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Abstract

W e  c o n s i d e r  a  c l a s s  K  o f  s t r u c t u r e s ,  e . g .  t r e e s  w i t h  u +  1  l e v -

e l s ,  m e t r i c  s p a c e s  f i n d  m a i n l y ,  c l a s s e s  o f  A b e l i a n  g r o u p s  l i k e  t h e  o n e  

m e n t i o n e d  i n  t h e  t i t l e  a n d  t h e  class o f  r e d u c e d  s e p a r a b l e  ( A b e l i a n )  

p - g r o u p s .  W e  s a y  M  E  K  i s  u n i v e r s a l  f o r  K  i f  a n y  m e m b e r  N  o f  K  o f  

c a r d i n a l i t y  n o t  b i g g e r  t h a n  t h e  c a r d i n a l i t y  o f  M  c a n  b e  e m b e d d e d  i n t o  

M. T h i s  i s  a  n a t u r a l ,  o f t e n  r a i s e d ,  p r o b l e m .  W e  t r y  t o  d r a w  c o n s e -

q u e n c e s  o f  c a r d i n a l  a r i t h m e t i c  t o  n o n - e x i s t e n c e  o f  u n i v e r s a l  m e m b e r s  

f o r  s u c h  n a t u r a l  c l a s s e s .
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230 Saharon Shelah

0 Introduction

C ontex t. In this paper, model theoretic notions (like superstable, ele-

mentary classes) appear in the introduction but not in the paper itself (so 

the reader does not need to know them). Only naive set theory and basic 

facts on Abelian groups (all in [Fu]) are necessary for understanding the pa-

per. The basic definitions are reviewed at the end of the introduction. On 

the history of the problem of the existence of universal members, see Ko- 

jman, Shelah [KjSh 409]; for more direct predecessors see Kojman, Shelah 

[KjSh 447], [KjSh 455] and [Sh 456], but we do not rely on them. For other 

advances see [Sh 457], [Sh 500] and Dzamonja, Shelah [DjSh 614]. Lately 

[Sh 622] continue this paper.

A class ^  is a class of structures with an embeddability notion. If not 

said otherwise, an embedding, is a one to one function preserving atomic 

relations and their negations. If & is a class and A is a cardinal, then 

stands for the collection of all members of .3 of cardinality A.

We similarly define

A member M  of is universal, if every N  E £< a , embeds into M.

An example is M  =: ®  Q, which is universal in if & is the class of all 

x

torsion-free Abelian groups, under usual embeddings.

We give some motivation to the present paper by a short review of the 

above references. The general thesis in these papers, as well as the present 

one is:

Thesis 0.1 General Abelian groups and trees with w + 1 levels behave in 

universality theorems like stable non-superstable theories.

The simplest example of such a class is the class &tr =: trees T  with 

(<jJ +  l)-levels, i.e. T  C. a for some a, with the relations t]E®i/ =: rj \ 

n — v \ n h  lg(^) > n. For &tr we know that /z+ < A =  cf(A) < p*° 

implies there is no universal for (by [KjSh 447]). Classes as &rtf  (defined 

in the title), or &rs(p) (reduced separable Abelian p-groups) are similar 

(though they are not elementary classes) when we consider pure embeddings 

(by [KjSh 455]). But it is not less natural to consider usual embeddings 

(remembering they, the (Abelian) groups under consideration, are reduced). 

The problem is that the invariant has been defined using divisibility, and so 

under non-pure embedding those seemed to be erased.

Then in [Sh 456] the non-existence of universals is proved restricting 

ourselves to A > 2**° and (< A)-stable groups (see there). These restrictions 

hurt the generality of the theorem; because of the first requirement we lose 

some cardinals. The second requirement changes the class to one which
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Non-existence of universals 231

is not established among Abelian group theorists (though to me it looks 

natural).

Our aim was to eliminate those requirements, or show that they are 

necessary. Note that the present paper is mainly concerned essentially with 

results in ZFC, but they have roots in “difficulties” in extending indepen-

dence results thus providing a case for the

T hesis 0.2 Even if you do not like independence results you better look at 

them, as you will not even consider your desirable ZFC results when they 

are camouflaged by the litany of many independence results you can prove 

things.

Of course, independence has interest per se; still for a given problem in 

general a solution in ZFC is for me preferable on an independence result. 

But if it gives a method of forcing (so relevant to a series of problems) the 

independence result is preferable (of course, I assume there are no other 

major differences; the depth of the proof would be of first importance to 

me).

As occurs often in my papers lately, quotations of pc f theory appear.

This paper is also a case of

T hesis 0.3 Assumption of cases of not GCH at singular (more generally 

ppX > A+) are “good”, “helpful” assumptions; i.e. traditionally uses of 

GCH proliferate mainly not from conviction but as you can prove many 

theorems assuming 2K° =  Ni but very few from 2N° > Ni, but assuming 

2 is helpful in proving.

Unfortunately, most results are only almost in ZFC as they use extremely 

weak assumptions from pcf, assumptions whose independence is not known. 

So practically it is not tempting to try to remove them as they may be 

true, and it is unreasonable to try to prove independence results before 

independence results on pcf will advance.

In §1 we give an explanation of the earlier difficulties: the problem (of 

the existence of universals for &rs(p)) is not like looking for &tr (trees with 

u  +  1 levels) but for ^ x a.a<U}) where

We also consider a<^)3 which is defined similarly but the level u  of T  

is required to have Â  elements.
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232 Saharon Shelah

For &rs(p) this is proved fully, for &rtf  this is proved for the natural examples 

(but see [Sh 622]).

In §2 we define two such basic examples: one is «<u;)’ an<̂

second is a<uj)- The *s a tree w^h ^  +  1 levels; in the second we 

have slightly less restrictions. We have u  kinds of elements and a function 

from the u;-th-kind to the nth kind. We can interpret a tree T  as a member 

of the second example: P j  =  {x : x is of level a} and

For the second we recapture the non-existence theorems.

But this is not one of the classes we considered originally.

In §3 we return to (reduced torsion free Abelian groups) and prove 

the non-existence of universal ones in A if 2**° < < A =  cf(A) < fiHo

and an additional very weak set theoretic assumption (the consistency of 

its failure is not known).

Note that (it will be proved in [Sh 622]):

( 0 ) if A < 2**° then has no universal members.

Note: if A = ANo then has universal member also (see [Fu]) and

(see [Sh 622]).

We have noted above that for requiring A > 2No is reasonable: we can 

prove (i.e. in ZFC) that there is no universal member. What about 

By §1 we should look at ^ rXl:i<uj)̂  ^  =  A < 2*°, An < No-

In §4 we prove the consistency of the existence of universals for 

when An < w, Â  =  A < 2N° but of cardinality A+; this is not the original 

problem but it seems to be a reasonable variant, and more seriously, it 

shoots down the hope to use the present methods of proving non-existence 

of universals. Anyhow this is fî fx i<u>) not so we Proceed to reduce

this problem to the previous one under a mild variant of MA. The intentions 

are to deal with “there is universal of cardinality A” in Dzamonja Shelah 

[DjSh 614].

The reader should remember that the consistency of e.g.

2H° > A > No and there is no M such that M  E is of

cardinality < 2**° and universal for

is much easier to obtain, even in a wider context (just add many Cohen 

reals).

As in §4 the problem for was reasonably resolved for A < 2K° (and

for A =  AN°, see [KjSh 455]), we now, in §5 turn to A > 2N° (and /i, An) as
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Non-existence of universals 233

in ( 0 )  above. As in an earlier proof we use ( Cs : S E S) guessing clubs for A 

(see references or later here), so Cs is a subset of S (so the invariant depends 

on the representation of G but this disappears when we divide by suitable 

ideal on A). What we do is: rather than trying to code a subset of Cs (for 

G =  (Gi : i < A) a representation or filtration of the structure G as the union 

of an increasing continuous sequence of structures of smaller cardinality) by 

an element of G, we do it, say, by some set x =  (xt : t E Dom(/)), /  an 

ideal on Dom(/) (really by x /I ) .  At first glance if Dom(7) is infinite we 

cannot list a priori all possible such sequences for a candidate H for being 

a universal member, as their number is > A**0 =  p?°. But we can find a 

family

of cardinality < such that for any x =  (xt : t G Dom(/)), for some 

y G T  we have y = x \ Dom(y).

As in §3 there is such T  except when some set theoretic statement related 

to p c f holds. This statement is extremely strong, also in the sense that 

we do not know to prove its consistency at present. But again, it seems 

unreasonable to try to prove its consistency before the p c f problem was 

dealt with. Of course, we may try to improve the combinatorics to avoid 

the use of this statement, but are naturally discouraged by the possibility 

that the p c f statement can be proved in ZFC; thus we would retroactively 

get the non-existence of universals in ZFC.

In §6, under weak p c f assumptions, we prove: if there is a universal 

member in then there is one in so making the connection between

the combinatorial structures and the algebraic ones closer.

In §7 we give other weak p c f assumptions which suffice to prove non-

existence of universals in (with x one of the “legal” values):

maxpcf{An : n < uj) =  A and V{{Xn • n < U>})/J<a {A„ : n < uj} is 

an infinite Boolean Algebra (and (0) holds, of course).

In [KjSh 409], for singular A results on non-existence of universals (there 

on orders) can be gotten from these weak p c f  assumptions.

In §8 we get parallel results from, in general, more complicated assump-

tions.

In §9 we turn to a closely related class: the class of metric spaces with 

(one to one) continuous embeddings, similar results hold for it. We also 

phrase a natural criterion for deducing the non-existence of universals from 

one class to another.

In §10 we deal with modules and in §11 we discuss the open problems 

of various degrees of seriousness.
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234 Saharon Shelah

The sections are written in the order the research was done.

N otation 0.4 Note that we deal with trees with w +  l levels rather than, 

say, with k  +  1, and related situations, as those cases are quite popular. 

But inherently the proofs of §l-§3, §5-§9 work for k  + 1 as well (in fact, p c f  

theory is stronger).

For a structure M, \\M\\ is its cardinality.

For a model, i.e. a structure, M  of cardinality A, where A is regular 

uncountable, we say that M  is a representation (or filtration) of M  if 

M  =  (Mi : i < A) is an increasing continuous sequence of submodels of 

cardinality < A with union M.

For a set A, we let [A\K = {B  : B C A and \B\ = k }.

For a set C of ordinals,

acc (C) = {a  E C : a = sup(a DC)}, (set of accumulation points)

nacc(C) = C \  acc(C) (= the set of non-accumulation points).

We usually use 77, v, p for sequences of ordinals; let 77 < v means 77 is an 

initial segment of v.

Let cov(A, //, 0, <r) = min{[P\ : V  C [A]<;i, and for every A E [A]<  ̂ for 

some a < a and B{ E V  for i < a we have A C  (J B{}. Remember that

for an ordinal a, e.g. a natural number, a =  { /? :/?<  a}.

N otation 0.5 is the class of (Abelian) groups which are p-groups (i.e.

(Vx E G)(3n)[pnx =  0]) reduced (i.e. have no divisible non-zero subgroups) 

and separable (i.e. every cyclic pure subgroup is a direct summand). See 

[Fu].

For G E &rs(p) define a norm ||x|| =  inf{2 n : pn divides x}. Now every 

G E Rrs(p) has a basic subgroup B = 0  ZxJ1, where xj1 has order pn+1,
n<uj

»'<An

and every x E G can be represented as a^xj1, where for each n, u;n(x) =
n<.to 

»< An

{2 < An : a^x” ^  0} is finite and for some 71, pnx =  0.

is the class of Abelian groups which are reduced and torsion free (i.e. 

G \= nx — 0, 7i > 0 => x =  0).

