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SECTION I. INTRODUCTION 

First we describe a certain branching time logic. We borrow this 

logic from Prior (1967) and call it BTL. It is a propositional logic 

whose formulas are built from propositional symbols by means of usual 

boolean connectives and additional unary connectives PAST, FUTURE, 

NECESSARY. 

* The Main Theorem was proven in principle during the Jerusalem 

Logic Year 1980-81 when both authors were fellows in the Insti-

tute for Advanced Studies of Hebrew University. 

** Supported in part hy the United States - Israel Binational 

Science Foundation. 

*** Supported in part by NSF grant MCS83-01022. 
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182 Y. GUREVICH AND S. SHELAH 

Models for BTL are trees with additional unary predicates. 

Recall that a tree is a partially ordered set where the predecessors 

of any element are totally ordered. Think about elements of a given 

tree as possible states of the world, branches (i.e., maximal totally 

ordered subsets) as possible courses of history, and the partial 

order as the relation "later". The restriction to trees reflects the 

idea of one past but many possible futures. 

Trees with additional unary predicates will be called colored 

trees. In other words, the additional unary predicates will be called 

colors. We suppose that any colored tree has finitely many colors. 

A tree with colors PI' ••• , Pm interprets BTL formulas with propo-

sitional symbols PI' ••• , Pm' The interpretation of a formula at 

element t with respect to a branch B through t is defined inductively: 

P. holds at t wrt B if and only if teP., 
1 1 

NOT (~) holds at t wrt B if and only if 

~ does not hold at t wrt B, 

~I & ~2 holds at t wrt B if and only if 

both ~I and ~2 hold at t wrt B, 

PAST(~) holds at t wrt B if and only if 

there is u < t such that ~ holds at u wrt B, 

FUTURE(~) holds at t wrt B if and only if 

there is u > t such that ueB and ~ holds at u wrt B, 

NECESSARY(~) holds at t wrt B if and only if 

for all branches C through t, ~ holds at t wrt C. 
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TO THE DECISION PROBLEM FOR BRANCHING TIME LOGIC 183 

A BTL formula ~ is a theorem of BTL if for every tree T with 

appropriate colors, every element t of T and every branch B through 

t in T, ~ holds at t with respect to B in T. Note that the semantics 

of BTL is defined in terms of a certain theory of trees. 

Definition. Extend the first-order languaee of colored trees 

by an infinite list of unary predicate variables henceforth called 

branch variables. Allow quantification of branch variables. A tree 

T with colors PI' ••• Pm provides a standard interpretation for a 

portion of the extended language (i.e., for formulas with unary 

predicate constants among PI' ••• , Pm) under the stipulation that the 

branch variables range over all branches of T. The theory of these 

standard interpretations will be called TREE. 

Remark. The first-order language of colored trees contains infi-

nitely many unary predicate constants whereas each colored tree con-

tains only finitely many colors. This does not constitute a contra-

diction. Theorems of the first-order theory of colored trees hold in 

those colored trees where they are defined. The same relates to TREE 

and other formal theories in this paper. 

Definition. A formal theory TI reduces to a formal theory TZ 

if there is an algorithm (the reduction algorithm) which associates 

a sentence ~Z in the language of TZ with each sentence ~1 in the 

language of TI in such a way that ~I is a theorem of TI if and only 

if ~Z is a theorem of TZ. 

Strictly speaking, a reduction algorithm in the sense of the 

above definition reduces the decision problem for TI to the decision 

problem for TZ. All reduction algorithms in this paper will be 

systematic translations from one language to another. 
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184 Y. GUREVICH AND S. SHELAH 

Obviously, BTL reduces to TREE. Moreover, the extension of BTL 

by means of binary connectives SINCE and UNTIL, and many other exten-

sions and variations of BTL reduce to TREE. This raises the question 

whether TREE is a decidable theory. 

In our lecture in Salzburg we announced the decidability of the 

theory of trees with quantification over nodes and branches and 

sketched our decidability proof. (This theory of trees and the 

theory TREE readily reduce to each other: colors are easily coded.) 

In this paper we reduce the theory TREE to the first-order theory of 

binary colored trees which are bounded and well-founded. We prove the 

decidability of the latter theory elsewhere (Gurevich and Shelah, 

1984). Thus TREE is decidable. Hence, BTL is decidable and all other 

formalizations of branching time logic reducible to TREE are 

decidable. 

