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Abstract

We consider a class K of structures, e.g. trees with w + 1 lev-
els, metric spaces and mainly, classes of Abelian groups like the one
mentioned in the title and the class of reduced separable (Abelian)
p-groups. We say M € K is universal for K if any member N of K of
cardinality not bigger than the cardinality of M can be embedded into
M. This is a natural, often raised, problem. We try to draw conse-
quences of cardinal arithmetic to non-existence of universal members
for such natural classes.
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0 Introduction

Context. In this paper, model theoretic notions (like superstable, ele-
mentary classes) appear in the introduction but not in the paper itself (so
the reader does not need to know them). Only naive set theory and basic
facts on Abelian groups (all in {Fu]) are necessary for understanding the pa-
per. The basic definitions are reviewed at the end of the introduction. On
the history of the problem of the existence of universal members, see Ko-
jman, Shelah [KjSh 409]; for more direct predecessors see Kojman, Shelah
[KjSh 447, [KjSh 455] and [Sh 456], but we do not rely on them. For other
advances see [Sh 457], [Sh 500] and Dzamonja, Shelah [DjSh 614]. Lately
[Sh 622] continue this paper.

A class £ is a class of structures with an embeddability notion. If not
said otherwise, an embedding, 1s a one to one function preserving atomic
relations and their negations. If K is a class and A is a cardinal, then K
stands for the collection of all members of & of cardinality A.

We similarly define R<».

A member M of R is universal, if every N € f<), embeds into M.

An example is M =: @ Q, which is universal in &) if R is the class of all
X

torsion-free Abelian groups, under usual embeddings.

We give some motivation to the present paper by a short review of the
above references. The general thesis in these papers, as well as the present
one is:

Thesis 0.1 General Abelian groups and trees with w + 1 levels behave in
universality theorems like stable non-superstable theories.

The simplest example of such a class is the class & =: trees T with
(w4 1)-levels, i.e. T C “2Za for some a, with the relations nESv =: n |
n=v|n&lgn >n For & we know that u* < X = cf(A) < pNe
implies there is no universal for & (by [KjSh 447]). Classes as 8%/ (defined
in the title), or &7*() (reduced separable Abelian p-groups) are similar
(though they are not elementary classes) when we consider pure embeddings
(by [KjSh 455]). But it is not less natural to consider usual embeddings
(remembering they, the (Abelian) groups under consideration, are reduced).
The problem is that the invariant has been defined using divisibility, and so
under non-pure embedding those seemed to be erased.

Then in [Sh 456] the non-existence of universals is proved restricting
ourselves to A > 2%¢ and (< A)-stable groups (see there). These restrictions
hurt the generality of the theorem; because of the first requirement we lose
some cardinals. The second requirement changes the class to one which
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is not established among Abelian group theorists (though to me it looks
natural).

Our aim was to eliminate those requirements, or show that they are
necessary. Note that the present paper is mainly concerned essentially with
results in ZFC, but they have roots in “difficulties” in extending indepen-
dence results thus providing a case for the

Thesis 0.2 Even if you do not like independence resulls you better look at
them, as you will not even consider your desirable ZFC results when they
are camouflaged by the litany of many independence results you can prove
things.

Of course, independence has interest per se; still for a given problem in
general a solution in ZFC is for me preferable on an independence result.
But if it gives a method of forcing (so relevant to a series of problems) the
independence result is preferable (of course, I assume there are no other
major differences; the depth of the proof would be of first importance to
me).

As occurs often in my papers lately, quotations of pef theory appear.

This paper is also a case of

Thesis 0.3 Assumption of cases of not GCH at singular (more generally
ppA > AY) are “good”, ‘helpful” assumptions; i.e. traditionally uses of
GCH proliferate mainly not from conviction but as you can prove many
theorems assuming 28%° = R, but very few from 2% > XN;, but assuming
23v > 3% s helpful in proving.

Unfortunately, most results are only almost in ZFC as they use extremely
weak assumptions from pcf, assumptions whose independence is not known.
So practically it is not tempting to try to remove them as they may be
true, and it is unreasonable to try to prove independence results before
independence results on pcf will advance.

In §1 we give an explanation of the earlier difficulties: the problem (of
the existence of universals for & *(P)) is not like looking for &*" (trees with
w + 1 levels) but for &5 ., where
(®) Ao < Ay1 < g, A are regular and pt < X = A, = cf()) < pN° and

2 .
ﬁ(;n:n«u) 1s

{T : T atree with w + 1 levels, in level n < w there are A, elements}.

We also consider ﬁf;\ a<w)? which is defined similarly but the level w of T

is required to have A, elements.
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For &7*(P) this is proved fully, for 7%/ this is proved for the natural examples
(but see [Sh 622]).

In §2 we define two such basic examples: one is &} , and the
(Aa:a<w)

second is ﬁ{;a:a<w). The first is a tree with w + 1 levels; in the second we
have slightly less restrictions. We have w kinds of elements and a function
from the w-th-kind to the nth kind. We can interpret a tree T' as a member
of the second example: PT = {z : z is of level o} and

Fo(z)=y & zePT&yePT&y<re.

For the second we recapture the non-existence theorems.

But this is not one of the classes we considered originally.

In §3 we return to &7/ (reduced torsion free Abelian groups) and prove
the non-existence of universal ones in A if 2% < pt < X = cf(A) < phe
and an additional very weak set theoretic assumption (the consistency of
its failure is not known).

Note that (it will be proved in [Sh 622]):
(®) if A < 2% then R’;‘” has no universal members.

Note: if A = A then &Y has universal member also Rf\“(p) (see [Fu]) and
R (see [Sh 622]).
We have noted above that for R;tf requiring A > 2%° is reasonable: we can
prove (i.e. in ZFC) that there is no universal member. What about ﬁ':\’(”)?
By §1 we should look at Rz;-riiw)’ Aw = A< 2% 0, < Rg.

In §4 we prove the consistency of the existence of universals for 'ﬁzg\;:igw)

when A, < w, A, = A < 2% but of cardinality A*; this is not the original
problem but it seems to be a reasonable variant, and more seriously, it
shoots down the hope to use the present methods of proving non-existence
of universals. Anyhow this is & .,y not .ﬁ;‘;(p), so we proceed to reduce
this problem to the previous one under a mild variant of MA. The intentions
are to deal with “there 1s universal of cardinality A” in DZamonja Shelah
[DjSh 614).
The reader should remember that the consistency of e.g.

2% > X > Ry and there is no M such that M € &*®) is of

cardinality < 2%° and universal for R;“(p)

is much easier to obtain, even in a wider context (just add many Cohen
reals).

As in §4 the problem for &’ ) was reasonably resolved for A < 2%° (and
for A = A¥e, see [KjSh 455]), we now, in §5 turn to A > 2% (and g, \,) as
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in (@) above. As in an earlier proof we use (Cs : § € S) guessing clubs for A
(see references or later here), so Cs is a subset of é (so the invariant depends
on the representation of G but this disappears when we divide by suitable
ideal on A). What we do is: rather than trying to code a subset of Cs (for
G= (G; : i < A) arepresentation or filtration of the structure G as the union
of an increasing continuous sequence of structures of smaller cardinality) by
an element of G, we do it, say, by some set £ = (z; : ¢ € Dom(I)), I an
ideal on Dom([) (really by &/I). At first glance if Dom(/) is infinite we
cannot list a prior: all possible such sequences for a candidate H for being
a universal member, as their number is > A®e = Yo But we can find a
family
FC{{xy:teA): ACDom(l), A¢I, z; € A}

of cardinality < uY° such that for any z = (z; : ¢ € Dom([)), for some
g € F we have § = Z | Dom(y).

Asin §3 there is such F except when some set theoretic statement related
to pcf holds. This statement is extremely strong, also in the sense that
we do not know to prove its consistency at present. But again, it seems
unreasonable to try to prove its consistency before the pcf problem was
dealt with. Of course, we may try to improve the combinatorics to avoid
the use of this statement, but are naturally discouraged by the possibility
that the pcf statement can be proved in ZFC; thus we would retroactively
get the non-existence of universals in ZFC.

In §6, under weak pcf assumptions, we prove: if there is a universal
member in &{° then there is one in £} ®); so making the connection between

the combinatorial structures and the algebraic ones closer.

In §7 we give other weak pcf assumptions which suffice to prove non-
existence of universals in &7, .,y (with z one of the “legal” values):
maxpcf{d, : n < w} = X and P({A, : n < w})/Jcr{rn 1 n < w} is
an infinite Boolean Algebra (and (@) holds, of course).

In [KjSh 409], for singular A results on non-existence of universals (there
on orders) can be gotten from these weak pcf assumptions.

In §8 we get parallel results from, in general, more complicated assump-
tions.

In §9 we turn to a closely related class: the class of metric spaces with
(one to one) continuous embeddings, similar results hold for it. We also
phrase a natural criterion for deducing the non-existence of universals from
one class to another.

In §10 we deal with modules and in §11 we discuss the open problems
of various degrees of seriousness.
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The sections are written in the order the research was done.

Notation 0.4 Note that we deal with trees with w 4 1 levels rather than,
say, with & + 1, and related situations, as those cases are quite popular.
But inherently the proofs of §1-§3, §5-§9 work for x + 1 as well (in fact, pef
theory is stronger).

For a structure M, ||M]|| is its cardinality.

For a model, i.e. a structure, M of cardinality A, where XA is regular

uncountable, we say that M is a representation (or filtration) of M if
M = (M; : i < ) is an increasing continuous sequence of submodels of
cardinality < A with union M.

For a set A, we let [A]* ={B: B C A and |B| = «}.

For a set C of ordinals,
acc(C) = {a € C : a = sup(a N C)}, (set of accumulation points)

nacc(C) = C \ ace(C) (= the set of non-accumulation points).

We usually use 5, v, p for sequences of ordinals; let < ¥ means 7 is an
initial segment of v.
Let cov(\, g, 0,0) = min{|P| : P C [\]<#, and for every A € [A]<? for
some @ < o and B; € P for ¢ < @ we have A C |J B;}. Remember that
i<a
for an ordinal o, e.g. a natural number, a = {3 : 8 < a}.

Notation 0.5 &*(P) is the class of (Abelian) groups which are p-groups (i.e.

(Vz € G)(An)[p"z = 0]) reduced (i.e. have no divisible non-zero subgroups)
and separable (i.e. every cyclic pure subgroup is a direct summand). See
[Fu].

For G € &*(?) define a norm ||z|| = inf{27™ : p" divides z}. Now every
G € A7) has a basic subgroup B = @ Zz?, where z7 has order p"+!,

n<w
i<An
and every = € G can be represented as > aPa?, where for each n, w,(z) =
S
{i < An : a?z? # 0} is finite and for some n, p"z = 0.
&S is the class of Abelian groups which are reduced and torsion free (i.e.
GEnr=0,n>0 = r =0).
For a group G and A C G let {A)¢ be the subgroup of G generated by A,
we may omit the subscript G if clear from the context.
Group will mean an Abelian group, even 1if not stated explicitly.
Let H C,, G means H is a pure subgroup of G.

Let nG = {nz : z € G} and let G[n] = {z € G : nx = 0}.

Notation 0.6 K will denote a class of structures with the same vocabulary,
with a notion of embeddability, equivalently a notion <g of submodel.
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1 Their prototype is ﬁfr not {"!

Ann<w)

If we look for universal member in .ﬁ;s(p), thesis 0.1 suggests to us to think
it is basically K" (trees with w + 1 levels, i.e. &Y is our prototype), a way
followed in [KjSh 455], [Sh 456]. But, as explained in the introduction, this
does not give answer for the case of usual embedding for the family of all
such groups. Here we show that for this case the thesis should be corrected.
More concretely, the choice of the prototype means the choice of what we
expect is the division of the possible classes. That is for a family of classes
a choice of a prototype assert that we believe that they all behave in the
same way.

We show that looking for a universal member G in .ﬁ;“(p) 1s like look-
ing for it among the G’s with density < p (A, g, as usual, as in (@) from
§0). For .ﬁgtf we get weaker results which still cover the examples usually
constructed, so showing that the restrictions in [KjSh 455] (to pure embed-
dings) and [Sh 456] (to (< A)-stable groups) were natural.

Proposition 1.1 Assume that p= Y. A, = limsup A,, p < A < pXo, and
n<w n

G 15 a reduced separable p-group such that
IGl=X and X\ (G) =:dim((p"G)[p}/(p"*'G)[p)) < n

(this is a vector space over Z[pZ, hence the dimension is well defined).
Then there is a reduced separable p-group H such that |H| = A, H eztends
G and (p"H)[p)/(p"*t' H)[p) is a group of dimension A, (so if A, > Ro, this
means cardinality Ay, ).

Remark 1.2 So for H the invariants from [KjSh 455] are trivial.

