LOGIC COLLOQUIUM '80 D. van Dalen, D. Lascar, J. Smiley (eds.) © North-Holland Publishing Company, 1982

COUNTING EQUIVALENCE CLASSES FOR CO-K-SOUSLIN EQUIVALENCE RELATIONS

Leo Harrington^{1,2} and Saharon Shelah^{1,*)}

¹The Institute for Advanced Studies The Hebrew University of Jerusalem

²Department of Mathematics University of California, Berkeley, U.S.A.

*) The second author would like to thank the United States-!srael, Binational Science Foundation.

Let R be a symmetric binary relation on the reals. R is called <u>thick</u> if: there is a perfect set P of reals such that $(a,b \in P \text{ and } a \neq b) \Rightarrow a R b$. R is called <u>thin</u> if it is not thick. This paper is mainly concerned with the problem of finding sufficient conditions for thickness. A particular instance of this problem is when R is an equivalence relation. This has been quite extensively studied (see [Si], [B], [H-S], [St]). The most notable results are:

(Silver [Si]). If E is a thin $\underline{\Pi}_1^1$ equivalence relation, then E has at most \aleph_n -many equivalence classes.

(Burgess [Bu]). If E is a thin Σ_1^1 equivalence relation, then E has at most \aleph_1 -many equivalence classes.

In this paper we prove a general theorem which subsumes both of the above, and which in addition has the following corollaries:

If E is an absolutely \triangle_2^1 thin equivalence relation, then E has at most \aleph_1 -many equivalence classes.

If E is a thin $\underline{\Pi}_2^1$ equivalence relation (and if $(\aleph_1)^{\lfloor [a]}$ is countable for all reals a), then E has at most \aleph_1 -many equivalence classes.

The general method actually gives the appropriate generalization of the above to the case where E is $co-\kappa$ -Souslin (see Theorem 1). Also the method applies to other relations beside equivalence relations. As an example we prove:

If R is a \sum_{1}^{1} linear ordering, then there is no length \aleph_1 ascending chain through R.

The above results are due to the second author. Upon seeing these results, the first author noticed that the method from [H-S] can be adopted to give a proof without using the axiom of choice. Since such a choiceless proof is useful in the context of the axiom of determinacy, it is also presented here.

On the negative side:

for κ a cardinal, let B_{κ} be the assertion: if a (say) Borel relation R contains Y × Y, where Y is a set of reals of cardinality \aleph_{α} then R contains P × P for some

perfect set P. We produce a model of Z F C in which $B_{(\aleph_{\alpha}^{})}$ fails, for all countable ordinals $\alpha.$

<u>Defs</u> (a) T is a tree on the set Y if: $T \subseteq Y^{\leq \omega}$, and $(n \in T, \tau \subseteq n) \Rightarrow \tau \in T$. (b) For T a tree on Y, $[T] = \{f; f: \omega \to Y, \forall n (f[n \in T)\}.$

(c) For T a tree on $\kappa \times X$, let $p[T] = \{g; g: \omega \rightarrow X, and for some <math>h: \omega \rightarrow \kappa, \langle h, g \rangle \in [T]\}$. (Here we identify $\langle h, g \rangle$ with the function $f: \omega \rightarrow \kappa \times X$ where $f(n) = \langle h(n), g(n) \rangle$).

(d) A binary relation R on ω^{ω} is κ -Souslin (via T) if: T is a tree on $\kappa \times (\omega^2)$ and R = p[T]; (R is co- κ -Souslin if: \breve{R} is κ -Souslin (where \breve{R} = complement of R)).

Let R be κ -Souslin via T. As we vary through models of ZF which contain T, p[T] will always define a binary relation on ω^{ω} , and we will ambiguously continue to use R to denote these relations. Notice that R is absolute, i.e.: a R b holds if it holds in L[a,b,T].

Def For R K-Souslin via T, we will call R strongly thick if: for some perfect set $P \subseteq \omega^{\omega}$ and for some countable $t \subseteq T$, $P^{[2]} \subseteq p[t]$, (where $P^{[2]} = \{(a,b); a,b \in P, a \neq b\}$).

Notice that strong thickness is an absolute property (of T).

<u>Def</u> For V a model of ZF, the next world after V is: V[c] where c is a Cohen real over V. (Notice, for \overline{b} in V, the theory of \overline{b} in $\langle V[c], \in \rangle$ does not depend on the choice of c).

<u>Theorem 1</u> Let E be a co- κ -Souslin relation, via T. Assume that E is an equivalence relation, and assume that E is not strongly thick. Also assume: (*) E is an equivalence relation in the next world after L[T].

