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Abstract

We extend the method of uniformization by considering colorings which take values
in a group. We use this to construct new non-free Whitehead groups, in particular
answering an open problem in {1] by showing that it is consistent that there is a
strongly R;-free N,-coseparable group of cardinality R; which is not R,-separable.

0 INTRODUCTION

An abelian group A is called a Whitehead group, or W-group for short, if Ext(A.Z) = 0.
For historical reasons, A is called an R,-coseparable group if Ext(A,Z*)) = 0, but for
convenience we shall use non-standard terminology and say A is a W, -group when A is
R;-coseparable. Obviously a W,-group is a W-group. In 1973-75, the second author proved
that it is consistent with ZFC + GCH that every W-group is free and consistent with ZFC
that there are non-free W, -groups of cardinality R, ([8], [9]); he later showed that it is
consistent with ZFC + GCH that there are non-free W, -groups of cardinality ®; ([10], [11]).
Before 1973 it was known (in ZFC) that every W-group is R;-free, separable, and slender,
and assuming CH, every W-group is strongly R;-free. (See, for example, [3. pp. 178-180].)
These turned out, by the results of the second author, to be essentially all that could be
proved without additional set-theoretic hypotheses.

However, new questions of what could be proved in ZFC arose, inspired by the consistency
results and their proofs. One of the most intriguing was:

(0.1) Does every strongly R;-free W,,-group of cardinality ¥, satisfy the stronger
property that it is R;-separable?
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(See {1, p. 154, Problem 5]). As we shall explain below, not only was the answer to this
question affirmative in every known model of ZF (!, but the nature of the known constrictions
of non-free Whitchead groups was such as to lead to the suspicion that the answer might be
affirmative (provably in ZF(C). However, in this paper we show that it is consistent that the
answer is negative.

First we recall the key definitions.  An abelian group A is V-free if every countable
subgroup of A is free; A is strongly Ny-free if every countable subset is contained in a
countable free subgroup B such that A/B is ¥j-free. A is Ry-separable if every countable
subset is contained in a countable free subgroup /3 which is a direct summand of A; so an
Ny-separable group is strongly R -free. It is a consequence of CH (or even of 280 < 0¥
that there are strongly Xy-free groups of cardinality Ry which are not Ry-separable (see [[2]).
However, the existence of such groups is not settled by the hypothesis 2% = 2% specifically,
in a model of MA + =CIH every strongly R;-free group of cardinality R, is Xy -separable; but
the methods of [6] show that it is consistent with 2% = 2% that there are strongly ¥ -free
eroups of cardinality 8, which are nof ¥y-separable.

Now suppose A is strongly Ny-free and is a W -group. Cousider a countable subgroup 3
of Asuch that A/ B is Ni-free. We have a short exact sequence

0-B->A—->A4A/B—-0

where the map of B into A is inclusion. Since B is a free group of countable rank. if we
knew that A/B were a W -group, then we would have Ext(A/B.Z™) = Ext(A/B.B) =0
and we could conclude that this sequence splits and hence B is a direct summand of A In
every previously known model where there are non-free W, -groups, the construction of a
W -group A is such that A/ shares the properties of A closely enough that A/ B is also a
W group - when B is a countable subgroup such that A/ 8B is R;-free; cf. the Remark after
Theorem 2 below. Thus in these models the answer to (0.1) is alfirmative. This motivates
question (0.1) as well as the related question

(0.2) If a group A of cardinality R, is strongly R;-free and a W_-group, and B is
a countable subgroup of A such that A/B is ®-free, is A/B a W_-group?’

By what we have just remarked, a positive answer to {0.2) implies a positive answer to
(0.1). The converse holds as well: if A and B are as in the hypotheses of (0.2) and 4 is
N-separable, A = [7:3+ A" where [ is countable and contains f3; then A/F is a W -group
because A/ B3 = F/B+ A" and F/B is free by hypothesis on B.

We shall prove that there is a model of ZFC in which not only the answer to (0.2) but
also the answer to the following weaker question is “no™:

(0.3) If a group A of cardinality R, is strongly ®;-free and a W, -group, and I3
is a countable subgroup of A such that A/B is Rj-free, is A/B necessarily a
W-group?