Proof (See Fuchs [Fu]). We can find z}* (for n < w, i < A, (G) < p) such
that:

(a) 2P has order p",
(b) B =3 (21"} is a direct sum,
n,i
(¢) B is dense in G in the topology induced by the norm
||lz]| = min{2™" : p" divides z in G}.
For each n < w and i < A, (G) (< p) choose 0} € [] Am, pairwise distinct
m<w

such that for (n',4!) # (n?,4?) for some n(x) we have:

M2 Any = 0l () £ (n).
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Let H be generated by G, z* (i < Am, m < w), y?’k (< A, n < w,
n < k < w) freely except for:

(@) the equations of G,

(B) ¥'" =27,

(7) py ™t -yt = xsy(k),

(8) p"t'a} =0,

() PFHy =0,

Now check. O 4

Definition 1.3 1. t denotes a sequence (t; : i < w), t; a natural number
> 1.

2. For a group G we define

GM={zeG: \lze([t)G]

j<w i<j
3. We can define a semi-norm || — ||y on G
llzlle = min{27* : = € ([] )G}
i<i

and so the semi-metric
di(z,y) = |lz — ylle-

Remark 1.4 So, if || — ||¢ is a norm, G has a completion under || — ||¢,
which we call || — ||¢-completion; if t = (i! : i < w) we refer to || — |[¢ as
Z-adic norm, and this induces Z-adic topology, so we can speak of Z-adic
completion.
Proposition 1.5 Suppose that
(®0) p =32 and p <X < p¥0 for simplicity, 2 < 2- An < Ang1 (maybe

n

An s finite!),

(®1) G is a torsion free group, |G| = A, and Gl = {0},

(®2) Go C G, Gy is free and Gy is t-dense in G (i.e. in the topology
induced by the metric dy), where t is a sequence of primes.
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Then there is a torsion free group H, G C H, HY = {0}, |H| = X and,
under dy, H has density p.

Proof Let {z; : i < A} be a basis of Gy. Let n; € [] A, for i < p be

n<w

distinct such that 7;(n + 1) > A, and

i#ji = (@m)n)m<n = m(n)#ni(n).
Let H be generated by

G, 27" (fori<Am, m<w), 4 (fori<p, n<w)

freely except for
(a) the equations of G,
(b) ¥ = =i,
(©) tagi™ +9p =27,
Fact A  H extends (G and is torsion free.
[Why? As H can be embedded into the divisible hull of G.]

Fact B HI[ = {0}.
Proof Let K be a countable pure subgroup of H such that K # {0}.
Now without loss of generality K is generated by

(1) K1 C Gn [the dy—closure of (z; : i € I)g]], where [ is a countable infi-
nite subset of A and Ky D (z; : i € I)g,

(ii) y*, 27 fori € I, m <w and (n,j) € J, where J C w x X is countable
and
iel, n<w = (n,ni(n)) € J.

Moreover, the equations holding among those elements are deducible from
the equations of the form

(a)™ equations of K,

(b)” ¢ =z;foriel,

() it 4P = T3 (n) foriel,n <w.
We can find (k; : i < w) such that

[nZk,&’nZkJ&l:}é] = 771‘(“)#’7]'(")}
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Let y € K \ {0}. Then for some j, y ¢ (] ¢:)G, so for some finite Iy C [
i<y
and finite Jo C J and

ye{zi:ieh}U{z,:(n,a) € Jo})k

we have y — y* € ([] t;)G. Without loss of generality Jo N {(n,ni(n)) : i €
<]

I, n> k;} = 0. Now there is a homomorphism ¢ from K into the divisible

hull K** of

K*'={zi:ie€elh}U {7 : (n,j) € Joe
such that Rang(y)/K* is finite. This is enough.
Fact C Ho=:{(z] :n<w,i < Ap)y is dense in H by ds.

3

Proof Straight as each z; is in the di-closure of Hy inside H.

Noting then that we can increase the dimension easily, we are done. O 5

2 On structures like (J] An, En)m<w)
nEmv =: n(m) = v(m)

Discussion 2.1 We discuss the existence of universal members in cardi-
nality A, ut < A < p®e, for certain classes of groups. The claims in §1
indicate that the problem is similar not to the problem of the existence of a
universal member in K" (the class of trees with A nodes, w + 1 levels) but
to the one where the first w levels, are each with < p elements. We look
more carefully and see that some variants are quite different.

The major concepts and Lemma (2.4) are similar to those of §3, but
easter. Since detailed proofs are given in §3, here we give somewhat shorter
proofs.

Definition 2.2 For a sequence A = (); : i < §) of cardinals we define:
(A) &Y ={T: T is a tree with d + 1 levels (i.e. a partial order such that
for z € T, levy(z) =: otp({y : y < z}) is an ordinal < §) such
that: lev;(T) =: {z € T : levy(z) = i} has cardinality < A;},
(B) .ﬁ){c ={M : M = (M|, P;, F)i<s, |M| is the disjoint union of
(P; :1 < §), F; is a function from Ps to P;, ||Fi]| < A,
Fs is the identity (so can be omitted)},

(C) If[i<d = A =2A] then we write A, § + 1 instead of (X; : 1 < §).
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Definition 2.3 Embeddings for &Y, ﬁ§° are defined naturally: for &Y

embeddings preserve z < y, =z < y, levr(z) = a; for R§C embeddings are
defined just as for models.

Ifé'=62=dand[i<é = Al <A and M!c &, (or T € &Y,)
for £ = 1,2, then an embedding of M! into M2 (T! into T?) is defined

naturally.

Lemma 2.4 Assume A = ()\; 11 < 8) and 0, x satisfy (for some C):

(a) s, 8 are regular, C = (Cx : @ € S), S C A = X5, Co C a, for
every club E of X for some o we have Co C E, X5 < x < |Cal® and
otp(Cq) > 0,

(b) A <A,

(c) there are 8 pairwise disjoint sets A C § such that ] A > As.

i€EA
Then

(«) there is no universal member in ﬁgc; moreover

(B) if My € Rgc or even My € R{i for o < o* < x then some M € R§c
cannot be embedded into any M.

Remark 2.5 Note that clause (§) is relevant to our discussion in §1: the

non-universality is preserved even if we increase the density and, also, it is

witnessed even by non-embeddability in many models.

Proof Let (A, : € < f) be as in clause (c) and let 5, € [ Ai for o < As
€A,

be pairwise distinct. We fix M, € ﬁ{i for o < a* < x.

For M € .ﬁ§c, let M = (M|, PM FM)ics and let (M : a < As) be a

representation (=filtration) of M;fora € S, z € PISM, let

inv(z, Co; M) = {,3 € Cy : for some € < 0 and y € Mpin(c.\(5+1))

we have A FM(z) = FM(y)

i€EA,
but there is no such y € Mﬁ}.
Inv(Cy, M) = {inv(z,Cy, M) : z € PM}.
INv(M,C) = (Inv(Cy, M) : a € S).
INV(M,C) = INv(M, C)/id*(C).
Recall that

id*(C) = {T C A: for some club E of A forno a € T is Co C E}.

The rest should be clear (for more details see proofs in §3), noticing
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Fact 2.6 1. INV(M,C) s well defined, i.e. if Mt Mf are representa-
tions (=filtrations) of M then INV(M!,C) = INV(M?,C).

2. Inv(Cy, M) has cardinality < X.
3. inv(z,Cq; M) is a subset of Cy of cardinality < 6.

Oy 4

Conclusion 2.7 If p= 5. A, and ANo < Ay and pt < Ay = cf (M) <

n<w

pNo, then in R{;u:as(ﬂ) there 1s no universal member and even in R{;u:asw)
we cannot find a member universal for it.
Proof Should be clear or see the proof in §3. 0,7

3 Reduced torsion free groups: Non-existence
of universals

We try to choose torsion free reduced groups and define invariants so that
in an extension to another such group H something survives. To this end
it is natural to stretch “reduced” near to its limit.

Definition 3.1 1. £/ is the class of torsion free (abelian) groups.
2. &) = {G € & : Q is not embeddable into G (i.e. G is reduced)}.
3. P* denotes the set of primes.
4. Forz € G,P(z,G)={peP*: Az € p"G}.

5. B2 = {G € &% ||G]| = A}.

6. f H € Rf\tf, we say H is a representation or filtration of H if H =

(Hy : o < ) is increasing continuous and H = |J Hg, H € &%/ and
a<<A
each H, has cardinality < A.

Proposition 3.2 1. IfGe &%, z € G\ {0}, QUP(z,G) g P*, Gt s
the group generated by G,y,yp¢ (£ < w, p € Q) freely, except for the
equations of G and

Ypo =Y, DPUpes1 =Ype and yp,=zwhenz€G,plz=1

then G* € &%/, G C G*.
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2. If G; € &Y (i < a) is Cp,-increasing then G; Cpr |J G; € &Y for
j<a
every i < .

The proof of the following lemma introduces a method quite central to this
paper.

Lemma 3.3 Assume that
(%)} 2R+ pt <A =cf(V) < po,
(%)% for every x < X, there is S C [x|S®°, such that:

(1) 1S] <A,

(i1) if D is a non-principal ultrafilter on w and f : D — x then for
some a € S we have

({X€eD:f(X)€a}¢D.

Then

(@) in &5 there is no universal member (under usual embeddings (i.e. not
necessarily pure)),

(B) moreover, for any G; € ﬁ;tf, fori < i* < pR° there is G € R;tf not
embeddable into any one of G;.

Before we prove 3.3 we consider the assumptions of 3.3 in 3.4, 3.5.

Claim 3.4 1. In 3.3 we can replace ()} by
(%)} (1) 2% < p < A =cf(2) < ple,
(ii) there is C = (Cs : 6 € S*) such that S* is a stationary
subset of A, each Cj is a subset of & with otp(Cs) divisible by p,
Cs closed in sup(Cs) (which normally &, but not necessarily so)
and
(Va)[o € nace(Cs) = cf(a) > 28]

{wher_e nacc stands for “non-accumulation points”), and such
that C guesses clubs of A (i.e. for every club E of A, for some
§€S* wehave Cs CE)and [§ €S* = cf(d) =R

2. In ()} and in (*)2, without loss of generality (V8 < p)[6"° < ] and
Cf(u) = No.
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Proof 1) This is what we actually use in the proof (see below).

2) Replace ¢ by p' = min{p; :p:{" > p (equivalently p)° = pNo)}. Os.4
Compare to, say, [KjSh 447], [KjSh 455]; the new assumption is (%)%,

note that it is a very weak assumption, in fact it might be that it is always

true.

Claim 3.5 Assume that 2% < p < A < p®° and (V0 < p)[f% < p] (see
3.4(2)). Then each of the following is a sufficient condition to (x)2:

(@) A< pter,
(B) ifa C RegN A\ p and |a] < 2% then we can find h : a — w such that:

A > sup{maxpcf(b) : b C a countable, and h | b constant}.

Proof Clause (a) implies Clause (§): just use any one-to-one function
h:RegNA\pu— w.

Clause (8) implies (by [Sh 410, §6] + [Sh 430, §2]) that for x < A there
is S C [x]®°, |S] < A such that for every Y C x, |Y| = 2%¢, we can find Y,
such that Y = |J Y, and [Y,]¥° C S. (Remember: x> 28°.) Without loss

n<w

of generality (as 2%° < pu < A):
(*) S 1s downward closed.

So if D is a non-principal ultrafilter on w and f : D — x then letting
Y = Rang(f) we can find (Y,, : n < w) as above. Let h : D — w be
defined by h(A) = min{n : f(A) € Y, }. So

XCD & |X|<Ry & h| X constant = f’(X)€S (remember (*)).

Now for each n, for some countable X,, C D (possibly finite or even empty)
we have:
h | X,, 1s constantly n,

f<w& (BAED)(h(A)=n& t¢ A) = (3B € X,)(£ ¢ B).

Let A, = ({{A: A€ Xu}={A: A€ D and h(X) = n}. If the desired
conclusion fails, then A A, € D. So

n<w

(VAAeD <« \/ ADA4,

n<w

So D is generated by {A,, : n < w} but then D cannot be a non-principal
ultrafilter. Uss
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Remark 3.6 The case when D is a principal ultrafilter is trivial.

Proof of Lemma 3.3 Let C = (Cj : § € 5*) be as in (xx)} (ii) from 3.4 (for
3.4(1) its existence is obvious, for 3.3 - use [Sh:e, VI, old IIl 7.8]). Let us
suppose that A = (As : § € §*), As C nacc(Cs) has order type w (As like
this will be chosen later) and let 75 enumerate A; increasingly. Let G be
freely generated by {z; : 1 < A}.
Let R be
{a: a@=(an:n <w) is asequence of pairwise disjoint subsets of P*,
with union P* for simplicity, such that
for infinitely many n, a, # ﬂ}.

Let G be a group generated by

GoU{ys" 255 : @<, @€ R, n<w, pprime}

freely except for:
(a) the equations of Gy,

(b) pz;’;+l =25, when p € ap, @ <A,

(¢) zg”g =i - Zys(n) When p € ap, and § € S5”.

Now G € .ﬁ;tf by inspection.

Before continuing the proof of 3.3 we present a definition and some facts.