We believe that our interpretation of arbitrary trees in colored 

well-founded trees is of interest in its own right. --

Acknowledgement. We thank John Burgess for posing to us the 

question whether TREE is decidable (when he visited Jerusalem during 

the Logic Year 1980-81). John also explained to us the connection 

between TREE and branching time logic. We thank Andreas Blass for 

useful comments. 

SECTION 2. MAIN THEOREM 

First we define bounded trees and reduce the theory TREE to the 

first-order theory of bounded colored trees. 

Definition. A branch of a tree is bounded if it has a maximal 

element, otherwise the branch is unbounded. A tree is bounded if all 

its branches are bounded. 
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TO THE DECISION PROBLEM FOR BRANCHING TIME LOGIC 185 

proposition 1. Every tree is embeddable into a bounded tree. 

Hence the theory TREE reduces to the first-order theory of bounded 

colored trees. 

Proof is c1ear. 

We imagine our trees growing upward (in contrast to computer 

science trees which usually grow downward). Elements of a tree are 

nodes. Maximal nodes are leaves. If x, y are nodes and x < y we say 

that x is below y and y is above x. 

We use terminology of genealogical trees but we imagine our 

trees growing toward future (whereas genealogical trees grow toward 

past). If x, y are nodes and x ~ y we say that x is an ancestor of 

y and y is a descendant of x. 

If x, y are nodes of a tree, x < y and there is no z with 

x < z < y then x is the father of y and y is a son of x. Sons of the 

same father are brothers. (We could use terms "mother", "daughter" 

and "sister". There is no room however for both sexes. Our choice is 

not an expression of male chauvinism. We just prefer to make fun of 

our own sex.) 

Definition. A tree is binary if no node has more than two sons. 

If Xl' xz' y are nodes of the same tree and y 

then y will be called the meet of Xl' xz. 

Definition. A tree is well-founded if the ancestors of any node 

are weIl ordered and every pair of nodes has a meet. 

Remark. Usually, the first condition in the above definition 

defines well-founded trees. We will not be interested in trees 
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186 Y. GUREVICH AND S. SHELAH 

satisfying the first but not the second condition. In the presence 

of the first condition the second condition ensures existence of a 

least element (the root) and ensures that every bounded, nonempty, 

totally ordered subset (i.e., every bounded chain) has an extremum. 

Main Theorem. The first-order theory of bounded colored trees 

reduces to the first-order theory of binary, bounded, colored, well-

founded trees. 

The Main Theorem is proved in the sequel. It follows from Pro-

position in Section 3, Proposition 1 in Section 4 and Proposition 

in Section 5. 

SECTION 3. COMPLETE TREES 

In this section we define complete trees and reduce the firs·t-

order theory of bounded colored trees to the first-order theory of 

any class of bounded colored trees which contains all bounded, 

colored, complete trees. 

A subset of a tree will be called open if it contains all descen-

dants of any of its elements. This defines the tree topology. 

Recall that a topological space is connected if it cannot be 

split into two disjoint nonempty open subsets. A subset of a topo-

logical space is connected if it is connected as a subspace. A maximal 

connected subset of a topological space is called a component or a 

connected component. 

Lemma 1. Two nodes of a tree T belong to the same component of T 

if and only if they have a common ancestor in T. 
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TO THE DECISION PROBLEM FOR BRANCHING TIME LOGIC 187 

Proof. The relation E = {(x, y): x, y have a common ancestor} 

is an equivalence relation on T. For it obviously is reflexive and 

symmetrie. To check transitivity suppose E(x l , x2) and E(x2, x3). 

Let y be a common ancestor of xI' x2 and z be a common ancestor of 

x2' x3• Since y, z have a common descendant x2' they are comparable. 

The least between them is a common ancestor of xI' x3• Hence, 

(xI' x3) belongs to E. 

Every equivalence class of E obviously is open. It suffices to 

prove that every equivalence class X of E is connected. 

By contradiction suppose that the subspace X splits into non-

empty, disjoint, open subsets Y, Z. pick yeY and zeZ. Let xeX be a 

common ancestor of y, z. Without loss of generality xeY. Hence zeY 

which is impossible.c 

Lemma I implies that components of any open subset of a tree 

are open. 

Lemma 2. Let X be a connected, nonempty, open set of nodes of 

a tree. If xeX, ytx and y < x then y is a lower bound for X. If Y 

is another connected open set which properly includes X then Y con-

tains a proper lower bound for X. 

