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ON THE UNIVERSALITY OF SYSTEMS OF WORDS
IN PERMUTATION GROUPS

MANFRED DROSTE AND SAHARON SHELAH

In the classes of infinite symmetric groups, their normal subgroups,
and their factor groups, we determine those groups which are equivalent
in the sense that they may not be distinguished by the solvability of a
system of finitely many equations in variables and parameters.

1. Introduction and results. Recently, several authors [1,3-5,8,
9, 12] studied the solvability of equations of the form w(x,,...,x,) =y,
where w is a group word, in various kinds of groups. In [1,3,12] this
problem was considered for infinite symmetric groups. Here we consider
the simultaneous solvability of several equations of a similar form in
infinite symmetric groups, their normal subgroups, and their factor-groups.

Let G be a group, x,,...,x, variables, y,,..., y, parameters, and
w; = Wi(Xy,. .5 X5 Vis -+ -5 V) (i € I) group words in these variables and
parameters. We say that W = {w,|i € I} is G-universal if G satisfies the
following property:

For all y,,...,y, € G there exist x;,...,x, € G such that for all
P €I, Wi(Xyye ooy X3 Yiseovs V) = €.

Two groups G and H will be called equationally equivalent, G = . H, if
for any finite set W of words w, as above, W is G-universal iff W is
H-universal.

Let S, denote the infinite symmetric group of all permutations of a
set of cardinality 8, and, for 0 <7 <wv + 1, §] its normal subgroup
comprising all permutations moving less than ¥ elements of the underly-
ing set. The problem of the elementary equivalence (definability) of the
groups S, (» > 0) was solved in Shelah [11]. Here we will consider the
problem of the equational equivalence of the groups S,. A very similar
problem was suggested by J. Isbell, cf. [6; p. 20]. Throughout this paper,
let V = { vy, v,,v;} be the following set of words in parameters y,, y, and
variables x;, x,, x5

Ui=yi_1 'xfl it X% (i= 1,2),

= p-1l.y-1. . .xol. .
U3 = Y17 - Xy "Xy Xp 0 X7 " Xy © X3

321



Sh:223

322 MANFRED DROSTE AND SAHARON SHELAH

Note that v, = e means that x; and y, commute (i = 1,2), and
v, = e means that y, is a product of two conjugates of x;. Using a result
of Droste and Gobel [2], we will show:

THEOREM 1. (a) Let v > 0. The following are equivalent:

(1) Vis S,-universal.

(2) Vis (S,/S,) )-universal.

B) R, > 2%,

(b) Letp, v >0 and 8, > 280, The following are equivalent:
DS, =48,

(2) S,/S) =¢q S/

BN, > 28,

We also obtain the subsequent generalization of Ehrenfeucht et al. [3;
Theorem 3] which is partly a consequence of a result of Moran [7]:

THEOREM 2 Let v, p > 0. The following are equivalent:

(1) For any finite set W = {w;|i € I} of words w; = w;(Xy,...,%,; )
in one parameter y and variables x,,...,x,, W is S,-universal iff W is
S,-universal.

(2) Either (i) v = p =0, or (ii) », p > 0.

In particular, S, # ., S, whenever » > 0. Hence the following is an
immediate consequence of Theorems 1 and 2:

COROLLARY 3. Assume (CH). Then, for any v, p >0, we have

S, = iffeitherv=pu=0o0rv=p=1orv, p=>2.

v eqp.

Next we just note the following

THEOREM. It is consistent with (ZFC + 2% arbitrarily large) that: (*)
S, = o S, whenever Ny <8, <N < 2%,
This is done by starting with a model ¥ of set theory; then choose
k = k™, and force by adding k Cohen reals. As we do not yet know
whether (x) is provable in ZFC or is independent of ZFC, this theorem is
of doubtful value at present.
Concerning the permutation groups S;, we have this result:

THEOREM 4. (a) Let 0 <7<v and 0 <p < p. Then S] =, S/ iff
eithertr=p=0o0rr, p=>1.
(b) S} # .y S, whenever N, < 2%,



Sh:223

WORDS IN PERMUTATION GROUPS 323

Here, in (b) it remains open whether the assumption 8, < 2% is
necessary.

2. Notation. Let N denote the set of all positive integers and
N, =NU{8,}. Let a®>=b""-a- b for a, b € G (any group), and let
A = U, A4, mean that A4 is the disjoint union of the 4;. For a mapping f
let a’ denote its value at a and f| , its restriction to 4.