Definition 3.7 For a representation H of H € ﬁf\tf, and z € H,d € S* let

1. inv(z, C&;f{) =: {a € Cs :forsome Q C P”, there is y € Humin[Cs\(a+1)]
such that Q CP(z -y, H) but fornoy € Hy is @ CP(z — y, H)}

(so inv(z, Cs; H) is a subset of Cs of cardinality < 2%¢).

2. Inv®(Cs, H) =: {inv(z,Cs; H) : z € U Hi}.

3. Inv!(Cs, H) =: {a : a C Cs countable and for some z € H, a C

inv(z, Cs; H)}.
4. INVH(H,C) =: Inv}(H, H,C) =: (Inv¥(Cs; H) : § € S*) for £ € {0,1}.

5. INV{(H,C) =: INVY(H, H,C)/id*(C), where

id*(C) =: {T C A : for some club E of A forno éd € T is Cs C E}.

6. If £ is omitted, £ = 0 is understood.
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Fact 3.8 1. INVY(H,C) is well defined.
2. The §-th component of INvl(I_{,C_') ts a family of < A subsets of Cj

each of cardinality < 2%° and if £ = 1 each member is countable and
the family 1s closed under subsets.

3 IfG; e ﬁ;tf fori< i, i* < pfo, G' = (G o : @ < ) is a representa-
tion of Gy,
then we can find A; C nacc(Cs) of order type w such that: i < 7%,
6 St = for no a in the §-th component of INvt(Gi,Gi,C)
do we have |a N As] > Rg.

Proof Straightforward. (For (3) note otp(Cs) > p, so there are po > X
pairwise halmost disjoint subsets of Cs each of cardinality Rq and every A €
Inv(Cs, G') disqualifies at most 2% of them.) Oa s

Fact 3.9 Let G be as constructed above for {A; : § € S*), As C nacc(Cs),
otp(As) = w (where (As : § € S*) are chosen as in 3.8(3) for the sequence
(G; 11 < i*) given for proving 3.3, see (B) there).

Assume GC H € ﬁ;‘f and H is a filtration of H. Then

B =:{6: As has infinite intersection with somea € Inv(Cs, H)}

A mod id*(C).

Proof We assume otherwise and derive a contradiction. Let for o < A,
Se C [a]S¥e, |Sa] < A be as guaranteed by (*)3.

Let x > 2%, Ay < (H(x),€,<}) for @ < X increasing continuous,
o] < A, (Us : B < o) € Uag1, Ao N A an ordinal and:

(Se:a< N, G, H, C, (As:6€8S"), H, (:ci,yg,zg”;: i,48,a,n,p)
all belong to 2y and 2%+ 1 C Ap. Then £ = {§ < A : AsNA =48} isaclub

of A. Choose § € S* N E\ B such that Cs C E. (Why can we? As to id*(C)
belong all non stationary subsets of A, in particular A\ E, and A\ S* and
B, but A ¢ id*(C).) Remember that 7; enumerates As (in the increasing
order). For each o € As (so a € E hence U, N A = a but H € U, hence

HNUy = Hy) and Q C P* choose, if possible, y,, g € Hqy such that:
Q g P(wa - ya,Q) H)

Let Io =: {Q C P*:yq o well defined}. Note (see 3.4 (x*)} and remember
ns(n) € As C nacc(Cs)) that cf(a) > 2%¢ (by (ii) of 3.4 (++)}) and hence
for some By < a,

{Ya0 1 Q € I} C Hg,.

Now:
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®1 I, is downward closed family of subsets of P*, P* ¢ I, for o € As.

[Why? See the definition for the first phrase and note also that H is reduced
for the second phrase.]

®2 Iy is closed under unions of two members (hence is an ideal on P*).

[Why? If Q1, Q2 € I then (as z, € G C H witnesses this):

H(x),€,<}) E (Be)(z € H& Q1 CP(z—-yaq,, H) &
Q2 C P(z ~ Yo,0,, H))-

All the parameters are in 2, so there is y € 2, N H such that
Q1 CP(Y—vaq, H) and Q2 CP(y—ya,q, H).
By algebraic manipulations,
Q1 CP(za— Y00, H), Q1 C Py ~yae,H) = Q1 CP(aa—y H);
similarly for Q2. So @1 U Q2 C P(zy —y, H) and hence Q1 U Q3 € Io.]

®3 If @ = (Q, : n € T') are pairwise disjoint subsets of P*, for some infinite
I' C w, then for some n € T we have @, € Ij;(n).

[Why? Otherwise let a, be @, if n € T, and @ if n € w \ T, and let
a=(a, :n<w). Nownel = 1ns(n)e€ inv(y>°, Cs; H) and hence

As Ninv(y3°, Cs; H) 2 {ns(n) : n € T},
which is infinite, contradicting the choice of A;.]
®4 for all but finitely many n the Boolean algebra P(P*)/1,(n) is finite.

[Why? If not, then by ®; second phrase, for each n there are infinitely
many non-principal ultrafilters D on P* disjoint to I,,(n), so for n < w we
can find an ultrafilter D, on P* disjoint to I (n), distinct from D, for
m < n. Thus we can find T € [w]" and Q, € D, for n € T such that
(Qn : n € T) are pairwise disjoint (as Qn € D clearly |Qn| = Ro). Why?
Look: if B, € Dy \ D) for n € w then

(3°n)(Bn € Dp) or (3%°n)(P*\ B, € Dy),
etc. Let Qn =0 for n € w\T, now Q = (Qn : n < w) contradicts ®s.]

®s If the conclusion (of 3.9) fails, then for no a € A;s is P(P*)/I4 finite.
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[Why? If not, choose such an @ and Q* C P*, Q* ¢ I, such that | =
Io | @ is a maximal ideal on Q*. So D =: P(Q*}\ I is a non-principal
ultrafilter. Remember § = B, < aissuch that {y, ¢ : @ € I} C Hg. Now,
Hp € Upt1, |Hp| < A. Hence (x)2 from 3.3 (note that it does not matter
whether we consider an ordinal x < A or a cardinal x < A, or any other
set of cardinality < X) implies that there is Sy, € Ust1, Su, C [Ha)<Ne,
|SH,| < A as there. Now it does not matter if we deal with functions from
an ultrafilter on w or an ultrafilter on Q*. We define f : D — Hpg as
follows: for U € D we let f(U) = ya,0-\v- (Note: @*\U € I, hence
Ya,@+\U 1s well defined.) So, by the choice of Sy, (see (ii) of (¥)%), for some
countable f' C f, f' € gy1 and (U : U € Dom(f’')} ¢ D (reflect for a
minute). Let Dom(f’) = {Up,U1,...}. Then |J (Q*\U,n) ¢ I,. But as in

nw

the proof of ®,, as
(Y, (Q"\ Un) : n <w) € Upy1 € Ua,
we have |J (Q*\ Un) € I, an easy contradiction.]

nlw
Now ®4, ®5 give a contradiction. Os.3

Remark 3.10 We can deal similarly with R-modules, |R| < g if R has

infinitely many prime ideals I. Also the treatment of .ﬁ;‘"(" ) is similar to the

one for modules over rings with one prime.
Note: if we replace “reduced” by

z€G\{0} = (3peP")(z¢pG)
then here we could have defined
P(z,H)=:{peP* .z € pH}

and the proof would go through with no difference (e.g. choose a fixed
partition (P}, : n < w) of P* to infinite sets, and let P'(z, H) = {n : z €
pH for every p € P}}). Now the groups are less divisible.

Remark 3.11 We can get that the groups are slender, in fact, the con-
struction gives it.

4 Below the continuum there may be univer-
sal structures

Both in [Sh 456] (where we deal with universality for (< A)-stable (Abelian)

groups, like ﬁ:s(p)) and in §3, we restrict ourselves to A > 2%, a restric-
tion which does not appear in [KjSh 447], [KjSh 455]). Is this restriction
necessary? In this section we shall show that at least to some extent, it is.
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We first show under MA that for A < 2%, any G € .ﬁ;’(p) can be
embedded into a “nice” one; our aim is to reduce the consistency of “there

is a universal in .ﬁ *(P)» 4o “there is a universal in K] n<w)” x . Then we
proceed to prove the consistency of the latter. Actuaﬁly a wea form of MA
suffices.

Definition 4.1 1. Ge Rf\s(p) is tree-like 1f:

(a) we can find a basic subgroup B = @ Zz}, where
i<hn
n<w

An = An(G) =: dim ((p"G)[p)/p" ' (G)[p])

(see Fuchs [Fu]) such that: Zz? = Z /p"+'Z and
®o every ¢ € G has the form

E{af‘x”:n<k,i<)\n}+
Z{a" nkgl :n € [k,w) and i < A}

where a? € Z and

E<n<w = wulz]=:{i:alp" *z? # 0} is finite and
n<k = wyfz]={i:alz] #0} is finite
(this applies to any G € ﬁf\’(” ) we considered so far; we write
wp[z] = walz,Y] when Y = (¢} : n,1)). Moreover

(b) Y = (a? : n,i) is tree-like inside G, which means that we can
find Fy, : Apy1 — A such that letting F' = (Fp:n<w),Gis
generated by some subset of I'(G, Y, F) where:

I'(G,Y,F)y={z: forsomen€ [] A,, for each n < w we have
n<w
Fa(n(n +1)) =n(n) and z = 3 p"~*z7 ,}.
n>k

2. Ge R;"(p) is semt-tree-like if above we replace (b) by

(b)’ wecan find aset I' C {5 : 7 is a partial function from w to sup A,
n<w
with 5(n) < A} such that:
() merT, mel, m(n)=mn(n) = mlin=mnln
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(B) for n € T and n € Dom(n), there is
Ypn = Z{pm_":c,’;zm) :m € Dom(n) and m > n} € G,
(7) G is generated by
{z} 'n<w,i<A}U{ypn:n €, n€Dom(n)}.
3. G € & is almost tree-like if in (b)’ we add
() for some A C w for every n € T, Dom(n) = A.
Proposition 4.2 1. Suppose G € ﬁf\"(p) is almost tree-like, as witnessed

by ACw, A (forn<w), z (forn € A, 1 < A), and if ng < ny are
successive members of A, ng < n < ny then A, > A\, or just

Ao > l{n(no) i m € TH.
Then G is tree-like (possibly with other witnesses).
2. Ifin 4.1(3) wejust demandn €' = \/ Dom(n)\n = A\n, then

n<w
changing the n’s and the y, . ’s we can regain the “almost tree-like”.

Proof 1) For every successive members ng < ny of A for
a € Spy = {a: (I)[n €T & n(no) = o]},
choose ordinals v(no, ¢, £) for £ € (no, ny) such that
Y(ro, @1, £) = y(no,a2,f) = o1 =ay.
We change the basis by replacing for o € S,,, {22} U {xs(nu,a,t) L€
(no, n2)} (note: ng < ng but possibly ng + 1 = ny), by:

no no+1 not1 no+2
{1"0‘ + PTy(no,amnot+1) Ty(no,amnotl) + PLy(no,amot2) "

ny—2 ng—1 ng—1
v¥(no,a,n—2) + px"/(ﬂo,a,ﬂr-l)’ z’Y("U,’Y,"z—l)}'

2) For n € T' let n(n) = min{n : n € ANDom(n) and Dom(n)\n = A\n},
and let I'; = {n € I' : n(n) = n} for n € A. We choose by induction on
n < w the objects vy, forn € I'y, and p? for a < A, such that: v, isa function
with domain A, v, | (A\n(n)) =7 I (A\n(n)) and vy [ (AOn(n)) = p,.),
vn(n) < An and p? is a function with domain A Nn, pZ(f) < A¢ and
pr T {ANL) = pf,,.(t) for £ € ANn. There are no problems and {v, : n € I',,}
is as required. B (49
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Theorem 4.3 (MAO) Let A < 2%°. Any G € ﬁf\s(p) can be embedded into
some G' € .ﬁ:s(p) with countable density which is tree-like.

