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ON CH + 2% — (a) FOR a < w;
SAHARON SHELAH!

§1. Introduction.
We prove the consistency of
CH +2M is arbitrarily large + 2% 4 (w1 X w)%

(Theorem 1). In fact, we can get 2% /4 [w; X w]} , see 1A. In addition to this
theorem, we give generalizations to other cardinals (Theorems 2 and 3). The
w1 X w is best possible as CH implies

ws = (w x n)2,

We were motivated by a question of J. Baumgartner, in his talk in the
MSRI meeting on set theory, October 1989, on whether w3 — (@)% for a < w;
(if 2% = Ry, it follows from the Erdés-Rado theorem). Baumgartner proved the
consistency of a positive answer with CH and 2™ large. He has also proved [BH]
in ZFC + CH a related polarized partition relation:

()-G)..
R, Ri/ g,

Note. The main proof here is that of Theorem 1. In that proof, in the
way things are set up, the main point is proving the R;-c.c. The main idea in
the proof is using P (defined in the proof). It turns out that we can use as
elements of P (see the proof) just pairs (a,b). Not much would be changed if
we used ((@n,an) :n < w), an a good approximation of the nth part of the

suspected monochromatic set of order type wy X w. In 1A, 2, and 3 we deal with
generalizations and in Theorem 4 with complementary positive results.

§2. The main result.

THEOREM 1. Suppose

(a) CH

(b) A¥t =)\

Then there is an Ra-c.c., Ry -complete forcing notion P such that
(i) IP|=A

(i) kp “2% =X A4 (w0 x w)3”

(iii) +p CH

(iv) Forcing with P preserves cofinalities and cardinalities.
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Proof. By Erdés and Hajnal [EH] there is an algebra B with 2% = &,
w-place functions, closed under composition (for simplicity only), such that
® If a, < A for n < w, then for some k

ap€clg{a:k<i<w}.
(® implies that for every large enough k, for every m, ar € clg{as: m <1<
w}.) Let
Rs={b:bC ) otp() =6, a€eb=>bCeclg(b\a)}.
So by ® we have
@ If  is a limit ordinal, b C A, otp(b) = «,
then for some a € b, b\ a € |J; Rs.

Let Rew, = U Ro- Let P be the set of forcing conditions

(w7 ) P)

where w is a countable subset of A, ¢ : [w]? — {red,green} = {0,1} (but we

write ¢(a, ) instead of ¢({e,8})), and P is a countable family of pairs (a,b)

such that

(i) a, b are subsets of w

(i1) b € R<w, and a is a finite union of members of Ry,

(iii) sup(a) < min(b)

(iv) if sup(a) < ¥ < min(b), v € w, then c(y,-) divides a or b into two infinite
sets.

a<lw)

We use the notation
p = (w?,c?, PP)
for p € P. The ordering of the conditions is defined as follows:
P<q <= wP CwI& P CcI&PPCPIL
Let
e=U( peGe).

FAcT A. P is ®y-complete.

Proof. Trivial—take the union. [

FacT B. Fory< A, {q€P:vy € w’} is open dense.

Proof. Let p € P. If v € w?, we are done. Otherwise we define ¢ as
follows: w? = w? U {y}, P?=PP, c? | w? = ¢P and c¥(y,-) is defined so that
if (a,b) € PY, then c¥(y,-) divides a and b into two infinite sets. O

FAcT C. Ikp “2% > ) and ¢: [\]? — {red, green}.”
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Proof. The second phrase follows from Fact B. For the first phrase, define
P, € 12, for a < A, by: p (i) = ¢(0,a + 7). Easily

Fp “p, € “*2andfora <f < A, p_# Bﬂ”
solkFp “2% >\ O
FACT D. P satisfies the Ry-c.c.

Proof. Suppose p; € P for : < R,. For each ¢ choose a countable family A’
of subsets of w? such that A* C R«,, and (a,b) € PP implies b € A’ and a is a
finite union of members of .A*. For each v € ¢ € A choose a function F,; . (from
those in the algebra B) such that Ff;,c(c N\ (7 +1)) = 4. Let v; be the closure of
w; (in the order topology).

