A TREE-ARROWING GRAPH

S. SHELAH¹
Hebrew University,
Jerusalem, Israel.

AND
E. C. MILNER²
University of Calgary,
Calgary, Canada.

Dedicated to the memory of Eric Milner

Abstract. We answer a variant of a question of Rödl and Voigt by showing that, for a given infinite cardinal λ , there is a graph G of cardinality $\kappa = (2^{\lambda})^{+}$ such that for any colouring of the edges of G with λ colours, there is an induced copy of the κ -tree in G in the set theoretic sense with all edges having the same colour.

Keywords: Partition relation, graph, tree, cardinal number, stationary set, normal filter.

AMS Subject Classification (1991): 03, 04

1. Introduction

 $\mathcal{G}=(V,E)$ is a graph with vertex set V and edge set E, where $E\subseteq [V]^2$. The graph $\mathcal{H}=(W,F)$ is a subgraph of \mathcal{G} if $W\subseteq V$ and $F\subseteq E$, it is an induced subgraph if $F=E\cap [W]^2$. If λ is a cardinal, the partition relation

$$\mathcal{G} \to (\mathcal{H})^2_{\lambda},$$
 (1)

means that if $c: E \to \lambda$ is any colouring of the edges of \mathcal{G} with λ colours, then there is an induced copy of \mathcal{H} in \mathcal{G} in which all the edges have the same colour. There is a related notion $\mathcal{G} \to (\mathcal{H})^1_{\lambda}$, for vertex colourings of graphs. However, there is an essential difference since, for any given graph \mathcal{H} and any λ , there is

¹Paper Sh 578 in Shelah's publication list. Research supported by "The Israel Science Foundation" administered by The Israel Academy of Sciences and Humanities.

²Research supported by NSERC grant #69-0982.

some \mathcal{G} such that $\mathcal{G} \to (\mathcal{H})^1_{\lambda}$ holds. This is not true for edge-colourings; Hajnal and Komjath [2] proved the consistency of a negative answer, and Shelah [5] proved that a positive answer is also consistent. It is therefore of some interest to have instances of graphs \mathcal{H} such that (1) holds for some \mathcal{G} , and then, of course, one can ask for the smallest such \mathcal{G} .

Rödl and Voigt [4] (see also [3]) proved a result of this kind by showing that for any infinite cardinal λ and a suitably large κ , there is a graph \mathcal{G}_{κ} of cardinality κ such that

$$\mathcal{G}_{\kappa} \to (\mathcal{T}_{\kappa})_{\lambda}^2$$
 (2)

holds, where \mathcal{T}_{κ} is the tree in which every vertex has degree κ (see below). More precisely, 'suitably large' means that the ordinary partition relation

$$cf(\kappa) \to (\omega)^3_{\lambda}$$

holds so that, by [1], $\kappa \geq (2^{2^{\lambda}})^+$; in fact, they showed in this case that the ubiquitous shift-graph on κ works. Rödl and Voigt [4] then asked, what is the smallest cardinal κ such that (2) holds? It is easily seen that (2) is false if $\kappa \leq 2^{\lambda}$, and they conjectured that it holds (for some suitable graph \mathcal{G}_{κ}) if $\kappa = (2^{\lambda})^+$. In this paper we prove that (2) holds with \mathcal{T}_{κ} replaced by $\mathcal{T}(\kappa)$, a related graph which we call the transitive κ -tree defined in the next section.

2. Preliminaries

For an infinite cardinal κ we denote by $^{<\omega}\kappa$ the set of all increasing finite sequences of ordinals in κ . The *length* of an element $s = \langle s_0, \ldots, s_{n-1} \rangle \in {^{<\omega}\kappa}$ is denoted by $\ell n(s) = n$. Also, we define

$$\max(s) = \begin{cases} -1 & \text{if } s = \langle \rangle, \text{ the empty sequence,} \\ s_{\ell n(s)-1} & \text{if } \ell n(s) > 0. \end{cases}$$

If $s = \langle s_0, \ldots, s_{n-1} \rangle$ and $t = \langle t_0, \ldots, t_{m-1} \rangle$ are two elements of ${}^{<\omega}\kappa$, we write $s \triangleleft t$ to denote the fact that s is a proper initial segment of t, that is n < m and $s_i = t_i$ for i < n, and in this case we write s = t|n. We also write $s = t_*$ if m = n + 1 and $s \triangleleft t$. If s, t are distinct and \triangleleft -incomparable we write $s \perp t$. The κ -tree of height ω is the graph \mathcal{T}_{κ} on ${}^{<\omega}\kappa$ with edge set

$$E_{\kappa} = \{\{s, t\} : s, t \in {}^{<\omega}\kappa \wedge s = t_*\}.$$

We shall also consider a related graph, the transitive κ -tree of height ω , which is the graph $\mathcal{T}(\kappa)$ on $^{<\omega}\kappa$ with edge set

$$F_{\kappa} = \{ \{s, t\} : s, t \in {}^{<\omega}\kappa \wedge s \triangleleft t \}.$$

We shall prove the following theorem.