Proof By 4.2 it suffices to get G’ “almost tree-like” and A C w which
satisfies 4.2(1). The ability to make A thin helps in proving Fact E below.
By 1.1 without loss of generality G has a base (i.e. a dense subgroup of the
form) B = @ Zz?, where Zz? = Z/p"*t'Z and A, = Rp (in fact )\, can
n<w
i<,
be g(n) if g € “w 1s not bounded (by algebraic manipulations), this will be
useful if we consider the forcing from [Sh 326, §2]).
Let B¥ be the extension of B by y?’k (k <w,n<w,i<),) generated

freely except for py?’k"'1 = yPF (for k < w), y?’t = p"~fa? for £ < m,

n < w, i < A,. So B is a divisible p-group, let G+ =: B*@G. Let
B

{z8 : @ < A} C G[p] be a basis of G[p] over {p"z" : n,i < w} (as a
vector space over Z/pZi.e. the two sets are disjoint, their union is a basis);
remember G[p] = {z € G : pz = 0}. So we can find 2z € G (for & < ),
k < w and k # 0) such that

k+1 k _ ko k
Pzy T 2g = E : a; I;,

icw(a,k)

where w(a, k) C w is finite (reflect on the Abelian group theory).
We define a forcing notion P as follows: a condition p € P consists of
(in brackets are explanations of intentions):

(a) m<w, M Cm,
[M is intended as AN {0,...,m—1}]
(b) a finite u C m x w and h : u — w such that A(n,i) > n,

[our extensions will not be pure, but still we want that the group produced
will be reduced, now we add some y?’k’s and h tells us how many]

(c) asubgroup K of Bt:
K =" - (n,i) € u,k < h(n,1))p+,
(d) a finite w C A,
[w is the set of @ < A on which we give information]
() g:w—m+1,

[9(x) is in what level m’ < m we “start to think” about «]
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(f) 1= (na : @ € w) (see (i),

[of course, 7, is the intended 7, restricted to m and the set of all 7, forms
the intended I

(g) afinite v C m x w,
[this approximates the set of indices of the new basis]
(h) t={tn;: (n,i) € v} (see (3)),

[approximates the new basis]

(i) na€Mw, A A (n,1a(n)) €,
atwneM

[toward guaranteeing clause (d) of 4.1(3) (see 4.2(2))]
() tni € K and Zt, ; = Z/p"Z,
(k) K= @ (Ztn,),

(ns)ev
[so K is an approximation to the new basic subgroup]

() ifa€ew, gla) <€<mand £ € M then

25 = _{tntmy 1 £ < € Dom(na)} € P 7(K + G),

[this is a step toward guaranteeing that the full difference (when Dom(n.)
is possibly infinite) will be in the closure of @ Zz?].

nefi,w)
We define the order by: e
p<gq if and only if
) mP <mi MINnmP = MP,
p) wP Cul, hP C A,
3) K? Cpr K,
§) wf C wf,
) ¢° C g%,

nh < nd, (i.e. 7% is an initial segment of n2)

)
n) vP C e,
)
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A Fact (P,<) is a partial order.
Proof of the Fact: Trivial.
B Fact P satisfies the c.c.c. (even is o-centered).

Proof of the Fact: It suffices to observe the following.
Suppose that

(x)(@) p,g € P,
(1) MP = M9, mP = m?, h? = h? P = i, K? = K9, v = 9,
tﬁ,i th,i,
(iii) (M€ w? Nw?) = (% : a € v Nw?),
(iv) 7 T (w? Ow) = g7 | (wP 1 w?).

Then the conditions p, ¢ are compatible (in fact have an upper bound with
the same common parts): take the common values (in (ii)) or the union (for

(ii1)).
C Fact For each a < Atheset T, =: {p € P : a € wP} is dense {and
open).

Proof of the Fact: For p € P let ¢ be like p except that:

wl=w’U{a} and g¢9(B)= { f:xgﬂ) Ig gilolf B¢ wh.

D Fact For n < w, i < w the following set is a dense subset of P:

Jniy={peP: if m? > n then 2} € K? &
(Vn < m?)({n} x w) Nu? has > m® elements}.

Proof of the Fact: Should be clear.
E Fact For each m < w the set J,, =: {p € P : m? > m} is dense in P.

Proof of the Fact: Let p € P be given such that m? < m. Let w? =
{ap,...,ar—1} be without repetitions; we know that in G, ngt = 0 and
{z8, : £ < r} is independent mod B, hence also in K + G the set {23, :
£ < r}is independent mod K. Clearly

(A) pzEtt =25, mod K for k € [g(as), m?), hence
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(B) p"‘ng‘: = ch'(‘a,) mod K.

Remember
(C) 23y = T{al™p*~™ gk 1k > mP i € w(ay, k)},

and so, in particular, (from the choice of 23,)

P P P
p™ 1zl =0 and pmpz;”‘ # 0.

For £ < r and n € [mP,w) let
sy =: Z {af’a‘pk‘mpr k> mP but k < nand i€ wagk)}.

—mP P
Butpk m mf:yf’m , SO

sy = E {af’a‘yf’mp k€ [mP n)and i € (ag, k)}.

Hence, for some m* > m,m? we have: {p™s}* : £ < r} is independent in
G[p)] over K[p] and also n in (z¥ : k € [m?, m*],i < w). Let

5; = Z {af""yf’mp tk € [mP,m") and 7 € w(ay, k)}.
Then {s; : £ < r} is independent in

B[':n me) = (yﬁ’m.'1 k€ [m?,m") and 1 < w).
Let i* < w be such that: w(a, k) C {0,...,¢* — 1} for k& € [mP,m*),
£=1,...,r. Let us start to define ¢:

mi=m* MI=MPU{m* -1}, wli=wP, g%=gP,
ul = uwP U([mP,m*) x {0,...,7* - 1}),
h?is h? on u? and h¥(k,i) = m* — 1 otherwise,
K1 is defined appropriately, let K/ = (27 : n € [mP,m*),i < i*).

Complete {s; : £ < r} to {s; : £ < r*}, a basis of K'[p], and choose
{tn,i : (n,7) € v*} such that: [p™t,; =0 < m>n],andforf<r

m*—1—¢ *
tne—1,0= 5.

p
The rest should be clear.

The generic gives a variant of the desired result: almost tree-like basis;
the restriction to M and g but by 4.2 we can finish. 41
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Conclusion 4.4 (MA) (o-centered)) For (x)g to hold it suffices that (%),
holds where

(¥)o tn R;"(p), there ts a universal member,
(¥)1 in RY there is a universal member, where:

(a) An =R, Ay =X, lg( M) =w +1 or
(b) Ao =X, M € [n,w), Lg(N) =w + 1.
Remark 4.5 Any (), : n < w), A\, <w which is not bounded suffices.

Proof For case (a) - by 4.3.
For case (b) - the same proof. 044

Theorem 4.6 Assume A < 2%° and

(a) there are A; C A, |Ai| = X for i < 2* such that i # j = |A; N A;| < R.

Let A= (Mg :a <w), Ay =Ro, Ay = A,

Then there 1s P such that:

{a) P 1s a c.c.c. forcing notion,

(B) |P|=2%,

(v) in VP, thereis T € RY into which every T' € (RE)Y can be embedded.

Proof Let T = (T; : i < 2*) list the trees T of cardinality < X satisfying
“>w CTC¥w and T N“w has cardinality ), for simplicity.

Let T; N“w = {0}, : a € A;}.

We shall force p, ¢ € “w for @ < A, £ < w, and for each ¢ < 2* a function
gi © A; — w such that: there is an automorphism f; of (“>w, <) which
induces an embedding of T; into ((“>w) U {pa,g,(a) : @ < A}, q). We shall
define p € P as an approximation.

A condition p € P consists of:

(a) m < w and a finite subset u of ™2w, closed under initial segments such
that {) € u,

(b) a finite w C 2*,
(¢) for each i € w, a finite function g; from A; to w,

(d) for each i € w, an automorphism f; of (u, ),
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(e) afinite v C A X w,
(f) for (a,n) € v, pan € un (Mw),
such that
(g) if i € w and o € Dom(g;) then:

(@) (o 0i(e) €,

(B) mi I m €,

() filni 1 M) = pagu(a)>
(h) (pa,n : (2, n) € v) is with no repetition (all of length m),
(i) fori € w, (n’, | m : @ € Dom(g;)) is with no repetition.

The order on P is: p < ¢ if and only if:

(o) wP Cul, mP <mf,
(8) wP Cwi,
(v) ff € fi fori€w?,
(6) gf C gf fori € w?,
(€) vP C oY,
(¢

(n) if i # j € wP then for every o € A; N A; \ (Dom(g?) N Dom(qi)) we
have gf(@) # gi(e) (possibly a ¢ Dom(g,) and/or o ¢ Dom(g;)).

n 3Pl ., when (a,n) €7,

) Poan S
)

A Fact (P,<) is a partial order.
Proof of the Fact: Trivial.
B Fact Fori< 2* theset {p:i € wP} is dense in P.

Proof of the Fact: Ifp € P,i € 2*\w?, define ¢ like p except w? = wP U {i},
Dom(g]) = 8. '

CFact Ifpe P,my € (mP,w),n* €u’,m* <w,i€uwP, o€ A\Dom(g’)
then we can find g such that p < ¢ € P, m? > my, n*"(m*) € u9, i € w9,
a € Dom(g]) and (njﬂ [ m?: 35 € w!and ﬂ € Dom(g{)) is with no repetition,

more exactly 77[3(1 )l mt = = 7, AN I N nl(l) - 7753(22)-
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Proof of the Fact: Let ng < mP be maximal such that nt | no € uP. Let
ny < w be minimal such that 7%, [ ny ¢ {7} | n1 : B € Dom(g})} and
moreover the sequence

(né [n1:j€wP & B €Dom(gf) or j=i&kf=a)
is with no repetition. Choose a natural number m? > m?+1,no+1,n,+2, m
and let k* =: 34 Y |Dom(g?)|. Choose u¢ C ™*2w such that:
1EwP

. q .
(i) w? Cu? C ™ 2w, u? is downward closed,

(i1) for every n € u? such that £g(n) < md, for exactly k* numbers k,
n (k) € u?\ v,

(iii) 77,]@' I €€ u? when £ < m?and j € w?, B € Dom(g?),
(iv) ni, [ £ € ul for £ < mY,
(v) " (m") € ul.
Next choose pf . (for pairs (8,n) € vP) such that:
plf;,n ﬂ pt[Ii,n e uq n mqw_

For each j € wP separately extend ff to an automorphism f]‘-l of (u?, 4) such
that for each § € Dom(g?) we have:

qu(”fi I mf) = pg.gj(ﬁ)'
This is possible, as for each v € u?, and j € wP, we can separately define
iy var eu? and V| (gg(v)+1) ¢ uf}
~its range is
(v fi(v)av' €u? and V' [ (Lg(v)+1) ¢ uf}.
The point is: by Clause (ii) above those two sets are isomorphic and for each

v at most one g _ is involved (see Clause (h) in the definition of p € P) and
we can take care of clause (h). Next let w? = w?, g;-l = g% for j € w\{i}, g] |
Dom(gf) = gf, g (o) = min({n : (a,n) ¢ v*}), Dom(g]) = Dom(g7) U {a},

and g2 o = £k Tm?) and vf = o7 U {(e, g%(x)) )

D Fact P satisfies the c.c.c.
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Proof of the Fact: Assume p, € P for ¢ < wy. By Fact C, without loss of
generality each

(71; [ mPs:j€wP and B € Dom(gf‘))
is with no repetition. Without loss of generality, for all ¢ < w;
Ue={a<2*:a € w or \/ [ € Dom(g;)] or \/(k,a) € v}
IEwP k

has the same number of elements and for ¢ # { < w;, there is a unique
one-to-one order preserving function from U, onto U which we call OP¢ ,,
which also maps p, to p¢ (so mP¢ = mPe; uP¢ = uP<; OP¢ (wPe) = wP¢; if
i € wPe, j = OP¢ (i), then fioOP, ¢ = f;; and if B = OP¢(a) and £ < w
then
(e & (BOew = ol =

Also this mapping is the identity on U MU, and (Ue : { < wy) is a A-system.

Let w =: wP* NwP'. Asi # j = |[A;NAj| < Ng, without loss of
generality
() if i # j € w then

U N (A,' ﬂAJ’) Cw.

We now start to define ¢ > po, p;. Choose m? such that m? € (mP,w) and
mi > mamx{[g(nf,;’0 N 021) +1: ig € wPo, iy € wPt, OPyo(ig) = 11,
ag € Dom(g??), ay € Dom(g}?),
OPI‘O(QQ) = al}.
Let u? C ™" 2w be such that:
(A) uin (mpozw) =uI N (™ 2w) = uPo = ufr,
(B) for each v € u?, mPe < £g(v) < m9, for exactly two numbers k < w,
v (k) € ul,
(C) 7, | £ € u? for £ < m? when: i € w°, @ € Dom(¢f®) or i € w,
a € Dom(gf").

[Possible as {n}, [ mP< : i € wP=, & € Dom(gY*)} is with no repetitions (the
first line of the proof).]
Let w? =: wP° UwP! and v? =: vP° U vP* and for i € w?
yfo if i€ wPe\wh,
gi=1 g if i€ wk\wk,
geug if iewrrnur.

Next choose p? , for (@,£) € v as follows. Let vq ¢ be poce if defined, o8},
if defined (no contradiction). If (a, £) € v? choose pf, , as any p such that:
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Q0 Vardp € uln ™y,

But not all choices are O.K., as we need to be able to define f7 for i € w9.
A possible problem will arise only when ¢ € wP° NwP!. Specifically we need
just (remember that (%7, : (@, £) € vP<) are pairwise distinct by clause (b)
of the Definition of p € P):

®1 if g € wP?, (@0, £) = (@0, gis(@0)), @0 € Dom(g}’), iy = OPy () and
) = OPl,o(ao) and i() = il

then £g(nis, (1) = £9(pl, , N PY, ,)-

We can, of course, demand oy # a; (otherwise the conclusion of @; is
trivial). Our problem is expressible for each pair (aq, £), (@1, £) separately
as: first the problem is in defining the p'(la,l)’s and second, if {(af, '), (o}, £) is
another such pair then {(a1,£), (a2, £)}, {{a},¥), (&}, £')} are either disjoint
or equal. Now for a given pair (ap,£),{a1,£) how many ig = i; do we
have? Necessarily ip € wP® N wP! = w. But if i # iJ are like that then
ap € Ay, N A;y, contradicting (*) above because ag # a1 = OP; o(ag). So
there is at most one candidate iy = 71, so there is no problem to satisfy ®;.
Now we can define fI (i€ w?) as in the proof of Fact C.