We may assume that (v; : i < wy) is a A-system (we have CH) and that
otp(v;) is the same for all i < w;. Without loss of generality (w.l.o.g.) for ¢ < j
the unique order-preserving function h; ; from v; onto v; maps p; onto.p;, A
onto A7, wP Nw?Pi = wP° N wP! onto itself, and

i _
Fie= Fh-‘,j(v),hs.j “c

for v € ¢ € A’ (remember: B has 2% = R, functions only). Hence
®1 h; j is the identity on v; Nv; for ¢ < j.
Clearly by the definition of R<., and the condition on F.;"C:

®2 fac A, i#janda@wh Nuwh,

then a \ (w?* N w??) is infinite.

We define q as follows.

wi = wPo U wPr,

P9 = Ppro PP,

¢? extends c?® and cP! in such a way that, for e € {0, 1},

(%) for every v € wPe \ wPi-¢ and every a € A'~¢, c¥(v,-) divides a into

two infinite parts, provided that

(**) a\ wPe is infinite.

This is easily done and py < ¢, p1 < ¢, provided that ¢ € P. For this the
problematic part is ¢? and, in particular, part (iv) of the definition of P. So
suppose (a,b) € PI, e.g., (a,b) € PP°. Suppose also v* € w? so that sup(a) <
v* < sup(b). If y* € wPo, there is no problem, as pp € P. So let us assume
7* € wI N\ wP = wPr N\ wPo, If a\ wP or b\ wP! is infinite, we are through
in view of condition () in the definition of ¢9. Let us finally assume a \ w?! is
finite. But @ C w?°. Hence a \ (wP® Nw?") is finite and @, implies it is empty,
ie., a C wP° NwP'. Similarly, b C wP* NwP'. So he,1 | (aU b) is the identity.
But (a,b) € PP°. But h; ; maps p; onto p;. Hence (a,b) € PP*. As p; € P, we
get the desired conclusion. O
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FacT E. I-p “There is no ¢c-monochromatic subset of A of order-type w; x

w.”

Proof. Let p force the existence of a counterexample. Let G be P-generic
over V with p € G. In V[G] we can find A C ) of order-type w; x w such that
¢ | [A)? is constant. Let A = J, ., An Where otp(An) = w; and sup(4n) <
min(Ap+1). We can replace 4,, by any A}, C A, of the same cardinality. Hence
we may assume w.l.o.g.

(*h A, € R, for n < w.
Let 6, = sup(A,) and
Bn =min{f:6, <P <A, d(B,-) does not
divide U A into two infinite sets },
I<n

where d = ¢¢. Clearly 8, < min(4,41). Hence 8, < Bnt1. Let d, € {0,1}
be such that d(fn,7) = dn for all but finitely many v € |J;¢, A1. Let u be an
infinite subset of w such that d, is constant for n € w and {B,: n € u} € R..
Let A; = {a! :i < w; } in increasing order. So p forces all this on suitable names

(B,:n<w), (elii<w), (8,:n<w).

As P is Ry -complete, we can find pg € P with p < pg so that po forces [jl =6
and §,, = 6, for some f; and 6,. We can choose inductively conditions py € P
such that px < pr41 and there are iy < jx and o! (for 7 < j;) with

P+ - “aﬂh > sup(wP* N §),

aﬁ € wPk for 1 < ji,

{al:i<ir}Cca{al:ir<i<ji},

af = o for i < ji,

&(Bn,al) =d, for 1 < n,i > 1o, and

¥ € [6m, Bm) N wP* implies ¢(v,-) divides

{e!:i <, I <m} into two infinite sets”

(remember our choice of f,,). Let

I(*) = min(u)

a={af:1<i(x), i <|Jir}
k

b= {ﬂl ZlE‘u}
¢ =(Jw™,|Je* PP U {(a,b)}).
k k k

Now g € P. To see that ¢ satisfies condition (iv) of the definition of P, let
sup(a) < 4 < min(b). Then s )k < ! =
pla) < v (b) up{a;,” 1k <w} <7< Py Bty e w

ik -
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Uy wP*, so for some k, v € wP*. This implies

I(*
7¢ (a.-f,}l,&(.)) ,
whence v > §;(,) and
{ad:1<1(*), i<jr}Ca,

which implies the needed conclusion.
Also ¢ > px > p. But now, if r > ¢ forces a value to «
contradiction. O

5:)1."; we get a

Remark 1A. Note that the proof of Theorem 1 also gives the consistency of
A # w1 xw]} : replace “c(7,-) divides a set z into two infinite parts” by “c(y, -)
gets all values on a set z.”