For a group G and A C G let (A)g  be the subgroup of G generated by A , 

we may omit the subscript G if clear from the context.

Group will mean an Abelian group, even if not stated explicitly.

Let H Cpr G means H is a pure subgroup of G.

Let nG =  {nx : x E G} and let G[n\ = {x E G : nx = 0}.

N otation 0.6 & will denote a class of structures with the same vocabulary, 

with a notion of embeddability, equivalently a notion of submodel.
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Non-existence o f universals 235

1 Their prototype is &{xn-n<UJ) not & r}*

If we look for universal member in thesis 0.1 suggests to us to think

it is basically (trees with u  -f 1 levels, i.e. is our prototype), a way 

followed in [KjSh 455], [Sh 456]. But, as explained in the introduction, this 

does not give answer for the case of usual embedding for the family of all 

such groups. Here we show that for this case the thesis should be corrected. 

More concretely, the choice of the prototype means the choice of what we 

expect is the division of the possible classes. That is for a family of classes 

a choice of a prototype assert that we believe that they all behave in the 

same way.

We show that looking for a universal member G in is like look-

ing for it among the G’s with density < p (A,/i, as usual, as in (0) from 

§0). For we get weaker results which still cover the examples usually 

constructed, so showing that the restrictions in [KjSh 455] (to pure embed-

dings) and [Sh 456] (to (< A)-stable groups) were natural.

P ro p o sitio n  1.1 Assume that p — ^2 — limsup Xn, p < A < p*°, and

n<o> n

G is a reduced separable p-group such that

(this is a vector space over7Ljp7L, hence the dimension is well defined). 

Then there is a reduced separable p-group H such that \H | =  A, H extends 

G and (pnH)[p\/(pn+lH)\p] is a group of dimension Xn (so if Xn > No, this 

means cardinality Xn).

R em ark  1.2 So for H the invariants from [KjSh 455] are trivial.

P ro o f  (See Fuchs [Fu]). We can find z f  (for n < a;, i < An (G) < p) such 

that:

(a) z f  has order pn,

(b) B = J2(z ?)g  is a direct sum,
n , i

(c) B is dense in G in the topology induced by the norm

||x|| = min{2~n : pn divides x in G}.

For each n < uj and i < An(G) (< p) choose rff G Yl ^rn, pairwise distinct
m<o>

such that for (n1, i1) ^  (n2, i2) for some n(*) we have:
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236 Saharon Shelah

Let H be generated by 

n < k < Lj) freely except for:

(а) the equations of G,

(/?)

( 7 )

( б )

( e )

Now check. d i.i

D efin ition  1.3 1. t denotes a sequence (<,• : i <  u>), t i  a natural number

> 1.

2. For a group G we define

3. We can define a semi-norm || — ||t on G 

and so the semi-metric

R em ark  1.4 So, if || — ||t is a norm, G has a completion under || -  ||t, 

which we call || — ||t -completion; if t = (i\ : i < u) we refer to || — ||t as 

Z-adic norm, and this induces Z-adic topology, so we can speak of Z-adic 

completion.

P ro p o sitio n  1.5 Suppose that

(®0) /i =  ^2 Xn and p < A < p?° for simplicity, 2 < 2 • An < An+i (maybe

n

\ n is finite!),

((8)i) G is a torsion free group, |G| =  A; and G ^  z= {0};

((8)2) Go C G, Go is free and Gq is t -dense in G (i.e. in the topology 

induced by the metric dt), where t  is a sequence of primes.
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Non-existence of universals 237

Then there is a torsion free group H , G C H , = {0}; \H\ = A and,

under dt , H has density p.

P ro o f  Let {x; : i < A} be a basis of Go- Let rji E f l  for i < p be
n<a»

distinct, such that 77* (n +  1) > An and 

Let H be generated by

freely except for

(a) the equations of G,

(b)

( c )

Fact A H extends G and is torsion free.

[Why? As H can be embedded into the divisible hull of G.]

Fact B =  {0}.

P ro o f  Let K  be a countable pure subgroup of H such that /fW ^  {0}. 

Now without loss of generality K  is generated by

(i)  K\ C G fl  [the dt-closure of (x» : i (E / ) g ] ] ,  where /  is a countable infi-

nite subset of A and K\ D (xi : i E I)g  ,

(ii) yY1, x] for i E /, m < uj and (n ,j) E J , where J  C uj x A is countable

and

Moreover, the equations holding among those elements are deducible from 

the equations of the form

(a )  -  equations of K \,

(b ) "

(c )  -

We can find (k{ : i < uj) such that
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238 Saharon Shelah

Let y E K  \  {0}. Then for some j, y & (]J ti)G, so for some finite / 0 C /

i < j

and finite Jo C J  and

we have y — y* E ( El U)G. Without loss of generality Jo H {(n, 77,(72)) : i E

i<j

/, n > &,} = 0. Now there is a homomorphism (p from K  into the divisible 

hull K** of

such that Rang((p)/K* is finite. This is enough.

Fact C H0 =: (x™ : n < u , i  < An)n  is dense in H by dt .

P ro o f Straight as each Xi is in the J t-closure of Ho inside H .

Noting then that we can increase the dimension easily, we are done. Di.s

2 On structures like ( Y l Xn, E m)m<u,

Discussion 2.1 We discuss the existence of universal members in cardi-

nality A, fi+ < A < /iH°, for certain classes of groups. The claims in §1 

indicate that the problem is similar not to the problem of the existence of a 

universal member in (the class of trees with A nodes, uj -h i  levels) but 

to the one where the first u  levels, are each with < fi elements. We look 

more carefully and see that some variants are quite different.

The major concepts and Lemma (2.4) are similar to those of §3, but 

easier. Since detailed proofs are given in §3, here we give somewhat shorter 

proofs.

Definition 2.2 For a sequence A =  (A,- : i < S) of cardinals we define:

(A) = {T  : T  is a tree with S +  1 levels (i.e. a partial order such that

for x E T, 1 w t {x ) =: otp({y : y < x}) is an ordinal < <S) such 

that: lev,(T) =: {x E T  : lev^(x) = i} has cardinality < A,},

(B) =  { M  : M  = (|M|, P i , F i ) i < s ,  \ M \  is the disjoint union of

(Pi : i < 6), Fi is a function from Ps to Pi, ||P,j| < A;,

Fs is the identity (so can be omitted)},

(C) If [i < S => A i = A] then we write A, S +  1 instead of (A; : i < S).
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Non-existence of universals 239

D efin ition  2.3 Embeddings for £ |r , M^c are defined naturally: for

embeddings preserve x < y, ->x < y, levT(x) = ot\ for . ^ c embeddings are 

defined just as for models.

If 6l = S2 =  8 and [i < 8 => \}  < A?] and M l G f $ ,  (or T l G .<?£)

for £ = 1,2, then an embedding of M 1 into M 2 (T1 into T 2) is defined

naturally.

L em m a 2.4 Assume A =  (A* : i < S) and 6, x  satisfy (for some C):

(a) As, 0 are regular, C =  (Ca : a E S), S  C \  =: Xs, Ca C a, /or

euery club E of A /or some a we have Ca C. E, \s  < x  < \Ca\d and

otp(Ca) > 0,

(b) \ i  < \ s ,

(c) there are 6 pairwise disjoint sets A C S such that 

Then

(a) there is no universal member in 8?^; moreover

(/?) if M a E or et;en E for a < a* < x  then some M  E 

cannot be embedded into any Ma .

R em ark  2.5 Note that clause (/3) is relevant to our discussion in §1: the 

non-universality is preserved even if we increase the density and, also, it is 

witnessed even by non-embeddability in many models.

P ro o f  Let (Ae : e < 0) be as in clause (c) and let rfa E n  f°r a < ^6

*€Ae

be pairwise distinct. We fix Ma G for a < a* < %•

For M  E let M  =  (|M |, P/^, FiM)i<s and let (Ma : a  < Â ) be a 

representation (=filtration) of M; for a  E S', z E P/*, let.

inv(x, M) =  {/? G : for some e < 0 and y E Mmin(ca\(/?+i))

we have / \  F ^ (x )  — F{M (y) 

i£Am

but there is no such y E Mp }.

Recall that

ida(C) =  {T  C A : for some club E of A for no a E T  is Ca C E}.

The rest should be clear (for more details see proofs in §3), noticing
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240 Saharon Shelah

Fact 2.6 1. IN V(Af,C) is ivell defined, i.e. if M l , M 2 are representa-

tions (=filtrations) of M  then INV(M1, C) =  INV(M2,C).

2. Inv(Ca ,M ) has cardinality < A.

3. inv(x, Ca] M) is a subset of Ca of cardinality < 6.

□2.4

C onclusion 2.7 If

p*°, then in a<u,) there is no universal member and even in a<uj) 

we cannot find a member universal for it.

P ro o f Should be clear or see the proof in §3. CH2.7

3 Reduced torsion free groups: N on-existence  

of universals

We try to choose torsion free reduced groups and define invariants so that 

in an extension to another such group H something survives. To this end 

it is natural to stretch “reduced” near to its limit.

D efin ition  3.1 1. is the class of torsion free (abelian) groups.

2. &rtf  =  {G E : Q is not embeddable into G (i.e. G is reduced)}.

3. P* denotes the set of primes.

4. For

5.

6. If H e  1 we say H is a representation or filtration of H if H =

(Ha : a < A) is increasing continuous and H = \J Ha) H E and

a <  A

each Ha has cardinality < A.

P ro p o sitio n  3.2 1. / /G  E ^ G G \{0} , QUP(a;,G) ^  P* ; G+ is

the group generated by G, y, yP}t (t < u, p E Q) freely, except for the 

equations of G and
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Non-existence of universals 241

2 . I f G i  G & r t f  (i < o l )  is C p r -increasing then G i  C pr  ( J  G j  G & r t * for

j < a

every i < a.

The proof of the following lemma introduces a method quite central to this 

paper.

Lem m a 3.3 Assume that

{*).

(*)a f or everV X < A, there is S  C [x]-H°; such that:

(i) \S\ < A,

(ii) if  D is a non-principal ultrafilter on u and f  : D — > % then for 

some a G S  we have

Then

(a) in there is no universal member (under usual embeddings (i.e. not 

necessarily pure)),

(/3) moreover, for any G i  G , for i <  i* <  p H° there is G  G not 

embeddable into any one of G,-.

Before we prove 3.3 we consider the assumptions of 3.3 in 3.4, 3.5.

C laim  3.4 I. In 3.3 we can replace (*)ĵ  by

(**)a ( i )

(ii) there is C = (Cs : S G 5*) such that S* is a stationary 

subset of X, each Cs is a subset of S with otp(G<$) divisible by p, 

Cs closed in sup(G<5) (ivhich normally S, but not necessarily so) 

and

(where nacc stands for “non-accumulation points”), and such 

that C guesses clubs of A (i.e. for every club E of X, for some 

S G S* we have C6 C E) and [S G S* => cf(8) = H0].

2. In (*)ĵ  and in (*)^; without loss of generality (V0 < p)[0H° < p] and 

cf(p) =  K0.
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P ro o f 1) This is what we actually use in the proof (see below).

2) Replace /x by /x' =  min{/ii : {if0 > fi (equivalently fil ° = )}. (II3.4

Compare to, say, [KjSh 447], [KjSh 455]; the new assumption is (*)^, 

note that it is a very weak assumption, in fact it might be that it is always 

true.

C laim  3.5 Assume that 2**° < /i < A < fiH° and (V# < fi)[0H° < fi\ (see 

3.4(2)). Then each of the following is a sufficient condition to (*)^;

(a) A < n +w',

(t3) if a C RegflA \/z and |a| < 2N° then we can find h : a — >■ u such that: 

A > sup{maxpcf(b) : b C a countable, and h \ b constant).