The rest should be clear. Os4

Conclusion 4.7 Suppose V |= GCH, Rg < A < x and x* = x. Then for
some c.c.c. forcing notion P of cardinality x, not collapsing cardinals nor
changing cofinalities, in VP :

(i) M =2 =y,
(ii) RY has a universal family of cardinality A*,
(iii) .ﬁr\"(p) has a universal family of cardinality At .

Proof First use a preliminary forcing Q° of Baumgartner [B], adding (A, :
a<x),Aa EAP, @£ B8 = |AaN Ag] < Rg (we can have 2% = Ry
here, or [0 # 8 = Ay N Ap finite], but not both). Next use an FS
iteration (F;, Qi i< xx A*) such that each forcing from 4.4 appears and
each forcing as in 4.6 appears. Oy

Remark 4.8 We would like to have that there is a universal member in
ﬁ;f(p ); this sounds very reasonable but we did not try.

In our framework, the present result shows limitations to ZFC results
which the methods applied in the previous sections can give.
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5 Back to £°"), real non-existence results

By §1 we know that if G is an Abelian group with set of elements A, C C A,
then for an element z € G the distance from {y : y < a} for @ € C does
not code an appropriate invariant. If we have infinitely many such distance
functions, e.g. have infinitely many primes, we can use more complicated
invariants related to z as in §3. But if we have one prime, this approach
does not help.

If one element fails, can we use infinitely many? A countable subset X
of G can code a countable subset of C':

{a € C: closure((X)g) Na € sup(C Na)},

but this seems silly - we use heavily the fact that C has many countable
subsets (in particular > A) and A has at least as many. However, what if
C has a small family (say of cardinality < X or < p%°) of countable subsets
such that every subset of cardinality, say continuum, contains one? Well,
we need more: we catch a countable subset for which the invariant defined
above is infinite (necessarily it is at most of cardinality 2%, and because of
§4 we are not trying any more to deal with A < 2%¢). The set theory needed
is expressed by Uy below, and various ideals also defined below, and the
result itself is 5.9.

Of course, we can deal with other classes like torsion free reduced groups,
as they have the characteristic non-structure property of unsuperstable first
order theories; but the relevant ideals will vary: the parallel to ]2 for A ptn =

n

I, J; seems to be always O .K.
Definition 5.1 1. For i = (u, : n < w) let By be
PLKE in<wa<p), Ko=)k 2Z/p"'Z.
Let Batn = D{KT : @ < pm,m < n} C By (they are in R;sg)ﬂn).

Let B be the p-torsion completion of B (i.e. completion under the
norm ||z|| = min{2~" : p* divides z} restrited to the set of all £ such
that p"«z = 0 for some n).

2. Let I}‘ be the ideal on f?,; generated by IS, where

Ig = {A C Bp : for every large enough n,
fornoye P{K? :m<nand a < pm}
but y ¢ P{KZ? :m <nand a < py} we have :
for every m for some z € (A) we have:
p™ divides z — y}.
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(We may write I%‘, but the ideal depends also on { @ K3 :n < w)
# a<pin

not just on By itself).
3. For X, A C By,

recall <A>B,; = { E nYn :Yn €A, ap € Z and n* € N},
n<n?*

and let efg (X) ={z:(¥n)(Iy € X)(z —y € p"By)}.
4. Let Jj be the ideal which J£'5 generates, where

Jt = {ac ];[ Hn : for some n < w for no m € [n,w)
n<w
and B < ¥ < pm do we have :
for every k € [m,w) there are 1,v € A such
that: n(m) =g, v(m)=vy,nIm=vm
and [ (m, k) = v [ (m, k)}.

Jg:{Ag ];[ fn 1 for some n < w and k, the mapping n+— n [ n
n<w

is (< k)-to-one }.

6. JZ is the ideal of nowhere dense subsets of [ u» (under the following

natural topology: a neighbourhood of nis Upn = {v:v [ n=1n]n}
for some n).

7. J;-f is the ideal of meagre subsets of ] p,, i.e. subsets which are

included in countable union of member;1 of J2.
Observation 5.2 1. I}, J3, J3'® are (< Ry)-based, i.e. for I}: if A C

By, A ¢ IS then there is a countable Ay C A such that Ag ¢ I.

2. 1}“ Jg, J}‘, J,%, Jg are ideals, Jl:-f s Ry -complete.

3. JyCJiCJEC U

4. There s a function g from [] pn into Bﬁ such that for every X C
I o ndw

nw

X¢J, = g”(X)¢1/1r
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Proof E.g. 4) Let g(n) = ). p"(‘ts(n)).

ndw

Let X C I pn, X ¢ Ji. Assume ¢g"(X) € I'é, so for some £* and

n<w

A C Bﬁ, (€ < £*) we have A; € IE,

and ¢"(X)C U Ae, s0 X = U Xo,
<L <o
where

Xe=:{n€X:g(n) € Ae}.
As Jl% is an ideal, for some £ < £*, X, ¢ Jé. So by the definition of Jé,
for some infinite I' C w for each m € T' we have B, < Ym < pm and for
every k € [m,w) we have 1 k, Vm i, as required in the definition of Jl—i. So
g(nm,k)»g('/m,k) € A¢ (form €T, k € (m,w)). Now
4 =g = g(Mmi) — 9(vms) mod p*By,
but g(Nm k) — 9(Vmk) € (At)é‘_‘. Hence
3z € (At)l;p)[*t;"m —*tg =2z mod p* Bj),
as this holds for each k, *t] —*tZ' € cf((Ar)g,).
This contradicts 4, € 12. Os .o

Definition 5.3 Let I C P(X) be downward closed (and for simplicity
{{z}:z2€ X} CI). Let It =P(X)\ 1. Let

Us®(p) = min{|P|: P C [¢]<*, and for every f: X —> u for some
1 =
Y €P, wehave {z € X : f(z) €Y} e It}

Instead of < k¥ in the superscript of U we write k. If £ > |Dom(I)|*, we
may omit it (since then its value does not matter).

Remark 5.4 1. If 2<% + |Dom(])|<* < p we can find F C partial func-
tions from Dom(I) to p such that:
(a) |F|=U5"(n),
) Vf: X —p)@Y eIN[fIY € F).

2. Such functions (as U5*(u)) are investigated in pcf theory ([Sh:g],
[Sh 410, §6], [Sh 430, §2], [Sh 513]).

3. If I CJ CP(X), then U5*(u) < U5*(p), hence by 5.2(3), and the
above

USE (1) < USH() < USE() < USH(1)

and by 5.2(4) we have U5 < U5\ (p).
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4. On INDy(&) (see 5.5 below) see [Sh 513].

Definition 5.5 INDj({k, : n < w)) means that for every model M with

universe |J &, and < 6 functions, for some I' € [w]*° and 5 € [] &, we
n<w ndw

neT = n(n) ¢ clu{n(®): £+ n).

Remark 5.6 Actually if § > 25, this implies that we can fix I, hence
replacing (k, : n < w) by an infinite subsequence we can have I' = w.

have:

Theorem 5.7 1. If pn — (kn)2, and INDy({kn : n < w)) then [] pn

n<w
s not the union of < 8 sets from Jé.

2. If§ = 6% and ~INDg({pn : n < w)) then [] pn is the union of < 6

n<w
members of Jl .

3. Ifllrnsup Un 15 > 2, then H pn ¢ J3 (so also the other ideals defined

above are not trivial by 5. 2(3) (4))
Proof 1) Suppose [] pn is U X;, and each X; € J&, as 0 > N, wlog
€ JJ5. We define ;:rweach i :2 and n < k < w a two-place relation R}"*

on fin:
BRI* v if and only if
there are n,v € X; C [] pe such that
<k

nl0,n)=v[[0,n) and 5[ (n,k)=v](nk) and n(n)=p4, v(n)=
Note that R?’k i1s symmetric and
n<ki <ky & BRM*y = BRI

As pin — (Kn)2,, we can find A, € [p,]*" and a truth value t™* such that
for all § < v from A,,, the truth value of ﬂR?'k'y is t:"k. If for some 7 the

set
T; = {n<w: for every k € (n,w) we have t>"* = true)

is infinite, we get a contradiction to “X; € J}”, so for some n(i) < w we
have n(7) = sup(Ty).

For each n < k < w and ¢ < 6 we define a partial function F,-"’k from
IT A¢ into Ay:

<k,
£#£n
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Flag...0n_1,%n41,...,0k) is the first § € A, such that for
some 1) € X; we have

T/[[O»n):<a07~-~uan—1), 77("):,31
nl(n k)= {ans1, ., -1).

So as INDj((kn : n < w)) thereis n = (B, : n < w) € [] An such
n<w

that for infinitely many n, 8, is not in the closure of {3 : £ < w, £ # n}

by the Fi"’k’s. Asn € [] An C [T #n = U Xi, necessarily for some
n<w n<w i<
i <0, 1€ X, Letn € (n(¢,w) be such that §, is not in the closure

of {Be : £ < wand £ # n} and let £k > n be such that t?’k = false.
Now v =: F™(Bo,...  Bu-1,Pns1s- -, Bk—1) is well defined < B, (as fn
exemplifies that there is such §) and is # 3, (by the choice of (f; : £ < w}),
so by the choice of n(i) (so of n, k and earlier of t* and of A,) we get
contradiction to “y < f, are from A,”.

2) Let M be an algebra with universe ) p, and < 6 functions (say F

nw

for i < 8, n <w, F" is n-place) exemplifying ~INDj({tt,, : n < w)). Let

= {((kn,1n) :n* <n<w):n" <wand /\n<kn<w and i, < 6}.

For p = ((kn,%n) :n* <n<w) €T let

A, =1 {n€ [] pn :for every n € [n*,w) we have

n<w

n(n) = F>7" (0(0),...,n(n— 1), n(n+1),...,n(ka)) }.

So, by the choice of M, ] un = U A4,. On the other hand, it is easy to
n<w pel’

check that A, € J}‘.

3) left for the reader. Os 7
Theorem 5.8 Ifp= Y Ap, AN < Appq and p < X =cf(A) < pt¥
n<w
then U;*(g;mw) (A) = XA and even U*}:;WM () =\

Proof See [Sh 410, §6], [Sh 430, §2], and [Sh 513] for considerably more.

Lemma 5.9 Assume X > 280 and

(*)(@) T pn < pand pt <X =cf(A) < p¥,

n<w

(b) B,; ¢ Ig and lim,, sup p,, is infinite,
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(c) U;ﬂ?(x\) = A (note 12 is not required to be an ideal).

Then there is no universal member in Rf\s(p).
Proof Let S C A, C = (Cs : § € S) guesses clubs of A, chosen as in the
proof of 3.3 (so a € nacc(Cs) = cf(a) > 2%°). Instead of defining the
relevant invariant we prove the theorem directly, but we could define them,
somewhat cumbersomely (like [Sh:e, 111,§3]).

Assume H € Rf\"(p) is a pretender to universality; without loss of gener-
ality with the set of elements of H equal to A.

Let x = 37(A\)%, 2 = (™, : @ < A) be an increasing continuous sequence
of elementary submodels of (#(x), €, <}), A (a4 1) € Unyr, ||Ua]| < A,

A, N X an ordinal, A = |J YUe and {H,{(n : n < w),p, A} € Ay, so
alA

Bg, By € 2o (where i = (i, : 1 < w), of course).

For each § € S, let Ps =: [CQ;]No NA. Choose A5 C Cs of order type w
almost disjoint from each a € P, and from A;, for §; € § NS, its existence
should be clear as A < p®°. So

(¥)o every countable A € A is almost disjoint to Aj.

By 5.2(2), I} is (< Ry)-based so by 5.4(1) and the assumption (c) we have

(*); for every f : By —» X for some countable ¥ C ép, Y ¢ ID, we have

filYyea
(remember ( [ pa)¥ = [T pa)-
n<w n<w
Let B be @{Gh;:n <w,a <A, i< ) px}, where

k<w

Gai = (zhiar = Z[p" 7.

So B, B, {((n,e,1,2% ) :n < w,a < A1 < ) px) are well defined. Let G

'y Yy o
<w

be the subgroup of B generated by:

BuU {1: € B: forsomed € S, z is in the closure of
D{Gy,; i n <w,i < fin, @ is the nth element of As}}.

As ] pn < p < A clearly G € ﬁ:"(p), without loss of generality the set of
n<w

elements of G is A and let A : G — H be an embedding. Let
Eo={d<X:(Us,h 14, G|d) < (U h,G)},
E =:{6 < A:otp(EgNé) = d}.
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They are clubs of A, so for some § € S, Cs; C E (and § € E for simplicity).
Let 15 enumerate As increasingly.
There is a natural embedding g = g5 of Bj into G:

9( ) = 25, (nyi-

Let §s be the unique extension of g5 to an embedding of B,—, into G those
embeddings are pure, (in fact g7 (Bz) \ ¢5(Bu) C G\ GNUs). So hogs is
an embedding of Bﬁ into H, not necessarily pure but still an embedding, so
the distance function can become smaller but not zero and

hogs(Bg)\hogs(B.) C H\Us.