Then E has at most $\kappa\text{-many}$ equivalence classes. (K is, of course, an inf. cardinal).

<u>Proof</u> Suppose $\langle a_i \rangle_{i < \kappa^+}$ is a sequence of reals such that $i < j \Rightarrow a_i \not f a_j$. Let *n* be a transitive model of a rich fragment of set theory s.t. $T, \langle a_i \rangle_{i < \kappa^+}$ are in *n*. Let N be a countable elementary substructure of n (with T, $\langle a \rangle$ still in N). Let $P = \{\Phi(x); \Phi \text{ is a formula (with parameters from N), and in N: for unboundedly many <math>i < \kappa^+ \Phi(a_i)$ holds}. P is naturally ordered by inclusion. Also P is a consistency property such that: if $G \subseteq P$ is generic, then G gives rise to a real b for which: there is an elementary extension \hat{N} of N s.t. $b \in \hat{N}$ and for all Φ in G $\hat{N} \models \Phi(b)$. In particular, $\hat{N} \models "b = a_i"$, for some i in \hat{N} s.t. $i < (\kappa^+)^{\hat{N}}$, i > j for all $j \in N$, $j < (\kappa^+)^{\hat{N}}$. Also, $(\kappa)^N = (\kappa)^{\hat{N}}$ and so $(T)^{\hat{N}} = (T)^N \subseteq T$. Thus if $\hat{N} = "c \not f d"$ (for c,d reals in \hat{N}), then $c \not f d$ is actually true.

Notice: using the claim, the method of [] shows that E is strongly thick.

Sh:152

148

Suppose not. Let (Φ, ψ) force that b E c. Let δ be the term defined over N by: $\delta(a_i) = 1^{St}a_j$ (j>i and $\Phi(a_j)$ holds). Since Φ has unboundedly many solutions, δ is always defined.

Subclaim: $\delta(b)$, c are $P \times P$ -generic, [prf: For $\theta(x)$ in P, let $F(\theta)$ be $\theta(\delta^{-1}(y))$. F is an order preserving bijection between P and a dense subset of P, and F maps the filter generated by b to the filter generated by $\delta(b)$. \Box]

So it remains to show that N could be chosen inside L[T]. The only properties of N used so far are:

- (i) N is a countable (possibly non-standard) model of a fragment of set theory;
- (ii) (N, E, T, (a,); <_{K^+}) has a certain simply describable first order properties;
- (iii) $(T)^{\mathsf{N}} \subseteq T$.

But clearly there is a tree U (on $T \times \omega$) such that paths through U correspond to (enumerations of) such structures N. Also U is in L[T]. But U does have a path (by making T countable, n will correspond to such a path). Thus U has a path in L[T].

This completes the proof of the claim $\Box]$, and hence the proof of Theorem 1, $\Box]$.

Notice that (*) from Theorem 1 is a consequence of: (a) There exists a real c Cohen generic over L[T]; and (a) is a consequence of either: (b) $(2^{\omega})^{L[T]}$ is countable; or (c) MA + $|2^{\omega}|^{L[T]} < |2^{\omega}|$.

<u>Corollaries</u> 1. (Silver) If E is a \mathbb{I}_1^1 thin equivalence relation, then E has $\leq \omega$ -many equivalence classes.

2. If E is an absolutely ${\mathbb A}_2^1$, thin, equivalence relation, then E has ${\leqslant} \aleph_1$ -many equivalence classes.

3. If E is a thin, Π_2^1 equivalence relation, (and if $(\aleph_1)^L$ is countable), then E has $\leq \aleph_1$ -many equivalence classes.

[Proof:

In 1. E is a $co-\omega$ -Souslin relation. In 2, 3 E is a $co-\aleph_1$ -Souslin relation (via a tree T in L). In 1, 2 E is absolutely an equivalence relation (as long as \aleph_1 is not collapsed); thus (*) from theorem 1 holds. In 3, by assumption there is a real c Cohen generic over L = L[T], and so (*) holds. Thus 1-3 follow from theorem 1. \Box]

<u>Def</u> The field of a binary relation R is the set of reals a s.t.: a R b or b R a holds for some real b. R is called a quasi-linear order if: the relation $a E b \equiv$ (a K b and b K a) is an equivalence relation on the field of R, and R induces a linear ordering of the E-equivalence classes (i.e.: (b K a and b R c) \Rightarrow a R c, and: (a R b and c K b) \Rightarrow a R c; and: a R b \Rightarrow b K a).

