A TREE-ARROWING GRAPH

S. SHELAH ${ }^{1}$
Hebrew University, Jerusalem, Israel.
AND
E. C. MILNER ${ }^{2}$
University of Calgary, Calgary, Canada.

Dedicated to the memory of Eric Milner

Abstract

We answer a variant of a question of Rödl and Voigt by showing that, for a given infinite cardinal λ, there is a graph G of cardinality $\kappa=\left(2^{\lambda}\right)^{+}$such that for any colouring of the edges of G with λ colours, there is an induced copy of the κ-tree in G in the set theoretic sense with all edges having the same colour.

Keywords: Partition relation, graph, tree, cardinal number, stationary set, normal filter.
AMS Subject Classification (1991): 03, 04

1. Introduction

$\mathcal{G}=(V, E)$ is a graph with vertex set V and edge set E, where $E \subseteq[V]^{2}$. The graph $\mathcal{H}=(W, F)$ is a subgraph of \mathcal{G} if $W \subseteq V$ and $F \subseteq E$, it is an induced subgraph if $F=E \cap[W]^{2}$. If λ is a cardinal, the partition relation

$$
\begin{equation*}
\mathcal{G} \rightarrow(\mathcal{H})_{\lambda}^{2} \tag{1}
\end{equation*}
$$

means that if $c: E \rightarrow \lambda$ is any colouring of the edges of \mathcal{G} with λ colours, then there is an induced copy of \mathcal{H} in \mathcal{G} in which all the edges have the same colour. There is a related notion $\mathcal{G} \rightarrow(\mathcal{H})_{\lambda}^{1}$, for vertex colourings of graphs. However, there is an essential difference since, for any given graph \mathcal{H} and any λ, there is

[^0]some \mathcal{G} such that $\mathcal{G} \rightarrow(\mathcal{H})_{\lambda}^{1}$ holds. This is not true for edge-colourings; Hajnal and Komjath [2] proved the consistency of a negative answer, and Shelah [5] proved that a positive answer is also consistent. It is therefore of some interest to have instances of graphs \mathcal{H} such that (1) holds for some \mathcal{G}, and then, of course, one can ask for the smallest such \mathcal{G}.

Rödl and Voigt [4] (see also [3]) proved a result of this kind by showing that for any infinite cardinal λ and a suitably large κ, there is a graph \mathcal{G}_{κ} of cardinality κ such that

$$
\begin{equation*}
\mathcal{G}_{\kappa} \rightarrow\left(\mathcal{T}_{\kappa}\right)_{\lambda}^{2} \tag{2}
\end{equation*}
$$

holds, where \mathcal{T}_{κ} is the tree in which every vertex has degree κ (see below). More precisely, 'suitably large' means that the ordinary partition relation

$$
\operatorname{cf}(\kappa) \rightarrow(\omega)_{\lambda}^{3}
$$

holds so that, by $[1], \kappa \geq\left(2^{2^{\lambda}}\right)^{+}$; in fact, they showed in this case that the ubiquitous shift-graph on κ works. Rödl and Voigt [4] then asked, what is the smallest cardinal κ such that (2) holds? It is easily seen that (2) is false if $\kappa \leq 2^{\lambda}$, and they conjectured that it holds (for some suitable graph \mathcal{G}_{κ}) if $\kappa=\left(2^{\lambda}\right)^{+}$. In this paper we prove that (2) holds with \mathcal{T}_{κ} replaced by $\mathcal{T}(\kappa)$, a related graph which we call the transitive κ-tree defined in the next section.

2. Preliminaries

For an infinite cardinal κ we denote by ${ }^{<\omega} \kappa$ the set of all increasing finite sequences of ordinals in κ. The length of an element $s=\left\langle s_{0}, \ldots, s_{n-1}\right\rangle \in{ }^{<\omega} \kappa$ is denoted by $\ln (s)=n$. Also, we define

$$
\max (s)= \begin{cases}-1 & \text { if } s=\langle \rangle, \text { the empty sequence, } \\ s_{\ell n(s)-1} & \text { if } \ln (s)>0\end{cases}
$$