Theorem 2.1. Let λ be an infinite cardinal, and let $\kappa = (2^{\lambda})^+$. Then there is a graph G_{κ} of cardinality κ such that

$$G_{\kappa} \to (\mathcal{T})^2_{\lambda}$$
,

where \mathcal{T} is $\mathcal{T}(\kappa)$.

Remark. Instead of $\kappa = (2^{\lambda})^+$, it is enough that κ be any regular cardinal such that $|\alpha|^{\lambda} < \kappa$ holds for all $\alpha < \kappa$. The same proof works.

The construction of a suitable \mathcal{G}_{κ} depends upon the following (slightly weaker version of a) theorem of Shelah [7] (or more [8, 3.5]):

(•) Let λ be an infinite cardinal, $\kappa = (2^{\lambda})^+$, $S = \{\alpha < \kappa : \operatorname{cf}(\alpha) = \lambda^+\}$. Then there are a sequence $\overline{C} = \langle C_{\delta} : \delta \in S \rangle$ and a sequence $\overline{h^*} = \langle h_{\delta}^* : \delta \in S \rangle$ such that C_{δ} is a club in δ having order type λ^+ , $h_{\delta}^* : C_{\delta} \to 2$ and such that, for any club K in κ , there is a stationary subset B_K of $S \cap K$ such that for each $\delta \in B_K$ and each i < 2, $\min(C_{\delta}) \in K$ and the set

$$D_K(\delta,i) = \{\alpha \in C_\delta \cap K : h_\delta^*(\alpha) = i \land \min(C_\delta \setminus (\alpha+1)) \in K\}$$

is cofinal in δ .

Remarks. 1. The result is also true if 2, the range of each h_{δ}^* , is replaced by λ ; also, if $\kappa = \lambda^{++}$, we can also require that $D_K(\delta, i)$ be a stationary subset of δ for each $\delta \in B_K$ and $i < \lambda$ (see [8]).

2. If $2^{\lambda} > \lambda^+$, then the following stronger assertion is true (see Shelah [6]): $(\bullet \bullet)$ There is a sequence $\bar{C} = \langle C_{\delta} : \delta \in S \rangle$ such that C_{δ} is a club in δ having order type λ^+ and, for any club K in κ and any stationary subset $S' \subseteq S$, there is a stationary subset $B_K \subseteq S' \cap K$ such that $C_{\delta} \subseteq K$ for each $\delta \in B_K$. Using this result instead of (\bullet) , the proof of Theorem 2.1 for the case when $2^{\lambda} > \lambda^+$ may be slightly simplified.

We will prove that Theorem 2.1 holds with the graph $G_{\kappa} = (\kappa, \mathcal{E})$, where

$$\mathcal{E} = \{ \{ \alpha, \beta \} : \beta \in S \land \min(C_{\beta}) < \alpha < \beta \land h_{\beta}^*(\sup(\alpha \cap C_{\beta})) = 0 \},$$

and the C_{β} and h_{β}^{*} are as described in (\bullet) .

3. The case $\mathcal{T} = \mathcal{T}(\kappa)$

We prove the result for the case of the transitive tree $T(\kappa)$.

Proof: Let $c: \mathcal{E} \to \lambda$ be any λ -colouring of the edges of G_{κ} . For each $\zeta \in \lambda$ consider the following two-person game \mathcal{G}_{ζ} . The game has ω moves. At the *n*-th stage the first player P_1 chooses ordinals α_n, β_n , and then the second player P_2 chooses two ordinals γ_n, δ_n so that

$$\alpha_n < \beta_n < \gamma_n < \delta_n < \kappa, \tag{3}$$

$$\delta_m < \alpha_n \quad (m < n). \tag{4}$$

The player P_2 is declared the winner in a play of the game if he succeeds in choosing the γ_n so that

$$\{\gamma_m, \gamma_n\} \in \mathcal{E}, \qquad c(\{\gamma_m, \gamma_n\}) = \zeta \quad (m < n < \omega),$$
 (5)

and

$$\{\xi, \gamma_n\} \notin \mathcal{E} \text{ for } \xi \in (\alpha_m, \beta_m) \text{ and } m \le n < \omega.$$
 (6)

(As usual, (α, β) denotes the open interval $\{\xi : \alpha < \xi < \beta\}$ and $[\alpha, \beta]$ is the corresponding closed interval.)

