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Let R be a symmetric binary relation on the reals. R is called thick if:
there is a perfect set P of reals such that (a,bEP and a#b) = aRb. R is called
thin if it is not thick. This paper is mainly concerned with the problem of find-
ing sufficient conditions for thickness. A particular instance of this problem is
when R is an equivalence relation. This has been quite extensively studied (see
[Si], [B], [H-S], [St]). The most notable results are:

(Silver [Sil). If E is a thin E: equivalence relation, then E has at most
No-many equivalence classes.

(Burgess [Bul). If € is a thin 2} equivalence relation, then E has at most
N1—many equivalence classes.

In this paper we prove a general theorem which subsumes both of the above,
and which in addition has the following corollaries:

If E is an absolutely é; thin equivalence relation, then E has at most 8]-
many equivalence classes.

If E is a thin E; equivalence relation (and if (R])L[a] is countable for all
reals a), then E has at most N]-many equivalence classes.

The general method actually gives the appropriate generalization of the
above to the case where E is co-k-Souslin (see Theorem 1). Also the method ap-
plies to other relations beside equivalence relations. As an example we prove:

If R is a E: linear ordering, then there is no length N] ascending chain
through R.

The above results are due to the second author. Upon seeing these results,
the first author noticed that the method from [ H-S] can be adopted to give a
proof without using the axiom of choice. Since such a choiceless proof is useful

in the context of the axiom of determinacy, it is also presented here.

On the negative side:
for k a cardinal, let BK be the assertion: if a (say) Borel relation R contains

YXY, where Y is a set of reals of cardinality Na then R contains Px P for some
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perfect set P. We produce a model of Z F € in which B(N ) fails, for all coun-
o

table ordinals a.

Defs (a) T is a tree on the set Y if: TEY<w, and (n€T, TCn) = 1€T.

(b) For T a tree on Y, [T] = {f; f:w > Y, vVn(f[neT)}.

(c) For T a tree on kxX, let p[T]l = {g; g:w + X, and for some h:w + K,
(h,g> € [T]}. (Here we identify (h,g) with the function f:w + kK xX where
f(n) =<h(n),gln) ).

(d) A binary relation R on «® is k-Souslin (via T) if: T is a tree on
K X (wz) and R = p[T]; (R is co-k-Souslin if: R is k-Souslin (where R = comple-
ment of R)).

Let R be «-Souslin via T, As we vary through models of ZF which contain T,
p[T] will always define a binary relation on ww, and we will ambiguously con-
tinue to use R to denote these relations., Notice that R is absolute, i.e.: a R

b holds if it holds in La,b,T]).

Def For R k-Sousltin via T, we will call R strongly thick if: for some perfect
set Pgww and for some countable tCT, P[Z] Cpltl, (where PIZ] = {{a,b); a,bEP,
a#bl).

Notice that strong thickness is an absclute property (of T).

Def For V a model of ZF, the next world after V is: V[c] where c is a Cohen real
over V. (Notice, for b in V, the theory of B in (V[c],€ ) does not depend on the

choice of ¢).

Theorem 1 Let E be a co-x-Souslin relation, via T. Assume that E is an equiva-
lence relation, and assume that £ is not strongly thick. Also assume: (*) E is an
equivalence relation in the next world after L(T}.

Then E has at most K-many equivalence classes. (K is, of course, an inf,

cardinal).

Proof Suppose(ai>i<i<1L is a sequence of reals such that i<j = a, laJ.. Let n
be a transitive model of a rich fragment of set theory s.t. T’<ai)i<K+ are in n,
Let N be a countable elementary substructure of n {(with T, (a) still in N}. tet
P = {¢{x); & is a formula (with parameters from N), and in N: for unboundedly
many p<et @(ai) holds}. P is naturally ordered by inclusion. Alsc P is a consis-
tency property such that: if GCP is generic, then G gives rise to a real b for
which: there is an elementary extension /ﬁ of N s.t. beﬁ and for a/l\l $in G

/b\ll= ®(b). In particular, ﬁ|= "h=a,", for some i in f\l\ s.t. i<(K+)N, i>j for all
JjEN, j<(K+)N. Also, (K)N = (K)Q ;nd so (T)ﬂ = (T)N C T. Thus if ﬁ = Mg d"

A
(for ¢,d reals in N}, then c¥d is actually true.