P,, denotes the group of all permutations of a set M and id,, (or id,
if there is no ambiguity) the identity map of M. Let p € P,,. An orbit of
p is a minimal p-invariant subset of M. For any n € N_, let p(n) denote
the cardinality of the set of all orbits of length n of p. Let supp(p) =
{a € M|a” # a} denote the support of p, and |p|= |supp(p)| For
v>0and O0<7<v+1 let §,=Ps, S={p€ES,|lpl<8,} and
A, = {p € S)|plaupppy is even}. Then, as is well-known, the groups
A, and S7 (0 < 7 < ») are all non-trivial proper normal subgroups of S,.
If M=U,., M,, p,e P, and p € P), such that p|, = p; for each
i € I, then we alsowrite p = @, _,p;.

If w(xy,...,%,; Yir---» V) 18 @ word in parameters y, and variables
x;, we also abbreviate it by w(x; y,); we include the indices j, k in this
expression in order to indicate that they range over index sets J, K
respectively (here J = {1,...,n}, K= {1,..., m}).

3. Proof of our results. Before we can prove Theorem 1, we need a
few preparations:

PROPOSITION 3.1. Let M be a set of cardinality ¥, (v > 0) and
z, € Py, for k € K, where K is at most countably-infinite.

(a) If ACM, let B={a’lacA,z€Z)} where ZC P, is the
subgroup of P,, generated by {z, |k € K }. Then B is the smallest subset of
M containing A such that z,,| 5 € Py for each k € K. Furthermore, |B| = |A|
if A is infinite.

(b) For each cardinality 8 < ¥, there is a decomposition M = U, ., M,
such that z, | M, € Py, and [M)| = R foreachk € K, I € L.

Proof. (a) Obvious.

(b) For x, y € M, let x ~ y if x = y* for some z € Z. This defines
an equivalence relation on M, and each equivalence class is at most
countably-infinite and is invariant under any z, (k € K). Now choose
each M, (I € L) to be an appropriate union of equivalence classes.

PROPOSITION 3.2. Let w; = w(x; g’k) be words, where i € I, j € J,
k € K, and 1,J, K are finite, and v > 0. If W = {w,|i € I} is S,-univer-
sal, then W is also S,-universal for any p > v.
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Proof. Let M be a set of cardinality X, and y, € P, (k € K). By
Proposition 3.1(b), split M =U,., M, such that [M;|=8, and y,, =
Yilm, € Py forallk € K, l € L. By assumptlon for each / € L there are
x,; € Py, (]EJ) such that wi(x, ;; y,.) = idy, for all i € I. Put x; =
®,.,%,; € Pyforeach j€J. Thenw(x],yk) 1d foralli € I.

The following lemma is stated in a more general form than actually
needed since it may be also of some independent interest. Recall that for a
permutation p and n € N_, p(n) denotes the number of orbits of length
n of p.

LEMMA 3.3. Let a, b € S, such that a consists of precisely one infinite
orbit and b(n) € N for some n € N. If ¢ € S, satisfiesa = a and b = b°,
then ¢ = id.

Proof. As P, = S,, it suffices to prove this for elements a,b,c € S,
where i? = i + 1 for each i € Z and 0 belongs to an orbit of length n of
b. Let 0°=k € Z. Then a = a° implies (j - k)= (j + 1) - k for any
Jj € Z. Hence each j-k (j € Z) belongs to an orbit of length n of b.
Since b(n) < oo, this shows k = 0. But then ¢ = id by a = a“.

Now suppose ¢: A — B is a bijection from A4 onto B. Then ¢
induces an isomorphism ¥ from P, onto Py defined by b?* = b*"7°% for
eachbeB, peP, Ifx,....,x,€P, y,..., ¥, € Py (n €N) are such
that x¥ =y, (i =1,...,n), then we also say that ¢ is an isomorphism
from the algebra (4, x,,..., x,) onto (B, y,,..., y,), induced by ¢.

