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On a problem in cylindric algebra

SAHARON SHELAH

Abstract. Here we solved a problem of Tarski and his co-authors Andréka,
Henkin, Monk, and Németi which appeared in [HMTAN], [B88]. We thank
Biré for asking us about it. We prove that isomorphism does not imply base-
isomorphism (the latter is the same as induced isomorphism or point-function
isomorphism) for the most generic kinds of algebras in algebraic logic (both in
Tarski’s and Halmos’ sense), even under very severe restrictions (restrictions
which easily work in the propositional case). To this end we prove that there is
a first order complete theory with two atomic minimal non-isomorphic models
none of them interpretable in the other.

Section 0: Introduction and main result

Let %A C P(U) and B C P(V) be two Boolean algebras (BA’s). It is
natural to ask the following question: For what kinds of BA’s does 2 = B
imply the existence of f : U>»V such that f induces an isomorphism be-
tween 2 and B? Such induced isomorphisms are called base-isomorphisms,
and if such a base-isomorphism exists, we call A and B base-isomorphic.

A is called base-minimal if for no proper Z g U is the function rl(Z) =
(XNZ:xz € A) an isomorphism on 2. (This means that the basc U of 2

Large part of Sections 1 and 2.1 are a repetition of a part of [Sh189] and we thank
the NDJFL for the permission to use them. This research was partially supported by
BSF.
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is minimal in the sense that if we omit any element from it then this will
change the isomorphism type of .) It is well-known that:

() if the BA’s A, B are both atomic and base-minimal then 2 = B
implies that they are also base-isomorphic.

The question was investigated in [HMTAN], [HMTII], [N83], [B87],
[BSh88], [S90], [S86], [F90], whether one can generalize statement (*) above
from BA’s to the algebraic counterparts of first order logic i.e. to cylindric
algebras. (The present paper is self-contained, but the basic definitions are
recalled from [HMTII] in greater detail in §2 of the “Open problems” paper
of this volume.)

The algebraic counterparts of models of first order logic are the so called
locally finite regular cylindric set algebras, for short Lr’s see [N90], [AS78]
or [HMTII] §4.3. (The notation Lr was introduced in Andréka [A72] and
[AGNT7]; the above quoted books write Cs,® N Lf, instead of Lr. For
brevity, we stick with Lr.)

An Lr is an algebra whose elements are, basically, finitary relations over
some fixed set U. More precisely, if 2 € Lr and R C "U then R is repre-
sented in A by RT = R x “U. So A C P(“U), and every element of A is of
the form R x “U for some finitary relation R. Now % = (A,U, \, ¢;, dij, )ijecw
where ¢; R is the relation defined by Jv; R(vo, . ..,vn-1), and d;; is the rela-
tion defined by v; = v;. Of course, 2 is a BA and it has to be closed under
the extra operations ¢; and d;;.

Such an Lr 2 is never atomic except for the trivial cases. Therefore 2
is called neatly-atomic if Nr,2 = {x € A : (Vi > n)c¢;(x) = z} is atomic
for all n € w (cf. [HMTII]). Further, 2 is base-minimal if for all Z G U,
the function 11(*Z) = (x N“Z : x € A) is not an isomorphism on 2; cf.

[HMTAN] p. 157.

Let 2 and B be two Lr’s, which are subalgebras of P(“U) and P(“V)
respectively. They are called base-isomorphic if there is a function f : U—»V
inducing an isomorphism between 2 and 8.

Beginning with [HMTAN], the question was investigated whether iso-
morphism implies base-isomorphism for neatly-atomic base-minimal Lr’s.
In other words, this amounts to asking whether (x) generalizes from BA’s
to Lr’s. See [B88] Problem 2(a) on p. 99 for an explicit formulation. Par-
tial results (both negative and positive) were obtained in the above quoted
works, see e.g. [HMTAN] Prop. 11.3.4 (2), Theorem 1.3.6 (a classical result
of Monk).
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Here we give a negative answer to the general question. Actually we will
prove slightly more, we will prove that the answer remains in the negative
even if we generalize (i.e. weaken) the notion of a base-isomorphism.

Theorem 0.1. There are neatly-atomic base-minimal locally finite reg-
ular cylindric set algebras (i.e. Lr’s) which are isomorphic but not base-
isomorphic.

Le. (%) does not extent from BA’s to Lr’s.

The rest of this paper is devoted to proving this theorem. For the proof
we will need to establish some model theoretical results first. We will return
to finishing the proof of Theorem 0.1 at the very end of this paper after the
proof of Theorem 3.2.

Before turning to the proof, let us strengthen Theorem 0.1.

Let 2 be an Lr with greatest element “U. Then 2% is the extension
of 2 generated by (AU {{u} x“U :u € U}) in the cylindric set algebra
with universe P(“U). We note that 2T was denoted by 2y in [HMTII]
§4.3.68(10) p. 178.

Theorem 0.2. There are isomorphic base-minimal neatly-atomic Lr’s 2
and B such that 2 is not base-isomorphic with any subalgebra of 8% and
similarly 9B is not base-isomorphic with any subalgebra of . Further 2
and B can be chosen in such a way that their greatest elements coincide
(they have the same “U ).