Claim |If b,c are Px P generic reals, then bEc.
Notice: using the claim, the method of [ | shows that E is strongly thick.
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[ Proof of Claim:
Suppose not. Let (9,y) force that bEc. Let § be the term defined over N by:
]
is always defined.
Subclaim: &§(b), ¢ are PxP-generic, [prf: For 8(x) in P, let F(8) be 68(5  (y)).

F is an order preserving bijection between P and a dense subset of P, and F

§(a,) = IStaJ.(j>i and <I>(aJ.) holds). Since ¢ has unboundedly many solutions, &

1

maps the filter generated by b to the filter generated by &(b). (1]

Thus: by choice of ¢, and of 8, bEc, 8(b) Ec. But by choice of 8;b, &8(b)
are in the same ﬁ, and in N: §(b} =a, for some j>i where b=a.. Thus
ﬁt: b E S(b)". So bZ3(b). So E is not transitive. E fails to be transitive in a
generic extension of L[T,N] given by PxP. Thus E is not an equivalence relation
in the next world after L[T,N].

So it remains to show that N could be chosen inside L[T]. The only proper-
ties of N used so far are:

(i) N is a countable (possibly non-standard) model of a fragment of set

theory;
(ii) (N, €&, T’(ai)i<»<+> has a certain simply describable first order proper~
ties;
Giny MV e

But clearly there is a tree U (on Txw) such that paths through U correspond to
(enumerations of) such structures N, Also U is in L[T]. But U does have a path
(by making T countable, n will correspond to such a path). Thus U has a path in
LTl

This completes the proof of the claim 0], and hence the proof of Theorem 1,
aj.

Notice that (*) from Theorem 1 is a consequence of: (a) There exists a real
¢ Cohen generic over L[{T]; and (a) is a consequence of either: (b) (Zw)L[T] is
countable; or (c) MA+ [2w|L[T] < [2%).

Corollaries 1. (Silver) If E is a H: thin equivalence relation, then E has < w-
many equivalence classes.
2. If E is an absolutely é;, thin, equivalence relation, then E has

< N,-many equivalence classes.

l 3. If E is a thin, H; equivalence relation, (and if (R])L is coun-
table), then E has <N]-many equivalence classes.

[ Proof:
Int. E is a co-w-Souslin relation. In 2,3 E is a co-N]-Souslin relation (via a
tree T in L). In 1,2 E is absolutely an equivalence relation (as long as ¥, is
not collapsed); thus (*) from theorem 1 holds. In 3, by assumption there is a
real ¢ Cohen generic over L=L[T], and so (*) holds. Thus 1-3 follow from theorem

1. 0]
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Def The field of a binary relation R is the set of reals a s.t.: aRbor bRa
holds for some real b. R is called a quasi-linear order if: the relation aEb =
(aRb and bRa) is an equivalence relation on the field of R, and R induces a
linear ordering of the E-equivalence classes (i.e.: (bRa and bRc) = aRc, and:
(aRb and cRb) = aRc; and: aRb = bRa).

Theorem 2 If R is a 2: quasi-linear order, then there is no length N] R-increas-
ing sequence of reals.

[ Proof:

Notice: the fact that R is a quasi-linear ordering is an absolute property,
hence it will remain true in generic extensions.Since R is 2}, R is w-Souslin,
say via the tree T. Assume <ai)i<:N] is a sequence of reals s.t. i<j = aiR aj.

Let n,N,P be as in the proof of Theorem 1. Let b,c be Px P-generic reals
As observed above, R is still a quasi-linear order in L{T,b,c]. We will now ob-
tain a contradiction,

Case 1: bRc and cRb.

Let (®,9) force this.

Let § be the term defined over N by 6(ai) = lStaj (j>1i and @(aj)). So, as in
the proof of theorem 1, we have bRc, cRd&(b); and bRS(b); thus R is not a quasi~
ordering.

Case 2: bRc or cRb.

By symmetry, assume bRc. Let (4,)) force bRc. Let § be the term defined
over N by: G(ai) =18t éj(j3>i and ¢(aj)). Let ¢',c be Px P-generic reals s.t
the generic filters on P, which correspond to c',c, both contain ¥(x).

Let b'=68(c'), b=&(c). Thus b',c and b,c' are both Px P-generic, and both
correspond to filters on Px P which contain ®,p. Thus b'Rc, bRc¢' both hold. By
choice of &, c'Rb’ and cRb both hold. Thus ¢'Rb'RcRbRc¢' holds. So ¢'Rc!
holds, and so R is not a quasi-order. (.