We can now prove Theorems 1 and 2:

Proof of Theorem 1. (a) (1) = (2): S,/S, is an epimorphic image of
S,.

v

(2) = (3): For contradiction, assume N, < 2%. Let M be a set of
cardinality 8, and decompose M = U jesM; such that |M)| = B, for any
J € J,and |J| |M|. For each j € J, choose y;;, y;, € Py, such that y,,
consists of precisely one (infinite) orbit, y;. 2(n) € N for some n € N, and
whenever j, k €J, j#k, then y; y, (m) # Y. Yeo(m) for some m € N.
This is possible since |J| < 2% =|S,|. Then put y, = D, Vi N =
O, , V2 € P,,. Now by (2) there are x;, z; € Py, such that |z,| <N,
(1—123) yi=yh-z;(i=12), andyl—x “XP -z, Lethethe
smallest subset of J with supp(z;) U supp(z,) € UM Pick any
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JEJNT. If N=M>", then y, = yj" - z; and z;| y = idy imply y; |y €
P,, and y,|, consists of precisely one (infinite) orbit on N. Hence
N = M, for some k € J. Now y, = y;1 - z, and z,| y = id yield)z(m)
= E(m) for any m € N, thus k = j. Hence M;* = M,, implying X1 | u,

= id,, by Lemma 3.3. This shows |x;| < |T]- 8y, <N, and |y;| < N, by
our th1rd equality, an obvious contradiction.

(3) = (1): By Proposition 3.2 it suffices to consider the case N, =
(2%)*. Let [M| = 8, and y,, y, € P,,. By Proposition 3.1(b), decompose
M = UjGJMj with |[M)| =8, and y;; = y;|» € Py, for each j&J,
i=1,2. We call j, k € J equivalent if there exists an isomorphism from
(M, 1, ¥;2) onto { My, yi.1, Vi2)- Since |So| = 2%, there are at most 2%
different equivalence classes on J. Hence, by |J| = 8, = (2%°)*, a regular
cardinal, there exists an equivalence class 7' C J of cardinality ¥,. Now
decompose T = U,_,T, with |T| = |T| for each i € Z, and choose an
element x; € P,, such that x| M, =1d,, for each j € J\ T, and, for any
i€Z, jeT, we have M1 = Mk for some k € T,,, such that X1 ag
induces an isomorphism from (M}, y;1, 9,20 onto (M, yi1, Vi) Then
yi=y fori=1,2, and x; consists of ¥, infinite orbits and, possibly,
fixed points. Now by Droste and Gobel [2; Theorem 2], any element of
P,, is a product of two conjugates of x,, in particular y, = x - x;* for
some x,, x; € P,,. Thus V' is S,-universal.

(b) (1) » (3) and (2) — (3): By (a) and N, > 2%V is S,- and
(S,/Sk)-universal, hence S,- and (S,/S;)-universal by assumption. Now
(a) shows that ¥, > 2o,

(3) = (1) and (3) = (2): Let w; = w,(x;; y,) be words (i € I, j € J;
I, J finite, k € K = {1,...,n} with n € N) such that W = {w,|i € I} is
S,-universal ((S,/S})-universal); we claim that W is S,-universal
((S,/S?)-universal), respectively. Let |M| =8, and y, € P,, (k € K).
By Proposition 3.1(b), there is a decomposition M = U, ,; M, such that
|M)| =8, and y;;, =y |y, € Py, for each k € K, I € L. We call /,
m € L equivalent if there exists an isomorphism from (M, y,,,..., y;,)
onto (M, Y155 Youon)-

First let us show that W is S -universal. Because of Proposition 3.2,
we may assume (2%0)*= R < N,. Thus there exists an equivalence class
T C L of cardinality N,. F1x t e T choose a set P of cardinality N, and,
foreachpEP,acopy( s Yp1s -3 Ypn) O AMy Ygs s Vin)s andput
A= MUUI,E,, s Ve = ykéBeaepypkeP (keK) Since |4] =
by assumption there are x; € PA (j €J) with w(x}, yx) = id, for all
i € 1. By Proposition 31(a), there is a set B with M C BC 4 and
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|B| = |M| =R, such that y/ =y;| x =x}|z€ Py for all k €K,
J € J; in particular, w,(x;; Vi ;) =idp for all i € I. Now it is easy to see
that (M, y,,...,y,) is isomorphic to (B, y;",..., ). Hence there exist
x; € Py (j € J) such that w(x; y,) = id, for all i € I, establishing (1).