Remember B,—l C Ap (as it belongs to Ay and has cardinality [] pn < A
nlw

and AN %2 is an ordinal). By (x); applied to f ="h o g there is a countable
Y C By such that Y ¢ I and f [ Y € % But, from f [ Y we shall
below reconstruct some countable set not almost disjoint to A, reconstruct
meaning in 2, in contradiction to (x)q above.

As Y ¢ I} we can find an infinite $* C w\ m* and for n € S, z, €

@ K2\ {0} and ¢ € B, (for £ < w) such that:
a<pin

(*)2 2n +Yne €(Y)g,, and

(*)3 Yne € pt Bﬁ-

Without loss of generality pz, = 0 # 2z, hence pyf = 0. Let

vs(n) = min(Cs\(ns(n)+1)), 2z = (hogs)(zn) and  y7 .= (hods)(yn,e)-

Now clearly gs(zn) = gs(2n) = i €G 1 vs(n), hence (ho §s)(zn) ¢
H [ n5(n), that is z; ¢ H [ ns(n).

So z;, € Hys(ny \ Hyg(n) belongs to the p-adic closure of Rang(f | Y).
As H, G, h and f [ Y belongs to 2, also K, the closure of Rang(f | Y) in
H by the p-adic topology belongs to 2, and clearly |K| < 2%, hence

A* = {a € Cs : K N Huin(cs\(a+1)) \ Ho is not empty}

is a subset of C; of cardinality < 2% which belongs to 2, hence [A*]*° C 2
but A; C A* so A; € ¥, a contradiction. Os 9
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6 Implications between the existence of uni-
versals

Theorem 6.1 Let i = (n; : i < w), n; € [1,w). Remember

Ji={AC H n; : A is nowhere dense}.

i<w

Assume A > oo, U§§ (A) = X or just U§§ (A) = X for every such 7, and

n<w = A<Aqhuau<i=A and

A< and A=(n:i<w).
n<w
1. Ifin .ﬁ§° there is a universal member

then in R:\s(p) there is a universal member.

2. If in ﬁic there is a universal member for R£c

then in R:-"(”) =: {G € .ﬁ;’(”) : A (G) < A} there is a universal

member (even for R:’(p)).

(An(G) were defined in 1.1).

Remark 6.2 1. Similarly for “there are M; € £, (i < 6) with (M; :
i < @) being universal for £,”.

2. The parallel of 1.1 holds for &°.

3. By §5 only the case A singular or A = pt & cf(p) = Ro & (Va <
1) (laf® < p) is of interest for 6.1.

Proof 1) By 1.1, (2) = (1).

More elaborately, by part (2) of 6.1 below there is H € R;s(p) which is
universal in .ﬁ;—\’(p ). Clearly |G] = A so H € &), hence for proving part
(1) of 6.1 it suffices to prove that H is a universal member of &;"®. So let
Ge R;s(p), and we shall prove that it i1s embeddable into H. By 1.1 there

is G’ such that G C G’ € ﬁ;—"(p). By the choice of H there is an embedding
hof G'into H. So h | G is an embedding of G into H, as required.
2) Let T* be a universal member of ﬁ‘)f‘c (see §2) and let P, = PT".

Let x > 2*. Without loss of generality P, = {n} x A,, P, = X. Let

By =(P{G] :n<w,te P},
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B, =€B{G;1 ‘n<wandt€ P},

where Gp = Z/p"t'Z, G} is generated by z}'. Let B < (H(x), €,<}),
Bl = A\, A+1C B, T* € B, hence By, B, € B and Bo, B; € B (the
torsion completion of B0, By, resp.). Let G* = B; N ‘B.

Let us prove that G* is universal for fi (r) (by 1.1 this suffices). Let

Ge ﬁ;‘( ), so by 1.1 without loss of generahty By CGC By. We define R:

R={n: ne€ [] A and for some z € G letting

n<w

Z{a" n-kg z? ’n<w\,i€wn(x)} where

n (2] € (V1,0 7 0 we e
o) () 024 )] < i)

Lastly let M =: (RU U {n} X An, Pn, Fn)ncw where P, = {n} x A,

nw
and F.(n) = (n,n(n)), so clearly M € .ﬁ/{c. Consequently, there is an
embedding g : M — T*, so g maps {n} x A, into PnT' and ¢ maps R into
PT* Let g(n,a) = (n,gn(a)) (i.e. this defines g,.). Clearly g [ (UPM) =
(U{n} x An) induces an embedding g* of By to B; (by mapping the

generators into the generators).
The problem is why:

(x) ifz=3{alp" *2! n<w,i€uw,(z)} €G
then g*(z) = S {a? p"*F g*(27) i n < w,i € wn(z)} € G*.

As G* = By N'B, and 2% + 1 C B, it is enough to prove (¢ (wn(z)) : n <
w) € B. Now for notational simplicity /\[|wn( }| > n -+ 1] (we can add an

element of G* N B or just repeat the arguments). For each n € [] wn(z)
we know that g(n) = (9(n(n)) : n < w) € T* henceisin B (agf‘l‘:}* € B,
|T*| < A). Now by assumption there is A C [| wn(z) which is not nowhere
dense such that g | A € B, hence for som2<7:}* and n* € J] we(z), A is
dense above n* (in [] wn(z)). Hence <

({n(n) :n€ A} :n* <n <w) = (wnlz): 0" <n <w),

but the former is in B as A € B, and from the latter the desired conclusion
follows. Oe 1
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7 Non-existence of universals for trees with
small density

For simplicity we deal below with the case § = w, but the proof works in
general (as for ﬁ){r in §2). Section 1 hinted we should look at &{ not only
for the case A = (A : a < w) (i.e. &Y), but in particular for

A=\ in<w) (W), AXo g1 < i <A =cf(N) < pfe.

Here we get for this class (embeddings are required to preserve levels),
results stronger than the ones we got for the classes of Abelian groups we
have considered.

Theorem 7.1 Assume that
(a) A= Qe <w), Ay < Ang1 < Au, A = A, all are regular,
(b) D is a filter on w containing cobounded sets,

(c) tcf(J] An/D) = A (indeed, we mean =, we could just use A € pcfp ({An, :
n<w}),

(d) (3 M)t <A< [T M.

n<w n<w

Then there is no universal member in Ri—\'.

Proof We first notice that there is a sequence P = (P, : 3 A < a < )

n<w

such that:
1. |Pa < A,

2. a€ Py, = aisaclosed subset of a of order type < Y An,

nlw

3.a€ |J P& B€nacc(a) = anpe Py,
a<A
4. For all club subsets E of A, there are stationarily many ¢ for which

there is an a € |J Py such that
a<l i

cf(J):No&aEPg&otp(a):Z/\n&agE.

n<w
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[Why? If A = (3 Au)tt, then it is the successor of a regular, so we use
ndw

[Sh 351, §4], i.e.
{a<Azef(a) < (O] M)}

n<w

is the union of ( 3 A;)* sets with squares and continue with [Sh:g, III

n<w
2.14(2)(c)].
If A > (Y An)**, then we can use [Sh 420, §1], which guarantees that

n<w

there is a stationary S € I[A] and then use [Sh:g, IIT 2.3(2)]’s proof.]
We can now find a sequence

(fa»ga,a ra< A a€ Pa)
such that:

(a) f={(fa:a <) isa <p-increasing cofinal sequence in [] Ay,

ndw

(b) g&,a e H An)

n<w

(c) /\ fﬂ <D Ja,a <D foz+1)
B<a

(d) A\n > |a| & B € nacc(a) = gp,a05(n) < ga,a(n).
[How? Choose f by tef( [T An/D) = A. Then choose g’s by induction,

n<w

possibly throwing out some of the f’s; this is from {Sh:g, 11, §1].]

Let T € AY.

We introduce for z € lev,, (T) and £ < w the notation F/(z) = Fy(z) to
denote the unique member of lev,(T") which is below z in the tree order of
T

Fora € |J P,, let a = {ag¢ : £ < otp(a)} be an increasing enumeration.
a<i
We shall consider two cases. In the first one, we assume that the following

statement (*) holds. In this case, the proof is easier, and maybe ()} always
holds for some D, but we do not know this at present.

(*) There is a partition (4, : » < w) of w into sets not disjoint to any
member of D.

In this case, let for n € w, D, be the filter generated by D and A,. Let for

a € |J Py with otp(a) = 3 An, and for z € lev, (T'),
a<i n<w

inv(z,a,T) =: (€n(x,a,T) : n < W),
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where

€n(z,a,T) = min{€ < otp(a): for some m < w we have
(FtT(x) 1€ < w)<p, gor,a' Where
o =agueem and @ =an a’}.

Let
INv(a,T) =: {inv(z,a,T) : 2 € T & levyp(z) = w},

INV(T) =: {c: for every club E C ), for some § and a
we have otp(a) =Y A, & a CE & a € P
and for some z € T of levy(2) = w, ¢ = inv(z, a,T)}.

(Alternatively, we could have looked at the function giving each a the value
INv(a,T), and then divide by a suitable club guessing ideal as in the proof
in §3, see Definition 3.7.)

Clearly

Fact: INV(T) has cardinality < A.
The main point is the following

Main Fact: Ifh:7T! — T? is an embedding, then
INV(T!) C INV(T?).

Proof of the Main Fact under (¥) We define for n € w

En={8<Xn:6>|JAand (Vz €leva(T")) (h(z) < § &z < d)}.
<n

We similarly define E,,, so E, (n € w) and E,, are clubs (of A, and A respec-
tively). Now suppose ¢ € INV(T7)\INV(73). Without loss of generality E,
is (also) a club of A which exemplifies that ¢ ¢ INV(T3). For h € [] An,

n<w

let
h*(n) =:min(E, \ h(n)), and Bhl=min{B<A:h< f5}.

(Note that h < fg[n), not just h <p fp[n].) For a sequence (h; : i < ¢*) of
functions from [] An, we use (h; : i < #*)* for (hj' 11 < 1%). Now let

n<w

E* =: {6 < A:if o < § then B[f¥] < § and 6 € acc(E.,)}.

Thus E* is a club of A. Since ¢ € INV(T}), there is § < A and a € Ps such
that for some z € lev,, (T1) we have

aC E* & otp(a) = Z A & ¢ = inv{z,a,T1).

n<w
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Let forn € w, &, =:&n(z,a,T1),s0 c = (€, : n <w). Alsoletforé < 3 Ap,
n<w

g =: g, 80 a=(ag :£< Y. Ap)is an increasing enumeration. Now fix

n<w
an n < w and consider h(z). Then we know that for some m

3 (Ff‘(x) 1l < w) <p, gor Where o/ = g, 4m and
(B) for no € < &, is there such an m.

Now let us look at F*(z) and FJ*(h(z)). They are not necessarily equal,
but

(v) min(E; \ F/" (z)) = min(E¢ \ F;* (h(z))
(by the definition of E;). Hence

(8) (F['(z) : e <w)* = (F*(h(z)) : L <w)?.
Now note that by the choice of g’s

(5) (ga,,ana,)+ <p. Joep1,6N 041 -

From (6) and (¢) it follows that &, (h(z),a,T?) = €n(z,a,T"). Hence c €
INV(T?). UMain Fact

Now it clearly suffices to prove:
Fact A: Foreach c= (6n 1 n <w) € “( Y M) we can find a T € &Y
such that ¢ € INV(T). i
Proof of the Fact A in case (¥) holds For each a € |J Ps with otp(a) =

§<A

> An we define z; 4 =: (z.4(f) : £ < w) by:
ncw

if £ € Ap, then z¢ 4(€) = ogu¢, 45
Let

T= U HA;U{xc,a ja € U Ps & otp(a) = Z)\n}.

n<w i<n <A n<w
We order T by «.
It 1s easy to check that T is as required. Oa

Now we are left to deal with the case that () does not hold. Let
pef({An in <w}) ={re:a < a”}
be an enumeration in increasing order so in particular

Ko = maxpcef({A, 1 n <w}).
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Without loss of generality x4+ = A (by throwing out some elements if neces-
sary) and ANpcef({A, : n < w}) has no last element (this appears explicitly
in [Sh:g], but is also straightforward from the pcf theorem). In particular,
o 1s a limit ordinal. Hence, without loss of generality

D={ACw: x> maxpcf{d, :new)\A}}.
Let {a,_ : o < a*) be a generating sequence for pcf({A, : n < w}), i.e.
max pcf(ae,) = ko and ko € pf({A, :n <w}\ag,).

(The existence of such a sequence follows from the pcf theorem). Without
loss of generality,
Bar = {Ap 10 < w}.

Now note

Remark 7.2 If cf{a*) = Ry, then (x) holds.