P ro o f Clause (a) implies Clause (/3): just use any one-to-one function 

h : Reg fl A \  /x — > u.

Clause (/?) implies (by [Sh 410, §6] +  [Sh 430, §2]) that for x  < A there 

is S' C [x]N05 \S\ < A such that for every Y  C x, \Y\ = 2**°, we can find Yn 

such that Y  = U ^  and [Vn]N° C S. (Remember: /i > 2Ko.) Without loss
n<uj

of generality (as 2Ko < /x < A):

(*) S' is downward closed.

So if D is a non-principal ultrafilter on uj and /  : D — > x  then letting 

Y  =  Rang(/) we can find (Yn : n < u) as above. Let h : D — > u  be 

defined by h(A) =  min{n : f (A)  G 7n}- So

X  C D & \X\ < Ko & h \ X  constant => f n{X) G S  (remember (*)).

Now for each n, for some countable X n C D (possibly finite or even empty) 

we have:

h \ X n is constantly n,

Let An =: f ){A : A G X n) = H M  • A G D and h(X)  =  n}. If the desired 

conclusion fails, then / \  An G D. So

n<uj

So D is generated by {An : n < uj) but then D cannot be a non-principal 

ultrafilter. III3.5
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R em ark  3.6 The case when D is a principal ultrafilter is trivial.

P ro o f  of Lemma 3.3 Let C =  (Cs : S E S*) be as in (**)]  ̂ (ii) from 3.4 (for 

3.4(1) its existence is obvious, for 3.3 - use [Sh:e, VI, old III 7.8]). Let us 

suppose that A = (As : S E S*)) As C nacc(G<5) has order type co (As like 

this will be chosen later) and let rjs enumerate As increasingly. Let Go be 

freely generated by {#,- : i < A}.

Let R  be

{a : a = (an : n < uj) is a sequence of pairwise disjoint subsets of P*,

with union P* for simplicity, such that 

for infinitely many n, an ^  0}.

Let G be a group generated by

p prime}

freely except for:

(a) the equations of Go,

(b) p z "p +1 =  Za,p when p £ a„, a < \ ,

(c) zt ’°P =  yl’n ~ xvs(r>) wlien p € an and S G 5*.

Now G € by inspection.

Before continuing the proof of 3.3 we present a definition and some facts.

D efin ition  3.7 For a representation H of H E and x E H , S E S* let

1. inv(x, Cs]H) =: {a E Cs : for some Q C P*, there is y E 7/'min[c5\(a4-i)] 

such that Q C P(x — y, i7) but for no y E Ha is Q C P(a? — y, //)}

(so inv(x, G<j; ^ )  is a subset of G<5 of cardinality < 2^°).

2. Inv°(Cs , H) =:  {inv{x,Cs ;H) : x £ \ j H i } .

i

3. In v ^C ^ ,^ ) =: {a : a C Cs countable and for some x € H, a C 

in v(x,Cy,H)}.

4. INv*(tf, C) =: I n H, C) =: (Inv^Ci; H ) : S £ S *} for £ £ {0,1}.

5. C) =: IN v^tf, H,  C )/ida(C), where

ida(C) =: {T C A : for some club E  of A for no d £ T  is Cs C E}.

6. If £ is omitted, £ = 0 is understood.
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Fact 3.8 1. INNl (H,C) is well defined.

2. The 8-th component o f l Nv l (H,C) is a family of < A subsets of Cs 

each of cardinality < 2**° and if t  — 1 each member is countable and 

the family is closed under subsets.

3. If G» E for i < i*, i* < p*°, Gl =  (G,-jC* : a  < A) is a representa-

tion of Gi,

then we can find As C nacc(C<j) of order type cj such that: i < z*; 

8 £ S* => for no a in the 8-th component o f lNv l (Gi , G\ C)  

do we have |a n  >1̂ | > No.

P ro o f  Straightforward. (For (3) note otp(G<5) > //, so there are p Ho > A 

pairwise almost disjoint subsets of Cs each of cardinality No and every A E 

Inv(C<$,G*) disqualifies at most 2^° of them.) III3.8

Fact 3.9 Let G be as constructed above for (As : 8 E S*),As  C nacc(Cs), 

otp(A<s) =  oj (where (As : 8 E S*) are chosen as in 3.8(3) for the sequence 

(Gi : i < i*) given for proving 3.3, see (/?) there).

Assume G C H E and H is a filtration of H . Then

B =: {<J : As has infinite intersection with somea E Inv(G<5,//)}

=  A mod ida(G).

P ro o f  We assume otherwise and derive a contradiction. Let for a < A, 

Sa C [a]-**0, \Sa \ < A be as guaranteed by (*)|.

Let x  > ^  (H(x) ,€ ,<x)  for « < A increasing continuous,

||2la || < A, (21 (3 : < a) E 2l«+i, 2la fl A an ordinal and:

all belong to 2l0 and 2^° +  1 C 2lo- Then £ , =  { ^ < A :2 l<5nA = J } i s a  club 

of A. Choose 8 E S* D E \  B such that Cs C E. (Why can we? As to ida(G) 

belong all non stationary subsets of A, in particular A \  E, and A \  S* and 

B , but A ^ ida(G).) Remember that rjs enumerates As (in the increasing 

order). For each a E As (so a E E hence 2la fl A =  a but H E hence 

H fl 2la =  Ha) and Q C P *  choose, if possible, Q E Ha such that:

Let Ia =: {Q C P* : ya)Q well defined}. Note (see 3.4 (**)^ and remember 

77,5(71) E As C nacc(G<5)) that cf(o) > 2**° (by (ii) of 3.4 (**)]J and hence 

for some f3a < a,

Now:
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01 Ia is downward closed family of subsets of P*, P* ^ Ia for a E As.

[Why? See the definition for the first phrase and note also that H is reduced 

for the second phrase.]

02 I a is closed under unions of two members (hence is an ideal on P*). 

[Why? If Qi, Q2 E lot then (as x a E G C H witnesses this):

All the parameters are in so there is y E 2la 0  H such that 

By algebraic manipulations,

similarly for Qi. So Q\ U Q2 C P (z a — y , H ) and hence Q\ U Q2 E Ia ]

0 3  If Q =  (Qn : n E T) are pairwise disjoint subsets of P*, for some infinite

T C c j, then for some n E T we have Qn E / ^ ( n).

[Why? Otherwise let an be Qn if n E T, and 0 if n E u; \  T, and let 

a =  (an : n < l j ). Now n E T => ^ (n )  E i n v ^ ’0, \ H ) and hence

which is infinite, contradicting the choice of As]

0 4  for all but finitely many n the Boolean algebra P ( P *)/Ins(n) 1S finite.

[Why? If not, then by 0 i second phrase, for each n there are infinitely 

many non-principal ultrafilters D on P* disjoint to /*<»), so for n < l j  we 

can find an ultrafilter Dn on P* disjoint to *m »). distinct from Dm for 

m < n. Thus we can find T E [o;]N° and Qn E Dn for n E T such that 

(Qn : n E T) are pairwise disjoint (as Qn E Dn clearly \Qn \ = Ko)- Why? 

Look: if Bn E Do \  D\ for n E w  then

etc. Let Qn =  0 for n E w \  T, now Q = (Qn : n < u )  contradicts 0 3.]

05 If the conclusion (of 3.9) fails, then for no a E As is V(P*)/Ia finite.
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[Why? If not, choose such an a and Q* C P*, Q* Ia such that I =

la \ Q* is a maximal ideal on Q*. So D =: V{Q*) \  I  is a non-principal

ultrafilter. Remember /3 =  /3a < a is such that {ya,Q ■ Q G /«} C Hp. Now, 

Hp G 51/3+1, | ^ |  < A. Hence (*)^ from 3.3 (note that it does not matter 

whether we consider an ordinal x  < A or a cardinal x < A, or any other 

set of cardinality < A) implies that there is Sh $ E 2l/?+i, C 

iSjy^l < A as there. Now it does not matter if we deal with functions from 

an ultrafilter on a; or an ultrafilter on Q*. We define /  : D — y Hp as 

follows: for U E D  we let f(U ) = ya>Q*\u• (Note: Q* \ U  G /<*, hence 

ya,Q*\u is well defined.) So, by the choice of Sh p (see (ii) of (*);[), f°r some 

countable / '  C / ,  f 1 G 5l/?+i and f]{U  : U G Dom(/')} ^ D (reflect for a

minute). Let Dom(/') =  {C/0, t / i , . ..} . Then [j (Q* \  Un) £ Ia . But as in

the proof of 0 2 ? as

we have (J (Q* \  Un) G /«, an easy contradiction.]
n<u)

Now (g)4, (8)5 give a contradiction. CI3.3

R em ark  3.10 We can deal similarly with i?-modules, |i7| < p if R  has 

infinitely many prime ideals I . Also the treatment of is similar to the

one for modules over rings with one prime.

Note: if we replace “reduced” by

then here we could have defined

and the proof would go through with no difference (e.g. choose a fixed 

partition (P* : n <  w) of P* to infinite sets, and let P '(x ,i7 ) =  {n : x G 

pH  for every p G PJ}). Now the groups are less divisible.

R em ark  3.11 We can get that the groups are slender, in fact, the con-

struction gives it.

4 Below the continuum there may be univer-

sal structures

Both in [Sh 456] (where we deal with universality for (< A)-stable (Abelian) 

groups, like £™ ^) and in §3, we restrict ourselves to A > 2**°, a restric-

tion which does not appear in [KjSh 447], [KjSh 455]. Is this restriction 

necessary? In this section we shall show that at least to some extent, it is.
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We first show under MA that for A < 2No, any G G can be

embedded into a “nice” one; our aim is to reduce the consistency of “there 

is a universal in to “there is a universal in ^nJ0-n<a,WA)” - Then we

proceed to prove the consistency of the latter. Actually a weak form of MA 

suffices.

D efin ition  4.1 1. G  G is tree-like if:

(a) we can find a basic subgroup 5 = 0  ZxJ1, where

* ^  ^  n

n<U)

(see Fuchs [Fu]) such that: ZxJ1 =  Z /pn+1Z and 

(8)o every x £ G  has the form

where aj1 G Z and

k <  n < u  => u;n[x] =: {i : a? pn~kx? /  0} is finite and 

n < fc => u?n[x] =  {i : a"x" ^  0} is finite

(this applies to any G  G we considered so far; we write

wn[x] = Wnlx.Y]  when Y  — {x" : n,z)). Moreover

(b) Y  =  (x? : n, z) is tree-like inside G, which means that we can 

find Fn : An+i — > An such that letting F = (Fn : n < a;), G is 

generated by some subset of T(G, Y, F) where:

T(G, ? ,F )  =  {x : for some rj G f[  for each n < uj we have

2. G G is semi-tree-like if above we replace (b) by

(b y  we can find a set T C {rj : rj is a partial function from u; to sup An
n<uj

with rj(n) < An} such that:
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(/3) for 77 E T and n E Dom(ry), there is

yti,n = ■ 171 G Dom())) and m > n} € G ,

(7) G  is generated by

Dom(rj)}.

3. G  E is almost tree-like if in (b)' we add

(5) for some A C uj for every 77 E T, Dom(77) =  A.

P ro p o sitio n  4.2 1. Suppose G  E is almost tree-like, as witnessed

by A C  u, Xn (for n < u), x? (for n E A, i < Xn), and if n0 < n2 are 

successive members of A, no < n < 712 then Xn > Ano or just

Then G is tree-like (possibly with other witnesses).

2. I f  in It .I (3) we just demand 77 E T => \ /  Dom(77) \n  =  A \n ; then

n < io

changing the 7 7 ’s and the y ’s we can regain the “almost tree-like”. 