If $s=\left\langle s_{0}, \ldots, s_{n-1}\right\rangle$ and $t=\left\langle t_{0}, \ldots, t_{m-1}\right\rangle$ are two elements of ${ }^{\langle\omega} \kappa$, we write $s \triangleleft t$ to denote the fact that s is a proper initial segment of t, that is $n<m$ and $s_{i}=t_{i}$ for $i<n$, and in this case we write $s=t \mid n$. We also write $s=t_{*}$ if $m=n+1$ and $s \triangleleft t$. If s, t are distinct and \triangleleft-incomparable we write $s \perp t$. The κ-tree of height ω is the graph \mathcal{T}_{κ} on ${ }^{<\omega} \kappa$ with edge set

$$
E_{\kappa}=\left\{\{s, t\}: s, t \in{ }^{<\omega} \kappa \wedge s=t_{*}\right\} .
$$

We shall also consider a related graph, the transitive κ-tree of height ω, which is the graph $\mathcal{T}(\kappa)$ on ${ }^{<\omega} \kappa$ with edge set

$$
F_{\kappa}=\left\{\{s, t\}: s, t \in \epsilon^{<\omega} \kappa \wedge s \triangleleft t\right\} .
$$

We shall prove the following theorem.

Theorem 2.1. Let λ be an infinite cardinal, and let $\kappa=\left(2^{\lambda}\right)^{+}$. Then there is a graph G_{κ} of cardinality κ such that

$$
G_{\kappa} \rightarrow(\mathcal{T})_{\lambda}^{2}
$$

where \mathcal{T} is $\mathcal{T}(\kappa)$.
Remark. Instead of $\kappa=\left(2^{\lambda}\right)^{+}$, it is enough that κ be any regular cardinal such that $|\alpha|^{\lambda}<\kappa$ holds for all $\alpha<\kappa$. The same proof works.

The construction of a suitable \mathcal{G}_{κ} depends upon the following (slightly weaker version of a) theorem of Shelah [7] (or more [8, 3.5]):
(•) Let λ be an infinite cardinal, $\kappa=\left(2^{\lambda}\right)^{+}, S=\left\{\alpha<\kappa: \operatorname{cf}(\alpha)=\lambda^{+}\right\}$. Then there are a sequence $\bar{C}=\left\langle C_{\delta}: \delta \in S\right\rangle$ and a sequence $\overline{h^{*}}=\left\langle h_{\delta}^{*}: \delta \in S\right\rangle$ such that C_{δ} is a club in δ having order type $\lambda^{+}, h_{\delta}^{*}: C_{\delta} \rightarrow 2$ and such that, for any club K in κ, there is a stationary subset B_{K} of $S \cap K$ such that for each $\delta \in B_{K}$ and each $i<2, \min \left(C_{\delta}\right) \in K$ and the set

$$
D_{K}(\delta, i)=\left\{\alpha \in C_{\delta} \cap K: h_{\delta}^{*}(\alpha)=i \wedge \min \left(C_{\delta} \backslash(\alpha+1)\right) \in K\right\}
$$

is cofinal in δ.
Remarks. 1. The result is also true if 2 , the range of each h_{δ}^{*}, is replaced by λ; also, if $\kappa=\lambda^{++}$, we can also require that $D_{K}(\delta, i)$ be a stationary subset of δ for each $\delta \in B_{K}$ and $i<\lambda$ (see [8]).
2. If $2^{\lambda}>\lambda^{+}$, then the following stronger assertion is true (see Shelah [6]): (••) There is a sequence $\bar{C}=\left\langle C_{\delta}: \delta \in S\right\rangle$ such that C_{δ} is a club in δ having order type λ^{+}and, for any club K in κ and any stationary subset $S^{\prime} \subseteq S$, there is a stationary subset $B_{K} \subseteq S^{\prime} \cap K$ such that $C_{\delta} \subseteq K$ for each $\delta \in B_{K}$. Using this result instead of (\cdot), the proof of Theorem 2.1 for the case when $2^{\lambda}>\lambda^{+}$may be slightly simplified.