Why? Let (a(n) : n < w) be a strictly increasing cofinal sequence in o*.
Let (By, : n < w) partition w into infinite pairwise disjoint sets and let

Av=i{k<w: \/ Pk €ar,y \ | aragm]}-

neEB, m<n

To check that this choice of (A; : £ < w) works, recall that for all @ we know
that a,, does not belong to the ideal generated by {a., : # < a} and use
the pcf calculus. 7.2

Now let us go back to the general case, assuming cf(a*) > Rg. Our
problem is the possibility that

P({An:n<w})/Jarl{An :n <w}].
is finite. Let now Ay =: {n: A, € ay}, and

Jo =t {ACuw:maxpcf{:£€ A} < Kq}
Ji = {ACw:maxpcf({A¢: €€ A}Nay,) < Ka}.

We define for T' € &Y, z € lev,,(T), a < a* and a € |J Fs:
<A

&z, a,T)=min{&: V, [(Ff(z):€<w) <y gar,ar where
o =agueem and a’ =an a’}.

Let
inve(z,a,T) =: ({44n(z,a,T):n <w),
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INv(a,T) =: {inve(z,0,T) 2 €T & a < a* & levy(z) =w},
and

INV(T) = {c: for every club E* of A for some a € |J Ps
5<A
with otp(a) = ) A, for arbitrarily large a < o*,
n<w

there is z € lev, (T') such that inv,(z,a,T) = c}.

As before, the point is to prove the Main Fact.

Proof of the Main Fact in general Suppose h : 7! — T? and ¢ €
INV(TY)\INV(T?). Let E’ be a club of A which witnesses that ¢ ¢ INV(T2).
We define E,, E,, as before, as well as E* (C E, N E’). Now let us choose
a€ |J Ps witha C E* andotp(a) = 5 An. Soa = {aqe: €< Y An},

2PN n<w n<w
which we shorten as a = {ag : € < 3_ An}. Foreach £ < 3 An, as before,

nlw nw
we know that

(gae,unaé)-‘- <J;r Gogpr,aNoeq-
Therefore, there are ¢, < o* (£ < £) such that

{f : g:&anas (e) Z gae+1,ﬂﬂde+1 (E)} 2 U Aﬁe,z'
£<te

Let ¢ = (£, : n < w) and let
T= {ﬂf,t : for some n and m we have{:wfn+m&£<w}.

Thus T C o* is countable. Since cf(a*) > Ng, the set T is bounded in
a*. Now we know that c appears as an invariant for @ and arbitrarily large
§ < o, for some z, ¢ € lev,,(T1). If § > sup(Y), ¢ € INV(T?) is exemplified
by a,é,h(zq,s), just as before. a

We still have to prove that every ¢ = (€, : n < w) appears as an
invariant; i.e. the parallel of Fact A.

Proof of Fact A in the general case: Define for each a € |J Ps with
5<H
otp(a) = 3 Apand B < a*

nlw
Ze,a = (Tc,ap(f) : € < w),

where

k'<k

dawents A A €apen \ U aprr
Zca,6(8) =

0 if A ¢ agyx for any k < w.
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Form the tree as before. Now for any club E of A, we can find a € |J P;s

d<A
with otp(a) = . As, a C E such that (z.ap : # < o) shows that
n<w
c € INV(T). U1

Remark 7.3 1. Clearly, this proof shows not only that there is no one T

which is universal for .ﬁ‘{, but that any sequence of < [] A, trees will
nw
fail. This occurs generally in this paper, as we have tried to mention

in each particular case.

2. The case “A < 2%°” is included in the theorem, though for the Abelian
group application the A ARe < A\, is necessary.

n<w

Remark 7.4 1. If pt < X = cf(A) < x < p® and xPM < pRo (or at
least Tiga(c)(x) < p%°) we can get the results for “no M € KE is
universal for £5”, see §8 (and [Sh 456]).

We can below (and subsequently in §8) use J3, as in §6.

Theorem 7.5 Assume that 2% < X\, X = Qnin<w)y " (A, p= 3 A,

n<w
An < Angr, pF <A =cf(X) < ple.
If, for simplicity, m = (m; 1 i < w) = (w : i < w) (actually m; € [2,w] or
even m; € [2,X0), Ao < A are 0.K.) and US55 (X) = A (remember

JL={AC H m; : A is nowhere dense}

i<w

and definition 5.1),
then in RY there is no universal member.

Proof Let S C A, C = (Cs : § € S) be a club guessing sequence on A
with otp(Cs) > sup A,. We assume that we have % = (%, : @ < \), J2,
T* € Ay (T* is a candidate for the universal), C = (C; : § € §) € U,,
Ao < (H(x),€,<3), x = (A7, ||%all < A, Uy increasingly continuous,

(Up : B < @) € Ayp1, Ao N A is an ordinal, A = |J Uy and
al

E=H{a:UaNA=a}.

Note: [[m C U (as [[m € A and |[[m] = oRo),
NOTE: By US#(}) = A,
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(x) if 2z, €lev,(T") fornp € [[m

then for some A € (JZ)* the set ((n,z,) : n € A) belongs to .

But then for some v € |J [] m;, the set A is dense above v (by the
k i<k

definition of J2 ) and hence: if the mapping n — z,, is continuous then

(z, :vape]]m)e

For § € S such that Cs C E we let

PP = P)(Y) = {f: D Z=(z,:p€t)EUand z, € levyy T,
the mapping p + z, preserves all of the relations:

£9(p) = n, p1 ap2,~(p1 9 p2),~(p1 = p2),
p1 N p2 = p3 (and so €g(p1 N p2) = n is preserved);

and tC U T[mif.

a<wi<a
Assume £ = (z,: p €t) € P. Let
inv(z,Cs, T*, %) =: {a € Cs : (Ip € Dom(Z)}(z) € Amin(Cs\(a+1)) \ Ua) }-
Let Inv(Cs, T*,2) =:
{a : for some z € P§, a is a countable subset of inv(Z, Co, T*, )}

Note: inv(&, Cp, T*,2l) has cardinality at most continuum, so Inv(Co, T*, 2A)
is a family of < 2%° x |2 = X countable subsets of Cs.

We continue as before. Let as. be the e-th member of Cs for ¢ <
S An- So as A < plep > 2% clearly A < cf([A]®, C) (equivalently A <

n<w
cov(u, p, Ry, 2)) hence we can find v, € (|J Az, An) limit such that for each
<n

§ €S8, aeInv(Cs,T*,2) we have {yp + £ :n < wand £ < m;}Nais
bounded in p.

Now we can find T such that lev, (T) = [] A¢ and
{<n

lev,(T) = {B : B ={(B: €< w), and for some § € S, for every £ < w
we have v} € {asy.4m :m < m;}}.

So, if T is universal there is an embedding f : T —> T™, and hence
E' ={a € E : Uy is closed under f and f~'}

is a club of A. By the choice of C for some § € S we have Cs C E'. Now
use (%) with z, = f(8%"), where ﬂg’" = 5 y,4q0) € levy(T). Thus we get
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A € (JZ)* such that {(n,z,) :n € A} € U, there is v € |J [] mi such that
k i<k

A is dense above v, hence as f is continuous, ((n,z,) : van € [[m) € A

So (z, : n € [, v I n) € P)(Y), and hence the set

{5 yo4m L€ [fg(v),w) and m < me} U {aémw(,—) (< tg(v)}
is inv(&, Cs, T*,2). Hence
a={asy,: L€ [lyg(v),w)} €nv(Cs, T", A,

contradicting
“{as~y, : £ < w} has finite intersection with any a € Inv(Cs, T*, A)”.
a7.s

Remark 7.6 We can a priori fix a set of 8¢ candidates and say more on
their order of appearance, so that Inv(z, CJ,T*,QI) has order type w. This
makes it easier to phrase a true invariant, i.e. ({nn,ts) : n < w) is as above,
(M : n < w) lists “>w with no repetition, {{, N“w : n < w) are pairwise
disjoint. If z, € lev, (T*) for p € Yw, T* = (TE : { < A) representation we
have

inv((z, : p € “w),Cs,T*) =
{a €Cs:forsomen, (Vp)p€t,Nw = =z,€ Tin(Cs\ (at1)) \ 721}

Remark 7.7 If we have I' € (J2)*, I non-meagre, J = J2 | T and
UZ%(A) < AXe then we can weaken the cardinal assumptions to:

A= in<w) (N, /1:2/\,1, An < Antr,

pt < A =cf(}) and U%()) < cov(p, i, Ry, 2)(see 0.4).

The proof is similar.

8 Universals in singular cardinals

In §3, §5, 7.5, we can in fact deal with “many” singular cardinals A. This is
done by proving a stronger assertion on some regular A. Here R is a class
of models.

Lemma 8.1 1. There is no universal member in R« if for some X < p*,
8 > 1 we have:
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®A,u°,9[ﬁ] not only there is no universal member in Ky but if we as-
sume:

(M; i< 8) s given, ||M;]| <p*< H)‘"’ M; € R,

then there is a structure M from K, (in some cases of a simple
form) not embeddable in any M;.

2. Assume

®7 (An 1n <w) is given, ANe < Anyq,

p=Y A<A=dN) <p <[] M

n<w n<w

and pt < X or at least there is a club guessing C as in (+x)} (i)

of 8.4 for (A, p).

Then there is no unwersal member in R,. (and moreover Q» .+ ¢[A]
holds) in the following cases

®2(a) for torsion free groups, i.e. R = Rg—‘tf if cov(p*, At AT )0) <
IT An, see notation 0.4 on cov)
n<w

(b) for &= &Y/,
c) for R=R/Y asin 7.5 - cov(Uj s (p7), AT, AT, ) < An,
X 2

n<w
(d) for R;“'(P): like case (c) (for appropriate ideals), replacing tr
by rs(p).

Remark 8.2 1. For 7.5 as m = (w : i < w) it is clear that the subtrees
t, are isomorphic. We can use m; € [2,w), and use coding; anyhow it
is immaterial since “w,“2 are similar.

2. We can also vary X in 8.1 ®3, case (c).
3. We can replace cov in ®2(a),(c) by
sup ppp(xy(x) 1 cf(x) = A A <x < Uy (7))}
(see [Sh 355, 5.4], 2.4).
Proof Should be clear, e.g.
Proof of Part 2), Case (c) Let (T; : i < i*) be given, i* < [[ An such that

n<w

I <u* and  p® =:cov(Uyg (1*), A%, A%, 0) < [] An-

nlw
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By [Sh 355, 5.4] and pp calculus ([Sh 355, 2.3]), p® = cov(u®, AT, AT, A).
Let x = J7(A\)*. For i < i* choose B; < (H(x) €<}), ||Bi|l = p®, Ti € B;,
u® +1C B;. Let (Yy : @ < p®) be a family of subsets of T; exemplifying
the Definition of p® = cov(u®, A*, A+, )).

Given Z = (z, : 7 € “w), &, € lev,(T;), n + z, continuous (in our case this
means £g(m N1p) = Lg(xy, Ny,) =: Lg(max{p : pan; & panz}). Then for
some 1 € “Zw,

(zp, :nap e w) €B.

So given <(zg 1 €Yw) 1 (< A), :cg € lev, (T;) we can find {(aj,7;) : j <
J* < A) such that:

/\ \/(zs im;an € Yw) € Y,

(<X j

Closing Y, enough we can continue as usual. s

9 Metric spaces and implications

Definition 9.1 1. 8™ is the class of metricspaces M (i.e. M = (|M|,d),
[M] is the set of elements, d is the metric, i.e. a two-place func-
tion from |M| to R2° such that d(z,y) = 0 & =z = 0 and
d(z,z) < d(z,y) + d(y, z) and d(z,y) = d(y, z)).

An embedding f of M into N is a one-to-one function from |M| into
|N| which is continuous, i.e. such that:

ifin M, (z,, : n < w) converges to z
then in N, (f(zn) : n < w) converges to f(z).

2. &™* is defined similarly but Rang(d) C {27 : n < w} U {0} and
instead of the triangular inequality we require

d(z,y) =27%, d(y,2) =277 = d(z,z) <2 mnli-Li-1}

3. Rl is like 8" but PM = | M| and embeddings preserve z E, y (not

necessarily its negation) are one-to-one, and remember Az E, y =
n

zln=y]ln)

4. ™) is the class of semi-metric spaces M = (|M|, d), which means
that for the constant ¢ € Rt the triangular inequality is weakened to
d(z,2) < cd(z,y) + cd(y, z) with embedding as in 9.1(1) (so for ¢ =1
we get &™),
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5. &™) is the class of pairs (A, d) such that A is a non-empty set, d
a two-place symmetric function from A to R2° such that [d(z,y) =
0 & z=y]and

d(zo, zn) < ch(:cg,:ch) for any n < w and zg,... ,z, € A.
t<n

6. gm=(c) gmslel are defined parallely.
7. R75(P).PUTE is defined like £7*(P) but the embeddings are pure.