It is easy to see that Theorem 0.1 is an immediate corollary of Theorem
0.2 (but not vice versa). Actually we will prove an even stronger result than
Theorem 0.2. Loosely speaking, we will prove that in Theorem 0.2, 2 is not
base-isomorphic to any subalgebra of even a relativized version of B and
the same with 2 and 9B interchanged. For a precise formulation recall from
[HMTII) that 9v,B is the cylindric algebra with universe Nr,%B and extra
Boolean operators c¢;, d;; for i,j < n. For x € Nr,%B, recall from [HMTII]
that RN, B is the algebra obtained from Nr, B by relativizing it (both
elements and operations) to x. That is, the universe of the new algebra is
{y € Nrp,®:y <z} and ¢(y) =N cz(-%)(y) in the new algebra R[N, B.
Now, we will prove that:
(xx) The algebras 2 and B in Theorem 0.2 are such that N, 2 is
not base-isomorphic to any subalgebra of Ri, M, BT for any
z € Nrp,®B" and any 3 < n < w (and the same with 2 and B
interchanged).
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Of the above three results, Theorem 0.1 is the basic cylindric algebraic
theorem. Its improvements Theorem 0.2 and statement (**) serve to show
that this negative result cannot be avoided by some of the standard cylindric
algebraic “generalization methods” used e.g. in [HMTII].

The model theoretic definitions and theorems in the following sections
were tailored for proving the above results. In particular Theorem 3.2 way
below is the model theoretic counterpart of the above theorems according
the standard connections between algebraic logic and model theory elabo-
rated in [HMTII] §4.3, [N90], [AS78] and its accompanying paper.

Section 1: Building x-systems

Definition 1.1. 1) A é-system will mean here a model of the form
A = (G}, h; j)i<j<s where § is an ordinal and:
(i) G; is an Abelian group such that (Vz € G;)(z + x = 0), the
G;’s are pairwise disjoint.
(ii) h;; is a homomorphism from G; into G; when i < j.
(iii) hi},iz o hiz,is = hi1,i3 when ’il < ’ig < ’i3.
(iv) h;; is the identity.
2) We denote §-systems by 2, 3B, and for a system A, we write § = §%,
Gi=G?¥ hij = hffj.
3) Let [l = X2 1Gill-
1<6
4) Let A1 61 = <G31, h%j>iSj<51-
Definition 1.2. We say 2 < % if §* = 6®, G is a subgroup of G?,

hi; C b, and:

(*) for every j < 6%, a € G there is a maximal 7 < j such that
hi;(a) € G

Fact 1.3. < is a transitive reflexive relation and if %o (o < 0) is increasing
then

A (2 < |2

a<é p<é

Definition 1.4.
gr@) ={a=(a;;: 1 <j< & :a;,; € G andif @ < B < < 6% then
Qay = Ga8 + hap(apgy)}. This is a group by coordinatewise addition.
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Definition 1.5. Fora = (a; :i < §) € .Hé G;, let fact(a) = (a;; 11 < j < 6)
1<
where a; ; = a; — h; j(a;). Let Fact(2) = {fact(a) ra€ H& Gf‘}
i<
Claim 1.6. The mapping a — fact(a) is from H G; into gr(2A), and is a
homomorphism. So Fact(2) is a subgroup of gr(l;l‘;% (]

Definition 1.7.
def

(1) E() = gr(2A)/Fact(2).

(2) 2 is called smooth if for every limit § < 6%, E(16) has power 1.
Remark 1.7A. We will not use smoothness. Note: in 1.11 we can demand
also “2 is smooth” provided that p = pl®l for a < 62.

Fact 1.8. Let 2 be a 6*-system:

(1) for every § < 6*: Fact(A[d) C gr(A[9).

(2) Ifa € gr(A) then for every 6 < 6%,

(a;j:1<j <) € Fact(Al9).
Proof. (1) Easy. (2) Suppose a = (a;; : i < j < 6%) € gr(), § < &%
Now for ¢ < § we define b; def a; 5. Now clearly b = (b; : i < é) € [] G; and
<6
so it suffices to prove that a| ¢ = fact(b).
Let fact(b) = (b;; : 1 < j < §), now for i < j < 0,

bij = bi— hij(b;) [by definition of fact(b)]
= a;5 — hij(ajs) [by definition of b;, b;]
= a;; [as a € gr(A)]. o

Lemma 1.9. Suppose 6 is an ordinal < p, with cofinality > Wq, and T
is a set of sequences of ordinals < v of length < ¢, T closed under initial
segments. Let for i < 6, T; ={n € T :n has length i} and let

Ts = {n : 1 a sequence of ordinals of length 6 such that /\ nlae T}
a<é

and assume | |J T;| = p. Then there is a 6-system A = A(T') such that:
<6

o) =) IGH = p
1<
[E()] = [Ts.
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Remark. We shall use later how 2(T), a¢(§ € Ts) (see below) are defined.