The proof of the theorem depends upon the following two facts:

Fact A: For some $\zeta < \lambda$, P_2 has a winning strategy for the game \mathcal{G}_{ζ} .

Fact B: If P_2 can win \mathcal{G}_{ζ} , then the graph G_{κ} contains an induced copy of $\mathcal{T}(\kappa)$ with all edges coloured ζ .

Proof of Fact B. We assume that $\zeta < \lambda$ and that the second player P_2 has a winning strategy σ_{ζ} for the game \mathcal{G}_{ζ} . We shall define ordinals $\alpha_s, \beta_s, \gamma_s, \delta_s$ for s a vertex of $\mathcal{T}(\kappa)$ so that the following conditions are satisfied:

(a) For each s the sequence

$$\langle (\alpha_{s|i}, \beta_{s|i}, \gamma_{s|i}, \delta_{s|i}) : i < \ell n(s) \rangle$$

consists of the first $2\ell n(s)$ moves in a proper play of the game \mathcal{G}_{ζ} in which P_2 uses the winning strategy σ_{ζ} .

- (b) $\gamma_s \neq \gamma_t$ if $s \neq t$.
- (c) If $s \perp t$, then $\{\gamma_s, \gamma_t\} \notin \mathcal{E}$.

Since (5) holds, these conditions imply that the map $s \mapsto \gamma_s$ is an embedding of the tree $\mathcal{T}(\kappa)$ into the graph G_{κ} and all the edges of the image have colour ζ .

In fact, we shall choose the $\alpha_s, \beta_s, \gamma_s, \delta_s$ so that (a) holds and so that the following condition is satisfied:

(d) For any vertices s, t of $\mathcal{T}(\kappa)$, if $s \perp t$, then

EITHER (i)
$$[\gamma_s, \delta_s] \subset \bigcup_{i \leq \ell n(t)} (\alpha_{t|i}, \beta_{t|i}),$$

OR (ii) $[\gamma_t, \delta_t] \subset \bigcup_{i \leq \ell n(s)} (\alpha_{s|i}, \beta_{s|i}).$

The conditions (a) and (d), and the fact that P_2 is using the winning strategy σ_{ζ} , ensure that (b) and (c) also hold.

We define $\alpha_s, \beta_s, \gamma_s, \delta_s$ by induction on $\max(s)$. Let $\alpha_{\langle \rangle} = 0$, $\beta_{\langle \rangle} = 1$, and then let $(\gamma_{\langle \rangle}, \delta_{\langle \rangle})$ be P_2 's response in the game \mathcal{G}_{ζ} using his winning strategy σ_{ζ} . Now let $0 \leq \xi < \kappa$, and suppose that we have suitably defined $\alpha_s, \beta_s, \gamma_s, \delta_s$ for all vertices s of $\mathcal{T}(\kappa)$ such that $\max(s) < \xi$. We need to define these when $\max(s) = \xi$.

Let $\langle t_i : i < \theta(\xi) \rangle$ be an enumeration of all the nodes s of $\mathcal{T}(\kappa)$ with $\max(s) = \xi$. Then $1 \leq \theta(\xi) \leq 2^{\lambda} < \kappa$. Now inductively choose the α_{t_i} , β_{t_i} , γ_{t_i} , δ_{t_i} for $i < \theta(\xi)$ so that

$$\alpha_{t_i} = \delta_{(t_i)_*} + 1,$$

and if i = 0, $\beta_{t_i} = \alpha_{i_0} + 1$ and if i > 0

$$\beta_{t_i} = \sup\{\delta_s + 2 : \max(s) < \xi \text{ or } s = t_i \text{ for some } j < i\}.$$

The corresponding pairs $(\gamma_{t_i}, \delta_{t_i})$ are determined by the strategy σ_{ζ} . With these choices it is easily seen that (a) continues to hold; we have to check that (d) also holds when $s \perp t$ and $\max(s) = \xi$ or $\max(t) = \xi$.

If $\max(s) = \max(t) = \xi$, then $s = t_i$ and $t = t_j$, where say i < j. Then

$$\alpha_t = \delta_{t_s} + 1 < \beta_s < \gamma_s < \delta_s < \beta_t$$

and so (d)(i) holds.

