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THE UNIVERSALITY SPECTRUM: CONSISTENCY FOR
MORE CLASSES

S. SHELAH*

We deal with consistency results for the existence of universal models in
natural classes of models (more exactly—a somewhat weaker version). We apply
a result on quite general family to Tgeq and to the class of triangle-free graphs.

0. INTRODUCTION

The existence of universal structures, for a class of structures in a given
cardinality is quite natural as witnessed by having arisen in many contexts.
We had wanted here to peruse it in the general context of model theory
but almost all will interest a combinatorialist who is just interested in
the existence of universal linear order or a triangle free graph. For a first
order theory (complete for simplicity) we look at the universality spectrum
USPr = {A : T has a universal model in cardinal A} (and variants).
Classically we know that under GCH, every A > |T| is in USPr, moreover
2<% = A > |T| = X € USPr (i.e.~the existence of a saturated or special
model, see e.g. [1]). Otherwise in general it is “hard” for a theory T
to have a universal model (at least when T is unstable). For consistency
see [12], [14], [15], Mekler [8] and parallel to this work Kojman-Shelah [7];
on ZFC nonexistence results see Kojman-Shelah [4], [5], [6]. We get ZFC
non existence result (for Tf’;q under more restriction, essentially cases of
SCH) in Section 2, more on linear orders (in Section 3), consistency of
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(somewhat weaker versions of) existence results abstractly (in Section 4)
derived consistency results and apply them to the class of models of Tteq
(an indexed family of independent equivalence relations) and to the class of
triangle free graphs (in Section 5). The general theorem in Section 4 was
intended for treating all simple theories (in the sense of [11], but this is not
included as it is probably too much model theory for the expected reader
here 9and for technical reasons).

1. DEFINITION

Definition 1.1. For a class K = (K, <k) of models
1) Ky = {M eK: M| = A}
2) univ (A\,K) = Min {|P| : P a set of models from K such that for every
N € K, for some N € P, M can be <g-embedded into N}.
3) Univ(A\,K) = Min{||N|| : N € K, and every M € K, can be <k-
embedded into N}.

4) IfK is the class of models of T, T a complete theory, we write T instead
(mod T, <). If K is the class of models of T, T a universal theory, we
write T' instead (mod (T'), C).

Claim 1.2. 1) univ (), K) = 1 iffK has a universal member of cardinality \.

2) Let T be first order complete, |T| < . Then we have univ(\,T) < A
implies univ(A,K) =1 and univ(A,T) < Univ(A,T) < cf (S<x(univ(A,T),C))
= cov (univ (A, T), A\*, A+, 2) (see [20]; we can replace T with K with suit-
able properties).

2. THE UNIVERSALITY SPECTRUM OF Tteq

For Tteq, a prime example for a theory with the tree order property (but not
the strict order property) we prove there are limitations on the universality
spectrum,; it is meaningful when SCH fails.

Definition 2.1. 15, is the model completion of the following theory, Tteq.
Tteq is defined as follows:

(a) it has predicates P,Q (unary) E (three place, written as yEz}
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(b) the universe (of any model of T) is the disjoint union of P and Q, each
infinite

(c) yEzz — P(z) & Q(y) & Q(2)

(d) for any fixed z, E, is an equivalence relation on () with infinitely many
equivalence classes

(e) if n < w, z1,...,z, € P with no repetition and y1, ...,y € Q then for

some y € Q, Nj—; YEz,Ye-
(Note: Tsq has elimination of quantifiers).

Claim 2.2. Assume:

(a) < p<A

(b) cfEA=X0=cfO=cfu, p™ <A

(c) ppregy(p) > A + |i*]

(d) there is {(a;,b;) : i < i*}, a; € [N<¥, b; € [\]® and |{b; : i < i*}| < A
such that: for every f : A — X for some i, f(b;) C a;

then

(1) Ttq has no universal model in A.

(2) Moreover, univ (X, Treq) > pPr(g)(1)-

Proof. Let D be a 6-complete filter on 8, \; = cfX; < p = >, A\,
thim pAi = p, x =: tef[[;.gAi/D > * (and for (2), tef ([[;coAi/D) >
univ (A, Tfeq)). Also let (f, : @ < x) be <p-increasing cofinal in []; 4 As/D.
Let $ = {6 < A :cfé = 6,6 divisible by u“*1}. Let C = (Cs : 6 € S) be
such that: Cjs a club of §, otp(Cs) = p and [a € Cs = a > 0 divisible by p*]
and @ ¢ id*(C) (i.e. for every club E of A for stationary many § € SN E,
Cs C E) (exists-see [19, Section 2]).