P ro o f  1) For every successive members n0 < n2 of A for

choose ordinals 7(710, for I E (no, n2) such that

We change the basis by replacing for a E Sn0, {x™} U {® (̂no a /) :  ̂ € 

(no, n2)} (note: no < n2 but possibly no +  1 =  n2), by:

2) F o r  77 E T l e t  n(rj) =  m i n { n  : n  E A n D o m ( 7 7)  a n d  D o m ( 7 7 ) \ n  =  A \ n } ,  

a n d  l e t  Tn = { 7 7  E T : n ( 77)  =  n }  f o r  n £ A. W e  c h o o s e  b y  i n d u c t i o n  o n  

n  <  u  t h e  o b j e c t s  i / v  f o r  77 E T n  a n d  f o r  a  <  X n  s u c h  t h a t :  ^  i s  a  f u n c t i o n  

w i t h  d o m a i n  A, vv \ (A \n(rj)) =  77 f ( j 4 \ n ( ? 7 ) )  a n d  ^  f ( A H n f a ) )  =

^ (n ) < A„ and is a function with domain A  fl n, p£(^) < Â  and 

p™ f (An^) =  for  ̂ E Ann.  There are no problems and { i /v : 77 E Tn}

is as required. □ 4.2
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T heorem  4.3 (MAO) Let A < 2No. Any G E can be embedded into

some G' E with countable density xuhich is tree-like.

P ro o f  By 4.2 it suffices to get G' “almost tree-like” and A C u  which 

satisfies 4.2(1). The ability to make A thin helps in proving Fact E below. 

By 1.1 without loss of generality G has a base (i.e. a dense subgroup of the 

form) B = 0  ZzJ1, where Zx™ =  Z /pn+1Z and An =  No (in fact An can
n<u> 

i< An

be g(n) if g E “'u; is not bounded (by algebraic manipulations), this will be 

useful if we consider the forcing from [Sh 326, §2]).

Let B + be the extension of B  by y™,k (k < u>, n < c j, i < An) generated 

freely except for py™’k* 1 = y™)k (for k < u>), y?’1 = pn~l x f  fo r i  < n, 

n < us, i < An. So B + is a divisible p-group, let G+ =: 5 + 0 G .  Let

B

{z° : a < A} C G[p] be a basis of G[p] over {pnx™ < uj) (as a

vector space over Z /pZ  i.e. the two sets are disjoint, their union is a basis); 

remember G[p] =  {x E G : px = 0}. So we can find zka E G (for a  < A, 

k < uj and Ar ^  0) such that

where w(a, k) C a; is finite (reflect on the Abelian group theory).

We define a forcing notion P as follows: a condition p E P  consists of 

(in brackets are explanations of intentions):

(a) m  < u)} M  C m,

[M is intended as A 0  {0, . . .  , m — 1}]

(b) a finite u C m  x l j and h : u — > uj such that /i(n, i) > n,

[our extensions will not be pure, but still we want that the group produced 

will be reduced, now we add some y™,k’s and h tells us how many]

(c) a subgroup K  of B +:

(d) a finite w C A,

\w is the set of a < A on which we give information]

(e) g : w -¥ m -f 1,

[g(at) is in what level m' < m we “start to think” about a]
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(f) rj = (rja : a E w) (see (i)),

[of course, rja is the intended rja restricted to m  and the set of all rja forms 

the intended Tl

(g) a finite

[this approximates the set of indices of the new basis]

( h )

[approximates the new basis]

(i)

[toward guaranteeing clause (<f) of 4.1(3) (see 4.2(2))]

(j) i

( k )

[so K  is an approximation to the new basic subgroup]

(l ) if a  G w , g(a) < t  < m  and t  E M  then

[this is a step toward guaranteeing that the full difference (when Dom(?7a ) 

is possibly infinite) will be in the closure of 0  TLx^\.

n€[i,u>)

i<u>

We define the order by: 

p < q if and only if

(«:

w:

(7)

W

( e )

(0  

(v)

(9)
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A Fact (P, <) is a partial order.

Proof of the Fact: Trivial.

B Fact P satisfies the c.c.c. (even is <r-centered).

Proof of the Fact: It suffices to observe the following.

Suppose that

(iii) (rfa : a £ wp D wq) =  ( t j % : a E wp fl wq),

(iv) gp \ (wp fl wq) — gq \ (wp fl wq).

Then the conditions p, q are compatible (in fact have an upper bound with 

the same common parts): take the common values (in (ii)) or the union (for

C Fact For each a < A the set =: {p £ P : a E wp} is dense (and 

open).

Proof of the Fact: For p E P  let q be like p except that:

D Fact For n < i < uj the following set is a dense subset of P:

Proof of the Fact: Should be clear.

E Fact For each m  < cv the set J m {p E P : mp > m} is dense in P.

Proof of the Fact: Let p (E P be given such that mp < m. Let wp =

{ao ,. . .  , av_ 1} be without repetitions; we know that in G, pz^t = 0 and 

: t  < r} is independent mod 5 , hence also in K  +  G the set {z^t : 

i  < r} is independent mod K. Clearly

(ni)).

elements}.

(A)
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(B)

Remember

(C)

and so, in particular, (from the choice of 

For

But

Hence, for some m* > m, mp we have: {pm s™ : £ < r} is independent in 

G\p] over K\p] and also n in (x* : G [mp, m*], i < c j). Let

Then : i  < r} is independent in

Let i* < u  be such that: w (ai,k) C { 0 ,... , z* — 1} for /: G [rap,m*), 

i  — 1 , . . .  , r. Let us start to define q:

K q is defined appropriately, let K' =  (x™ : n G [mp,m*), z < i*).

Complete : t  < r} to {sj : £ < r*}, a basis of K'\p], and choose 

{fn,t • (ft, 0 6 v*} such that: \pmtn,i =  0 m > n], and for <£ < r

The rest should be clear.

The generic gives a variant of the desired result: almost tree-like basis; 

the restriction to M  and g but by 4.2 we can finish. Qi.i
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Conclusion 4.4 (MA* (^-centered)) For (*)o to hold it suffices that (*)i 

holds where

(*)o in there is a universal member,

(*)i in there is a universal member, where:

( a )

(b)

Remark 4.5 Any (An : n <u>), Xn < u  which is not bounded suffices. 

Proof For case (a) - by 4.3.

For case (b) - the same proof. 04 4

Theorem  4.6 Assume X < 2**° and

(a) there are Ai C A; \Ai\ =  A for i < 2X such that i ^  j  => \Ai C\Aj| < Ho.

Let X — (Xa . ot ^  An — Ho, Â , — A.

Then there is P such that:

(a) P is a c.c.c. forcing notion,

(/?) |P | =  2 \

(7) in Vp , there is T  E into which every T' E (*̂ |r)y can be embedded. 

Proof Let T  = (Ti : i < 2X) list the trees T  of cardinality < A satisfying 

and T n wa; has cardinality A, for simplicity.

Let T{ =  {rfa : a £ Ai}.

We shall force E for a < A, £ < uj, and for each i < 2X a function 

gi : Ai — > c0 such that: there is an automorphism /»• of which

induces an embedding of Ti into ((w>cj) U {pa,gi(a) : a < A},<). We shall 

define p E P  as an approximation.

A condition p E P  consists of:

(a) m  < u  and a finite subset u o fm-u), closed under initial segments such

that () E u,

(b) a finite w C 2X,

(c) for each i E w, a finite function gi from Ai to w,

(d) for each i E w , an automorphism /,• of (u , <),
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(e) a finite

(f) for ( 

such that

(g) if i E w and a E Dom(^) then:

(a)

(/?)

(7)

(h) (pa,n • (a, n) E v) is with no repetition (all of length m),

(i) for i E w, (77̂  \ m  : a  E Dom(^)) is with no repetition. 

The order on P  is: p < q if and only if:

(a)

m

( 7 )

(*)

( e )

(0

(77) if i ^  j  E wp then for every a  E f l  A 7  \  (Dom (^) f l  Dom(gj’)) we 

have p?(ct) ^  pj(c*) (possibly a  ^ Dom (^) and/or a £ Dom(pj)).

A Fact (P, <) is a partial order.

Proof of the Fact: Trivial.

B Fact For i < 2A the set {p : i € wp} is dense in P.

Proof of the Fact: If p E P, 2 G 2A \  wp, define <7 like p except w9 =  wp U {i}, 

Dom(p?) =  0.

C Fact Ifp E P, mi E (mp ,w), 77* E up) m* < w ,iE u )p, a E  A\Dom(gf) 

then we can find q such that p < q E P, m9 > mi, 77* (m*) E u9, i E w9, 

a  E Dom(p?) and (rjp \ mq : j  £ wq and (3 E Dom(pj)) is with no repetition,

more exactly f m’ = r f ^  f mq => r f ^  -  r f ^ \
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Proof of the Fact: Let no < mp be maximal such that rfa \ no E up. Let

n\ < uj be minimal such that rfa \ n\ £ {rĵ  \ n\ : (3 E Dom(#?)} and 

moreover the sequence

is with no repetition. Choose a natural number m q > ra^ +  l, no +  1, n i+ 2 , m 

and let Ar* = :  3 -f- |Dom(#f )|. Choose uq C 171,9- u j  such that:

i£wp

(i) up C uq C m9-u;, uq is downward closed,

(ii) for every rj E uq such that £g(rj) < mq, for exactly k* numbers Ar,

r] (h) E uq \ u p,

(Hi)

(iv)

( v )

Next choose p -\ n (for pairs (/?, n) € vp) such that:

For each j  E wp separately extend f p to an automorphism f j  of (uq, <) such 

that for each (3 E Dom (^) we have:

This is possible, as for each v E up, and j  E wp, we can separately define

-its range is

The point is: by Clause (ii) above those two sets are isomorphic and for each 

v at most one n is involved (see Clause (h) in the definition of p E P) and 

we can take care of clause (h). Next let wq =  wp, gj = gj for j  E w \{ z}> g? \ 

Dom(£ff) =  g?, g1(a) -  min({n : (a, n) vp}), Dom(sff) =  D om ^f) U {a}, 

and ~  / / ( <  f mq) and t)! = / U  {(a,g]{a))}.

D Fact P satisfies the c.c.c.
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Proof of the Fact: Assume p£ E P for e < w\. By Fact C, without loss of

generality each

is with no repetition. Without loss of generality, for all e < u)\

has the same number of elements and for e ^  C < there is a unique 

one-to-one order preserving function from U£ onto which we call OP^^, 

which also maps p£ to p£ (so mp< = mp*\ up< = uPm\ OP(}£(wp*) =  wp<; if 

% E wPm, j  = OP( £(i), then /; oO P£)( =  fj] and if f3 = OP^)£(a) and £ < u; 

then

Also this mapping is the identity on U^OU£ and {U( : C < u>\) is a A-system.

Let w =: wPo n  wPl. As i ^  j  => |A{ H Aj\ < Ko, without loss of

generality

(*)

We now start to define q >po,p\- Choose m q such that m q E (mPm ,w) and 

m q > max {lg{rf°a n  rj'a\ ) +  1

Let ti? C m,- «  be such that:

(A

(B) for each v E uq, mpo < tg{v) < mq, for exactly two numbers k < u;,

i/̂ (Ar) E uqy

(C) 77J* f f E for £ < m9 when: i E wPo, a  E Dom(#f°) or i E u;Pl, 

a  E Dom(#Pl).

[Possible as {77̂  [ mp* : i E wPm,a  E D om (^')}  is with no repetitions (the 

first line of the proof).]

Next choose pqa t for (a,£) E vq as follows. Let be f?( if defined, f?^t 

if defined (no contradiction). If (a,^) E vq choose p \ t as any p such that:
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But not all choices are O.K., as we need to be able to define /?  for i E wq. 