Remark 9.2 There are, of course, other notions of embeddings; isometric
embeddings if d is preserved, co-embeddings if the image of an open set is
open, bi-continuous means an embedding which is a co-embedding. The
isometric embedding is the weakest, its case is essentially equivalent to the
RY case (as in 9.8(3)); for the open case there is a universal: discrete space.
The universal for £7** under bicontinuous case exist one in cardinality ARo

Theorem 9.3 ([Ko57]) For every infinite cardinal k, the product of R
copies of the hedgehod J(x) ts a universal space for metrizable spaces of
weight k, where J(k) 1s the metric space obtained by taking & copies of the
unit interval and identifying their 0-points.

Proof see [Ko57].

Definition 9.4 1. Univ®(&!, 82) = {(),«,0) : there are M; € 82 for
i < 0 such that any M € K] can be embedded into some M;}. We
may omit 8 if it 1s 1. We may omit the superscript 0.

2. Univ! (&}, 82) = {(), &, 0) : there are M; € &2 for i < 6 such that any
M € £ can be represented as the union of < A sets A¢ (( < ¢* < A)
such that each M | A; can be embedded into some M;} and is a
<gqi-submodel of M.

3. If above &! = R? we write it just once; (naturally we usually assume
£ C 8Y).
Remark 9.5 1. We prove our theorems for Univ®, we can get parallel

things for Univ'.

2. Many previous results of this paper can be rephrased using a pair of
classes.

3. We can make 9.6 below deal with pairs and/or function H changing
cardinality.
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4.

Univ’ has the obvious monotonicity properties.

Proposition 9.6 1. Assume 8!, &2 has the same models as their mem-

bers and every embedding for &% is an embedding for R'.
Then Univ(&?) C Univ(&!).

Assume there is for £ = 1,2 a function H, from & into £3~¢ such

that:

(a) HHA(M)|| = ||My|| for My € &,

(b) |[H2(M2)]| = ||M2]| for M> € 2,

(¢) if My € &}, My € 82, H(M) € R? is embeddable into M, then
M, is embeddable into Hy(M;) € &'.

Then Univ(&?) C Univ(&!).

Definition 9.7 We say & < £? if the assumptions of 9.6(2) hold. We say
£ = 8% if &! < &% < A (s0 larger means with fewer cases of universality).

Theorem 9.8 1. The relation “R! < &2 is a quasi-order (i.e. transi-

3.
4.
5.

6.

tive and reflezive).

If (&', R%) are as in 9.6(1) then 8! < &? (use Hy = H = the iden-
tity).

For ¢; > 1 we have &™) = gmila] = gmslal = gms(er)],
gtriw] < ﬁrs(p).
.Qtr[w] < .qtr(w)'

Rirw) « grs (p),pure_

Proof 1) Check.

2) Check.

3) Choose n(*) < w large enough and &!, &2 any two of the four. We
define H,, H as follows. Hj is the identity. For (A4,d) € & let Hy((A, d)) =
(A, d1¥]) where di)(z, y) = inf{1/(n+n(*)) : 27" > d(z,y)} (the result is not
necessarily a metric space, n(*) is chosen so that the semi-metric inequality
holds). The point is to check clause (c) of 9.6(2); so assume f is a function

which £2-embeds H;((A;,d1)) into (As,d2); but

Hi((A1,d)) = (A1, d1),  Ha((As,d2)) = (A, ),
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so it is enough to check that f is a function which &'-embeds (A4, d[lll) into

(A, d[22]) L.e. it is one-to-one (obvious) and preserves limit (check).

4) For M = (A, Ex)ncw € 871 without loss of generality A C “X and
nEnv & nEA&veAkyin=v|n

Let BY ={n|n:n€ Aand n <w}. We define H;(M) as the (Abelian)
group generated by

{zn € AUB}U{ypn:n €A n<w}
freely except
p"'H:l:,,,:O if T)EB,eg(n) =n
Yn,0 = Ty if neA
PYnn4r — Yn = Tyn if XS An<w
p"Hy,n=0 if neBn<uw.
For G € &) let Hy(G) be (A, Ep)ncw with:
A=G, zE,y iff G “p" divides (z — y)”.

H3(G) € &9 as “G is separable” implies (Vz)(z # 0 = (In)[z ¢
p"G]). Clearly clauses (a), (b) of Definition 9.1(2) hold. As for clause
(c), assume (A, E;)pncw € g7} As only the isomorphism type counts
without loss of generality A C “A. Let B={n[n:n<w:n € A}
and G = Hj((A, En)ncw) be as above. Suppose that f embeds G into
some G* € 87*() and let (A*, E})n<w be Ha(G*). We should prove that
(A, En)n<w 1s embeddable into (A*, E7}).

Let f* : A — A* be f*(n) = z, € A*. Clearly f* is one to one from
Ato A*; if nEqv then n [ n = v [ n hence G | p" [ (2, — z,) hence
(A*7A:l)ﬂ<w t: UE:;I/. D9.8

Remark 9.9 In 9.8(4) we can prove ﬁt{[‘”] < .ﬁ;“(”).

Theorem 9.10 1. &™t = &™) fore > 1.
2. g™ = g™ for e > 1.

Proof 1) Let Hy : 8™ — &™) be the identity. Let Hy : &™) —y gmt
be defined as follows:
Hy((A,d)) = (A, d™), where

d™t(y,z) =
inf{ Yo d{zgzen) n<w &z € A (for £ < n) &zozy&znzz}.
=0

Now
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(*)1 d™ is a two-place function from A to R2, is symmetric, d™ (2, z) = 0
and 1t satisfies the triangular inequality.

This is true even on £™(¢)| but here also
(¥)2 d™(z,y) =02z =0.

[Why? As by the Definition of &7l d™t(z, y) > 1d(z,y). Clearly clauses
(a), (b) of 9.6(2) hold.]
Next,

(¥)s If My, N € ™, f is an embedding (for &™) of M, into N then f is
an embedding (for 87 of H;(M) into H,(N)
[why? as H1(M) = M and Hy(N) = N],
(*)a If M, N € &, f is an embedding (for &™) of M into N then f
is an embedding (for &™) of Hz(M) into H (M)
[why? as H} preserves ll)m zn, =« and lim z, # z].
n n~$00

So two applications of 9.6 give the equivalence.
2) We combine H, from the proof of (1) and the proof of 9.8(3). Ty 10

Definition 9.11 1. If /\;tn = Ny let

J”‘t {A C JI pn : for every n large enough,

n<w

for every n € [] e
t<n
the set {n'(n) : nan’ € A} is finite}.

2. Let T= |J Il pn, (T,d*) be a metric space such that

alwn<a

[T #e N closure ( U I ;u,) = {;

t<n m<n f<m
now
It y = {AC II pn: for some n, the closure of A (in (T, d*))

(Td
<w
isdisjoint to | [T e}

me[n,w) L<m

3. Let H € &*P), H = (H, : n < w), H, C H pure and closed,
n<m = H, CHpand |J H, isdense in H. Let
n<w
=:{ACH : for some n the closure of (4)y intersected with
U H. is included in Hy,}.

<w
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Proposition 9.12 Suppose that 2% < u and pt < A = cf(A) < pN° and

(*)x Ugpe(A) = A or at least Ugme(A) < Ao for some i = (pn 1 n < w)
such that T] pn < A.

ndw

Then .ﬁ;\"” has no universal member.

Proposition 9.13 1. J™ is X;-based.

2. The minimal cardinality of a set which is not in the o-ideal generated
by J™ is b.

3. IETTL’t,d‘)’ I;ls,(}}?)) are R, -based.
4. J™ s a particular case of ](r;‘t,d‘) (i.e. for some choice of (T, d*)).

; 3 rs(p)
5. 12 s a particular case of IH,FI .
Proof of 9.12. Let

Ta ={(n,v) E*Ax *(w+1): foreverynsuchthatn+1<a
we have v(n) < w}

and for o <wlet T= |J T,. We define on T the relation <r:

a<w
(m,v1) <(m,ve) ff m dny & vyav,.

We define a metric:
if (m, v1) # (52, v2) € T and (7, v) is their maximal common initial segment
and (n,v) € T then necessarily o = £g({(n, v)) < w and we let:

if m(a) # n2(e) then
d((m, 1), (02, v2)) = 2~ S{v(Oit<al,
if 91 (@) = n2(a) (so vi(a) # vz(a) then
d((m,wn), (n2,v2)) =2 TAv(0):t<al o 9= min{vi(a)wa(a)}

Now, for every S C {6 < A : cf(6) =N}, and 5= (s : 6 € S), 15 € “8, ns
increasing let M, be (T,d) [ A;, where

A; = U ToU{(ns,v):6 €S, ve“w}
nlw

The rest is as in previous cases (note that ((n (@), v"(n)) : n < w) converges
to (n"(a), v (w)) and even if (n"(a), v (n)) < (90, vn) € T, then ((nn,vn) :
n < w) converge to (n (a), v (w))). Og 13
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Proposition 9.14 IfIND,:((pn : n < w)), then [| pn is not the union of
ndw

< x members of 12 (see Definition 5.5 and Theorem 5.7).

Proof Suppose that A = { 3" p"zl :{(an :n <w) € X¢} and an < pn

n<w
are such that if 3 p"z € A, then for infinitely many n for every k < w
there is (B, : n < W),

Ve <k)ag=p & €=n] and Z pzh, € A¢  (see §5).

ndw

This clearly follows. O 14

10 On Modules

Here we present the straight generalization of the one prime case like Abelian
reduced separable p-groups. This will be expanded in {Sh 622] (including
the proof of 10.4).

Hypothesis 10.1 (A) Ris aring, ¢ = (e, : n < w), ¢, is a definition of
an additive subgroup of R-modules by an existential positive formula
(finitary or infinitary) decreasing with n, we write e,(M) for this
additive subgroup, e, (M) = (\en(M). Let My <,p M, of M; C M,

and Cw(Ml) = 2w(M2) ﬂMl, let M, S[H‘ My if M, g M, and n <
1U:>¢n(M2)ﬂM1 :Cn(Ml).

(B) £ is the class of R-modules.

(C) &* C Ris aclass of R-modules, which is closed under direct summand,
direct limit for <p.-increasing chains and for which there is M*, «* €
M* M*= @ M ®M*, M} € R, z}, € en( M)\ eny1(M™), z* —
<n
Yoz} € en(M*).

i<n

Definition 10.2 For M, M, € R, we say h is a (&, ¢)-homomorphism from
M, to M, if it is a homomorphism and it maps M1 \e, (M) into M3\ e, (M2);
we say h is an ¢-pure homomorphism if for each n it maps M, \ e, (M) into
M2 \ Cn(Mg).

Definition 10.3 1. Let H, C Hoyy CH, H=(H, :n< w), clisa
closure operation on H, ¢ is a function from P(H) to itself and

X C cl(X) = cf(cl(X)).
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Iy gee= {A C H :for some k < w we have cf(A) N U H, C Hk}.

n<w
2. We can replace w by any regular « (so H = (H; : i < &)).

Claim 10.4 Assume |R|+ pt < X = cf(X) < p®°, then for every M € £,
there 1s N € Ry with no e-pure homomorphism from N into M.

Remark 10.5 In the interesting cases cf has infinitary character.
The applications here are for £ = w. For the theory, pcf is nicer for higher
K.

11 Open problems

Problem 11.1 1. If ¥ > X then any (4,d) € & can be embedded
into some M’ € &Y with density < p.

2. If p¥o > X then any (A,d) € &7 can be embedded into some M’ €
T with density < p.
Problem 11.2 1. Other inclusions on Univ(#*) or show consistency of
non inclusions (see §9).
2. Is &! < A2 the right partial order? (see §9).

3. By forcing reduce consistency of Uy, (A) > A+2%° to that of Uy, ()) >
A+ 2%,

Problem 11.3 1. The cases with the weak pcf assumptions, can they
be resolved in ZFC? (the pcf problems are another matter).

2. Use [Sh 460], [Sh 513] to get ZFC results for large enough cardinals.

Problem 11.4 If A < Aiyq, p= 3 Ap, A = pF < g can (M, A1)

n<w

belong to Univ(&)? For & = &7, &™*(P) &!7f7

Problem 11.5 1. If A = pt 2<# = X < 2¥ can (A, A, 1) € Univ(&°T =
class of linear orders)?

2. Similarly for A = ut, u singular, strong limit, cf (1) = Rg, A < pNo.

3. Similarly for A = pt, p=2<# = At < 24,
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)

b

Problem 11.6 1. Analyze the existence of universal member from .ﬁ;“(P
A< 2R,

2. §4 for many cardinals, i.e. is it consistent that: 2%° > R, and for

every A < 2% there is a universal member of RZ“(” )?

Problem 11.7 1. If there are 4; C p for i < 2%, |A; N A;] < Ro,
2# = 2% find forcing adding S C [“w]* universal for {(B, <) : “>w C
B C“Zw,|B| < A} under (level preserving) natural embedding.

Problem 11.8 For simple countable T', K = k<* < X C « force existence
of universal for T in A still K = <% but 2" = y.

Problem 11.9 Make [Sh 457, §4], [Sh 500, §1] work for a larger class of
theories more than simple.

See on some of these problems [DjSh 614], [Sh 622].
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