The proof involves an extension of the method of uniformization which was first used
by the second author in [10] and [11] to construct non-free Whitehead groups in a model
of C'H. We recall the method and describe the extended method in the next section. That
section and the following one do not require a knowledge of forcing. In the last section we
construct a model of ZFC with the desired properties; the construction is by means of an
iterated forcing, with finite support, of c.c.c. posets.

It remains open whether negative answers to (0.1), (0.2) and (0.3) are consistent with

CH.
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1 COLORING METHODS

Throughout, E will be a stationary subset of w; consisting of limit ordinals, with (for tech-
nical reasons) w ¢ E. We begin with a general construction of a group, related to that in [1.

XI1.3.4).

Definition 1 For each § € E let ns be a ladder on 6, that is, a strictly increasing function
ns i w — & whose range approaches §. Let ¢ be a function from E x w to {0} U{xy : k € w}.
Let F be the free abelian group with basis {x,:v € wi} U {zs,:86 € E.n € w} and let I be
the subgroup of F generated by {ws, : 6 € E,n € w} where

'I_L)&vn = 226,n+] — Z§n T ‘TM("I) - 39(5 72)‘ (1)
Let A=F/K.

Clearly A is an abelian group of cardinality R;. Notice that because the right-hand side
of (1) is 0 in A, we have for each § € E and n € w the following relation in A:

[V

Iz, = 0t 3 P + (6 ) ('

k=0

where, in an abuse of notation, we write, for example, z, ., instead of =, . + K. If we let
As={z,:v<a}lU{zn:6€ ENa,n€w}). (3)

for each a < wy, then for each 6 € E 250+ As is non-zero and divisible in Ag41/As by 27 for
all n € w. Thus As;1/As is not free and hence A is not free. (In fact ['(A) D E: see [1, pp.
85f].) Moreover, A is strongly R;-free; in fact, for every a < w,. using Pontryagin’s Criterion
we can show that A/A, is N,-free whenever a ¢ F.

The following definitions are, by now, standard. A ladder system on a stationary subset
E of lim(w;) is an indexed family of functions n = (s : 6 € E)) such that each s : w — & is
a ladder on é. The ladder system 75 is called tree-like if for all §;,6, € F and all n.m € w.
ns,(n) = ns,(m) implies n = m and 75,(k) = ns,(k) for all £ < n. If A is a cardinal,
a A-coloring of n is an indexed family, ¢ = (cs : § € E}, of functions ¢; : w — A. {We are
particularly interested in the cases when A is 2 or w.) We say that n has the A-uniformization
property provided that for every A-coloring c of 5, there exists a pair of functions (f, f*) such
that f:w; — A, f*: E > w,and for all § € E, f(ns(n)) = cs(n) for all n > f*(8).

The following theorem is due to the second author; a proof can be found, for example,
in [1, pp. 371-374].

Theorem 2 Suppose A is constructed as in Definition | with o(é,n) =0 for all é,n.

(1) If n has the 2-uniformization (respectively, w-uniformization) property, then A is a
W -group (respectively, a W,,-group).

(2) If n is tree-like and A s @ W-group (respectively, a W, -group), then n has the 2-
uniformization (respectively, w-uniformization) property. O

Since it is consistent with ZFC + GCH that there is a ladder system 7 with the w-
uniformization property, it is consistent with ZFC + GCH that there are non-free W -groups
(cf. [10)).
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[t is also true, though not needed for our present purposes, that if there exists any non-
free W-group (respectively, W -group) of cardinality Ry, then there is a ladder system with
the 2-uniformization (respectively, w-uniformization) property: see [2, pp. 92-98] for a proof.

Remark. Note that if A and 5 are as in Theorem 2 (1) and 3 = A, for a ¢ I, then A/B
is Ny-free and A/ B is also a W-group (resp. W, -group). because Theorem 2 (1) applies to
A/ B since it is constructed as in Definition 1, using essentially the same ladder system 7
{with a countable initial segment deleted).