§3. Generalizations to other cardinals.
How much does the proof of Theorem 1 depend on R;? Suppose we replace
Ro by p.

THEOREM 2. Assume2* = p* < A = A and 2 < k < u. Then for some
ut-complete ut*-c.c. forcing notion P of cardinality 2*:

Fp 2t =2 A [ut xpf
Proof. Let B and R; be defined as above (for § < u¥). Clearly
&) If a C A has no last element, then for some a € a, a\a € U,, Rs.

Hence, if § = otp(a) is additively indecomposable, then a \ a € R;s for some
a€a.
Let P, be the set of forcing conditions
(w,¢,P)
where w C A, |w| < p, c: [w]? — &, and P is a set of < p pairs (a,b) such that
(i) a, b are subsets of w
(ii) b € Ry, and a is a finite union of members of J, <5<, + Rs
(iii) sup(a) < min(b) -
(iv) if sup(a) < ¥ < min(d), vy € w, then the function c(v,-) gets all values
(< &) on a or on b.
With the same proof as above we get
P, satisfies the u**-c.c.,
P, is uT-complete,
(so cardinal arithmetic is clear) and
e, A7 [ut xulk.
O
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What about replacing ut by an inaccessible 87 We can manage by demand-
ing
{an(a,B): (a,b) € P, | Jotp(an(a,§)) x n = otp(a)

(a, ) maximal under these conditions }

is free (meaning there are pairwise disjoint end segments) and by taking care in
defining the order. Hence the completeness drops to #-strategical completeness.
This is carried out in Theorem 3 below.

THEOREM 3. Assume 8 = 6<% > Ry and A = A<®. Then for some 87 -c.c.
0-strategically complete forcing P, |P| =\ and

Fp 29 =X, A /A (8 x 68)2.
Proof. For W a family of subsets of \, each with no last element, let

Fr(W) = { f : f is a choice function on W such that
{a~ f(a) : a € W} are pairwise disjoint }.
IfFr(W) # 0, W is called free.
Let P<p be the set of forcing conditions
(w,c,P,W)

where w C A, |w|] < 6, ¢: [w]? — {red,green}, W is a free family of <
subsets of w, each of which is in (J;.4 Rs, and P is a set of < 8 pairs (a, b) such
that

(i) a, b are subsets of w
(i) b€ Rw
(ili) sup(a) < min(b) and for some & < §; < +++ < §p, 6 < min(a), sup(a) <
6,,, an [51,5[+1) ew

(iv) if sup(a) < v < min(b), 7 € w, then ¢(v,-) divides a or b into two infinite
sets.

We order Py as follows:

p<gq iff w? Cw? P Ccl PPCPI, WP C WY and every
f € Fr(WP) can be extended to a member of Fr(W7).
a

§4. A provable partition relation.

CLAIM 4. Suppose 6 > Ry, n,r <w, and A = A<?, Then

(At xn— (8 xn,0 xr)i.
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Proof.  We prove this by induction on r. Clearly the claim holds for
r=0,1. So w.l.o.g. we assume r > 2. Let ¢ be a 2-place function from (A\*)" x n
to {red, green}. Let x = J3(A)*. Choose by induction on ! a model N; such that

NI < (H(X)7 €7<*)1

INil =X A+1C Ny, NS® C Ny, ¢ € Ny and N; € Niyy. Here <* is a
well-ordering of H(x). Let

A=) x 1, (M) x (1+1)),

and let §; € A; \ N; be such that é§; ¢ £ whenever z € N, is a subset of 4; and
otp(z) < (A*)". W.lo.g. we have §; € Ni4;. Now we shall show

(*) Y €Ny, YC A, |[Y|=A and 6, €Y,
then we can find B € Y such that ¢(8,6;) = red for all I < n.