We will prove that Theorem 2.1 holds with the graph $G_{\kappa}=(\kappa, \mathcal{E})$, where

$$
\mathcal{E}=\left\{\{\alpha, \beta\}: \beta \in S \wedge \min \left(C_{\beta}\right)<\alpha<\beta \wedge h_{\beta}^{*}\left(\sup \left(\alpha \cap C_{\beta}\right)\right)=0\right\},
$$

and the C_{β} and h_{β}^{*} are as described in (\bullet).
3. The case $\mathcal{T}=\mathcal{T}(\kappa)$

We prove the result for the case of the transitive tree $T(\kappa)$.
Proof: Let $c: \mathcal{E} \rightarrow \lambda$ be any λ-colouring of the edges of G_{κ}. For each $\zeta \in \lambda$ consider the following two-person game \mathcal{G}_{ζ}. The game has ω moves. At the n-th stage the first player P_{1} chooses ordinals α_{n}, β_{n}, and then the second player P_{2} chooses two ordinals γ_{n}, δ_{n} so that

$$
\begin{gather*}
\alpha_{n}<\beta_{n}<\gamma_{n}<\delta_{n}<\kappa, \tag{3}\\
\delta_{m}<\alpha_{n} \quad(m<n) . \tag{4}
\end{gather*}
$$

The player P_{2} is declared the winner in a play of the game if he succeeds in choosing the γ_{n} so that

$$
\begin{equation*}
\left\{\gamma_{m}, \gamma_{n}\right\} \in \mathcal{E}, \quad c\left(\left\{\gamma_{m}, \gamma_{n}\right\}\right)=\zeta \quad(m<n<\omega) \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\{\xi, \gamma_{n}\right\} \notin \mathcal{E} \text { for } \xi \in\left(\alpha_{m}, \beta_{m}\right) \text { and } m \leq n<\omega \tag{6}
\end{equation*}
$$

(As usual, (α, β) denotes the open interval $\{\xi: \alpha<\xi<\beta\}$ and $[\alpha, \beta]$ is the corresponding closed interval.)

The proof of the theorem depends upon the following two facts:
Fact A: For some $\zeta<\lambda, P_{2}$ has a winning strategy for the game \mathcal{G}_{ζ}.
Fact B: If P_{2} can win \mathcal{G}_{ζ}, then the graph G_{κ} contains an induced copy of $\mathcal{T}(\kappa)$ with all edges coloured ζ.

Proof of Fact B. We assume that $\zeta<\lambda$ and that the second player P_{2} has a winning strategy σ_{ζ} for the game \mathcal{G}_{ζ}. We shall define ordinals $\alpha_{s}, \beta_{s}, \gamma_{s}, \delta_{s}$ for s a vertex of $\mathcal{T}(\kappa)$ so that the following conditions are satisfied:
(a) For each s the sequence

$$
\left\langle\left(\alpha_{s \mid i}, \beta_{s \mid i}, \gamma_{s \mid i}, \delta_{s \mid i}\right): i<\ln (s)\right\rangle
$$

consists of the first $2 \ell n(s)$ moves in a proper play of the game \mathcal{G}_{ζ} in which P_{2} uses the winning strategy σ_{ζ}.
(b) $\gamma_{s} \neq \gamma_{t}$ if $s \neq t$.
(c) If $s \perp t$, then $\left\{\gamma_{s}, \gamma_{t}\right\} \notin \mathcal{E}$.

Since (5) holds, these conditions imply that the map $s \mapsto \gamma_{s}$ is an embedding of the tree $\mathcal{T}(\kappa)$ into the graph G_{κ} and all the edges of the image have colour ζ.

In fact, we shall choose the $\alpha_{s}, \beta_{s}, \gamma_{s}, \delta_{s}$ so that (a) holds and so that the following condition is satisfied:
(d) For any vertices s, t of $\mathcal{T}(\kappa)$, if $s \perp t$, then

EITHER (i) $\left[\gamma_{s}, \delta_{s}\right] \subset \bigcup_{i \leq \ell n(t)}\left(\alpha_{t \mid i}, \beta_{t \mid i}\right)$,
OR (ii) $\left[\gamma_{t}, \delta_{t}\right] \subset \bigcup_{i \leq \ell n(s)}\left(\alpha_{s \mid i}, \beta_{s \mid i}\right)$.
The conditions (a) and (d), and the fact that P_{2} is using the winning strategy σ_{ζ}, ensure that (b) and (c) also hold.

We define $\alpha_{s}, \beta_{s}, \gamma_{s}, \delta_{s}$ by induction on $\max (s)$. Let $\alpha_{\langle \rangle}=0, \beta_{\langle \rangle}=1$, and then let $\left(\gamma_{\langle \rangle}, \delta_{\langle \rangle}\right)$be P_{2} 's response in the game \mathcal{G}_{ζ} using his winning strategy σ_{ζ}. Now let $0 \leq \xi<\kappa$, and suppose that we have suitably defined $\alpha_{s}, \beta_{s}, \gamma_{s}, \delta_{s}$ for all vertices s of $\mathcal{T}(\kappa)$ such that $\max (s)<\xi$. We need to define these when $\max (s)=\xi$.