Next we finish the proof of (2). For any subset S C L, we abbreviate

Mg= UM, and ylf=yk|M:= D yix € Py, (k€ K).

l1eS les

First we claim that for any infinite subset 7 C L consisting only of
pairwise equivalent elements of L such that |T| < N, there are xJT € Py,
(JEJ)WlthW(X y) u, foreachi e L

Indeed, fix 1 € T, choose a set P of cardinality ¥, and, for each
pEPacopy (M, y,1--s Vpu) OF (M, Yiaseees Vo) and put

A =MTU UM, y=yle @yp,kGPA (k€ K).
pEP PEP

Since |4| = 8, by assumption there are x}, z, € P, (j € J,i € I) with
|z;| <8, and w,(x}; 21,’() = z, for each i € I. By (3.1), there exists a subset
Q C P of cardinality |T| such that z,|,, =id,,, x;|, € Py, for each
iel, jelJ. Hence, since (M, y2,..., y,,) is 1somorph1c to
(My, yI, ..., yI), our claim follows.

Now we define the elements x, € P, (j € J) as follows. Whenever
/'€ L belongs to a finite equivalence class, let x|, =id,,. For any
infinite equivalence class 7 C L with |T| < ¥, put x|, = x/. Finally, if
T C L is an equivalence class with |T| > N w decompose T =U, T, with
T} = 8, for each t € T, and put x;|,, = @tGT . Since there are at
most |S0| = 2% < R equivalence classes on L, we obtam wi(x5 pi)l <
N, foreachi € I Th.lS shows that W is (S, /S, )-universal.

Proof of Theorem 2. (1) — (2): Put W = {w;,w,} with w;(x, x,; »)
=yt.x;'x, - x,- x; and wy(xy, x,; y) = x2. Then W is S -universal
iff every y € S, is a product of two conjugate involutions, i.e. iff » > 0 by
Moran [7; Cor. 2.5].

(2) = (1): This can be shown in a similar (but here much easier) vein
as the implication (3) - (1) of Theorem 1 or almost precisely as in
Ehrenfeucht et al. [3; Proof of Theorem 3].

Before we prove Theorem 4, let us note the following useful observa-
tion:

REMARK 3.4. Let w; = w,(x; 2),() be words, wherei € I, j € J, k € K,
and 1,J, K are finite. Let 1 <7 <v and y, € S] (k € K). If there are
x; €S8, (j €J) such that w(x}; y,) = id for all i € I, then there are also
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x;, €S8) (j €J) such that w(x;; y,) =1d for all i € I. In particular, if
= {w,|i € I} is S,-universal, then W is also S;-universal.

Proof. Let M be the underlying set of cardinality 8, and

Y = U supp(y,).
kek

By Proposition 3.1(a), there is a set Z C M with Y C Z and |Z| <N,
such that x; = x|, € P, for all j€J. Putting x; = x @ id,, , €
Sy (j € J), we obtain w;(x; y) = id, forall i € I.

Proof of Theorem 4. (2) First assume S = ., SP. In S, 9 no element of
SO\ 4, is a commutator, but if p > 1, each element of S* is a commuta-
tor in S by Ore [10; pp. 313, 314]. This shows the assertion.

The converse can be established by showing that S, = ., S, whenever
l1<r<v,andthat §; =S, (S’ = M)whenever v, B IS 0(»,pn=0).

Since the methods applied are similar to (and easier than) the. ones used
for the proof of the implication (3) = (1) of Theorem 1, we leave the
details to the reader.

(b) Clearly, S? # eq S0 Since any element of S, is a commutator by
Ore’s Theorem [10). Hence assume » > 0 now. By Theorem 1, it suffices
to show that ¥ is S, -universal. We present two arguments for this.

Proof 1. By Theorem 1, V is S, -universal for some p > 0 with
N, > 2% By Remark 3.4, V is S}-universal. Hence by (a), V is S,-univer-
sal.

Proof 1I. Let |[M| =R, and y, € Py, with |y| <N, (i =1,2). De-
compose M = A U B with A Y U C where Y = supp( 1) YU supp(y,)
and |C|=|Y|+ N8,. Define x; € P, such that x{|,=1id, and x{|.
consists precisely of |C| infinite orbits. By Droste and Gobel [2; Theorem
2], »ila=x{%- x{® for some xj, x; € P,. Hence x, = x, @ idy € Py,
satisfies |x;| < 8, (j = 1,2,3) and v,(x; y,) = id,, for i = 1,2,3.
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