A possible problem will arise only when i E wPo C\wPl. Specifically we need 

just (remember that (pPft : (a,£) E vPm) are pairwise distinct by clause (b) 

of the Definition of p E P):

®i if i 0 e  Wpo, ( a 0, i )  = (ao,5.0(a o)),ao G Dom(^fo°), ij =  O P ii0(*o) and 

« i =  OPi,o(«o) and i0 =  i,

ther

We can, of course, demand ao ^  «i (otherwise the conclusion of 0 i is 

trivial). Our problem is expressible for each pair (ao)t ) ) (a i,£) separately 

as \  first the problem is in defining the ^ ’s and second, if (a 'i ,f ) , (a'2, e)  is 

another such pair then {(ai,^), (a 2,^)}, { (a^ P ), (a'2,P)} are either disjoint 

or equal. Now for a given pair (ao, £), (a i, i) how many z'o =  i \  do we 

have? Necessarily z'o E wPo fl wPl =  w. But if i'0 ^  z'q are like that then 

ao E Ay fl Ay^, contradicting (*) above because ao 7̂  a i =  O Pijo(ao). So 

there is at most one candidate z’o =  z’i, so there is no problem to satisfy 0 i. 

Now we can define (iE wq) as in the proof of Fact C.

The rest should be clear. [H4.4

C onclusion 4.7 Suppose V |= G C H , Ko < A < x and \ X = X♦ Then for 

some c.c.c. forcing notion P of cardinality not collapsing cardinals nor 

changing cofinalities, in V p :

(i:

(ii) has a universal family of cardinality A+ ,

(iii) has a universal family of cardinality A+ .

P ro o f First use a preliminary forcing Q° of Baumgartner [B], adding (A a : 

a  < x )} A a E [A]A, a  (3 =£► \Aa O Ap\ < No (we can have 2K° =  Ki

here, or [a /  /? => A a fl Ap finite], but not both). Next use an FS

iteration (P;, Qi • i < X x A+) such that each forcing from 4.4 appears and 

each forcing as in 4.6 appears. ^ 4.7

R em ark  4.8 We would like to have that there is a universal member in 

this sounds very reasonable but we did not try.

In our framework, the present result shows limitations to ZFC results 

which the methods applied in the previous sections can give.
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5 Back to &rs(p\  real non-existence results

By §1 we know that if G is an Abelian group with set of elements A, C  C A, 

then for an element x E G the distance from {y : y < a} for a E C does 

not code an appropriate invariant. If we have infinitely many such distance 

functions, e.g. have infinitely many primes, we can use more complicated 

invariants related to x as in §3. But if we have one prime, this approach 

does not help.

If one element fails, can we use infinitely many? A countable subset X  

of G can code a countable subset of C\

but this seems silly - we use heavily the fact that C has many countable 

subsets (in particular > A) and A has at least as many. However, what if 

C has a small family (say of cardinality < A or < p No) of countable subsets 

such that every subset of cardinality, say continuum, contains one? Well, 

we need more: we catch a countable subset for which the invariant defined 

above is infinite (necessarily it is at most of cardinality 2Ho, and because of 

§4 we are not trying any more to deal with A < 2No). The set theory needed 

is expressed by U j below, and various ideals also defined below, and the 

result itself is 5.9.

Of course, we can deal with other classes like torsion free reduced groups, 

as they have the characteristic non-structure property of unsuperstable first 

order theories; but the relevant ideals will vary: the parallel to 7? for f \ p n =
n

/z, seems to be alwavs O.K.

Definition 5.1

Let Bjifn =  ®{/f™ : a < A*m*m < n} C (they are in £ < £ ^ n)-

Let B be the p-torsion completion of B (i.e. completion under the 

norm ||z|| =  min{2-n : pn divides x } restrited to the set of all x such 

that pnx =  0 for some n).

2. Let / i  be the ideal on generated by /5, where

for every large enough n, 

for no y E ®{7f™ : m < n and a < pmj 

but y £ ® { A ^  : m  < n and a < pmj we have : 

for every m  for some z G (A) we have: 

pm divides z — y} .
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(We may write , but the ideal depends also on ( 0  K% : n < u j )

*  OC<fJLn

not just on Bp itself).

3. For X ,A  C Bp,

recall

and let

4. Let Jp be the ideal which J 5 5 generates, where

: for some n < u j  for no m  E [n, u)

and /? < 7 < //m do we have : 

for every k £ [m,u;) there are rj,v £ A such 

that: rj(m) =  /?, i/(m) =  7 , 77 f m = v \ m  

and 77 \ (m, k) = v \ (m, k )}.

5.

for some n < u j  and k, the mapping r) rj \ n

is (< Ar)-to-one }.

6. is the ideal of nowhere dense subsets of Yl^n  (under the following

n

natural topology: a neighbourhood of 77 is = {v : v \ n = rj \ n} 

for some n).

7. J? is the ideal of meagre subsets of i-e- subsets which are

n

included in countable union of members of J?.

O bservation  5.2 1. Ip, Jp, J p 5 are (< #i)-based, i.e. for /? ; if  A C

then there is a countable Ao C A such that A q £ /?.

are ideals, Jjf is Ki-complete.

4. There is a function g from fin into Bp such that for every X  C

n <  to

2 .

3 .
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P ro o f E g. 4) Let g(i]) -  £  p"(*i"(n)).

n<u> v

Let X  C Y\ X  Jji- Assume g "(X ) G 7l, so for some 7* and
n<oi

A/ C 5^, (f < f ) we have 

where

As J l  is an ideal, for some i  < 7*, X i J±. So by the definition of J i ,  

for some infinite T C u> for each m  G T we have (3m < 7m < and for 

every A; G [m,u>) we have rjm,ki ^m.k) as required in the definition of J i .  So 

e At (for m G r, Ar G (m,a;)). Now

but

as this holds for each 

This contradicts j

D efin ition  5.3 Let 7 C V (X )  be downward closed (and for simplicity 

{{x} : x e X } C  7). Let 7+ =  V (X )  \  7. Let

U / *(/i) =: min {1^1 : V  C [/z]<K, and for every /  : A — )> /i for some

y  G V, we have {x G X  : /(x ) G E 7+ }.

Instead of < k + in the superscript of U we write k . If k  > |Dom(7)|+ , we 

may omit it (since then its value does not matter).

R em ark  5.4 1. If 2<K +  |Dom(7)|<#6 < //w e  can find F  C partial func-

tions from Dom(7) to \i such that:

( a )

(b)

2. Such functions (as \ J f K(n)) are investigated in p c f theory ([Sh:g], 

[Sh 410, §6], [Sh 430, §2], [Sh 513]).

3. If 7 C J  C P (X ), then U < U j AC(/i), hence by 5.2(3), and the 

above

and by 5.2(4) we have
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4. On IND^(/c) (see 5.5 below) see [Sh 513].

D efin ition  5.5 IND^((/cn : n < a;)) means that for every model M  with 

universe (J Kn and < 9 functions, for some T E [o;]K° and 77 E f j  Kn we

n<uj n<cu

have:

R em ark  5.6 Actually if 9 > 2q , this implies that we can fix T, hence 

replacing (/cn : n < uj) by an infinite subsequence we can have Y =  u.

T heorem  5.7 1. I f  fin ->• (/Cn)^ and IND^((/cn : n < w)) then f j  fin

n<u>

is not the union of < 0 sets from J l .

2. I f  0 — 9H° and -»INDs((fin : n < u)) then f j  jxn is the union of < 9

n<cu

members of J l .

3. 7/lim sup/in is > 2, £/ien f j  fin £ Jp (so also the other ideals defined
n n<  u

above are not trivial by 5.2(3), (4)).

P ro o f  1) Suppose Yl A*n is (J X i , and each Xi G as 0 > H0 wlog 
n<u %<e

xi E J^*5. We define for each i < 0 and n < k < u  a two-place relation 

on /in :

/3R™,k7 if and only if

t h e r e  a r e  77, z/ E  A *  C  [ ]  Z1/  s u c h  t h a t

i < k

rj \ [Q,n) = v \ [0 , n) and 77 f (n, Ar) =  z/ f (n, A;) and 77(71) = /?, z/(n) =  7. 

Note that R” ,/c is symmetric and

As /in —► (Acn)|<,, we can find An E  \ p n ] K n  and a truth value such that 

for all f3 < 7 from An , the truth value of f}Rf( 'k7 is t ? ,/c. If for some i the 

set

I \ =: {71 < l j : for every k E  (n,w) we have t™’k = true}

is infinite, we get a contradiction to “ X i  E  \  so for some 7 1(1 ) < u> we 

have n(i) = s u p ( T i ) .

For each n < k < u  and i < 9 we define a partial function F?’k from 

II  A/ into An:

l < k ,

i^n
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F(ao . . .  a n_i, a n+ i , . . .  , o/e) is the first (3 E An such that for 

some rj £ X{ we have

So as IND^((/cn : n < c j)) there is rj = (fa : n < u) £ f l  such
n<Lu

that for infinitely many n, fa  is not in the closure of {fa : £ < uj, £ ^  n} 

by the s. As rj E [] 4  C n  — U necessarily for some

n<cu n<o» i<0

i < 9, rj E A,-. Let n E (n(z),u;) be such that fa  is not in the closure 

of {/?£ : i  < oj and i  ^  n} and let /: > n be such that t ^ ,k =  false. 

Now 7 =: F,n,fe(/?o, ■ ■ • ,/?„-i,/?„+ i,. . .  ,/?fc-i) is well defined < /3n (as /?„ 

exemplifies that there is such fa and is /  fa  (by the choice of (fa : £ < a;)), 

so by the choice of n(i) (so of n, k and earlier of t™,k and of An) we get 

contradiction to “7 < fa  are from An” .

2) Let M  be an algebra with universe J2 fin and < 9 functions (say F-1

n< u)

for i < 9, n < u), F/1 is n-place) exemplifying -iINDg((fin : n < a;)). Let 

T =: {((Arn ,2n) : n* < n < l j ) : n* < l j and < kn < uj and in < 9}.

n

For

A p {rj E Vn ' for every n E [n*,u>) we have
n<u>

r){n) = Ftknn~l (rj{ 0 ) , . .. ,T}(n- 1), r)(n +  1 ) ,... ,r? (*„)) }.

So, by the choice of Af, n  Vn =  U V  On the other hand, it is easy to

n<0) per

check that A p E Jp-

3) left for the reader. [H5.7

T heorem  5.8

then U?0° (A) =  A and even U*!° (A) =  A.
i (An : n < W) J (An :n<u,)

P ro o f  See [Sh 410, §6], [Sh 430, §2], and [Sh 513] for considerably more. 

Lem m a 5.9 Assume A > 2N° and 

(*)(a )

(b) Bp £ and limn sup fin is infinite,
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(note is not required to be an ideal).

Then there is no universal member in .

P ro o f  Let S  C A, C — (Cs : S E S) guesses clubs of A, chosen as in the 

proof of 3.3 (so a E nacc(C<5) => cf(o?) > 2^°). Instead of defining the 

relevant invariant we prove the theorem directly, but we could define them, 

somewhat cumbersomely (like [Sh:e, III,§3]).

Assume H E is a pretender to universality; without loss of gener-

ality with the set of elements of H equal to A.

Let x =  ^(A)"*", 21 =  (2b* : a < A) be an increasing continuous sequence 

of elementary submodels of (7/(x), E, <£), 21 \ (a +  1) E 2l«+i, ||2l<*|| < A, 

2la fl A an ordinal, 21 =  (J 2la and {#, (fin : n < u;),/i, A} E 2lo, so

< * <  A

Bfi, Bp E  2lo (where p =  ( / i n  : n  < a ; ) ,  of course).