Why does (%) suffice? Assume (*) holds. We can construct by induction
on 1 < 0 and for each ¢ by induction on ! < n an ordinal a;; such that
(a) aig€ Ajand j <i=aji<aiy
(b) aiy € No
(¢c) c(eijp,bm) =1ed form < n
(d) e(aijp, @iy 1,) =red wheniy <iore =:i&l; <l
Accomplishing this suffices as a;; € 4; and

l<m=supA; <minA4,,.
Arriving in the inductive process at (i,1), let
Y={f€cA:c(B,ajm)=red ifj<i,m<n,orj=i, m<l}.
Now clearly Y C A;. Also Y € Ny as all parameters are from Ny, their number

is < @ and N0<g C Ny. Also 6§ € Y by the induction hypothesis (and é; € A;).
So by (*) we can find a;; as required.

Proof of (¥). Y € Ny, because §,, €Y and Y € Ny. As |[Y| = A*, we have
otp(Y) > A*. But At — (A+,6)?, so there is B C Y such that |[B| = At and
¢ | B x B is constantly red or thereis B CY such that |[B| =6 andc | Bx B is
constantly green. In the former case we get the conclusion of the claim. In the
latter case we may assume B € Ny, hence B C Ny, and let k¥ < n be maximal
such that

B'={¢€B: |\ c(6,£) =red}

<k

has cardinality . If k = n, any member of B’ is as required in (*). So assume
k < n. Now B' € Ny, since B € Ny < Ni and {N;,A;} € N¢ and §; € Ni
for I < k. Also

(€€ B+ c(6,6) = red}
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is a subset of B' of cardinality < @ by the choice of k. So for some B” € Ny,
¢ | {8} x (B' ~ B") is constantly green (e.g., as B' C Ny, and N&% C Np). Let
Z={6€ Ax:c| {8} x (B'\ B") is constantly green }
and
Z'={6§€Z:VaeB \B")6<a& b <a)}
So Z C Ak, Z € Ni, &k € Z and therefore otp(Z) = otp(4x) = (A*)".
Note that k # m = Z' = Z and k = m = Z' = Z \ sup(B' \ B"), so Z'
has the same properties. Now we apply the induction hypothesis; one of the
following holds (note that we can interchange the colours): (a) Thereis Z" C Z',
otp(Z2") =0 xn, c| 2" x Z" is constantly red, w.l.o.g. Z" € N, or (b) there
isZ"C2Z' otp(Z")=0x(r—1), c| 2" x Z" green and w.l.o.g. Z" € Ni. If
(a), we are done; if (b), Z"” U (B'\ B") is as required. O

Remark JA. So (A\T)"t! — (8 x n)? for A = A<9, 0 = cf(8) > Ny (eg.,
A =2%9),

Remark 4B. Suppose A = A<%, 8 > Rq. If ¢ is a 2-colouring of (A*7)* x n
by k colours and every subset of it of order type (\*("=1))* x n has a monochro-
matic subset of order type 8 for each of the colours, one of the colours being red,
then by the last proof we get
(a) There is a monochromatic subset of order type 8 x n and of colour red or
(b) There is a colour d and a set Z of order type (A*")* and a set B of order

type 6 such that B < Z or Z < B and

{(a,B):a€B, pEZora#pB€B}
are all coloured with d.
So we can prove that for 2-colourings by k colours ¢

(AT xn— (8 x ny,...,0 x ng)?

when r, s, n are sufficiently large (e.g., n > min{n;: 1=1,...,k, s > 2?:1 ni})
by induction on ELI ny.
Note that if ¢ is a 2-colouring of A*2*, then for some [ < k and 4 C A12*
of order type AT(2"+2) we have
() If A’ C A, otp(A') = A*? and d is a colour which appears in A, then there
is B C A’ of order type 8 such that B is monochromatic of colour d.
We can conclude At2% — (6 x n)?.
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