Let $\left\langle t_{i}: i<\theta(\xi)\right\rangle$ be an enumeration of all the nodes s of $\mathcal{T}(\kappa)$ with $\max (s)=\xi$. Then $1 \leq \theta(\xi) \leq 2^{\lambda}<\kappa$. Now inductively choose the $\alpha_{t_{i}}, \beta_{t_{i}}, \gamma_{t_{i}}, \delta_{t_{i}}$ for $i<\theta(\xi)$ so that

$$
\alpha_{t_{i}}=\delta_{\left(t_{i}\right) *}+1
$$

and if $i=0, \beta_{t_{i}}=\alpha_{i_{0}}+1$ and if $i>0$

$$
\beta_{t_{\mathrm{i}}}=\sup \left\{\delta_{s}+2: \max (s)<\xi \text { or } s=t_{j} \text { for some } j<i\right\}
$$

The corresponding pairs ($\gamma_{t_{i}}, \delta_{t_{i}}$) are determined by the strategy σ_{ζ}. With these choices it is easily seen that (a) continues to hold; we have to check that (d) also holds when $s \perp t$ and $\max (s)=\xi$ or $\max (t)=\xi$.

If $\max (s)=\max (t)=\xi$, then $s=t_{i}$ and $t=t_{j}$, where say $i<j$. Then

$$
\alpha_{t}=\delta_{t_{*}}+1<\beta_{s}<\gamma_{s}<\delta_{s}<\beta_{t},
$$

and so (d)(i) holds.
Suppose $\max (s)<\xi=\max (t)$. Then by the induction hypothesis, either (i) or (ii) of (d) holds when we replace t by t_{*}. Suppose first that (d)(i) holds. Then for some $m \leq \ln \left(t_{*}\right)$ we have that

$$
\alpha_{t-\mid m}<\gamma_{s}<\delta_{s}<\beta_{t_{*} \mid m} .
$$

It follows that (d)(i) also holds for s and t since $t\left|m=t_{*}\right| m$. Now suppose that (d)(ii) holds so that, for some $m \leq \ell n(s)$,

$$
\alpha_{s \mid m}<\gamma_{t_{*}}<\delta_{t_{*}}<\beta_{s \mid m}
$$

Then, by the definitions of α_{t} and β_{t}, it follows that

$$
\alpha_{t}=\delta_{t_{*}}+1 \leq \beta_{s}<\gamma_{s}<\delta_{s}<\beta_{t},
$$

so that again (d)(i) holds for s and t. Similarly, if $\max (t)<\xi=\max (s)$.
Proof of Fact A. We have to show that P_{2} wins the game \mathcal{G}_{ζ} for some $\zeta<\lambda$. Suppose for a contradiction that this is false. Since the games are open and hence determined, it follows that P_{1} has a winning strategy, say τ_{ζ}, for the game \mathcal{G}_{ζ} for every $\zeta<\lambda$.

For convenience we write $c(\{\alpha, \beta\})=-1$ if $\{\alpha, \beta\} \notin \mathcal{E}$, so that c is defined on all pairs $\{\alpha, \beta\} \in[\kappa]^{2}$. For each bounded subset $X \subseteq \kappa$ define an equivalence relation e_{X} on $S \backslash(\sup (X)+1)$ so that $\beta e_{X} \gamma$ holds if and only if
(i) $\beta, \gamma \in S$ and $\sup (X)<\beta, \gamma<\kappa$;
(ii) $c(\{\alpha, \beta\})=c(\{\alpha, \gamma\})$ for all $\alpha \in X$;
(iii) $X \cap C_{\beta}=X \cap C_{\gamma}$, (iv) for $\alpha \in X, \alpha \leq \min \left(C_{\beta}\right) \Leftrightarrow \alpha \leq \min \left(C_{\gamma}\right)$, $\operatorname{tp}\left(\alpha \cap C_{\beta}\right)=\operatorname{tp}\left(\alpha \cap C_{\gamma}\right)$ and $h_{\beta}^{*}\left(\sup \left(\alpha \cap C_{\beta}\right)\right)=h_{\gamma}^{*}\left(\sup \left(\alpha \cap C_{\gamma}\right)\right)$ (for $\left.\alpha>\min \left(C_{\beta}\right)\right)$.