<u>Theorem 2</u> If R is a Σ_1^1 quasi-linear order, then there is no length \aleph_1 R-increasing sequence of reals.

[Proof:

Notice: the fact that R is a quasi-linear ordering is an absolute property, hence it will remain true in generic extensions. Since R is Σ_1^1 , R is ω -Souslin, say via the tree T. Assume $\langle a_i \rangle_{i < \aleph_1}$ is a sequence of reals s.t. $i < j \Rightarrow a_i R a_i$.

Let n, N, P be as in the proof of Theorem 1. Let b,c be $P \times P$ -generic reals. As observed above, R is still a quasi-linear order in L[T,b,c]. We will now obtain a contradiction.

Case 1: b R c and c R b.

Let (Φ, ψ) force this.

Let δ be the term defined over N by $\delta(a_j) = 1^{st} a_j$ ($j \ge i$ and $\Phi(a_j)$). So, as in the proof of theorem 1, we have b K c, c K $\delta(b)$; and b R $\delta(b)$; thus R is not a quasi-ordering.

Case 2: bRc or cRb.

By symmetry, assume b R c. Let (ϕ, ψ) force b R c. Let δ be the term defined over N by: $\delta(a_i) = 1^{\text{St}}a_j$ ($j \ge i$ and $\phi(a_j)$). Let c',c be $P \times P$ -generic reals s.t. the generic filters on P, which correspond to c',c, both contain $\psi(x)$.

Let $b' = \delta(c')$, $b = \delta(c)$. Thus b', c and b, c' are both $P \times P$ -generic, and both correspond to filters on $P \times P$ which contain Φ, ψ . Thus b'Rc, bRc' both hold. By choice of δ , c'Rb' and cRb both hold. Thus c'Rb'RcRbRc' holds. So c'Rc' holds, and so R is not a quasi-order. \Box].

Theorem 2 can be strengthened in a way similar to theorem 1: If R is a quasiorder, and if R is κ -Souslin via T, and if R is a quasi-order in the next world after L[T], then there is no κ^+ -ascending R-chain.

Theorem 2 answers a question raised by H. Friedman. (Friedman, previous to our results, showed that a Borel quasi-order has cofinality ω .)

A slight defect in the proof of Theorem 1 is that it used the axiom of choice. For those readers who favor some other axiom, a choiceless proof of Theorem 1 will now be given:

Let E be co- $\kappa\mbox{-}Souslin$ via T. Assume E is a thin equivalence relation.

Consider the usual proof system for $L_{\infty,\omega}$ (see Ba). We will call a subset of $L_{\infty,\omega}$ syntactically consistent if there is no proof of a contradiction from it. Notice, consistency implies syntactical consistency, and the converse holds for countable fragments of $L_{\infty,\omega}$.

150

Sh:152

Counting equivalence classes

Sh:152

Consider the propositional version of $L_{\infty,\omega}$ (which we call $L_{\infty,0}$). $L_{\infty,0}$ will have ω -many atomic propositional sentences – by viewing the nth atomic sentence as asserting "n $\in x$ ", sentences of $L_{\infty,0}$ can be viewed as formulas about a real x.

Let A be the first admissible set containing T as a member. For U(x) a \sum_{0}^{1} over A subset of $L_{\infty,0} \cap A$, consider the $L_{\infty,\omega}$ theory: U(x) \cup U(y) \cup {x $\not x$ y} (here x $\not x$ y is the sentence: (f: $\omega \rightarrow \kappa$ ((f,x,y) \in [T]))), (where f is a new function symbol). If this theory is syntactically inconsistent, then there is a sentence $\theta(x)$ in $L_{\infty,0} \cap A$ s.t. U(x) $\vdash \theta(x)$, and s.t. { $\theta(x)$, $\theta(y)$, x $\not x$ y} is syntactically inconsistent (by Barwise compactness). By Barwise completeness, the set S = { $\theta(x)$; $\theta(x)$ is in $L_{\infty,0}$, and { $\theta(x)$, $\theta(y)$, x $\not x$ y} is syntactically inconsistent} is \sum_{1}^{n} over A.

Let W(x) = { $\tau\theta(x)$; $\theta \in S$ }. So W is \sum_{1} over A. If U(x) $\supseteq W(x)$ and if U is \sum_{1} over A, then, by construction of W, U(x) is syntactically inconsistent if U(x) \cup U(y) \cup {x $\not \in$ y} is syntactically inconsistent.