Proof. Let G; be the free Abelian group of order two generated by W, =
{a{a EeT,i<j<dbdandi < a < 8}. Let agj def f; So we can
1dent1fy G; with the family of finite subsets of W;, with addition being the
symmetric difference except that for ¢ # j we consider the zero of G;, 0; =
the empty subset of W;, as # (;. Now for a < 3 < 6, hap: Gg — G is
defined by:

(1) forEeTp, i <<, i<j<b, ha,g(af,’j)xs a&] ir;x if & < i, and
f]a if o > 1.

Check: For ao < 3 < 7y, hay = ha o hg, it is enough to check this for

the generators of G, which are af;ﬂ 1<y<éb,i<j<0,§€T,. Now
1_f2='y(soaf;’—a§”)
1 — '8 g 3] 3 &f
b (12 (65,)) = o (a8 = afl7) = (1] - al5) = (o83 - al5)
ff;l _ag{’? = a,W(a’gd)'

if G <i<ny:

hoslhoa(af])] = haslhsi(af))],  hany(af]) = hai(af))

so this is reduced to the first case for « < 3 < i =+'.

fa<i<g:

ha,s [hﬂ,v(ai’;)] = ha,g(a éﬁ) agl? —aflY = ha,v(agﬁ

7] a?] (17z J

ifi<a:
has[hs(a))] = hap(aly) = af5 = hag(af]).
In this context we define
Definition 1.9A. (1) A(T) = (Ga, hap: < 3 < 8).
(2) For € € Ty, let a8 = (af;z 1< g <é).

Clearly a® € gr(2) (by the definition of the hy 5’s). We want to show
at — al ¢ Fact(2) for £ # ¢.
If not there are w; € G; such that a® — a$ = fact(w; : i < §) so

afll = af ! = w; — hij(w;) (for i < j < 8).
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Clearly wj; is nothing but a finite subset of W;. Let

* def I C’
(3) ai] - a’g; ”z
Clearly a* x def (af; : i < j < 6) belongs to gr(2). For every limit ordinal
a < 4, let €(a) < a be such that:

(*) if @} appear in w, then:

= w; — h; ;(w;).

i<a=1i<ela)
j<a=j<ela)
iza&nla#lla=nlea)#Elea)
(remember i= Eg( ) by definition of wy,).

Let w? E{a : a7 appear in w, and @ < a}, wl = wy — wY; so if afja
appear in w} then 1 2 a, hence (by definition of W ) a = 1; 8o it is of the
form at ..

0j°
Now as cf(§) > Ro, there is a stationary subset S of § and €(*) < 6 and

ng, N1 < w such that:
a €S = alimit & €(a) < e(x) & [wWd| =np & [wk| =ny

and as £ # ¢ without loss of generality [i € S = £ # (1]

Let @ < f < v bein S, by (3) ag., = wg — hg(wy); apply hq g and
get ag, ., —ap 5= hag(wg) — ha,(wy). So

azy,y + hay(wy) = a,’;”g + he g(wp).

So for some ¢y € G, for every 3, if a < 8 < § then
(4) a* ap T hag(wg) = cq; i.e.
(B)aygth ,ﬁ(wg) = Ca = ha,p(wg).
Let Uy = {j : a * appear in ¢, for some n € Tj, i < j < §, and i < a},
remember c,, is a ﬁmte subset of W, so U, is a finite subset of §.

Without loss of generality, « E SABeESANa< B = B> Max U,.
We look at the appearances of u e {aém v € [B,6)} it appears in a}, 4
(see (3), noting ¢ | a # £ | a because a € S). No appearance in c, (as

B > Max U,), and no appearance in h,, ,g(wg) (as for any a"ﬁ appearing
in wﬂ, t < €(*) < o hence h, g(a "'6) = a"’] is not of the rlght form). By
equality (5), there has to be an odd number of appearances of members of
u in hg 5(wﬁ) But every member a] B of wﬁ is necessarily of the form a i

tg(n) =i = (3. But by the deﬁmtlon of ha,p(a;;); haplaj;) = alls — all'?
contribute zero or two; i.e. an even number. §

We shall not use, but note
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Fact 1.10. Assume cf(6*) > Ng. If 2, (o < 8) is <-increasing continuous,

a € gr(U) C gr(Aan), a ¢ Fact(A,) (for « < §) then a ¢ Fact ( U Qla>. ]
a<é

Fact 1.11. Let T be as in 1.9. There is a smooth 2, || = p with
|E(2)| > |Ts| such that every h?; is onto G}'. &

Section 2

Hypothesis. 2 is a 6-system where the hffj’s are onto.

Definition 2.1. For every a € gr(2) we define a model
M, = My = [M}]* = M'[a]:

() [Mal= UGT

<6
(i) PM= =G fori< 6
(iii) for every ¢ < é, ¢ € G; we have a (partial) function
F.:PMe . pMa: [ (z)=c+z
. . . . . . Ma Ma.
(iv) for every i < j we have a (partial) function H, ; : P;" — P;"*:

Hi,j(.'L') = hi’j(.’E) + Qs 5.
(v) for uniformity, we have a monadic QM= = ().