For our new construction, we shall need an extension of the notious of coloring and
uniformization. Let M be a countable group. (We are particularly interested in the cases
when M is Z or Z™).) Let 5 and y be as above but such that ¢ takes values in {uy : b & w}.
Denote by (6, n) the unique & € w such that p(8,n) = x4. Deline an M-coloring of (1, p)
to be an indexed family ¢ = (¢s : § € E) of functions ¢y : w — M. Say that the pair (f. f*)
uniformizes cif frwp — Mand f*: F —w and forall § € £ and all n > f(é).

fms(n)) + f(p(o.n)) = es(n). Y
(Addition in the group M.) Say that (7, ) has the M-uniformization property ifl for cvery
M-coloring ¢ there is a pair (f. f*) which uniformizes c.

Theorem 3 Let A be constructed as in Definition I, where @ takes values in {xy: k £
If (1.) has the M-uniformization property, then Ext(A, M) = 0.

N
€
——

PROOF. It suffices to prove that every homomorphism 3 : A’ — M extends to a homo-
morphism 6 : £ — M. Given b, define ¢s(n) = —¥(ws,) for each § € E. n € w. Suppose
that (f, f*) uniformizes this coloring. Define 8(z,) = f(v) and 8(zs,) = 0 for n > f=(8).
It then follows from equations (1) and (4) that 8(ws.) = v*(ws,) for all n > f*(6). Define
0(z5.) for n < f=(8) by downward induction, using the equation

O(z5m) = 20(z5n41) — WX py(m)) — 0(p(8, 1)) — P (ws.n)-

so that 0 extends y». O

Corollary 4 Suppose that there are a tree-like ladder system n and a function ¢ : £ xw —
{zx : k € W} such that (1.p) has the Z)-uniformization property but such that 1 does
not have the 2-uniformization property. Then there is a strongly Ni-free W -group A of
cardinality ¥y with a countable subgroup B of A such that A/ B is R;-free but ts nol a W-

group.

PROOF. Let A be constructed as in Definition 1, using the given 5 and ¢. Then by
Theorem 3, with M = Z™), A is a W -group. Let B be A,. Then A/B is ¥;-free since
w ¢ E; moreover A/B is isomorphic to a group constructed as in Definition 1 but with
2(é.n) = 0 for all §,n. Thus by the hypothesis and Theorem 2 (2), A/B is not a W-group.
O

In what follows we prove that there is a model of ZFC in which the hypotheses of Corollary
4 are true. In the next section we describe the basic partial ordering used in the iterated
forcing and prove that it is c.c.c. In the final section we describe the iteration and prove its
properties.
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2 A c.c.c PARTIAL ORDERING

Let M, n, and ¢ be as in the previous section where 7 is tree-like. Let ¢ be a fixed M-
coloring of (7, ). We shall define a partial order which consists of finite approximations to

a uniformization of c.

Definition 5 Let Q). be the set of all pairs (p, p*) such that for some finite subset S of E,
and somer € w, p*: S — w and p s the restriction to Y{{ns(m),p(6,m)}: 6 € 5. m < r}
of a function f, : U{{ns(n),@(6,n)} : 6 € S, n € w} — M such that for every 6 € 5.
Fy0s(m) + S8 m) = caln) if n > p(6). Partially order Q. by (p. p°) < (. ¢°) if and
only if q is an extension of p and ¢~ is an extension of p*. Define cont((p,p*)) = S and
num((p,p*) =r.

Lemma 6 @, is c.c.c., that is, every antichain in Q). is countable.

PROOF. The proof is similar to that in {1, Proof of VI.4.6]. Let  be large enough for
Q.. Identify M with w. We shall show that 0 is N-generic whenever N = (J;c,, Vi where
N; < Ny < H(k) and N;Nw; < Niyy Nwy. Given such an N, let a; = N; Nw; and
a = N Nuw. Suppose that (p,p*) € Q. and D € N is a dense subset of .. We need to
show that there is an element of D NN which is compatible with (p,p~). Let f, be as in the
definition of Q., so that p is a restriction of f,. Choose ¢ so that D € N;, dom(p) N C «;.
and dom(p*)Na C a;. Let

Y = U({ns(0), $(6, 0} : 6 € dom(p*) \ v, s(0) < ;U
{@(8,k) : ns(k) = n,(k) for some & # v € dom(p*)}.