For (1), let M* be a candidate for being a universal model of Ttq of
cardinality A, for (2) let (M{ : { < k) exemplify & =: univ (A, Tteq); for (1)
let Kk =1, My = My. Without loss of generality IPME | = |QME | =\, PM°
is the set of even ordinals < A\, QM" is the set of odd ordinals < \.

For each i < i* and § € S and z € Q™ let a; = {2a : a € a;} and
d[2,6,1,{] = {a : @ € naccCs and for some z € a] there is y < «, such
that M¢ |= yE;2 but there is no y < sup(a N Cs) such that M* = yE;z}.
Clearly d[z, 6,1,(] is a subset of Cjs of cardinality < |a;| < p.

Define g, ;¢ € Hj<9 Aj by: if |a;] < Aj,8 € Cs, otp(BNCs) = Aj
then g,4:¢(j) = otp(e N Cs) where e € CsN B is Min{e : ¢ € Cs N G,
e > sup(d[z, 6,1, N B)} and let g, 45 ¢(j) = 0 if |a;| > A;. By the choice of
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(fa : @ < x) for some vy we have g, 5i¢c <D fy, let ¥* = 7*[2,6,4,(] be the
first such 7. As u = tlim p); clearly v*(z, 8,1, (] is the first v < x such that
for the D-majority of i < 6, A,eqp, 44¢ 0tP (@NCs) ¢ [fy(3), Ai); clearly it
is well defined. Wlog {b; : i < *} = {b; : i < ¢*}.

As x > A+ K+ |¢*, there is y(*) < x such that: z € QM| 6§ € S, i < i,

¢ < k& = 7*[2,6,i,{] < v(x). Now we can define by induction on a < A,

Ng,Ya such that:

(i) Ng is a model of Tg,, with universe v, = p(1 + o),

(ii) all € PN are even, all y € Q"= are odd

(iii) Ny increasing continuous, PN # PNa+1

(iv) for any z € PNo thereis ay = Yz,a € QNo+1\ QM= such that ~(3z €
QN=)[2Ezy),

(v) if @ € S,i < i*N X and b; C Min (C,) then there is a 2f, € QNa+1\ QNa
such that Rang f,) = {otp(y N Cy) : for some z € b}, y is minimal
such that yE,2%} where b! = {2a: a € b;}.

[For carrying out this let do; =% {8 € Cq : otp (Ca N B) = (fy () +1)

for some j < 0}, choose distinct zq;3 € b for § € dy;i. Next choose

Ya,i8 € B\ sup(Co N B) such that it is as in clause (iv) for z,;s and

zLExu,i,ﬂya,iy,B']

If { < k and f is an embedding of N = {J, ) No into M, for some i

we have f(b)) C a]. We easily get a contradiction. m

Remark 2.3. 1) When does (d) of 2.2 hold? (it is a conditionon A > p > 6
with ¢* = A, assuming for simplicity § > R¢) e.g. if
(¥)1 for some cardinal k we have k? < )\, k = cf k, cov (A, kT, kT, k) < A
2) As for condition (d)~ from claim 2.4 below, if D is the filter of co-
bounded subsets of 8, it suffices to have
(*)2 for some cardinal k we have cov (A, u, k1, k) < X, or equivalently,
o € [u, ) and cf (o) = k imply ppp(n)(a) <A\
3) Soif =cf(p) <Jy(@) <p<put <A=cf(N) < ppli'(o)(,u) then by
[23] condition (*); holds for some x < 2,(6)

4) Why have we require § > Rg ? as then by [20, Ch. II, 5.4] we can
describe the instances of cov by instances of pp; now even without this
restriction this usually holds (see there) and possibly it always hold;
alternatively, we can repeat the proof of 2.2 using cov

Claim 2.4. In 2.2 we can replace clauses (c), (d) by (c)*, (d)~ below and
the conclusions still hold.
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(c)t ppop(p) > |i*| + A + univ (A, Tgeq), D a filter on 6,

(d)~ {(a;,b;) : 1 < *}, a; € [\]<H, i* < X or at least {b; : i < i*} has
cardinality < A b; = {a; ¢ : ( < 0} and for every f : A — X for some
i we have {{ < 0: f(ai¢) € a;} # 0 mod D.

The next step is:

Question 2.5. Let T be f.0. with the tree property without the strict order
property; (see [16]) does 2.2 hold for it?

3. A CONSEQUENCE OF THE EXISTENCE OF A UNIVERSAL LINEAR
ORDER

This section continues, most directly, [4].