Proof. First suppose that xeX, ytx and y < x. For an arbitrary 

x'ex let x" be a common ancestor of x and x' in X. The nodes x" and 

y have a common descendant x and are comparable. If x" ~ y then yeX 

which is impossible. Hence y < x'. 

Next suppose that Y is another connected open set of nodes which 

properly includes X. pick xex, zeY-X and a common ancestor y of x, z 

in Y. Use the first statement of the lemma.c 
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188 Y. GUREVICH AND S. SHELAH 

Definition. Let X be an arbitrary set of nodes in a tree. L(X) 

(respective1y PL(X)) is the set of 10wer (resp. proper 10wer) bounds 

for X. In other words, y be10ngs to L(X) (resp. to PL(X)) if y ~ x 

(resp. y < x) for all x in X. 

If X is empty then either of L(X), PL(X) is the who1e tree. If 

X is not empty then either of L(X), PL(X) is either the empty set 

or a bounded chain. 

Definition. Let X be an arbitrary bounded set of nodes in a tree. 

U(X) is the set of upper bounds for X. If X = {x} we ca11 U(X) a cone 

and write Cone(x) instead of U({x}). It is easy to see that if U(X) 

has a minimum y then U(X) = Cone(y). If U(X) is not empty but does 

not have a minimum we ca11 it a pseudo-cone. 

Lemma 3. If Y L(X) then Y L(U(Y)), and if Y U(X) then 

Y U(L(Y)). 

Proof. The definitions of L(X) and U(X) make sense for an arbi-

trary partia11y ordered set. It suffices to prove either of the two 

statements of Lemma 3 in the case of a partially ordered set. 

Clear1y, Y ~ U(L(Y)) for any Y. If Y 

we have also U(L(Y)) = U(X) Y.O 

U(X) then X ~ L(Y) and 

Remark. Let X be a set of nodes in a tree such that U(X) is not 

empty. Then X is empty or X is a chain. If X has a supremum then U(X) 

is a cone, otherwise U(X) is a pseudo-cone. 

Lemma 4. Let G be a pseudo-cone and X be a connected, nonempty, 

open subset of G. Then X is a connected component of G if and on1y 

if PL(X) = L(G). 
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Proof. C1ear1y L(G) = PL(G) = PL(X) and L(G) is an initial 

segment of PL(X). 

1B9 

If L(G) is a proper initial segment of PL(X) pick anode y in 

PL(X)-L(G). By Lemma 3, G equa1s U(L(G». Hence ytG. Thus X is a 

proper part of the component of Gwhich contains y. 

If X is a proper part of some component Y of G then, by Lemma 2, 

Y contains a proper 10wer bound y for X. Hence L(G) = PL(G) + PL(X).c 

Definition. A tree is complete if every nonempty set of nodes 

has an infimum. 

Lemma 5. A tree is comp1ete if and on1y if there is aleast 

node (the root) and every bounded chain has a supremum. 

Proof is c1ear. 

Theorem 1. Every tree T is embeddab1e into a comp1ete tree S. 

Proof. Our S consists of nonempty sets U(X) where X is a subset 

of T. We order S by reverse inc1usion. In particu1ar, T itse1f is 

the least member of S. Clearly, S is a partia11y ordered set. To 

embed T into S we assign Cone(x) to each x in T. It remains to prove 

that S is a comp1ete tree. 

Claim 1. Suppose that Xl' X2 are S-ancestors of some Y. Then 

Xl' X2 are S-comparab1e. Hence S is a tree. 

Proof of Claim 1. Without 10ss of genera1ity Y is a cone. Let Y. . ~ 

be the component of X. which inc1udes Y. If Y.-Y. is not empty pick an 
1. J 1. 

element y there. By Lemma 2, y is a proper 10wer bound for Y .• If X. 
1. 1. 

then, by is connected then X. = Y. c Y. c X .• If X. is disconnected 
1. 1. J- J 1. 

Lemma 4, yeL(X.) and X. c Cone(y) c Y. c X .• 
1. 1. - J - J 
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190 Y. GUREVICH AND S. SHElAH 

Suppose that YI = Y2• If some Yi is connected then Xi = Yi = 

= Y. C X .. Suppose that both XI and X2 are disconnected. By Lemma 4, 
J - J 

L(X I) = L(X2). By Lemma 3, XI = X2• Claim I is proved.D 

Claim 2. Every nonempty subset K of S has an infimum in S. 