Then Y is finite since § > a; if § € dom(p*) \ a; and since ladders on different ordinals
have different limits and hence their ranges must have finite intersection. Since N; is a
model of set theory, there exists ¢ € N; such that ¢ = p [ (dom(p}) N ;) U f, T Y. Let
¢ = p* [ (dom(p) Na;). Then (q,47) € N; N Q. so since N; E “D is dense in @Q.", there
exists (¢, ¢°) € D N N; such that (¢,¢™) < (§,¢*). By choice of ¢ and ¢* and Y, we can
modify f, to agree with f; where necessary and show that for some extension ¢’ of p U ¢,
(¢,p*Uq") € Q.. Therefore (¢,¢*) € DN N is compatible with (p,p*). O

We shall also need some results about denseness of certain subsets of @).. For 6 € E| let
Ds = {(p, p") € Q.: 6 € dom(p*)}. We claim that Ds is dense in Q.. Indeed, given any (p,
p") € Q. and é ¢ dom(p*) we can find k such that if n > k, then

1s(n) & {1y(m) : 7 € dom(p*), m € w} U dom(p).

Let p~ = p~U{($, k)}; we can easily extend f, to show that (p, p*) belongs to Q. for some p.
For any o € {ns(n) : § € E, n € w}, let D!, = {(p,p*) € Q. : a € dom(p)}. Then it is
easy to see that D! is dense in Q..
Simply as an exercise, let us see how we can use these notions to show that non-free
W,-groups exist in a model of MA + -CH.

Theorem 7 Assume MA + —~CH. Let A be constructed as in Definition 1. Then for any
countable group M, Ext(A, M) = 0.
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PROOF. By Theorem 3, we need only prove that (7, ) has the M-uniformization prop-
erty. So let ¢ be any M-coloring of (1,y). Let Q. be as in Definition 5. By Lemma 6. Q. is
c.c.c. Hence, by MA, there is a directed subset & of (). which meets each Dy and each 1',.
Let f~ =U{p™: (p,p*) € (& for some p}. Then f* is a function - because (i is directed —
with domain £ because 7 meets every Dy. Define f' = U{p: (p.p~) € (i for some p™}.
Then [ is a function with domain {ns(n): 6 € E, n € w} -- because (7 meets cach 1V, -
and we can arbitrarily extend f’ to f so that (f, f*) is a uniformization of ¢. O

Now 7 has the 2-uniformization property in any model of MA +-CH, so this is not the
model we seek (satisfying the hypotheses of Corollary 4). However. in the next section we
shall construct the desired model by imitating the proof of the consistency of MA: employing
an iterated forcing with finite support, but instead of iterating over all c.c.c. posets, iterating
over just those of the form ). defined in Definition 5.

3 THE FORCING CONSTRUCTION

In this section we prove the following theorem.

Theorem 8 [t is consistent with ZFC that there erists a tree-like ladder system 1 on «a
stationary set E and a function ¢ 1 E x w — {1 k € w} such that (n,p) has the 7')-
uniformization property, but such that n does not have the 2-uniformization property.

PROOF. We begin with a ground model where GCH holds and fix a stationary set [
of limit ordinals such that w ¢ E. We shall first do a forcing to create a generic family of
ladders (1 : 6 € £) and a generic function p. Let Q¢ be the set of all finite functions p such
that dom(p) is a finite subset of F and for some r? € w, for all 6 € dom(p), p(#) is a pair
(%, %) where ¥ is a strictly increasing function: 7* — & and ©f : {6} x ? — {wp 1 bk € w}:
moreover, we require that if 6,y € dom(p), n.m < »?, and 9{(n) = y2(m). then n = m and
na(€) = n2(€) for all £ < n.

The group A is defined in V@ as in Definition 1 using the generic ladders ny and the
generic p : £ xw — {z;: k € w}. Then

P = <Pa‘,Qa 0<a< w2>

will be constructed to be a finite support iteration of length w, so that for each « 2> 1
IFp, Qo = Qusr where
H—,,uc'(")is a Z)_coloring of (7. ).