Note that the equivalence relation e_{X} has at most $\left(\lambda^{+}\right)^{|X|} \leq 2^{\lambda|X|}$ classes. Also, if $Y \subseteq X$, then $\beta e_{X} \gamma \Rightarrow \beta e_{Y} \gamma$.

Since $\kappa=\left(2^{\lambda}\right)^{+}$, there is a continuous increasing sequence of ordinals $\left\langle\rho_{\eta}: \eta<\kappa\right\rangle$ in κ such that the following two conditions hold:
(o) If $X \subseteq \rho_{\eta},|X| \leq \lambda$ and $\rho_{\eta}<\beta<\kappa$, then there is some $\gamma \in\left(\rho_{\eta}, \rho_{\eta+1}\right)$ such that $\beta e_{X} \gamma$
(oo) ρ_{η} is closed under τ_{ζ} for all $\zeta<\lambda$. In other words, if at the n-th stage of a play in the game \mathcal{G}_{ζ}, player P_{2} chooses $\gamma_{n}<\delta_{n}<\rho_{\eta}$, then P_{1} 's response using τ_{ζ} is to choose $\alpha_{n+1}, \beta_{n+1}$ so that $\delta_{n}<\alpha_{n+1}<\beta_{n+1}<\rho_{\eta}$.

Since $K=\left\{\rho_{\eta}: \eta<\kappa\right\}$ is a club in κ, there is some $\delta \in S$ such that $\min \left(C_{\delta}\right) \in$ K and, for $\varepsilon \in\{0,1\}$,

$$
A_{\varepsilon}=\left\{\alpha \in C_{\delta} \cap K: h_{\delta}^{*}(\alpha)=\varepsilon \wedge \min \left(C_{\delta} \backslash(\alpha+1)\right) \in K\right\}
$$

is an unbounded subset of δ. Let $C_{\delta}=\left\{i_{\sigma}: \sigma<\lambda^{+}\right\}$, where $i_{0}<i_{1}<\cdots$.
We claim that the following assertion holds for some $\zeta<\lambda$.
$(*)_{\zeta}$: If $X \subseteq \delta,|X| \leq \lambda$, then there are $\sigma<\lambda^{+}$and γ such that (a) $\sup (X)<$ $i_{\sigma}<\gamma<i_{\sigma+1}$, (b) $i_{\sigma} \in A_{0}$, (c) $\gamma e_{X} \delta$, and (d) $c(\gamma, \delta)=\zeta$.
For suppose the claim is false. Then, for each $\zeta<\lambda$ there is a counter-example X_{ζ}. Let $X=\bigcup\left\{X_{\zeta}: \zeta<\lambda\right\}$. Then $X \subseteq \delta$ and $|X| \leq \lambda$ and so, for some $\alpha \in A_{0}$, $\sup (X)<\alpha<\delta$. There are $\eta<\kappa$ and $\sigma<\lambda^{+}$such that $\alpha=\rho_{\eta}=i_{\sigma}$, and therefore, by the choice of $\rho_{\eta+1}$, there is γ such that $\rho_{\eta}<\gamma<\rho_{\eta+1}$ and $\gamma e_{X} \delta$. Since $\alpha=i_{\sigma} \in A_{0}, i_{\sigma+1}=\min \left(C_{\delta} \backslash(\alpha+1)\right) \in K$. So $\rho_{\eta+1} \leq i_{\sigma+1}$. Therefore, $\sup \left(C_{\delta} \cap \gamma\right)=i_{\sigma}$, and since $\alpha=i_{\sigma} \in A_{0}$, we have that $h_{\delta}^{*}\left(\sup \left(C_{\delta} \cap \gamma\right)\right)=0$. Therefore, $\{\gamma, \delta\}$ is an edge of G and there is some $\zeta \in \lambda$ such that $c(\gamma, \delta)=\zeta$. But this contradicts the choice of $X_{\zeta} \subseteq X$, and hence $(*)_{\zeta}$ holds for some $\zeta<\lambda$.

