Stability, the f.c.p. and super-stability model theoretic properties of formulas in first-order theory, Ann. Math. Logic 3 (1971), 271-362.
- [S 10] ——, Uniqueness and characterization of prime models over sets for totally transcendental first-order theories, J. Symbolic Logic 37 (1972), 107–113.
- [S 11] ———, Saturation of ultraproducts and Keisler's order, Ann. Math. Logic 4(1972),75-114.
- [V 1] R. L. Vaught, A Löwenheim-Skolem theorem for cardinals far apart, Theory of Models (Proc. 1963 Internat. Sympos., Berkeley), North-Holland, Amsterdam, 1965, pp. 390-401. MR 35 #1460.

HEBREW UNIVERSITY, JERUSALEM, ISRAEL