Definition 2.2. Now for every b € gr() we define a model
ME = (M.

Its Universe: TU§U |JG* U {(b,m) ‘x € UG?‘}

i<é i<é

Relations:

(i) P atwo place relation PMs = {(i,(b,z)) :1 < 6, and x € G}
(ii) F a partial two place function (make it a three place relation,
if you want): F(z,(b,y)) = (b,y + 2) if 2 € G*, y € G?.

(iii) H a partial three place function
H(i, j, (b, z)) = (b, hij() + bi;).
(iv) < a well ordering of § U | G? UT (not depending on b).
<6
(v) @, Qo, Q1, Q2 one place relations:
Q=6U UG%UTa Q0=57 Ql = UG?aQQZT
i<§ i<§
For later use we demand:
G? is the family of finite subsets of T;.

(vi) individual constants for all members of G.
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Definition 2.3. We let M2 be like M2 without the individual constants.

Fact 2.4. M2 is isomorphic to M iff M} is isomorphic to M}
(a,b € gr(2)).

Proof. Straightforward. i
Fact 2.5. M3 is isomorphic to My iff M? is isomorphic to M.

Proof. Easy. As <Ma, <Ms are the same well ordering on QMa = QMs, an
isomorphism from M2 onto Mg is the identity on (), hence is an isomorphism
from M2 onto MZ. 1

Fact 2.6. M} = M] iffa— b € Fact(2) (the subtraction is in gr(21)).

Proof. Suppose b — a = fact(d) where d = (d; : i < ). We define an
isomorphism g = gq from M, onto My,: for z € G? let g(z) def + d;.

Clearly g maps each PM* onto P® hence it maps |M}| onto |M).
Also g is one-to-one.

1
Now for each i < 6, c€ G, z € PiMa =G?

g (FM(@) =gle+a)=c+a+di=c+gla)=F " (g()).

1
Lastly for i < j, & € P> = G2

M1
9(H, ;*(x)) = g(hij(z) + aij) = hij(2) + aij +di =
hi () + hij(dj) +bij = hij(z +dj) + b j =

My My

Hi,j (z + dj) = Hi,j (9())
(the third equality is as b — a = fact(d) and fact(d)’s definition).

For the other direction suppose g is an isomorphism from M onto M&.
We let d; = g(z) — z for any (some) x € IDZ-M‘i and d = (d; : i < §) and can
check that b — a=fact(d).

. M M

Fact 2.7. Ifa,b € gr(%), £ € {1,2,3},i(x) < 8, x € Py y € Pi(*‘)', then
in the following game player II has a winning strategy:
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in stage n (< w): player I chooses successor ordinal iy, such that
max{i(), g, ...,In—1} < in < &%;
then player II chooses g, such that:
(1) gy is a partial isomorphism from M to M{: it maps QMa U
4 /4
U ija onto QM{; Uy Pij which is the identity on QMg
J<in J<in
(and if ¢ = 1, Q # 0, of course)
(2) gn extends go, ..., gn—1, and
(3) gn(x) =y.

Proof. We let (using the notation from the proof of Fact 2.6 and concen-
trating on the case ¢ = 2).

F, = {idQUgd:de HG?‘,a[a—b[a=fact(d)}.

1€

By 2.2 and 1.8(2) F,, # 0 and by the proof of 2.6, F, is a set of isomorphisms
from M%1QMa U |J G2 onto METQMa U |J G2 The strategy of player I
i<a <o
is to use partial isomorphisms from F;, (if player I has chosen i,).
The first missing point is: for successor a < 3 < 8, g € F,, thereis g’ €
Fgs, g C ¢'; equivalently, for dg € [[ G? satisfying ala — b | a = fact(dy),

i<a
there isd € [[ G¥, al 8 —b I3 = fact(d), and dg = d | . By 1.8 there
i<fB
are di,d2 from [] G} such that a | 8 = fact(d;), b | § = fact(d2). Let
i<p

do=(d):i<a),di=(d:i<p),ds=(d?:i<p).
As ala = fact(d; | @), bta = fact(ds | @), and ala — b | a = fact(dy),
clearly for every i < j < a

(d} — hij(d))) = (4 — hij(d3)) = d? — hii(d2);

2

hence,

(a) d} =2 —d? = hi (d} — 2 — ).
As hg_1 -1 is from G?j‘_l onto G2_, (remember «, 3 are successor ordinals)
for some z € G%_lz

(b) ha—l,B-—l(x) = dl - d2 - dg——l'

a—1 a—1

By (a) for every ¢ < a:
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(¢) hip-1(z) =d} —d? —di.
Now define for i, i < 3:

(d) di =d} —d? — hip1(x).
By (c) for i < o

(e) di = do.