Proof of Claim 2. Let G be the union of members of K and 

G* = U(L(G)). Then G* is an S-lower bound for K. If X is an S-lower 

bound for K then X ~ G, L(X) ~ L(G) and X = U(L(X)) ~ U(L(G)) = G* 

i.e., X ~ G*. Thus G* is the desired infimum. Claim 2 is proved. 

Theorem I is proved.D 

Proposition I. Let K be an arbitrary class of bounded colored 

trees which contains every bounded, colored, complete tree. The first-

order theory of bounded colored trees reduces to the first-order 

theory of K. 

Proof. Given a sentence ~ in the first-order language of colored 

trees find the first unary predicate constant P which does not 

appear in ~. Write a sentence ~I in the vocabulary {<, p} whose 

meaning on any bounded tree is that P is not empty and every branch 

of the subtree P has a maximum (for every leaf a there is b ~ a such 

that P(b) and for every c ~ a, if P(c) then c ~ b). 

Further let ~2 be the result of restricting the quantifiers of 

~ by P. The desired reduction algorithm transforms ~ into ~I ~ ~2.D 

SECTION 4. ORIENTED WELL-FOUNDED TREES 

In this section we make the crucial translation to well-founded 

trees. The simple technique of interpreting by embedding fails here. 

A non-well-founded tree is not embeddable into a well-founded tree. 

To overcome this difficulty we introduce oriented trees where in 
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addition to the upward tree ordering (the vertical order) there is 

also a horizontal order: sons of the same father are partially ordered 

(from left to right). An important task of the next section will be 

to get rid of orientations. 

The contribution of this section toward the Main Theorem is a 

reduction of the first-order theory of one class of bounded trees, 

that contains every bounded, colored, complete tree, to the first-

order theory of bounded, colored, oriented, well-founded trees. 

Recall that a tree is well-founded if the ancestors of any node 

are well-ordered and every pair of nodes has an infimum (called the 

meet). The height of anode x in a well-founded tree is the ordinal 

type of the sequence <y: y < X>. 

Lemma 1. Every well-founded tree is complete. 

Proof. Let T be a well-founded tree. The unique element of T 

of height 0 is the root of T. If C is a bounded chain in T then a 

node in U(C) of minimal height is a supremum of C. Now use Lemma 5 

in Seetion 3.0 

Definition. Astriet partial order H on a tree is an orientation 

of the tree if 

(i) for every (x, y) in H the nodes x and y are brothers, 

(ii) every node belongs to a unique maximal H-chain (in other 

words, the set of nodes, partially ordered by H, is a 

disjoint union of H-chains), and 

(iii) every maximal H-chain has an H-maximal element. 

A tree with an orientation is an oriented tree. 
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192 Y. GUREVICH AND S. SHELAH 

Lemma 2. Let H be an orientation of a tree. Then the relation 

"either x < y or there exists z such that xHz and z S y" is the 

transitive closure of the union of the relations Hand <. 

Proof. The relation in question includes the union of Hand <. 

It is included into the transitive closure of the union. And it is 

transitive.c 

Theorem I. For every complete tree T there is a well-founded 

tree T' and an orientation H of T' such that 

(i) T and T' have the same nodes, and 

(ii) For all nodes x and y, x is a proper T-ancestor of y if 

and only if either x is a proper T' ancestor of y or there 

is anode z such that xHz and z is a T'-ancestor of y. 

Proof. Work in a complete tree T. For every nonempty, connected, 

open subset X choose a point p(X) in X such that p(X) = min(X) if X is 

a cone. Let C(X) be the chain {xeX: x S p(X)} • 

Construct a decreasing sequence of open subsets as folIows: 

S 
o 

T, 

Sa n{Se: ß < a} if a is limit, and 

Sa+) = U{X - C(X): X is a connected component of Sei. 

The construction halts when the empty set is reached. If 

xesa-Sa+) we say that a is the rank of x. Clearly, every node is 

ranked and rank(x) S rank(y) if x S y (because the sets Sa are open). 

Claim ). Suppose that a is limit and Sa is not empty. Then 

every component X of S is a cone. 
a 
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Proof of Claim I. It suffices to check that x = inf(X) belongs 

to So' Let ß = rank(x). By contradiction suppose that ß < o. By 

Lemma 2 in Section 3, the component of Y of Sß+I which includes X 

contains a proper lower bound y for X. Then y ~ x which is impossible. 

Claim I is proved.D 

If X is a component of some nonempty S I then the supremum y 
0+ 

of PL(X) will be called the patriarch of X and X will be called a 

clan of y. 