Claim 3.1. Assume

(a) » k <A< 2%and 2<* < At < 22, ) is regular.
(b) » in \* there is a universal linear order

then for p = A\t

®a, there are f, : X — X (for a < p) such that:
(¥)au for no f : X — A do we have A, ., fo #pa f-

Proof. Assume ®) , fails. We use x-tuples of elements to compute invari-
ants. Note that 2% < 2<* < At hence 2" € {\, AT} hence (AT)* = A*. Let
(€ : e < AT) list #(AT). Let (1, : @ < A) list A distinct members of *2
(not necessarily all of them). Note that as 2<* < At there is a stationary
S eI, SC{6<At:cf(6) =)} (see [19, Section 2] for the definition of
1[S])

As § € I[)\] by [19, Section 2] there is C = {Cs5 : § € S) an S-club
system such that @ ¢ id,(C), otp Cs = X and
® for each o < A we have |[{CsNa: a € naccCs}| < A

Let M* be a candidate for being a universal model of T4 of cardinality
At wlog with universe ™.

For every linear order M with universe A*, for every Z € *M (a k-
tuple of members of M) and § € S, we define a (possibly partial) function
g= 9§4,6 : nacc Cs — ) as follows:
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(%)o for a € naccCs, g(a) = B iff for every ¢ < k we have:

n(¢) =1 <= (Vy < a)(FY <sup(anCs) [y <m ¢ =7 <MY <m

Clearly g%, ;(a) can have at most one value. We call (6,Z) good in M
if for every « € nacc Cs there is € < 6 such that: z°, T realize the same
<pr-Dedekind cut over {i : i < sup(a N Cs)} (necessary if 2<* = A+). (The
meaning is that for every ¢ < x, xz, z¢ realize the same <js-Dedekind cut
over {i:1 < sup(anCs)}).

Let hs : A — naccCs be: h(i) is the (i + 1)-th member of C5. We are
assuming “®y,, fails”, so {gf,,*ﬁ ohs: T € %2, 6 € S} cannot exemplify it.
So we can find A},. : A — X such that:

® if z € *(M*), § € §is (6,7) good in M* then (g3;. 50 hs) € A\ satisfies

h* #J}\yd (gf,ﬁ’& o hg).

..Let h* = h},.; let gs : naccCs — A be h* o (h;l) :naccCs — \. We
now by [4] (using S € I[)] i.e. @) construct a linear order N = M*" with
universe At, N = J, <x Na, N, increasing continuous in a with universe
an ordinal < At and for each § € S, there is a sequence ¢ = (yg : ¢ < k) of
members of Ng;; such that
(¥)1 if @ € naccCs, gs(a) = 3, ¢ < k then

18(¢) =1 6 (V7 € No)(IY' € Nywp(ancs)) Y <nv 98 = v <n ¥ <n ¥3.

Suppose f : At — At is an embedding of N into M*, let E = {§ <
AT : Nj universe is 6 and § is closed under f, f~!}. Clearly E is a club
of AT, hence for some § € S the set A = (acc E) N (nacc Cs) is unbounded
in § (so 6 € accaccE). Let T = (z; : ( < k) =: (f(yg) : ¢ < K), 8O
we know (similarly to [4, Section 3]) that for o € A and { < k we have
I 5(@)(C) = 1 & nga)(¢) = 1. Hence @ € 4 = g3 5(a) = gs(a) =
(931 5 © hs)(otp (N Cs) — 1) = h*(otp (N Cs) — 1) contradicting the choice
of h*. m

Claim 3.1A. 1) In 3.1 if ) is a successor cardinal then we can get

EBR there are f, : A — X\ for a < A\t such that

(*)* for every f € *X for some a < A\t we have £, #p, f (where D) is
the club filter on \).

2) If clause (a) of 3.1 and (b)* below then ® a,u Of 3.1 holds; similarly in
3.1A, where

(0)* univ (A, Torq) <

Proof. 1) Use [21, 3.4].
2) The same proofs. m
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Claim 3.2. Assume )\ is regular uncountable, and
®}\ there are f¢ : A — X for ( < A such that: for every f : A\ — X for some
¢, {a < A: fe(a) = f(a)} is stationary.
1) Let 81,55 C {6 < AT: cf(6) = A} be stationary, and § € S; = 6 =
sup(6 N S2). We can find C = (Cg :8 € 51, < A1), such that:

(a) C’g is a club of § of order type .
(b) na,cccg C Ss.
(c) for every club E of \*, for stationary many § € S1, for some { < AT,

(c) 6 =sup {a : @ € nacc Cg and sup(a N Cg) € nacc C§, otp (a N Cs)
is
even and {a,sup(a N Cg)} C E}

2) Let A = A< and § C {§ < AT : cf§ = A} stationary. We can find
C = (C::6€8,¢ <\t such that

(a) Cg is a club of § of order type \.