Let d = (d; : i < 3), so dla =dy. We shall show thatal|f -b |3 =
fact(d) thus finishing the proof of 2.7. Fori < j < 3

aij — bij = (df — hij(d})) — (dF — ha;(d3))
= (d} - df) — hij (d} — d5)
= (d; + hip-1 (7)) — hij (dj + hjp-1 (7))
=d; — hij (dj) + (hig—1(x) — hijohjg_1(x))
=d; — h;; (d;).

So d is as required and we finish the proof of the first point.

Second point: If @ > i(*), @ < 9, then there is gg € Fy, such that

ga(z) = y. We know that for some do = [] G}, gq, is an isomorphism
i<a
Al

from [M,fra]ma onto [Mf)ra]
Let e;.) € Gj() be such that G }: 9do(T) + €y = y. As hz(*
is onto Gf‘(* (a hypothesis of this sectlon) there is e, € G2 such that
hi(*),a(ea) = €4(x)- ’

Let d = (d; + hia(eq) : @ < @), gq is as required. §

Conclusion 2.8. For k € {1,2}, a € gr(2), M} is atomic.

Proof. By 2.7 if xz,y € PiM‘I‘C then (Ma,z), (Ma,y) (i.e. the models ex-

panded by an individual constant) are elementarily equivalent (even in

Lo cf(s))- This is by Ehrenfeucht Games — see Chang and Keisler [CK].
So if I' = Th(M,) (the theory of Ma,), {P;(x)} is a complete type.
Why does it follow that ]\L’f is atomic? Suppose n < w, by,...,b, € MB’f7

b = (by,...,by). Without loss of generality, no b, is an individual constant,

so by ¢ Q. Let by € Pz]ya and assume for simplicity that iy > ig > --- > i,.

Now as hi,;, is onto GQ‘ there are b, € G\ such that h;,;, (b;) = be. So

HM2 (b)) = by + ai, s, So FMa o HM2 (b)) = by (well, in M2, F_
2,1 ¢ a

ie,i1 Gy B0, is

(YR
not a function symbol but it is equal to a term); also b, = Fbj,\/fjbl(bl). So
L

k —
Mg “F_ail,ilHilvilFble—bl(al) =ay”.
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Clearly if {P;,(x1)} is complete type (for Th(My)) then so is
{Hl(asl), e, Xy = F_aig,ll Hie,ilFbZ—-h (r1)... }g=2,n but <b17 ey bn) satisfies
those formulas, so its type in MY is isolated by finitely many formulas so it
is isolated. So MY is atomic. §

Really we have proved

Fact 2.9. Ifz € PiM“‘c, Y€ P].M"‘c, i < j and k € {1,2} then for some term
7 in L(Ma), MF =z =7(y). B

Conclusion 2.10. Ifa,b € gr(), k € {1,2} and g is an elementary em-
bedding of M} into M} then g is an isomorphism from M} onto M} (hence
each M} is minimal).

Proof. If not let z € M — Rang(g); if k = 2, g is necessarily the identity

Mk
on @ so without loss of generality, z ¢ Q; now M{; -Q=UP,® so for
1<6
k k k
some i < 6, x € PiMb; now choose y € PZ-M“, so g(y) € PZ-M"; by 2.9 applied
to M} there is a term 7 such that M{ = 7(g(y)) = z. But Rang(g) is closed
under the functions of M} hence under 7, so z € Rang(g); contradiction. §

Section 3

Theorem 3.1. Let u > Ng. There is a first order complete theory ' of
power p, and atomic minimal models M, My of T such that:

Mj is not elementarily embeddable into Mo,

My is not elementarily embeddable into M;.

Proof. Let T be a tree as in 1.9 with |T5| > 1, cf(6) > Ry, e.g.
T = {n : n a sequence of length < p x w1,

which is constantly 0 or constantly 1}.

Let A be a 6-system as guaranteed by 1.9.

So there are (a¢ : ¢ < ¢(0)) members of gr(2),
¢ # &= ac — ag ¢ Fact(™) and ¢(0) > 1.

Now M} . has pu non-logical symbols so T' = Th(M]} ¢) is a complete the-
ory of power u. By 2.6 M;C(C < ((0)) are pairwise non-isomorphic. By 2.8
M} ¢ 1s an atomic model. By 2.10 M} . cannot be elementarily embeddable

into M,;{ when ¢ # £ (as they are not isomorphic). By 2.10 each Méc is
minimal. fi
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Theorem 3.2. Let i be a regular uncountable cardinal or just cf(p) > Ro.
Then there is a first order complete theory I' of power y and models M,
My such that:

(a) Mj, My are atomic models of T' of power p
(b) for £ =1,2 M, cannot be interpreted in M3_,
(¢) Mj, My are minimal.

In the proof we will need the following:

Definition 3.2A. 1) A model M is directly interpretable in a model N if

(i) the universe of N has the form {a/F : a € "|N|,N = ¢la]}
where: n < w, ¢ a (first order) formula from £(N) and E =
E(z,y) (Lg(z) = £Lg(y)) is also a formula, first order in L(N)
which define an equivalence relation on
{a:ae"|N|, N ola]}

(ii) for every relation R of M, m-place,

R={(@/E,...,a™/E): N = pgla',...,a™}
for some first order formula ¢ from L(N)
(iii) we treat (partial) functions of M as relations.