By induction on $n<\omega$ we now choose ordinals $\alpha_{n}, \beta_{n}, \gamma_{n}, \delta_{n}$ in δ and $\sigma(n)<\lambda^{+}$ so that the following conditions are satisfied:
A: $\left\langle\left(\alpha_{m}, \beta_{m}, \gamma_{m}, \delta_{m}\right): m \leq n\right\rangle$ is an intial segment of a play in the game \mathcal{G}_{ζ} in which P_{1} uses the winning strategy τ_{ζ}.
B: $\alpha_{0}, \beta_{0}<\min \left(C_{\delta}\right)$.
$\mathrm{C}: \gamma_{n}=\min \left\{\gamma: \gamma>i_{\sigma(2 n)} \wedge \gamma e_{X_{n}} \delta \wedge c(\gamma, \delta)=\zeta\right\}$, where

$$
X_{n}=\bigcup\left\{\left\{\alpha_{\ell}, \beta_{\ell}, \gamma_{\ell}, \delta_{\ell}\right\}: \ell<n\right\} \cup\left\{\alpha_{n}, \beta_{n}\right\} \cup \bigcup\left\{\left\{i_{\sigma(\ell)}, i_{\sigma(\ell)+1}\right\}: \ell<2 n\right\}
$$

D: $\delta_{n}=i_{\sigma(2 n+1)}$.
E : For $n>0,\left[\alpha_{n}, \beta_{n}\right] \subseteq\left(\delta_{n-1}, i_{\sigma(2 n-1)+1}\right)$.
F: $i_{\sigma(n)}$ belongs to A_{0} or A_{1} according as n is even or odd and $\sigma(n)+1<\sigma(n+1)$.
We have to prove that it is possible to choose the α_{n} etc., so that these conditions are satisfied. Clearly (B) holds since, by (oo), the first moves by P_{1} using the stategy τ_{ζ} are $\alpha_{0}<\beta_{0}<\rho_{0}$ and $\rho_{0} \leq \min \left(C_{\delta}\right) \in K$. By $(*)_{\zeta}$, there are $\sigma(0)<\lambda^{+}$
and γ such that $i_{\sigma(0)} \in A_{0}, i_{\sigma(0)}<\gamma<i_{\sigma(0)+1}, \gamma e_{X_{0}} \delta$, where $X_{0}=\left\{\alpha_{0}, \beta_{0}\right\}$ and $c(\gamma, \delta)=\zeta$; let γ_{0} be the least such γ. Now let $\sigma(1)>\sigma(0)+1$ be minimal so that $i_{\sigma(1)} \in A_{1}$, and put $\delta_{0}=i_{\sigma(1)}$. Now suppose that $n>0$ and that the $\alpha_{m}, \beta_{m}, \gamma_{m}, \delta_{m}, \sigma(2 m)$ and $\sigma(2 m+1)$ have been suitably defined for all $m<n$. Let $\rho \in K$ be minimal such that $\rho>\delta_{n-1}$. P_{1} chooses α_{n}, β_{n} using the strategy τ_{ζ} so that $\delta_{n-1}<\alpha_{n}<\beta_{n}<\rho$. Since $\delta_{n-1}=i_{\sigma(2 n-1)} \in A_{1}$, it follows that $i_{\sigma(2 n-1)+1} \in K$ and hence $\rho \leq i_{\sigma(2 n-1)+1}$. Now by $(*)_{\zeta}$, there are $\sigma(2 n)$ and γ so that $i_{\sigma(2 n)} \in A_{0}, i_{\sigma(2 n)}<\gamma<i_{\sigma(2 n)+1}, \gamma e_{X_{n}} \delta$ (where X_{n} is as described in (C)), and $c(\gamma, \delta)=\zeta$; let γ_{n} be the least such γ. Note that, since $i_{\sigma(2 n)} \in A_{0}, i_{\sigma(2 n)+1}=\min \left(C_{\delta} \backslash\left(i_{\sigma(2 n)}+1\right)\right) \in K$. Finally, choose a minimal ordinal $\sigma(2 n+1)>\sigma(2 n)+1$ so that $\delta_{n}=i_{\sigma(2 n+1)} \in A_{1}$. This completes the definition of the α_{n} etc., so that (A)-(F) hold.