Theorem 2 can be strengthened in a way similar to theorem 1: If R is a quasi-
order, and if R is k-Souslin via T, and if R is a quasi-order in the next world
after L[T], then there is no K+—ascending R-chain.

Theorem 2 answers a question raised by H. Friedman. (Friedman, previous to
our results, showed that a Borel quasi-order has cofinality w.)

A slight defect in the proof of Theorem 1 is that it used the axiom of
choice. For those readers who favor some other axiom, a choiceless proof of The-
orem 1 will now be given:

Let E be co-x-Souslin via T. Assume E is a thin equivalence relation.

Consider the usual proof system for Am,w (see Ba). We will call a subset of
L w syntactically consistent if there is no proof of a contradiction from it.
Notice, consistency implies syntactical consistency, and the converse holds for

countable fragments of £ .
oo,(,u
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Consider the propositional version of Loo’w {which we call Lw’o). Lw,(] will
have w-many atomic propositional sentences - by viewing the n~ atomic sentence
as asserting ''n€ x', sentences of Lm’0 can be viewed as formulas about a real x.

Let A be the first admissible set containing T as a member. For U{x) a 21
over A subset of L Or‘lA, consider the Loo’w theory: U(x) U U(y) U {xEy} (here
xfy is the sentence: (f:w+k (f,x,y> € [T])), (where f is a new function sym-
bol}. If this theory is syntactically inconsistent, then there is a sentence
9(x) in LW’OHA s.t. U(x) 6(x), and s.t. {6(x) ,6(y) ,xEy} is syntactically
inconsistent (by Barwise compactness). By Barwise completeness, the set $={0(x);
8{(x) is in Lw’o, and {8(x) ,0(y) ,xEy} is syntactically inconsistent} is 21 over
A.

Let W(x) = {18(x); BES}. So W is 21 over A. If U(x) 2W(x) and if U is E]
over A, then, by construction of W, U(x) is syntactically inconsistent if
U(x) U U{y) VU {xEyl} is syntactically inconsistent.

If W is syntactically inconsistent, then: for each real a, there is a 6€S,
s.t. 0(a) holds. But by definition of 5, for 8 in S(6(a) and 6(b)) = aEb. Since
SCA, S is well-orderable of length < k. This induces a <k-length well-ordering
of the E-equivalence classes.

If W is syntactically consistent, then: by Skolem-Ldwenheim, we can find in
LIT] a countable tC T such that: for A = first admissible containing t, and for
E,§,W defined as above, with T,A replaced by t,A, we have that Wis syntactically
consistent.

Let P = {U(x); UELQO’0
ordered by inclusion. If G is a generic filter on P, then G gives rise to a real

b s.t.: for all U inG, bl= U

NA is 24 over A, and WEU, and U is consistent}. P is

Let b,c be Px P-generic reals.

Clain bEc.
Let ﬁ— {U X,Y) Cle,y ﬁA is E over A, and U is a consistent theory about
the pair of reals x,y}. If ’é is P—generlc then G gives rise to a pair of reals
(b,b') s.t. for all U in &, (b, b')!-
Subclaim: If W(x) UW(y) is in G, then both of b,b' are P-generic.
[Proof: Let U, (oy) be in P, U (y) 2 Wed VTG . Let 4 () = Bl €L,

N A; U]( y) F 8(x)}. So Yy (x) D W(x) and U, is consistent. Thus U is in P. Let

D be a dense subset of P. Plck U22>U1 50 that UZED By chome of U1, (U (x) U
(x,y)) = UZ( x,y) is consistent, (and soﬁ is in P), and U DU] Clearly
H (b= UZ)' Oj .

Now suppose bEc. Let U(x) in P force over ¢ that bEc. Let U(x,y) = U(x) U

A
U
A
Uy
U(y U {xFyl}. Since UDW, and since U is consistent, U is consistent. Thus U is

in P Let {b,b'> be P generic over ¢, and pick {(b,b') so that (b, b'y#U. By the
sublemma b,c and b',c are both Px P-generic. Thus by choice of U, bEc and b'Ec.
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But by choice of U, bEb', and so bEb'. Thus E is not an equivalence relation
A

in L[T,b,b',c]. But {b,b',c) is PxP-generic over L[T], and ?X P is countable

in L[T]. [m) e

Just as in the original proof of Theorem 1, the claim yields the Theorem.

al.
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