2) We add “with parameters” if we replace N by (N, c)qen; i.e. allow all
members of N to appear in the formulas.
3) M is interpretable (with parameters) in N if M is isomorphic to some
M’ which is directly interpretable in M.

Proof of 3.2. To be able to give a simple proof first, we first make a set
theoretical hypothesis and prove 3.2 under it. We will later show how to
eliminate it.

Hypothesis. There are T,u, 6 as in 1.9, cf(6) > N, |Ts| > p* (pu may be
singular).
Remark. E.g if 257 > (2%)* then T = |J ®>2, u = 2~ are like this.
a<wkt

Let % be as constructed in 1.9, so let (a; : ¢ < |Ts|) be from gr(2A),
[¢ # & = a¢ —a¢ ¢ Fact(%)]. So [MZ ]l = p. As in the proof of 3.1
Ma2< are pairwise elementarily equivalent, atomic, minimal, pairwise non-
isomorphic. But we need the non-interpretability.

Fatc 3.2B. Let (a; : ( < |E(2)|) be a maximal list of members of gr(2A)
with  # £ = a¢ — a¢ ¢ Fact(A). For each ( the set S; = {£ : M§£ can be

interpreted in M } has power < p.
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Proof. For each £ € S¢, as we can interpret M§£ in M§< we certainly can

interpret MgE in Mazc. Le. for each § € S¢, we can find a model N,, such

that:

() Na, is isomorphic to Mg’E

(ii) the universe, relations and functions of N,, are definable in M§< (we
may allow parameters).

If |S¢| > p for some & # & from S¢, Na, = Na,, [as: (@) — the
language of the M3  is fixed and finite and (8) — M2 . has language of power
< p hence has < p formulas (adding parameters does not change) now we
use the pigeon hole principle]. Clearly Na,, = Na,, implies M;:’El & Ma3£2
which implies (by 2.5) M;’&l = M§£2 by 2.4, 2.6 this implies & = &;. Hence
necessarily |S¢| < p. B

Returning to proving 3.2. By 3.2B, there is ¢ < |E(2)| such that

£¢ U Sc(as| U S| <uxpt <|E®))). Similarly there is ¢ € p*,
¢<pt ¢<pt

¢ ¢ Se. Now [Mazf]m(T), [Mazc]“"(T) are as required (by their choice ¢ ¢ S,

£ ¢ S¢, so we get the non-interpretability).

Note that we can get more:

Fact 3.2C. There is a subset S of |E(2)| of power |E(2)| such that
(#EE€S=(¢S¢ (S¢ — as defined in 3.2B).

Proof. By 3.2B and Hajnal’s free subset theorem (by Hajnal [4]). B

Now for each ¢ < |T,|, let I'¢ be the first order theory of Mgc. By 2.7
['¢c =T for all ( (Ehrenfeucht-Fraissé game, see [CK]). By 2.8 Mgc is atomic,
by 2.10 minimal. By 3.2C we prove 3.2 under the hypothesis mentioned at
the beginning of the proof of 3.2. We shall return to the proof of Theorem
3.2 later (i.e. to the proof without the extra assumptions).

Convention 3.3. Let x be a large enough cardinal (e.g. J,+), <}, a well
ordering of H(x), and as in Def.2.2 (iv), <M1 is just the restriction of <

to Q[Mﬂ?]gl and on the ordinals it is the usual ordering (when 2« € H(x), of
course).

Definition 3.4. Let for a 6-system 2 = 2(T) and a € gr(A), the model
M be the expansion of M3 by:

(i) the function z — (a,z) for z € |JG?
1<6
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G, G}, G2, G3 (¢ < w) are partial unary functions from G?
to w, 6%, 6%, T,, respectively (remember: Qo = 6, Q3 = T),
12 . .

x = ez<:k afeﬁ where k = G(z), ig = G}(x) for £ < k, js = G3(z),
¢* = G3(z), and the freedom we have is eliminated by the well

order; i.e. £ <m = (€%,ig, jg) <} (€™ im, Jm)-
R a partial binary function, R({,a) ={lafora <4, € T.

Claim 3.5. Suppose 2 = A(T) € H(x) is a §*-system and M is an ele-
mentary submodel of [M2]*T) which includes Q(I)VI 3. Then:

(i)

(i)
(iii)
(iv)

)

(v

S=8MEran= QY is as required in 1.9 for § = &*; i.e.
it is a set of sequences of ordinals of length < ¢ closed under
initial segments;

Qi = UG

i<é
a € gr(A(5));
M = [MZ2]2);

[ME2S) < (MY for £ =1,2,3,4.

Proof. Check. 1

Claim 3.6. If 2% =A(T), M < [M2*T), §4T) ¢ M, S = Q) then:

(1)
(2)

b € gr(A(S)) = b € gr(A(T)) and

when b = (b : i < j < 6*D), b ; € [ML*S), the inverse
implication also holds.

d € Fact(2(S)) = d € Fact(A(T))

gr(2A(S)), Fact(A(S)) is a subgroup of gr(A(T)), Fact(A(T)),
respectively.