By (C) it follows that $c\left(\gamma_{n}, \delta\right)=\zeta$ for all $n<\omega$, and hence $c\left(\gamma_{m}, \gamma_{n}\right)=\zeta$ holds for all $m<n<\omega$ since $\gamma_{m} \in X_{n}$ and $\gamma_{n} e_{X_{n}} \delta$. There is no edge of G_{κ} from δ to $\left(\alpha_{0}, \beta_{0}\right)$ since $\beta_{0}<\min \left(C_{\delta}\right)$. Since $\gamma_{n} e_{X_{n}} \delta$ and $\beta_{0} \in X_{n}$, it follows that $\beta_{0}<\min \left(C_{\gamma_{n}}\right)$ also, and so there is no edge from γ_{n} to (α_{0}, β_{0}) either. By the construction, for $0<m<\omega, i_{\sigma(2 m-1)}<\alpha_{m}<\beta_{m}<i_{\sigma(2 m-1)+1}$, and hence $C_{\delta} \cap\left(\alpha_{m}, \beta_{m}\right)=\emptyset$. Therefore, for any $\xi \in\left(\alpha_{m}, \beta_{m}\right), h_{\delta}^{*}\left(\sup \left(\xi \cap C_{\delta}\right)\right)=$ $h_{\delta}^{*}\left(i_{\sigma(2 m-1)}\right)=1$ by (F), and so there is no edge of G from δ to (α_{m}, β_{m}). If $0<m<n<\omega$, then $\gamma_{n} e_{X_{n}} \delta$ and therefore,

$$
\operatorname{tp}\left(\alpha_{m} \cap C_{\gamma_{n}}\right)=\operatorname{tp}\left(\alpha_{m} \cap C_{\delta}\right)=\operatorname{tp}\left(\beta_{m} \cap C_{\delta}\right)=\operatorname{tp}\left(\beta_{m} \cap C_{\gamma_{n}}\right) .
$$

Therefore, for any $\xi \in\left(\alpha_{m}, \beta_{m}\right)$, it follows that

$$
h_{\gamma_{n}}^{*}\left(\sup \left(\xi \cap C_{\gamma_{n}}\right)\right)=h_{\gamma_{n}}^{*}\left(\sup \left(\alpha_{m} \cap C_{\gamma_{n}}\right)\right)=h_{\delta}^{*}\left(\sup \left(\alpha_{m} \cap C_{\delta}\right)\right)=1
$$

and so there are no edges of G from γ_{n} to $\left(\alpha_{m}, \beta_{m}\right)$ either.
Thus we have produced a play in the game \mathcal{G}_{ζ} in which P_{1} uses the strategy τ_{ζ} but the second player P_{2} wins! This contradicts the assumption that σ_{ζ} is a winning strategy for the first player, and completes the proof.

References

1. P. Erdős and R. Rado, A partition calculus in set theory, Bull. Amer. Math. Soc. 62 (1956) 427-489.
2. A. Hajnal and P. Komjath, Embedding graphs into colored graphs, Trans. Amer. Math. Soc. 307 (1988), 395-409; Corrigendum: 332 (1992), 475.
3. P. Komjath and E.C. Milner, On a conjecture of Rödl and Voigt. J. Combin. Theory, Ser. B 61 (1994), 199-209.
4. V. Rödl and B. Voigt, Monochromatic trees with respect to edge partitions, J. Combin. Theory Ser. B 58 (1993), 291-298.
5. Saharon Shelah [Sh: 289], Consistency of positive partition theorems for graphs and models, in: Set theory and its applications (Toronto, ON, 1987), Lecture Notes in Mathematics 1401, (J. Steprans and S. Watson, eds.), Springer, Berlin-New York, (1989) 167-193.
6. Saharon Shelah [Sh: 365], There are Jonsson algebras in many inaccessible cardinals, in: Cardinal Arithmetic, Oxford Logic Guides 29 chapter III, Oxford University Press, 1994.
7. Saharon Shelah [Sh: 413], More Jonsson Algebras and Colourings, Archive for Mathematical Logic, to appear.
8. Saharon Shelah [Sh: 572], Colouring and \aleph_{2}-cc not productive, Annals of Pure and Applied Logic, 84 (1997), 153-174..

[^0]: ${ }^{1}$ Paper Sh 578 in Shelah's publication list. Research supported by "The Israel Science Foundation" administered by The Israel Academy of Sciences and Humanities.
 ${ }^{2}$ Research supported by NSERC grant \#69-0982.