For each (5 E 5, let P<5 =: [G<j]k° fl 21. Choose A$ C Cs of order type u  

almost disjoint from each a E Vs, and from As1 for E S fl 5; its existence 

should be clear as A < /iK°. So

(*)o every countable A E 21 is almost disjoint to As.

By 5.2(2), is (< Ni)-based so by 5.4(1) and the assumption (c) we have

(*)i for every /  : B  ̂ — > A for some countable Y  C 5^, 7  ^ / | ,  we have 

/  FT E21

(remember

where

So B , 5 , ((n, a, i, x” t-) : n < w, a  < A, a < ^  /i^) are well defined. Let G

k<u>

be the subgroup of B  generated by:

B U {x  E B : for some & £ S, x is in the closure of

® {G ” , : n < o;, i < /in , a  is the nth element of A$}}.

As n  / in < / i< A ,  clearly G E without loss of generality the set of

n<w

elements of G is A and let h : G — >■ H be an embedding. Let

(c)
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They are clubs of A, so for some 8 E S, Cs C. E (and 8 E E for simplicity). 

Let rjs enumerate As increasingly.

There is a natural embedding g = gs of Bp into G:

Let gs be the unique extension of gs to an embedding of Bp into G; those 

embeddings are pure, (in fact g^{Bp) \  g^{By) C G \  G fl 21 <5). So h o gs is 

an embedding of Bp into H , not necessarily pure but still an embedding, so 

the distance function can become smaller but not zero and

Remember Bp C 2lo (as it belongs to 2lo and has cardinality Y[ Vn < A
n<ui

and A H2lo is an ordinal). By (*)i applied to /  =  7i o g there is a countable

Y C Bp such that Y  ^ Ip and /  \ Y  E  21. But, from f  \ Y  we shall

below reconstruct some countable set not almost disjoint to As, reconstruct 

meaning in 21, in contradiction to (*)o above.

As Y  Ip we can find an infinite S* C u \  m* and for n E  S *, zn E

0  K 2 \  {0} and yi e  Bp (for £ < uj) such that:

«</in

, and

Without loss of generality pzn =  0 ^  zn hence pp£ =  0. Let

vs{n) =: min(Cj\(Tfc(n)+l)), z* -  (hogs)(zn) and y*n l -  {hogs){yn,i)

Now clearly gs{zn) = 96{zn) =  ^ (n) i E G \ i/*(n), hence (h o g6)(zn) £ 

H \ r)s{n), that is z* £ H \ r]s(n).

So z* E  \  ^^ (n ) belongs to the p-adic closure of Rang( /  \ Y ).

As H , G, A and /  f Y belongs to 21, also K , the closure of Rang( /  [ Y) in 

H by the p-adic topology belongs to 21, and clearly |/f | < 2Ko, hence

\  Ha is not empty}

is a subset of Cs of cardinality < 2**° which belongs to 21, hence [A*]N° C 21 

but As C A* so As G 21, a contradiction. CI5.9
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6 Implications between the existence of uni-

versais

T heorem  6.1 Let ft =  (n,- : i <w), n* E [l,u;). Remember

: A is nowhere dense}.

Assume A > 2**°, U ^(A ) =  A or just U ^(A ) =  A for every such h, and

and

>•

n<uj

1. I f  in there is a universal member

then in there is a universal member.

2. I f  in 8?^ there is a universal member for

then in =: {G E : An(G) < A} there is a universal

member (even for ).

(Xn(G) ivere defined in 1.1).

R em ark  6.2 1. Similarly for “there are Mi E ^ .\1 (i < 0) with (Mi :

i < 0) being universal for .

2. The parallel of 1.1 holds for M^c.

3. By §5 only the case A singular or A =  /z+ & cf(//) =  & (Va <

/i) ( |a |N° < /z) is of interest for 6.1.

P ro o f  1) By 1.1, (2) => (1).

More elaborately, by part (2) of 6.1 below there is H E w^ich is

universal in Clearly |G| =  A so H E hence for proving part

(1) of 6.1 it suffices to prove that H is a universal member of So let

G E and we shall prove that it is embeddable into H. By 1.1 there

is G' such that G C G 'E  By the choice of H there is an embedding

h of G' into H . So h \ G is an embedding of G into P , as required.

2) Let T* be a universal member of (see §2) and let Pa = P j  .

Let x  > 2A. Without loss of generality Pn = {n} x An ,P w =  A. Let
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where GJ1 = Z /p n+1Z, G™ is generated by x™. Let 05 -< ('H(x), E, <£)> 

||05|| =  A, A +  1 C 05, T* G 05, hence S 0, Si G 05 and S 0,S i G 05 (the 

torsion completion of SO, S i, resp.). Let G* =  Si fl 05.

Let us prove that C* is universal for (by 1.1 this suffices). Let

G G &rx^p\  so by 1.1 without loss of generality S 0 C G C So- We define S:

a n d  f o r  s o m e  x G G  l e t t i n g

Lastly let

/ i \ U /

and Sn (77) =  (71 ,77(71)), so clearly M G Consequently, there is an

embedding g : M  — > T*, so g maps {n} x An into S j  and g maps R  into 

S j \  Let g{n,a) = (n,gn(a)) (i.e. this defines gn). Clearly g \ (UP*f) =  

9 \ (U{n } x ^n) induces an embedding g* of So to S i (by mapping the
n

generators into the generators).

The problem is why:

As G* =  Si fl 05, and 2H° +  1 C 05, it is enough to prove (gff(wn (x)) : n < 

uo) G 05. Now for notational simplicity /\[|wn(£)| > n +  1] (we can add an

element of G* 0 05 or just repeat the arguments). For each rj G n  wn(x)
n< lu

we know that g(r}) =  (g(j)(n)) : n < w) E T* hence is in ® (as T* E 2$, 

|T*| < A). Now by assumption there is A C J] wn(x) which is not nowhere

n<oj

dense such that g \ A G 05, hence for some n* and 77* G Yi wi{x )i A is

K n *

dense above 77* (in Y[ wn(x)). Hence

n<u>

but the former is in 05 as A G 05, and from the latter the desired conclusion 

follows. De.i
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7 N on-existence of universals for trees w ith  

small density

For simplicity we deal below with the case S = u/, but the proof works in 

general (as for in §2). Section 1 hinted we should look at not only 

for the case A = (A : a < uj) (i.e. £^r ), but in particular for

Here we get for this class (embeddings are required to preserve levels), 

results stronger than the ones we got for the classes of Abelian groups we 

have considered.

T heorem  7.1 Assume that

(a) A = (Aa : a < l j), An < An+i < XW) A =  A^; all are regular,

(b) D is a filter on uj containing cobounded sets,

(c) tc f(J | A n/D ) =  A (indeed, we mean we could just use A E pcf£)({An :

n < u}))>

( d )

Then there is no universal member in

P ro o f  We first notice that there is a sequence 

such that:

i-

2. a E Pa =>• a is a closed subset of a of order type

3.

4. For all club subsets E  of A, there are stationarily many S for which

there is an a E (J Pa such that 

o r <  A
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[Why? If A =  ( An)++, then it is the successor of a regular, so we use

n< u>

[Sh 351, §4], i.e.

is the union of ( [C An)+ sets with squares and continue with [Sh:g, III

n<LU

214(2)(c)].

If A > ( ^2 An)++, then we can use [Sh 420, §1], which guarantees that

n<w

there is a stationary S  £ /[A] and then use [Sh:g, III 2.3(2)]’s proof.]

We can now find a sequence

such that:

(a) /  =  ( fa : a < A) is a <d -increasing cofinal sequence in Yl
n<u>

(b)

(c)

(d) A„ > |a| &; fi 6 nacc(a) =>• gp.anp(n) < ga,a{n )•

[How? Choose /  by tcf( U  An/D ) — A. Then choose g ’s by induction,

n< w

possibly throwing out some of the / ’s; this is from [Sh:g, II, §1].]

Let T  £

We introduce for x £ levu,(T) and £ < l j the notation F j(x )  =  Fi(x) to 

denote the unique member of lev/(T) which is below x in the tree order of

T.

For a £ (J Pa , let a =  : £ < otp(a)} be an increasing enumeration.

a <  A

We shall consider two cases. In the first one, we assume that the following 

statement (*) holds. In this case, the proof is easier, and maybe (*) always 

holds for some D, but we do not know this at present.

(*) There is a partition (An : n < uj) of u  into sets not disjoint to any 

member of D .

In this case, let for n £ a;, Dn be the filter generated by D and An. Let for 

a € U Pa with otp(a) = ^2 An, and for x £ lev^T ),
a < A  n<u
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where

£n(x, a, T) =: min {£ < o tp(a): for some m < u  we have

(F j  (*) : i  < w) <Dn 9a',a' where 

a '  — <*a,ut+m  and a' — a n a '}.

Let

INv(a, T) =: {inv(x, a, T) : x E T  & Ic v t (x ) =  a;},

INV(T) =: {c : for every club E  C A, for some <5 and a

we have otp(a) =  £^An h a C E h a ^ P s

and for some x E T of lev^x) =  a;, c =  inv(x, a, T)}.

(Alternatively, we could have looked at the function giving each a the value 

INv(a, T), and then divide by a suitable club guessing ideal as in the proof 

in §3, see Definition 3.7.)

Clearly

Fact: INV(T) has cardinality < A.

The main point is the following 

M ain  Fact: If h  : T 1 — > T 2 is an embedding, then

Proof of the M ain  Fact under (*) We define for n E uj 

En =: {S < An : S > |^J and (Vx E lev ^ T 1)) (h(x) < S &  x < S)}.

l<n

We similarly define so En (n E u>) and are clubs (of An and A respec-

tively). Now suppose c E INV(Ti)\INV(T2). Without loss of generality Eu 

is (also) a club of A which exemplifies that c ^ INV(T2). For h E Yl

n <o»

let

/i+(n) =: min(i£n \  /i(ri)), and /3[h] =  min{/? < A : h < //?}.

(Note that h < //?[/i], not just h <d  fp[h]-) For a sequence (hi : i < i*) of 

functions from Y\ An , we use (ftf- : i < i*)+ for (h f  : i < i*). Now let

n<tu

Thus E* is a club of A. Since c E INV(Ti), there is S < A and a E P<$ such 

that for some x E lev^ (Ti) we have
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Let for n E u, £n =  : £n (x, a, Ti), so c =  (£n : n < uj). Also let for f  < ^  A„,

n<a>

= : a a)f , so a =  (a^ : £ < ^  An) is an increasing enumeration. Now fix

n<o>

an n < oj and consider h(z). Then we know that for some m

and

(f3) for no £ < £n is there such an m.

Now let us look at F j l {x) and i^T2(h(x)). They are not necessarily equal, 

but

(7) min(Ei \  F j ' (x )) = mm{Et \  Fj*{h(x))

(by the definition of Et). Hence

(8) ( F j l (x) : t< u ) + =  ( F ? (h(x)) : t  < «)+.

Now note that by the choice of g 's

( £ ) {9<xr)anae)*  < D n 9 a g+i,anae+ i ‘

From (<J) and (e) it follows that £n(h(x), a, T 2) =  ^ { x .a .T 1). Hence c E 

INV(T2). DMain Fact

Now it clearly suffices to prove:

Fact A: For each c =  (£n : n < u) E w( ^  An) we can find a T  E
n<u»

such that c E INV(T).

Proof of the Fact A in case (*) holds For each a E (J Ps with otp(a) =  

An we define xc>a =: (xc>a{£) : £ < u) by:

Let

We order T  by <.