Fact(A(S)) = gr(A(S)) N Fact(A(T)).

Proof. Check. g

Claim 3.7. Suppose % = A(T), M < [M2]*T), 6* C M andb = (b, : i <
j < 6%(T)) belongs to gr(2, S) where S = MNT. Then [MZ*S) < [MZ*™).

Proof. By the Tarski-Vaught criterion (see [CK]) it is enough to prove
that for any by, ... ,b, € [ME]*S), ¢ € [MZ*T) and first order ¢ such
that [MZ)*™) = @by, ..., b, c] there is ¢’ € [MP]*5) such that [MZ]*T) |=
@[b1,...,bn,c]. Without loss of generality, none of by,..., by, c is an indi-
vidual constant hence none of them is in.Q).
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Let oo < p be such that by, ..., b,,c belong to |J Gg(T) and, in partic-
<o

ular, let c € ngz)) where (x) < . We can find by 1.8 (2),d = (d; : i < )
such that in gr(A(S) I @), (aij : i < j < a)—(b; : 1 < j < a)=
fact(d; : i < a). So easily gq € Fy, in the notation of the proof of 2.7, hence
(by what we proved there on the family of F,’s) <[Mg]m(T),b1, ..y by, ) is
elementarily equivalent to ([M3]*T), gq(b1),...,ga(bn),ga(c)). Note that
as d; € [M3*S) b, € [M32O) clearly gq(by) € [M2*S). As M <
[M2)2T) and M2 is an expansion of [MJ)2(T) (and 3, ga(b1),.--,9a(bn)
belong to [M2]%(%)) there is ¢' € G’;(S) C [M3]25) such that [M23]*T) |=
©[ga(b1),-..,9d(by),cl] and by the definition of gq (and as dg € G;(S) for
B < a) we can find ® € G’E(s) such that ¢! = gq(c°).

So [M3*T) = ©lga(b1),-..,9d(bn),ga(c?)]. Again by what we have
proved in the proof of 2.7 on the family of F,’s, it follows that
[Mg]“(T) = o[by,. .., by, "], as required. §

On logics with generalized quantifiers see
Definition 3.8. L£* is first order logic with the following additional quan-
tifiers

(Qiwz, Y)lp1(2,y), p2(2,y)]

with the following interpretation:

M = (Qiwz, y)[e1(z,y), po(z,y)] iff:

for some ordinal a, for £ = 1,2 (Ay/Ey, <;) is a well ordering of order
type a where:

o Ay={a€M: M Iypea,y)},

o Ey(z,y) def we(z,y) Ny, x) is an equivalence relation on Ay, and

o <y is defined by a/E <;b/E iff a € Ay, b € Ay,

(Bxa y)[goe(my) N Eg(:L‘, a) N Eg(y, b)]

Fact 3.9. If M is a model with < p relations and functions and A C M is
infinite then there is N <g+ M, A C N, ||[N| = p + |A| + No. In fact we
can expand M to a model M* by adding < p functions such that for every
N < M* we have N <0+ M.

Proof. E.g. by [Sh11] (or: you can have Skolem functions witnessing E; is
not an equivalence relation, (A./Fy, <g) is not a linear order, or is a linear
order which is not a well ordering, or that one of (A1/E1, <1), (A2/E2, <2)
is isomorphic to a proper initial segment of the other). g



Sh:246

ON A PROBLEM IN CYLINDRIC ALGEBRA 661

Claim 3.10. If (for a given §-system 2, a,b € gr(2)) in M2 we can inter-
pret Mg, say N is directly interpretable in Mg, N = ]Mg then:

i) N1V hr%” M3 QM3 moreover

(ii) h is definable in M2 (in the logic L;,,) from the same parameters
that appear in the interpretation.

Proof. (i) As M31Q = M2 Q. (ii) As h(z) = y iff the order types of
({ze N:z<Na}, <My, <{z € M3z <May}, <Mg> are isomorphic. i

Claim 3.11. Ifin 3.7 we assume also M <+ [MZ]*(T) then we can conclude
also [Mg]m(S) < [MS]Q‘(T).

Proof. Asin 2.7.

Claim 3.12. Suppose M <« [MA]*™) S = QM. Ifb,c € gr(A(S)), and
[MZ*S) is interpretable (with parameters) in [M2]*(5) then [MZ]*T) is
interpretable in [M2]*(T),

Proof. So there is a model MS directly interpretable with parameters in
[M225)) MS = [ME™S) (remember [MJ]*5) is a reduct of [MZ]*()). Let
h: M3 — [MZ]*™T) be such an isomorphism. The same (finitely many)
formulas which define M¥ in [M3]*(5), define a model M7 in [M3]*(T). By
3.11 and the assumption M <z« [M2]*™) we have [M3]2(5) < . [M3]2D);
([M32S) M8y <p. ([MZAT) MT). By 3.10, h | QM° is definable in
[Mg’]“(s) with parameters and is an isomorphism from M*S | QM * onto
[M3]%(S) | Q. So the same formula gives an isomorphism from MT } QM"
onto [M23*(T) 1 Q.
Choose z; € G?(s) and let, for i < j < 6

ei; =the unique member of Q{VIS such that e;; + h; j(x;) = ;

e;’j = h(e;;)

e=(e;:i<j<b),e={(e,;:i<j<9).