Claim 2. Suppose that X is a component of some nonempty SO+I 

and y is the patriarch of X. Then rank(y) = 0 and either y = inf(X) 

or there is a son x of y such that X = Cone(x). 

Proof of Claim 2. Let Y be the connected component of S which 
o 

includes X. By Lemma 2 in Section 3, Y contains a proper lower bound 

y' for X. If z is a proper lower bound for X of rank ~ 0 then zeY 

(because y' and z are comparable) and z does not belong to any 

component of S I' Hence z ~ p(Y). But Y is the supremum of such 
0+ 

nodes z, hence yeC(Y) and rank(y) = o. 

Next, let x = inf (X). If xtx then x is the patriarch of X and 

the claim is proved. Let xeX. Then X = Cone(x) and x is a son of y. 

For, if y < Z < x then z is a proper lower bound for X above y which 

is impossible. Claim 2 is proved.D 

Let R be the relation "x is the patriarch of a clan which con-

tains y". Clearly, xRy implies x < y, and R is transitive. Hence R 

defines a new tree T' on the nodes of T. Clearly, every R-chain is 

well-ordered. The next claim completes the proof that T' is a well-

founded tree. 

Claim 3. For all nodes xl and x2 there is a T'-meet of xI' x2• 
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Proof of Claim 3. Let x be the T-meet of xI and x2 . Every common 

T'-ancestor of xI' x2 is a T-ancestor of x. If x has a T'-father y 

then y is a common T'-ancestor of xI' x2. Hence either X or y is the 

T'-meet. 

Suppose that x does not have a T'-father. Then 0 = rank(x) is 

limit. By Claim I, the component So which contains x is a cone. By 

the definition of sets S , this component is Cone(x). By Claim 2, 
o 

x is the patriarch of any component of S I which meets Cone(x) (hence 
0+ 

is included into Cone (x)). Hence x is the T'-meet of xI' x2. 

Claim 3 is proved. D 

Let H be the relation "there exists 0 and a component Z of S I 
0+ 

such that x and y belong to Z and x < y ::; p(Z)". It is easy to see 

that H orients T'. In particular, if xHy and a+1 = rank(x) and Z is 

the component of S I which contains x, y, then the patriarch of Z 
0+ 

is a T'-father of x, y. 

Finally, we prove the statement (ii) of Theorem I. The "if" 

implication is obvious. 

Claim 4. Suppose that x is a proper T-ancestor of y. Then either 

xHy holds or x is a proper T'-ancestor of y or there is z such that 

xHz holds and z is a T'-ancestor of y. 

Proof of Claim 4. Let 0 = rank(x) and X be the component of S 
o 

which contains x. If x' > x is anode of rank 0 then C(X) is not 

singleton, X is not a cone, 0 is successor (by Claim I), and there-

fore xHx ' holds. In particular, if rank(y) = 0 then xHy holds. 

Suppose that rank(y) > o. Let Y be the component of S I which 
0+ 

contains y and let z be the patriarch of Y. If x = z then x is a 

proper T'-ancestor of y. Suppose that x ~ z. By Lemma 2 in Section 3, 
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x is a proper lower bound for Y. Hence x < z. By Claim 2, rank(z) = 0 

and z is a proper TI-ancestor of y. By the previous paragraph, xHz 

holds. Claim 4 is proved. Theorem 1 is proved.c 

Theorem 2. Let T be a tree, TI be a well-founded tree and H be 

an orientation of TI. Suppose that T, TI and H satisfy the statements 

(i) and (ii) of Theorem 1. Then T is bounded if and only if TI is 

bounded. 

Proof. The "only if" implication is clear. We prove the "if" 

implication. By contradiction suppose that TI is bounded but T has 

an unbounded branch B. Let A be the set of TI-heights of elements 

in B. 

If A has a maximal element 0 then B has a final segment which is 

an H-chain. By the definition of orientations, this H-chain has an 

H-upper bound x. Clearly, x is a T-upper bound for B, which is im-

possible. 

Hence A does not have a maximal element. For every 0+1 in A, all 

nodes in B of TI-height 0+1 are sons of the same TI-father. These 

TI-fathers are cofinal in Band form a TI-chain. Any TI-upper bound 

for this TI-chain i6 a T-upper bound for B which is impossible. D 

Proposition 1. Let K be the class of colored trees T such that 

there exists a bounded well-founded tree TI and an orientation H of 

TI which satisfy the statements (i) and (ii) of Theorem 1. Then 

every colored tree in K is bounded, every bounded, colored, complete 

tree belongs to K, and the first-order theory of K reduces to the 

first-order theory of bounded, colored, oriented, well-founded trees. 