It is easy to check that T  is as required. CU

Now we are left to deal with the case that (*) does not hold. Let

be an enumeration in increasing order so in particular
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Without loss of generality Ka* = A (by throwing out some elements if neces-

sary) and Aflpcf({An : n < u;}) has no last element (this appears explicitly 

in [Sh:g], but is also straightforward from the pcf theorem). In particular, 

a* is a limit ordinal. Hence, without loss of generality

Let (aKa : a < a *) be a generating sequence for pcf({An : n < a;}), i.e.

(The existence of such a sequence follows from the pcf theorem). Without 

loss of generality,

Now note

R em ark  7.2 If cf(a*) =  No, then (*) holds.

Why? Let (a(n) : n < uj) be a strictly increasing cofinal sequence in a*. 

Let (Bn : n < u) partition u  into infinite pairwise disjoint sets and let

To check that this choice of {At : t  < u j )  works, recall that for all a we know 

that a Ka does not belong to the ideal generated by {aKfj : f3 < a} and use 

the pcf calculus. (U7.2

Now let us go back to the general case, assuming cf(a*) > No. Our 

problem is the possibility that

is finite. Let now 

We define for

Let
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and

INV(T) =  {c : for every club E * of A for some a £ \J Ps

s< x

with otp(a) =  JZ An for arbitrarily large a < a*,
n<u»

there is x £ 1 evw(T) such that in va{x)a)T) — c] .

As before, the point is to prove the Main Fact.

Proof of the M ain  Fact in general Suppose h  : T l — > T 2 and c £ 

INV(T1)\IN V (T2). Let Ef be a club of A which witnesses that c £ INV(T2). 

We define i?n, as before, as well as E * (C Ew fl E'). Now let us choose 

a £ U Ps with a C E* and otp(a) =  JZ An . So a =  {a a£ • £ < $Z An},

<5 < A  n < u> n < u>

which we shorten as a =  {a^ : £ < JZ ^n}- For each £ < 5Z 35 before,
n<w  n<u;

we know that 

Therefore, there are

Let c — (£n : n < cj) and let

T =  {/?{,/ : for some n and m  we have

Thus T C a* is countable. Since cf(a*) > No> the set T is bounded in 

a *. Now we know that c appears as an invariant for a and arbitrarily large 

S < a*, for some x a,s E levw(Ti). If S > sup(T), c £ INV(T2) is exemplified 

by a,£, h (xa><5), just as before. □

We still have to prove that every c = (£n : n < u>) appears as an 

invariant; i.e. the parallel of Fact A.

P r n n f  n f  P a r t . A in  t.hp npnp.rnl ra.<tP‘ Define for each a £ (J Ps with

S<  A

where
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Form the tree as before. Now for any club E  of A, we can find a G (J Ps

6<\

with otp(a) =  ^2 An , a C E  such that (xC)(l)p : /? < a*) shows that

n <  u>

c g i n v (t ). n 7.i

R em ark  7.3 1. Clearly, this proof shows not only that there is no one T

which is universal for , but that any sequence of < An trees will

n<.u>

fail. This occurs generally in this paper, as we have tried to mention 

in each particular case.

2. The case “A < 2**°” is included in the theorem, though for the Abelian 

group application the f \  Ajj° < An+i is necessary.

n<u>

A is nowhere dense}

and definition 5.1),

then in there is no universal member.

P ro o f  Let S  C A, C =  (Cs : £ G 5) be a club guessing sequence on A 

with otp(C^) > supAn. We assume that we have % — (2la : a < A),

T* G 2lo {T* is a candidate for the universal), C = (Cs : S G S) G 2la > 

-< ('H(x), G, <x)> X =  ^7(A)+ , ||2la || < A, 2l„ increasingly continuous, 

<21/3 '■ < a) £ 2la+i, 2la fl A is an ordinal, 21 =  (J 2t<* and

a<\

R em ark  7.4 1. If /i+ < A =  cf(A) < % < /i**° and (or at

least Tida(c}(x) < /iN°) we can get the results for “no M G ^  is 

universal for see §8 (and [Sh 456]).

We can below (and subsequently in §8) use J% as in §6.

T heorem  7.5 Assume that 2**°

If, for simplicity, m  =  (m, : i < w) = (w : i < c j) (actually m,- G [2,u;] or 

euen m* G [2, Aq), Aq < A are O.K.) and US^(A) =  A (remember
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then for some A E ( J^ )+ the set ((77,^) : r} £ A) belongs to 21.

But then for some v E |J  f l  m*j the set A is dense above v (by the 

k i < k

definition of ) and hence: if the mapping 77 is continuous then

For 8 E S  such that C<* C E we let

and x p E l e v ^ jT * ,

the mapping p »->■ xp preserves all of the relations:

*g(p) = n )p i<p2,^{pi  <p2),~'{pi = P2),

pi O P2 — P3 (and so £g(p\ D P2) = n is preserved);

and t C (J 7711

a<o» i<o;

Assume

inv(z,C<$,T*,2l) =: { a G C j :  (3/9 E Dom(x))(xp E 2lmin(c,\(«+i)) \ a «)}- 

Let Inv (Q ,r* ,a i)  =:

{a : for some x E Pj3, a is a countable subset of inv(x, Co, T*, 21)}.

Note: inv(x, Co, T*, 21) has cardinality at most continuum, so Inv(Co, T*, 2t) 

is a family of < 2K° x |2t| =  A countable subsets of C<$.

We continue as before. Let a<5j£r be the £-th member of Cs for e < 

Yl An . So as A < > 2H° clearly A < cf([A]K°,C) (equivalently A <

n <w

cov(/z, /i, Ki, 2)) hence we can find 7n € ( (J A*, An) limit such that for each

i < n

8 E S', a E Inv(C<$, T*, 21) we have {7n -f  ̂ : 71 < and £ < m*} Pi a is 

bounded in p.

Now we can find T  such that levn(T) =  Â  and

t < n

and for some 8 E S', for every  ̂< cj 

we have 7̂  E { a ^ + m  • t t i < m i} }.

So, if T* is universal there is an embedding /  : T  — > T*, and hence

is closed under /  and / -1 }

is a club of A. By the choice of C for some 8 E S  we have C<j C E'. Now 

use (*) with Xq =  f ( ^ 6,v), where /^ ,r? =  0 ^ ^ + ^ )  € 1 evw(T). Thus we get
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A £ (J^ )+  such that {(77, xv) : 77 £ A} £ 21, there is v £ (J mi such that

k i<k

A is dense above v, hence as /  is continuous, ((t j , x v ) : v < tj € n  ™) £ 91. 

So (xn \ r}e  n m, v *?) £ <̂5°(21) > ar*d hence the set

{ofj)7,+m : £ £ [^(i/),w) and m  < m*} U {otfl7i+„(i) :  ̂< lg{v)} 

is inv(z, C s,T* ,21). Hence

contradicting

u{a <5,̂  :  ̂ < w} has finite intersection with any a £ Inv(C<5, T*, 21)” . 

□7.5

R em ark  7.6 We can a priori fix a set of N0 candidates and say more on 

their order of appearance, so that Inv(ic, C$, T*, 21) has order type a;. This 

makes it easier to phrase a true invariant, i.e. ((rjn , tn) : n < w) is as above, 

(7/n \ n < uj) lists w>oj with no repetition, (tn C\UJw : n < w) are pairwise 

disjoint. If x p £ levw(T*) for p £ wu;, T* = (T£ : (  < \ )  representation we 

have

r m in(C,\(«+l)) V ^ a]}-

R em ark  7.7 If we have T € (</J,)+ , r  non-meagre, J = f T and 

Uj(A) < AN° then we can weaken the cardinal assumptions to:

and

The proof is similar.

8 Universals in singular cardinals

In §3, §5, 7.5, we can in fact deal with “many” singular cardinals A. This is 

done by proving a stronger assertion on some regular A. Here ^  is a class 

of models.

L em m a 8.1 1. There is no universal member in if for some A < p*,

0 > 1 we have:
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®a ,ax*,0[*̂ ] n°t only there is no universal member in but if we as-

sume:

then there is a structure M from (in some cases of a simple 

form) not embeddable in any Mi.

2. Assume

and p+ < X or at least there is a club guessing C as in (**)^ (ii) 

of 3.4 for (A,//).

Then there is no universal member in (and moreover ®a ,/i v [*&] 

holds) in the following cases

®2(a) for torsion free groups, i.e. .ft =  .f t^  if cov (p*, A+ , A+ , A) < 

Y[ Xn, see notation 0.4 on cov)

n<(j)

(d) for like case (c) (for appropriate ideals), replacing tr

by rs(p).

R em ark  8.2 1. For 7.5 as m =  (a; : i < u)  it is clear that the subtrees

tn are isomorphic. We can use mt- E [2, u), and use coding; anyhow it 

is immaterial since uu j, u2 are similar.

2. We can also vary A in 8.1 0 2, case (c).

3. We can replace cov in 0 2(a),(c) by

(see [Sh 355, 5.4], 2.4).

P ro o f  Should be clear, e.g.

Proof of Part 2), Case (c) Let (Ti : i < i*) be given, i* < such that
n  S  i ij
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By [Sh 355, 5.4] and pp calculus ([Sh 355, 2.3]), /z® =  cov(/i®, A+, A+, A). 

Let x =  3 7(A)+. For i < i* choose ®, ^  (7£(x) €< J), ||®»|| =  /i®, 7} G ®*, 

/z® +  1 C ®,*. Let (ya : a  < /z®) be a family of subsets of T} exemplifying 

the Definition of /z® =  cov(/z®, A+ , A+, A).

Given x  =  ( x v : rj G wcj), x v G levw(7<), r) »->- x v continuous (in our case this 

m e a n s  £ g( r j i  n r j 2) = £ g { x Vl C \ x V2) =: £ g ( m a x { p  : p < r j i  & p < \ r j 2 } ) .  Then for 

some 7] G U)>u))

So given ((xj> : r j G Ww) : C <  A), x{» G levw(7i) we can find ( ( a j ,  r j j )  : j  <  

j* < A) such that:

Closing Ya enough we can continue as usual. D8 !

9 M etric spaces and implications

D efin ition  9.1 1. &mt is the class of metric spaces M  (i.e. M  =  (|M|,cf),

\M\ is the set of elements, d is the metric, i.e. a two-place func-

tion from \M\ to M-° such that d(x,y) =  0 x =  0 and

d{x, z) < d(x, y) +  d(y, z) and d(x, y) = d(y, x)).

An embedding f  of M  into A is a one-to-one function from \M\ into 

\N\ which is continuous, i.e. such that:

if in M, (xn : n < uj) converges to x

then in N, (/ ( x n) : n < cu) converges to /(x ).

2. &ms is defined similarly but Rang(d) C {2“n : n < u;} U {0} and 

instead of the triangular inequality we require

3. is like &tr but P™ =  \M\ and embeddings preserve x En y (not 

necessarily its negation) are one-to-one, and remember [ \x  En y =>

n

4. £ mt(c) is the class of semi-metric spaces M  = (|M |,d), which means 

that for the constant c G M+ the triangular inequality is weakened to 

d(x, z) < cd(x, y) +  cd(y) z) with embedding as in 9.1(1) (so for c — 1 

we get &mt).

Sh:552



2 7 8 Saharon Shelah

5. £ mdcl is the class of pairs (A,d) such that A is a non-empty set, d 

a two-place symmetric function from A to M-° such that [d(x,y) =

0 <=> x — y\ and

d(xo, xn) < c ^2, %t+1) for any n < oj and xo ,. . .  , xn E A.

l < n

6 fcms[c] are defined parallely.

7 ^r5(p),pure js defined like but the embeddings are pure.