We choose our enumeration of names {c'(") i1 < a < wp} so that if (7 is P-generic and
¢ € V[G]is a Z™)-coloring of (1,), then for some o < wy, ¢*) is a name for ¢ in V. Then
P is c.c.c. and it is clear from our construction that if (v is P-generic, in V{G] (5. 2) has
the Z™).uniformization property.

It remains to prove that in V[G] n does not have the 2-uniformization property. In fact.
we claim that in V[G] the coloring ¢ defined by

0 if B(6,n) 1s even
1 if $(é,n) is odd

cs(n) =
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cannot be uniformized. . .
Suppose, to the contrary, that there are names f and f* and a p € i such that

pl- (f, f‘) uniformizes c.

For each 6 € F, there exists ps > p and mg € w such that

ps - f7(6) = ms.

Since w is countable, there is a stationary £’ C E and m € w such that for all 6 € £,
mgs = m. We claim

(%) there exist &y < 8y in E', rik € w, and ¢ > ps, (i = 1,2) such that r > m and
q forces the following: ns, (r) = ns,(7); @(61,7) = T2xs and Y (62,1) = Topyr-

Suppose that (x) holds. We obtain a contradiction by considering what happens in
a generic extension V[G] where ¢ € G. In V[G] we have: f*(&) = m for i = 1.2, so
f(ns(r)) = cs,(r) for + = 1,2. But this is impossible by definition of ¢. since ¢(é,.7r) = 2k
and p(8,7) =2k + 1.

So it remains to prove (*). Without loss of generality, we can assume that for every é € E’
and every 3 > 0, ps(3) is a finite function (in the ground model) and not just a name, and
that § € dom(ps(0)). Moreover, we can assume that for all § € E’, ps(0) determines 5,(n)
for all & € cont(ps(3)) and n < num(ps(B)) for all 3 € supp(ps) \ {0}. We can also assume
that there is an r > m such that for all § € E’ r?¢(¥) = r and that for all 3 € supp(ps) \ {0},
num(ps(3)) = r. Furthermore, by Fodor’s Lemma, we can assume that (y?“(n) : n < r) and
(pP¢(8,n) : n < r) are independent of é. Finally, by the A-system lemma we can find &; < &,
such that for all 8 < wy, ps, (8) U ps,(3) is a function.

Now we define ¢ > ps, (i = 1,2) by defining ¢(3) for each 3 < w,. In order to define
g(0), choose v such that ngf‘(r — 1) < v < 6, and k € w such that vy and x441 do not
“occur in" any ps,(8) (z = 1,2). Then define ¢(0) extending ps, (0) and ps,(0) so that it
forces ns, (1) = v = ns,(r), @(b1,7) = o, and @(b2,7) = Tox41. We choose v, and 7, so
that v < 11 < 6 < 92 < & and let ¢(0) force ns (r + 1) = 5; (i = 1,2); then we will
have guaranteed that ¢(0) forces ns, (k) # 71s,(€) and 5s,(() # 7, (k) for all & > r 4+ 1 and
¢ € w. Similarly we can define ¢(0) to force values for n,(j) for j = r.r + 1 for all other
o € dom(ps, (0)) U dom(ps,(0)) so that ¢(0) forces 75, (£) # ns,(k) whenever k > r. ( € w,
o1 # o4 € dom(ps,(0)) U dom(ps,(0)), and either k > r or o ¢ {é1,62}.

For any 3 > 0, if 3 € supp(ps,) \ supp(ps,) for ¢ # j € {1.2}, let q(3) = ps(3). If
3 € supp(ps, ) Nsupp(ps,), let g(B) be a name (g, ¢*) for a condition extending ps, (3)U ps, (13)
so that (in VP2): num(q(3)) = r+2; cont(q(B)) = cont(ps, (3)) Ucont(ps,(3)): ¢(7) +4(2k) =
c'g?)(r); and g(y) + q(2k +1) = égf)(r). This is certainly possible because we have freedom
to choose ¢(2k) and ¢(2k + 1) independently and because we have forced the ranges of the
relevant ladders to be disjoint above the rth rung (except for v = ns, (r) = ns,(r)). O
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