(b) for every club E of \* for stationary many 6 € S, for some { < A7,
for every £ < A E contains arbitrarily large (below \) intervals of
Cs of length ¢

3) If\ is a successor cardinal then we can get (2) even if we omit “A = A<}”
and weaken in ®}, “fc(a) = f(a)” to “fe(a) > f(a)”.

Remark 3.2A. 1) We can in 3.2(3) get the conclusion of 3.2(2) too if we
fix €.

2) We can replace in the assumptions and conclusions, A* by p.

Proof. 1) Let (Cs : § € S1) be such that: Cs a club of §, otpCs = X and
nacc (Cs) C 2. If a < B < A, 83N (a, B) # 0 then let (65 5,75 5) 1€ < A)
list all increasing pairs from (S2 N B\ ) (maybe with repetitions). Let
(fc : ¢ < AT) exemplify ®}. Let Cs = {ase : € < A} (increasing). Let
e = eg C )\ be a club of X such that: if i < j are from e then 'yii(:))é < g5
Now for 6§ € S1, ¢ < AT, we let: Cg is {ag,e,ﬂigi),aé,sﬂ, ’Yig,(:,)as,eﬂ (e € eg}.

Clearly Cg is a club of 6 of order type A\. Now if E is a club of A*, then
E N S, is a stationary subset of A* so for some § € S1, § = sup(E N Sz)

and define g : A — X by: ,BZEEE), P 'yggi) +1,5 are the first and second members

of (E N S2)\ (ase, 6)}. By the choice of (f¢ : ¢ < AT) for some ¢ < A%,
(32t e)(g(e) = fe(€)). So Cg is as required.
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2) Similar proof (and we shall not use it).
3) In the proof of (1) for « < A let h(a, —) : A=, We do the construction
for each 7 < A™. The demand on e = eg is changed to: if for ¢ < j are from

¢, then ,yh(fc(a)ﬂ')

0.6 < asj, and C§ is changed accordingly. For some 7 < A

we succeed. (really this version of ®§‘ implies the original version.) m

Claim 3.3. Assume:

(a) X regular, S C X stationary, \* = A.

(b) C=(Cs:6€8),Cs aclub of .

(c) P=(Ps:6€S),Ps C P(nacc(Cs)) is closed upward.

(d) for every club E of A for some é, E N nacc Cs € Ps

(e) k<A Ts= U{Tﬁ,ﬂ,'y : ﬂ < {ﬂa’Y} c na0005}, for IB <7vE€ naccC,;,
Tsp,y C 0205 (%B), |T5,5,] < A, and even for each ~y the set | J{Ts .- :
~¥ € naccCs, B € yNnacc Cs} has cardinality < .

(f) If A € Ps, for ¢ < A* we have f; € "<Cs(§) and [ﬁ < v are from

A= fe B e T6,ﬂ,7] then for some f* € "3cCs(%§) we have [B < v

from A = f* | B € Tsp,] and for every ( < At, {8 € A: fe(B) =
f*(B)} ¢ Ps.

Then there is no universal linear order of cardinality \*.
Proof. Similar to the previous one. ®m

Conclusion 3.5. If 2* > M A =cfA > Ry, C = (C5: 6 € S), § C
{6 < At : cf§ = )} stationary, AT ¢ id%(C) and for each o we have
{Cs N @ : @ € nacc Cs}| < A then

(a) there is no universal linear order in \*
(b) moreover, univ (A\t, T,q) > 2*).

Discussion 3.6. (1) The condition ®, from 3.1 holds in the models (of
ZFC) constructed in [12, Section 4] where A = R, 2% = R, and there
is a non meager subset of “2 of cardinality X;.

(2) It is clear from 3.5 that the existence of a universal graph in A does not
imply the existence of a universal linear order in A: as by [14], [15], if
VEGCH A= XX C = (Cs:6 < At cf6 = \) guesses clubs, for
some A*t-c.c. forcing notion P we have VP |=p “there is a universal
graph in \”. But in V¥ the property of C, guessing clubs, is preserved
and it shows that there is no universal linear order.
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(3) We can look at this from another point of view:

(a) Considering the following three proofs of consistency results on the
existence of universal structures: [12, Section 4] (universal linear
order in R), [14, Section 1] (universal graphs in A*, A = A<* and
[15] (universal graphs in other cardinals), the first result cannot be
gotten by the other two proofs.