If W is syntactically inconsistent, then: for each real a, there is a $\theta \in S$, s.t. $\theta(a)$ holds. But by definition of S, for θ in $S(\theta(a)$ and $\theta(b)) \Rightarrow a E b$. Since $S \subseteq A$, S is well-orderable of length $\leq \kappa$. This induces a $\leq \kappa$ -length well-ordering of the E-equivalence classes.

If W is syntactically consistent, then: by Skolem-Löwenheim, we can find in L[T] a countable t \subseteq T such that: for \overline{A} = first admissible containing t, and for $\overline{E}, \overline{S}, \overline{W}$ defined as above, with T,A replaced by t, \overline{A} , we have that \overline{W} is syntactically consistent.

Let $P = \{U(x); U \subseteq L_{\infty,0} \cap \overline{A} \text{ is } \sum_{1} \text{ over } \overline{A}, \text{ and } \overline{W} \subseteq U, \text{ and } U \text{ is consistent}\}$. P is ordered by inclusion. If G is a generic filter on P, then G gives rise to a real b s.t.: for all U in G, b = U.

Let b,c be $P \times P$ -generic reals.

<u>Claim</u> b E c.

Let $\hat{P} = \{\hat{U}(x,y): \hat{U} \subseteq L_{\infty,\omega} \cap \overline{A} \text{ is } \sum_{1} \text{ over } \overline{A}, \text{ and } \hat{U} \text{ is a consistent theory about the pair of reals x,y}. If <math>\hat{G}$ is \hat{P} -generic then \hat{G} gives rise to a pair of reals $\langle b,b' \rangle$ s.t. for all \hat{U} in $\hat{G}, \langle b,b' \rangle \models \hat{U}$.

Subclaim: If $\overline{W}(x) \cup \overline{W}(y)$ is in \hat{G} , then both of b,b' are P-generic.

[Proof: Let $\hat{U}_1(x,y)$ be in \hat{P} , $U_1(x,y) \supseteq \overline{W}(x) \cup \overline{W}(y)$. Let $U_1(x) = \{\theta(x) \in L_{\infty,0} \cap \overline{A}; U_1(x,y) \vdash \theta(x)\}$. So $U_1(x) \supseteq \overline{W}(x)$ and U_1 is consistent. Thus U_1 is in P. Let D be a dense subset of P. Pick $U_2 \supseteq U_1$ so that $U_2 \in D$. By choice of U_1 , $(U_2(x) \cup \hat{U}(x,y)) = \hat{U}_2(x,y)$ is consistent, (and so \hat{U}_2 is in \hat{P}), and $\hat{U}_2 \supseteq \hat{U}_1$. Clearly $\hat{U}_2 \vdash (b \models U_2)$. \Box].

Now suppose b E c. Let U(x) in P force over c that b E c. Let $\widetilde{U}(x,y) = U(x) \cup U(y) \cup \{x \not\in y\}$. Since $U \supseteq \overline{W}$, and since U is consistent, \widetilde{U} is consistent. Thus \widetilde{U} is in \widehat{P} . Let (b,b') be \widehat{P} generic over c, and pick (b,b') so that $(b,b') \neq \widetilde{U}$. By the sublemma b,c and b',c are both $P \times P$ -generic. Thus by choice of U, b E c and b'E c.

L. HARRINGTON, S. SHELAH

But by choice of \widetilde{U} , $b \widetilde{\mathbf{f}} b'$, and so $b \not \in b'$. Thus E is not an equivalence relation in L[T,b,b',c]. But $\langle b,b',c \rangle$ is $\stackrel{\frown}{P} \times P$ -generic over L[T], and $\stackrel{\frown}{P} \times P$ is countable in L[T]. \Box].

Just as in the original proof of Theorem 1, the claim yields the Theorem. \Box].

<u>References</u>:

152

- [Ba] J. Barwise, Admissible Sets and Structures; Springer-Verlag (Ω -series), 1975.
- [Bu] J. Burgess, Infinitary languages and descriptive set theory, Ph. D. thesis, Univ. of California, Berkeley, 1974.
- [H-S] L. Harrington; R. Sami; Equivalence relations, projective and beyond; Logic Colloquium 78; ed. M. Boffa, D. van Dalen, K. McAloon. North-Holland (1979); 247-264.
- [Si] J. Silver, Π_1^1 equivalence relations (to appear).
- [St] J. Stern, Relations d'equivalence coanalytique; in: Seminair de Theorie des Ensembles; Publ. Math. de l'Universite Paris VII.