Proof. The first statement follows from Theorem 2. The second 

statement follows from Theorems 1 and 2. The third statement is 

obvious.c 

Sh:163



196 Y. GUREVICH AND S. SHELAH 

SECTION 5. BINARY TREES 

In this seetion we reduee the first-order theory of bounded, 

eolored, oriented, well-founded trees to the first-order theory of 

binary, bounded, eolored, well-founded trees. 

An orientation of H of a binary tree looks espeeially simple. 

Every maximal H-ehain eonsists of at most two nodes. If (x, y)eH 

and z is the father of x, y then we say that x is the left son of z 

and y is the right son of z. H defines the following lexicographic 

order on the tree: x lexicographically precedes y if the meet of x, y 

has two sons, the sons are H-ordered, x deseends from the left son 

and y deseends from the right son. 

Lemma I. Every linear order C is isomorphie to the lexieographie 

order of leaves (i.e., maximal nodes) of some binary, bounded, 

oriented, well-founded tree. 

Proof. The desired tree Twill be a set of non-empty segments 

of Cordered by reverse inclusion. If A is a segment of C with at 

least two points we split A into a nonempty initial segment (ealled 

the left part of A) and the remaining nonempty final segment (the 

right part of A). If A will be anode of T then the left part of A 

and the right part of A will be the left and the right sons of A in T. 

We construet a deereasing sequenee of equivalenee relations on 

C whose equivalenee elasses are segments of C. We start with E = CxC. 
o 

If a is limit then E is the intersection of all E with ß < a. For 
a a 

every a, Ea+ 1 is the relation "x and y belong to the same part of the 

same equivalenee elass of Ea". The eonstruetion is eompleted when the 

equality relation is reaehed. The desired tree T eonsists of all 

equivalenee elasses of all these equivalenee relations.D 
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Theorem I. For every well-founded tree T with an orientation H 

there is a binary, bounded, oriented, well-founded tree TI such that 

(i) the uni verse of TI extends the uni verse of T, 

(ii) for all x, y in T, x < y in T iff x < y in TI, and 

(iii) for every pair (x, y) of T-brothers, (x, y)eH iff 

x lexicographically precedes y in TI. 

Proof. By Lemma I, for every maximal H-chain C there is a binary, 

bounded, oriented, well-founded tree Tr(c) such that C is isomorphie 

to the set of leaves of Tr(C) with the lexicographical order. Let 

I(C) be an isomorphism from C to the chain of leaves of Tr(C). 

For every nonsingleton maximal H-chain C we add some auxiliary 

nodes to T. Let x be the T-father of nodes in C. Graft a copy of 

Tr(C) at x in such a way that the root of Tr(C) becomes a son of x, 

and identify nodes of C with leaves of Tr(C) with respect to I(C). 

The resulting tree is the desired binary tree. We orient this binary 

tree with respect to the grafts. In other words, the union of the 

orientations of the grafts is the orientation of our binary tree.C 

Proposition I. The first-order theory of bounded, colored, 

oriented, well-founded trees reduces to the first-order theory of 

binary, bounded, colored, well-founded trees. 

Proof. Let ~ be a first-order sentence in a vocabulary compris-

ing the binary predicate symbols <, Hand a number of unary predicate 

constants. Find first unary predicate constants L, P, which do not 

appear in ~. 

Write a first-order sentence ~I and a first-order formula 

L*(u, v) in the vocabulary {<, L} such that if T is a binary tree 

with a color L which satisfies ~I then for every pair of brother 
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nodes in T exactly one brother belongs to L, and an arbitrary pair 

(x, y) of nodes satisfies L*(x, y) in T if and only if there exist 

nodes x', y', z such that x' S x, y' S y, x' and y' are different 

sons of z and x'eL. 

Write a first-order sentence ~2 in the vocabulary {<, L, p} such 

that if T is a bounded well-founded tree with colors L, P which 

satisfies ~2' then P forms a bounded well-founded subtree of T and L* 

is an orientation of the subtree P. Let ~3 be the result of the fol-

lowing changes in~: first restrict all quantifiers in ~ by P, then 

replace H by L*. It is easy to see that 

is the desired reduction.c 
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