(b) For theories with the strict order property it is “harder” to have
universal models than for simple theories as the results of Section
5 on simple theories fail for the theory of linear order (by 3.5) and
even all (f.o.) theories with the strict order property (as in [4])

(4) Concerning 3.5(b), note that (for any complete first order T') we have
Univ (g, T) < 2<# hence cf (5<,(2<#),C ) > univ(p,T) so under
reasonable hypotheses we get in 3.5(b) equality (i.e., u = AT).

4. TOWARD THE CONSISTENCY FOR SIMPLE THEORIES

The aim of this proof was originally to deal with the universality spectrum
of simple countable theories and as a first approximation to characterize
{X : univ (A, T) < AT+ < 2*}, but we shall do it more generally and have
more consequences. On simple theories see [11].

Notation 4.0. (1) For a set u € Scx(At) =: {u C A" : |u| < A} let
supy(u) = {a+ A : a € u} also let Sf\‘+ ={6< At :cfb=)}

(2) If uy,ug € Sca(A1), h: uy — uy is legal if it is one to one, onto, and
there is a unique hY such that: hY is one to one order preserving from
sup, (u1) onto sup, (uz) and for a € uy, hY (a+ X) = h(a@) + A).

(3) We say that h is lawful if in addition hY is the identity. We sometimes
use “legal” and “lawful” for functions h : u; — ug when u; C A%, |u;| >
A

(4) Wide \t-trees T = (T,<) are just subsets of ** (A1) of cardinality
< A% closed under initial segments with the order being initial segment.
A branch is a maximal linearly ordered subset, a At -branch is one of
order type A\t

Definition 4.1. K,, = (Kap,<k,,) is a A-approximation family, if for
some sequence 7 (= (1; : i < A1) of vocabularies, |1;| < )\, 7; increasing
with i, M | i means (M | ;) [ i; 7; can have relations and functions with
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infinite arity but < \; we concentrate on the case 7; = T for all i < \) the
followings hold:

(a)
(b)

(c)
(d)
(e)

(f)
(g)

(h)
(i)

K,y is a set of T-model with a partial order <=<f, (Or Tgyp(rr)-models).
if M € K,y then |M| is a subset of AT of cardinality < A and M <
N=MCN.

if M € Kyp, 6 € S37 then M [ 6 € Kyop and M | 6 < M.

any <k, -increasing chain in K, of length < A has an upper bound.
() if6 € 83, My =M, | §, My <k,, My, |Mi| C & then My, My has
a common <k, -upper bound Mjs, such that M3 [ 6 = M;.

(B) if we have My ;(i < i* < X), My; € K,p increasing with i, | My ;| C
6; € S:\\+ and M, | 6; <k,, M1 ;, then there is a common upper bound
Mj to {Mz} U {Ml,i 11 < ’l;*}

(v) if we have My € K,,, My; € K,;, for i < i* < X increasing with 1,
b€ S;\\Jr, M3; | 6 < My then there is a common <k, -upper bound to
{Ml} U {M2,i 1< i*} such that M3 [ § = M;.

(6) if (i) we have (§; : i < i*) is a strictly increasing sequence of members
of S§‘+, (ii) we have My;(i < i* < X), My1,; € K,y increasing with
i, (i) (1) < i(2) > My = Mi(2) | ) (iv) [Mud] C & (v)
M, ; € K, for j < j* has universe C §;+, and is <k, -increasing in
j (vi) My; | 6; <k,, M, then there is a common upper bound Ms;
to {My; : j < j*}U{My,; : i < i*} such that for every i < i* we have
M3 [ 6= My

For o < X*, {M € K,p, : |M| C a} has cardinality < .

We call h : My — M, a lawful (legal) K,p-isomorphism if h is an
isomorphism from M, onto M, and h is lawful (legal). We demand:
(o) if b is a lawful Kap- isomorphism from My € K, onto Mz € Ky,
and M; <k,, M and h can be extended to some lawful h* with domain
|M]| then for some ', My we have Mz <k,, M}, h C k' and b’ a lawful
Kap-isomorphism from M/ onto M}.

(B) if My € Kap, ug = |My|, up C At and h a legal mapping from u,
onto uy then for some M' € K,p, |M'| = uz and h is a lawful Kpp-
isomorphism from M onto M’.

(v) lawful K,p-isomorphisms preserve < Kap-

If M € K,y and 8 < AT then for some M’ € K,, we have M <k, M’
and B € |M'|

[Amalgamation] Assume M; € K, for £ < 3 and My < Kap Mg for
¢ = 1,2. Then for some M € K,, and lawful function f we have:
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M, <k,, M, the domain of f is Mz, f [ | M| is the identity and f is a
<k.,-embedding of My into M.

Remark 4.1A. This is similar to A*-uniform X forcing, see [13], [24] see
also [18, AP], [22, AP].