Easily M¥ is isomorphic to [M3]*), so as [MP]*(5) =~ M5 we have

h

e — b € Fact(A(S)) by 2.6 hence (see 3.6(3)) € — b € Fact(A(T)). So,
it is now easy to check that MT = [M3]*(T); remembering M7 is directly
interpretable with parameters in [M2]*(T) we get the desired conclusion. §

Returning to proving 3.2. Let u, 6 be cardinals such that u > 6, § =
cf(f) > No. Choose a strong limit cardinal, A\, u < A, cf(A) = cf(f) and
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a strong limit cardinal k, A\ < &k, cf(k) = cf(f). So A > A, k% > & but
A=\ k< =k, (6.8 A= Turg, £ = Jutore)

Let T° = 9>k = {1 : n a sequence of ordinals < x of length < 6}
so &, the “height of T°” is #. We define the 6-system AT° by the proof of
1.9; i.e. by 1.9A. Let T' = >\ = {77 €Pr: A ()< /\}. SoT' C T.

i<flg(n)
Now for each v € TS we know by 3.2B that

59 def { pE TS : MaQP interpretable with parameters in Mij}

has cardinality < k. So by 3.2B there is v € TS, vé¢ U{S,(; tNE Tﬁ}

Let N be an L*-elementary submodel of cardinality A of Mé., which
includes QU T U{vta: a < 0}

Now define T? C %>k by: fori < p, T? = T? N N, hence

2 _ . o2
T = {p EHMN: ié\up i€ T; } Remember 3.5, 3.6.

By 3.12 for every p € T;(C Tj), [MaQU]Q‘(:’Q) is not interpretable with
parameters in [MaQP]Q‘(Tg). By 3.2B there is p € T} such that [Mgp]m(Tz) is
not interpretable in [M,?]Q‘aﬂ) even with parameters.

Let M be an L*-elementary submodel of N of cardinality g which in-
clude
QN u{vta,plta: a<6}.

Using 3.5, 3.6 and letting T3 = T2 N M we know that by 3.12 [Mgu]m(:'ﬁ),

[Man]m(T3) are not interpretable in each other (even with parameters). They
satisfy the other requirements of 3.2 as in the proof of 3.1. §

Section 4: The concluding part of the cylindric algebraic
proofs

From Theorem 3.2 above, we will prove our cylindric algebraic theo-
rems by using the connections between cylindric algebras and model theory
described in [HMTTII| §4.3. From now on, CA abbreviates “cylindric alge-
bra”. The CA, ¢sM associated to a model M was defined the natural way
in [HMTII] p. 154. It was proved there that

(**) If ¢sM is base-isomorphic to a subalgebra of €s”V then M is
interpretable in N. Moreover, by [HMTII] 4.3.65(10),
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(**) If esM is base-isomorphic to a subalgebra of (€s™)* then M is
interpretable with parameters in N.

Let p be a cardinal satisfying the hypothesis of Theorem 3.2. Obviously
there is such a p. Then by Theorem 3.2 there are elementarily equivalent
minimal models M and N such that none of them is interpretable with
parameters in the other. (See the end of the proof of 3.2 for the part
concerning parameters.)

Let % = ¢sM and %8 = ¢&sV. By (I%), % is not base-isomorphic to any
subalgebra, of B and the same holds with % and 9B interchanged.

Elementary equivalence of M and N implies 2 = 98 by [HMTII]
4.3.68(7).

Since the cardinalities of M and N coincide, their universes can be
identified hence the greatest elements of 2 and 9B coincide.

Minimality of M and N implies base-minimality of 2 and B by
[HMTII] §4.3, see also [N90]. (By [HMTII] 4.3, %, ®B are Lr’s. But this
is also very easy to check directly.)

These observations together prove Theorem 0.2 which in turn implies
Theorem 0.1.

To see that we also proved (xx) strengthening Theorem 0.2, recall that
in Definition 3.2 A(i) when defining M’s interpretability in N, we allowed
the interpretation of the universe M to be a subset of N definable by a
formula ¢ in N. Since ¢ corresponds to an element oV of ¢sV we can
choose £ = ¢ and relative with this z to obtain (). (Restricting the
universe of a model to a definable set is the model theoretic counterpart of
the algebraic notion of relativization.) To be more precise, assume ¢ is of
the form ((vg) and the natural number n (n > 3) in (%) is fixed. Then we
choose z = (p(vo) A @(v1) A+ A p(vy—1))N. Clearly z € Nrp(es?). The
rest of the argument is unchanged.

This finishes the proofs of the cylindric algebraic statements in §0.
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