Remark 9.2 There are, of course, other notions of embeddings; isometric 

embeddings if d is preserved, co-embeddings if the image of an open set is 

open, bi-continuous means an embedding which is a co-embedding. The 

isometric embedding is the weakest, its case is essentially equivalent to the 

case (as in 9.8(3)); for the open case there is a universal: discrete space. 

The universal for under bicontinuous case exist one in cardinality AK°.

T heorem  9.3 ([Ko57]) For every infinite cardinal k , the product of Ho 

copies of the hedgehod J (k ) is a universal space for metrizable spaces of 

weight k , where J(tc) is the metric space obtained by taking ac copies of the 

unit interval and identifying their 0-points.

Proof see [Ko57].

D efinition 9.4 1. Univ°(^1, ^ 2) =  {(A,ac, 0) : there are Mi E £ 2 for

1 < 0 such that any M  E can be embedded into some M,}. We 

may omit 6 if it is 1. We may omit the superscript 0.

2. Univ1^ 1,^ 2) =  {(A,k , 0) : there are Mi E £ 2 for i < 6  such that any 

M E ^ J  can be represented as the union of < A sets A( (C < C* < A) 

such that each M  \ A  ̂ can be embedded into some Mi} and is a 

<^i -submodel of M.

3. If above =  £ 2 we write it just once; (naturally we usually assume 

J?1 C £ 2).

Remark 9.5 1. We prove our theorems for Univ°} we can get parallel

things for Univ1.

2. Many previous results of this paper can be rephrased using a pair of 

classes.

3. We can make 9.6 below deal with pairs and/or function H changing 

cardinality.
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4. Univ^ has the obvious monotonicity properties.

P ro p o sitio n  9.6 1. Assume .ft1,.^2 has the same models as their mem-

bers and every embedding for is an embedding for .31.

Then Univ(^2) C Univ(^1).

2. Assume there is for i  =  1,2 a function Hi from into &3~l such 

that:

is embeddable into M2 then 

M\ is embeddable into / ^ ( ^ J  E &1.

Then Univ(£2) C Univ(^1).

D efin ition  9.7 We say A1 < £ 2 if the assumptions of 9.6(2) hold. We say 

&1 = A2 if < 8? < fi1 (so larger means with fewer cases of universality).

T heorem  9.8 1. The relation “$} < ” is a quasi-order (i.e. transi-

tive and reflexive).

2. I f are as in 9.6(1) then (use H\ =  i / 2 — the iden-

tity).

3. For ci > 1 we have =  fims(Cl)]

4.

5. RtrW <

6  £ t r { u ) )  <  g r s ( p ) , p u r e

P ro o f  1) Check.

2) Check.

3) Choose n(*) < u  large enough and £},& 2 any two of the four. We 

define Hi, / / 2 as follows. Hi is the identity. For (A, d) E Rl let H i((A , d)) = 

(A, S ^)  where d ^(x , y) =  inf{l/(n+n(*)) : 2_n > d(x, y)} (the result is not 

necessarily a metric space, n(*) is chosen so that the semi-metric inequality 

holds). The point is to check clause (c) of 9.6(2); so assume /  is a function 

which £ 2-embeds H i((A i,d i))  into (^2,^2); but
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so it is enough to check that /  is a function which .^-embeds (Ai, d ^ )  into 

(A2, d[>̂ ) i*e* if is one-to-one (obvious) and preserves limit (check).

4) For M  =  (A, En)n<u, E £ tr^ ,  without loss of generality >1 C and

Let B+ = {rj \ n : rj e A and n < u;}. We define # i(M ) as the (Abelian) 

group generated by

//2(G) E as “G is separable” implies (Vx)(a: /  0 => (3n)[x £

pnG]). Clearly clauses (a), (b) of Definition 9.1(2) hold. As for clause

(c), assume (A, En)n<(j0 E As only the isomorphism type counts

without loss of generality A C WA. Let B = {rj \ n : n < uj : p G A} 

and G = H\{{A) En)n<u) be as above. Suppose that /  embeds G into 

some G* E Mrs(p\  and let (A*, E*)n<u> be #2 ((?*)• We should prove that 

(A, En)n<U) is embeddable into (A*, £*).

Let /* : A — >• A* be f*{rj) =  xv E A*. Clearly /* is one to one from 

A to A*; if rjE'ni/ then rj \ n = v \ n hence G |= pn \ (xv — x„) hence 

(A*, A*)n<u, |= r)E*nv. Dg.s

R em ark  9.9 In 9.8(4) we can prove

T heorem  9.10

P ro o f  1) Let H\ : &mt — > &mt(c) be the identity. Let H2 : — y &mt

be defined as follows: 

i / 2((A, d)) =  (A, dmt) ) where

(jjmtf,, _

inf

Now
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(*)i dmt is a two-place function from A to R -°, is symmetric, dmt{x) x) =  0 

and it satisfies the triangular inequality.

This is true even on but here also

(*)2 dmt(x , y) =  0 x =  0.

[Why? As by the Definition of dmt{x, y) > ^d(x,y). Clearly clauses

(a), (b) of 9.6(2) hold.]

Next,

(*)3 If Mi, N  E £ mt, /  is an embedding (for Rmt) of M\ into N  then /  is 

an embedding (for £ mtfc]) of H \(M ) into H \(N)

[why? as H X{M) = M  and H2{N) =  N],

(*)4 If M, N  G f  is an embedding (for £ mtH) of M  into N  then /

is an embedding (for &mt) of H2(M) into H\(M )

[why? as HI preserves lim xn =  x and lim xn =£ x].
n —>oo n —»-oo

So two applications of 9.6 give the equivalence.

2) We combine H2 from the proof of (1) and the proof of 9.8(3). Dg io

Definition 9.11 1. If

for every n large enough, 

for every y E n
l < n

the set {^'(n ) : y < rf E A} is finite}, 

be a metric space such that

closure

now

for some n, the closure of A  (in (T, d*))

is disjoint to u n M-
m 6[n,w ) l < m

3. Let H E Rrs(p\  H = (Hn : n < u), Hn C H pure and closed, 

n < m  => Hn C Hm and |J  Hn is dense in H. Let

n <  u

for some n the closure of (A)h  intersected with 

U Hi is included in Hn}.

1< U J
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Proposition 9.12 Suppose that 2H° < p and p+ < A = cf(A) < pH° and

(*)a Ujm<(A) =  A or at least Ujmt(A) < AH° for some p = (pn : n < l j ) 

such that n  Pn < A.

n<o>

Then has no universal member.

Proposition 9.13 1. Jmt is Hi-based.

The minimal cardinality of a set which is not in the a-ideal generated 

by J mt is b.

3. 7 ^ . ) ,  / " (?} are -based.

f. J mt is a particular case of I f f  (i.e. for some choice of (T>d*)).

5. Ip is a particular case of I r̂ g  •

Proof of 9.12. Let

for every n such that n +  1 < a 

we have i/(n) < c j}

and for a < u  let T  = (J Ta . We define on T  the relation <t  :

a <u>

We define a metric:

if (*7i, ^ i )  /  (772, ^ 2 )  E  T  and (77, v) is their maximal common initial segment 

and (77, i/ ) g T  then necessarily a — tg{{77, z/)) < u  and we let:

Now, for every S C {J < A : cf(J) = K0}, and fj = (rjs : S E S'), g$ £ <̂5, gs 

increasing let be (T, d) \ where

The rest is as in previous cases (note that ((g~ (a), v ~(n)) : n < u) converges 

to (77~(a),z/~(u;)) and even if (77"(of), i/~(n)) < (77^^) ETW then ((?7„,i/„) : 

n < w) converge to ^ ( a ) ,  z/^u;))). (II9.13
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P ro p o sitio n  9.14 7/INDx/((pn : n < u;)), then /in is not the union of

n<u>

< x  rnembers of 1  ̂ (see Definition 5.5 and Theorem 5.7).

P ro o f  Suppose that A( =  { Pn%an : (a n : n < u) E X^} and an < pn
n<u;

are such that if E then for infinitely many n for every k < l j

there is : n < c j),

(see §5).

This clearly follows. CI9.14

10 On M odules

Here we present the straight generalization of the one prime case like Abelian 

reduced separable p-groups. This will be expanded in [Sh 622] (including 

the proof of 10.4).

H ypo thesis  10.1 (A) R  is a ring, e = (en : n < w), en is a definition of 

an additive subgroup of 77-modules by an existential positive formula 

(finitary or infinitary) decreasing with n, we write en(M) for this 

additive subgroup, tw(M) = f ] t n(M). Let Ma <rp M2 of M\ C M2
n

and ew(Mi) = ew(M2) O M i, let M i <pr M2 if Mi C M2 and n < 

xu => c„(M 2) n  Mi = cn(Mi).

(B) & is the class of 77-modules.

(C) 8* C £  is a class of 77-modules, which is closed under direct summand, 

direct limit for <pr-increasing chains and for which there is M*, x* E

D efin ition  10.2 For M \ , M2 E we say h is a (£, e)-homomorphism from 

Mi to M2 if it is a homomorphism and it maps M \\ tw(M\) into M2\eu,(M2); 

we say h is an e-pure homomorphism if for each n it maps M\ \  en(M 1) into 

M2 \ e n(M2).

D efin ition  10.3 1. Let 77n C Hn+\ C 77 , 77 = (77n : n < a;), c7 is a

closure operation on H, is a function from V(H)  to itself and
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Define

for some k < u  we have

2. We can replace u  by any regular

C laim  10.4 Assume |/J| +  p+ < A = cf(A) < p*0, then for every M  E 

there is N  E Ma with no t-pure homomorphism from N  into M .

R em ark  10.5 In the interesting cases ci has infinitary character.

The applications here are for k  = u. For the theory, p c f is nicer for higher

11 Open problems

P ro b lem  11.1 1. If > A then any (A ,d ) £ fi.™* can be embedded

into some M f E with density < /i.

2. If p*° > A then any (A,d) E can be embedded into some M ' E 

.ft™5 with density < p.

P ro b lem  11.2 1. Other inclusions on Univ(£x) or show consistency of

non inclusions (see §9).

2. Is < £ 2 the right partial order? (see §9).

3. By forcing reduce consistency of U jx (A) > A+ 2**° to that of U j 2(A) > 

A + 2*°.

P ro b lem  11.3 1. The cases with the weak pcf assumptions, can they

be resolved in ZFC? (the pc f problems are another matter).

2. Use [Sh 460], [Sh 513] to get ZFC results for large enough cardinals.

P ro b lem  11.4 If A °̂ < An+i, p — An , A =  p+ < p*° can (A, A, 1)

n <  u j

belong to Univ(£)? For £  =  £ tr , jF 'W , &trf?

P ro b lem  11.5 1. If A =  p+} 2<  ̂ =  A < 2  ̂ can (A, A, 1) E Univ(£or =

class of linear orders)?

2. Similarly for A = /i+, p singular, strong limit, cf(p) = A < p H°.

3. Similarly for
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P ro b lem  11.6 1. Analyze the existence of universal member from

A < 2*°.

2. §4 for many cardinals, i.e. is it consistent that: 2^° > and for 

every A < 2**° there is a universal member of

P ro b lem  11.7 1. If there are Ai C p for i < 2No, \A{ 0 Aj\ < No,

2^ =  2**° find forcing adding S  C [wo;]  ̂ universal for {(5, <]) : UJ>u  C 

B C w-u;, |B| < A} under (level preserving) natural embedding.

P ro b lem  11.8 For simple countable T, k  = k <k < A C k  force existence 

of universal for T  in A still k  =  k <k but 2K = x-

P ro b lem  11.9 Make [Sh 457, §4], [Sh 500, §1] work for a larger class of 

theories more than simple.

See on some of these problems [DjSh 614], [Sh 622].
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