Definition 4.1B. We call K,, homogeneous if in clause (g) of definition
4.1 we can replace “lawful” by “legal”.

Definition 4.2. 1) If K, is a A-approximation family then
Kng ={T :(i) T is a <k,,-directed subset of K,
(ii) T’ is maximal in the sense that: for every § < At for
some
M € T we have 8 € |M| (iii) if M € T,
M <kg,, M, then for some M" €T, there is
a lawful K,,-isomorphism h from M' onto M" over

2) Kap is a simple A-approximation if: (it is a A\-approximation family and)
for every 6 € S)‘+, and T € Kpq and {(M;, N;) : i < At} satisfying
M; €T, M; <k,, N; € Kap there is a club C of At and pressing down
h:C — A\t such that:

(*) ifi < j arein CN S}, h(s) = h(j) and M; <k,, M €T, Mj <k,
M €T then we can find N € Ko, M <g,, N, and a lawful <, -
embeddings f;, f; of N;, N; into N over M;, M; respectively such
that fi [ (N ['4) = f; [ (N 1 J).

3) We define K2, as before but M € T' = |M| C Ja.

4) Kap is O-closed if @ = cf0 < X and if (M; : i < 0) is <k, -increasing
in K,p then Ui<9 M; € K, is an <k, -upper bound; moreover if
(Vi < 0)M; <k,, N implies U;<cgM; <k,, N of 4.1.

5) Kap is (< A)-closed if it is 6-closed for every 6 < A

6) K,p is smooth if
() it is (< N)-closed;

(B) all vocabularies 7; are finitary;

(v) in clauses (c),(e)(e), and (e)(y) we can replace “6 € S';\"L "to 9 >0
is divisible by \”.

Remark 4.2A. If M,N € K2,;, @ < A%*, then some lawful f is an
isomorphism from M onto N.
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Lemma 4.3. Suppose that

(A) A=<

(B) Kap is a A-approximation family;

(C) T% € Kiyg for a < a*;

(D) T is a wide A*-tree, Aq a AT-branch of T for a < o* and for o # B(<
a*) we have A, # Ag, and we let e(a, ) = the level of the <7-last
member of A, N Ag, ((a, B) = (e(a, B) + 1)A.

Then there is a forcing notion () such that:

(a) Q is A\-complete of cardinality |o*|<*

(b) Q satisfies the version of A*-c.c. from [17, Section 1] (for simplicity -
here always for € = w).

(c) For some Q-names hq and T, (for o < ) we have: kg “for a < o

we have I'y, € Kyq , ha is lawful , maps At onto At , and maps T', onto
T, such that fora < 8 < o, T, [ ((o, B) = T 1 ¢(e, B), so for every

M € T, we have hy | (|[M|) is lawful and is an isomorphism from M
onto some M' € T',”.

Remark 4.3A. 1) Our freedom is in permuting (Aa, Aa + A); up to such
permutation I'y | (M) = {M €T, : |M| C Xi} is unique.
2) If we demand that K,, be smooth the proof is somewhat simplified.

Proof. We define Q as follows:

P E€Q iff p= (ML, hE) : a € wP) where

(a) wp € [

(b) M& € Ty;

(c) A% a lawful mapping, Dom hf, = |ME|;

(d) if & # B are in wP, then: ho(ME | ¢(a, B)) and hs(M§ 1 ¢(a, B)) are
<k,,-comparable;

(e) for every a € wP, for some n < w, 0 =g < 41 < ... < ip = AT, we
have: for £ € [1,n), iy € Sj\\+ and for every £ < n

(*)e for every 8 € w for which ((a, B3) € [ig,4e41) and j € [ig,5e41) N Sj\\+
there is v € w such that: j < ((a,7) € [ie,ie+1) and ME | ((e, B) <K,y
ME 1 ¢(a,y). m
The order is p < q iff: wP C w? and for a € wP: M§ <k, MZ, h% C hd

and M§ # Mg = Agewr hs(M§ 1 ¢(e, B)) <k,, ha(ME | {(c, B)).
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Fact 4.4. Any increasing chain in @) of length < \ has an upper bound.

Proof. Let (p; : i < ) be an increasing sequence in Q, § < X\ a limit
ordinal. Let w = [J{wP : i < 6}, and list w as {e; : j < j*}. We now
choose by induction on j < j*, a member M; of K,, and a lawful mapping
h; with domain |M;| such that:

(x) (a) if ((ME:, hE.) : i < 6 but a; € wPi) is eventually constant, then this
value is (Mj, h;).
(b) Otherwise let hj(M;) € T'a; be a <k, -upper bound of {h%;(ME!) :
1 < 6 but a; € wPi} U {h’j1(Mj1) [((aj,ajl) N1 <Jj}

If we succeed ¢ =¥ ((Mj,h;) : j € w) is a member of Q as required.
Why? First we check that ¢ € Q. Clauses (a),(b),(c) are obvious; for clause
(d) let a # B be in w, so let {a, B} = {a;,, @, }, j1 < jo; now if (x)(b) holds
for jo just note that hj (Mj,) I ¢(oy,,@j,) < hjp(Mj,) by the choice of the
later; and if (x)(a) holds for ja, then for some i < §, (Mj,, hj,) = (M}, , hE)
and now check the choice of (Mj,, hj,). For clause (e), clearly it is enough
to prove:

(*) for every i1 € (S3" U{A*}) there is 9 € i1 N (83" U{0}) such that (x),
of clause (e) of the definition of @ holds with ig,%; taking the role of
TRTISE
Leti; € S,’\\+U{A+} be given; for each i < iy let f(i) =% sup{¢(8,a)+1:

B € w,((B,a) € [i,i1)} (if the supremum is on an empty set - we are

in a trivial case). Clearly [j1 < j2 < 41 = f(j1) < f(42)], so for some

io € i1 N (SY" U {0}) for all i € [ip,i1) N (S}* U {0}) we have f(i) = f(io).

Now for each i < 4y let g(s) =¥ sup{j +1:j < j*,{(aj,a) € [i,41)}, note:

if the supremum is on the empty set then the value is zero; again it is clear

that g decrease with 7 hence wlog for all ¢ € [ig, 1) we have g(3i) = g(g)

Case 1 for every i € [ig,41) there is 8 € w such that: {(8,a) € [ip,71) and

letting 8 = a; and in (*) above case (b) occurs.

Check

Case 2 not case 1

For every v € w let j, be the first ordinal § such that (M h%) : i < ) is

constant, and again wlog for some §* for every i € [io,%1), d' < 6*,¢( < f(i0)

and j < g(ig) there is § € w such that ¢ < ¢(8,a) € [i,41),8 € {aj : j <

J' < g(i0)} and jg > &, the rest should be clear.

So we have proved that ¢ € @; now p; <g,, ¢ is straightforward. So
now we have only to prove that we can carry the inductive definition from

*)-
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In the choice of Mj, h; we first have chosen hj(M;). We do it by
choosing h(M; | {) for ¢ € {{(a;,B) : B € w}; there we use clause (e)(6)
of Definition 4.1. Having chosen h;(M;) we can find M;, h; by clauses
(g)(a) + (B) of Definition 4.1. m

Fact 4.5. If p€ Q, a € wP and N € I, then for some q: p < q, w? = w?
and
Apecwe\(a} (M, h) = (M§, h}) and N < Mg.

Proof. Easier than the previous one (or let § =1, pp = p and {a; : j < j*}
list w? with a = ao, repeat the proof of 4.4, just use g to choose (Mp, ho). ®

Note the following

Fact 4.6. If K, is 0-closed, then the following set is dense in Q: {p : if
a,B € wP, then g (ME) | ((a, B) = hE(MD) | ((e, B)}-
Proof. Follows easily from the previous Facts. m
Fact 4.7. The chain condition from [17, Section 1] holds.
Proof. Suppose p(é) € Q for § € Sg\+. For some pressing down function
h: S)‘+ — At we have:
(%) if h(8') = h(62) 61 < 62 then:
(a) otp wP@) = otp wP(?)
(b1) OP 1) 62y 18 the identity on wP(6) N P&

(b) for a, B € wP®") the following are equivalent: (1) (e, ﬁ) < 61;
(i) ¢(o/,B") < &% where o/ =¥ OP wr6D) o620y (@), B =
Y0P wr61) w062 (B);

(iii) ¢(o/, B') = ¢(a, B) where o/, §’ are as in (ii).
1
(c) |Mg(6 )| is bounded in 6, and also sup{¢(a,f8) : a # 3 are in
wP)} < 6,

(d) if 02 = Q0P w”(ﬁl),‘wl’(é% (al) then
1 2
(o) OPIM"(lsl)I,IMpgsz)l is an isomorphism from Mzga ) onto Mf;g& )

which is lawful
B) MPE) 1 61x = MPE) 1 522, m

Now we continue as in the proof of 4.4 to prove: h(61) = h(52)
p(6'),p(62) are compatlble (in the list {a; : j < j*} put wP(6") N wP?®) an
initial segment), for j < j* we use the simplicity of K,p,. Actually we need
a stronger condition , e.g. (*)y+, from [17, Section 1], and it is proved
similarly. This finishes the proof of 4.3. m
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Claim 4.8. Assume Ky, is a simple \*-approximation system. IfTy C K, ap
is directed, then for some forcing notion Q satisfying the A*-c.c. of [17,
Section 1], |Q| = AT, kg “there is a I' and a lawful f such that f(To) C
I' € Kma”.

Proof. Natural. Without loss of generality A def U{|M|: M €T} ={2a:
a<M}. Q={M:MecKypand M| A€ Ky and M | A <g, M}
order by <g,,. ®

Conclusion 4.9. Assume A = \<* < 227 = y, and a normal \*-tree T
with > x branches is given. For simplicity we assume that ¥ is the set
of members of T, 0 is the root and a <17 3 = a < 8 fort € T and let
ug = {[a\,a\ + A) : @ <7 t}. Then there is a forcing notion P such that

(a) P is A-complete, satisfies the A\*-c.c. and has cardinality x (so the
cardinals in VP are the same and cardinal arithmetic should be clear).

(b) for any A-approximation system K,p there are (I‘§ y My : t € T,) for
¢ < Att such that:
£5(t)+1)A
(a) Tf € K5O
(B) t<rs=T¢ CTI$
(v) for every T' € Kq for some { < A*+ and At-branch B = {t, : a <
At} of T and lawful onto At mapping T onto |Jyc+ Tt -
(c) If R € VP in (< \)-complete, satisfies the [17, Section 1] At-c.c.,
D;(i < \*) is dense, then for some directed G C R, N DinG #0.

Proof. We use iterated forcing of length x x A*™*, (< A)-support, each
iterand satisfying the A*-c.c. from [17, Section 1], (P;,Q; : i < x+ATT,5 <

X X AT*) such that: for every K,, (from V or from some intermediate
universe) for unboundedly many i < x X AT+, we use the forcings from 4.3
or 4.8.

5. APPLICATION

Lemma 5.1. Suppose

(A) T is first order, complete for simplicity with elimination of quantifiers
(or just inductive theory with the amalgamation and disjoint embedding
property).
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(B) Kap is a simple A-approximation system such that every M € K,; is a
model of T hence every Mr, where for ' € Kynq we let Mr = |J{M :
M eT}.
Then

(a) in 4.9 in VP, there is a model of T of cardinality A** universal for
models of T of cardinality A\*.

(b) So in VP, univ(\*,T) < A++.

(c) every model M of T of cardinality A\t can be embedded into Mr for
some T € Kyg.

Proof. Straightforward. m

Though for theories with the strict order property, the conclusion of
Section 4 (and 5.1) fails, for some non simple theories we can succeed. Note
that in 5.1 we have some freedom in choosing K, even after T is fixed.

Lemma 5.2. Let T = Tf:;q; it satisfies the assumption of 5.1 (hence its
conclusions).

In fact we can find a smooth simple A-approximation system K,, such that
every model M of T of cardinality \* is embeddable into some M € K. ;’I‘,d.

Remark. 1) Note that there univ (A Ty) = univ (A, Treq). Actually the
A-approximation family we get is also homogeneous.

2) The situation is similar for T3 in 6.2.

Proof. The main point is to define K,p.

(A) M € K,, iff:
(i) M is a model of T
(i) |M] e [X+]<>

(B) My <k,, M, iff
(i) My C M,
(i) if 6 € 27, a € PMiNg, be PM\§and (Ve € M;)[M; | “bE,c"=

c ¢ 6] then (Vc € My) My = “bE,c”= c ¢ §).

The checking of (Kap, <k,,) is a A-approximation family (see definition
4.10) as well as smoothness is straightforward.As for simplicity, quite easily
we can assume that 6; < 6y are form Sj\\+, M, € Kyp for £ = 1,2,
M| € 6 -2, My [ 6 = My | 6and h is a legal isomorphism form
M; onto Mj. Define a model M with universe |M;| U |Ma|, as follows:
PM —df pMiy pMz QM =% QM1 U QM2 and for each z € PM, we let
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be the closure to an equivalence relation of the set of cases occurring in M;
and/or M2, now check.

The proof is straightforward. m

Lemma 5.3. T3, the theory of triangle free graphs satisfies the assumption
of 5.1 (hence its conclusions).

Proof. Let zRy mean {z,y} is an edge. The main point is to define K,
(a) M € Ky iff

(i) M is a model of T

(ii) |M] e [A+]<
(b) M, <Lk,, M iff

(i) M1 C M,

(i) if 6 € Sy, a,b € My and there is no c € My N6, M; |= cRa& cRb

then fornoc € Mo Né, My |= cRa& cRb. m
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