Suppose $\max(s) < \xi = \max(t)$. Then by the induction hypothesis, either (i) or (ii) of (d) holds when we replace t by t_* . Suppose first that (d)(i) holds. Then for some $m \le \ell n(t_*)$ we have that

$$\alpha_{t_*|m} < \gamma_s < \delta_s < \beta_{t_*|m}.$$

It follows that (d)(i) also holds for s and t since $t|m = t_*|m$. Now suppose that (d)(ii) holds so that, for some $m \leq \ell n(s)$,

$$\alpha_{s|m} < \gamma_{t_*} < \delta_{t_*} < \beta_{s|m}$$
.

Then, by the definitions of α_t and β_t , it follows that

$$\alpha_t = \delta_{t_s} + 1 \le \beta_s < \gamma_s < \delta_s < \beta_t$$

so that again (d)(i) holds for s and t. Similarly, if $\max(t) < \xi = \max(s)$.

Proof of Fact A. We have to show that P_2 wins the game \mathcal{G}_{ζ} for some $\zeta < \lambda$. Suppose for a contradiction that this is false. Since the games are open and hence determined, it follows that P_1 has a winning strategy, say τ_{ζ} , for the game \mathcal{G}_{ζ} for every $\zeta < \lambda$.

For convenience we write $c(\{\alpha,\beta\}) = -1$ if $\{\alpha,\beta\} \notin \mathcal{E}$, so that c is defined on all pairs $\{\alpha,\beta\} \in [\kappa]^2$. For each bounded subset $X \subseteq \kappa$ define an equivalence relation e_X on $S \setminus (\sup(X) + 1)$ so that $\beta e_X \gamma$ holds if and only if

- (i) $\beta, \gamma \in S$ and $\sup(X) < \beta, \gamma < \kappa$;
- (ii) $c(\{\alpha, \beta\}) = c(\{\alpha, \gamma\})$ for all $\alpha \in X$;
- (iii) $X \cap C_{\beta} = X \cap C_{\gamma}$, (iv) for $\alpha \in X$, $\alpha \leq \min(C_{\beta}) \Leftrightarrow \alpha \leq \min(C_{\gamma})$, $\operatorname{tp}(\alpha \cap C_{\beta}) = \operatorname{tp}(\alpha \cap C_{\gamma})$ and $h_{\beta}^{*}(\sup(\alpha \cap C_{\beta})) = h_{\gamma}^{*}(\sup(\alpha \cap C_{\gamma}))$ (for $\alpha > \min(C_{\beta})$).

Note that the equivalence relation e_X has at most $(\lambda^+)^{|X|} \leq 2^{\lambda|X|}$ classes. Also, if $Y \subseteq X$, then $\beta e_X \gamma \Rightarrow \beta e_Y \gamma$.

Since $\kappa = (2^{\lambda})^+$, there is a continuous increasing sequence of ordinals $\langle \rho_{\eta} : \eta < \kappa \rangle$ in κ such that the following two conditions hold:

- (o) If $X \subseteq \rho_{\eta}$, $|X| \le \lambda$ and $\rho_{\eta} < \beta < \kappa$, then there is some $\gamma \in (\rho_{\eta}, \rho_{\eta+1})$ such that $\beta e_X \gamma$
- (oo) ρ_{η} is closed under τ_{ζ} for all $\zeta < \lambda$. In other words, if at the *n*-th stage of a play in the game \mathcal{G}_{ζ} , player P_2 chooses $\gamma_n < \delta_n < \rho_{\eta}$, then P_1 's response using τ_{ζ} is to choose $\alpha_{n+1}, \beta_{n+1}$ so that $\delta_n < \alpha_{n+1} < \beta_{n+1} < \rho_{\eta}$.

Since $K = \{\rho_{\eta} : \eta < \kappa\}$ is a club in κ , there is some $\delta \in S$ such that $\min(C_{\delta}) \in K$ and, for $\varepsilon \in \{0, 1\}$,

$$A_{\varepsilon} = \{ \alpha \in C_{\delta} \cap K : h_{\delta}^*(\alpha) = \varepsilon \wedge \min(C_{\delta} \setminus (\alpha + 1)) \in K \}$$

is an unbounded subset of δ . Let $C_{\delta} = \{i_{\sigma} : \sigma < \lambda^{+}\}$, where $i_{0} < i_{1} < \cdots$.

We claim that the following assertion holds for some $\zeta < \lambda$.

 $(*)_{\zeta}$: If $X \subseteq \delta$, $|X| \le \lambda$, then there are $\sigma < \lambda^+$ and γ such that (a) $\sup(X) < i_{\sigma} < \gamma < i_{\sigma+1}$, (b) $i_{\sigma} \in A_0$, (c) $\gamma e_X \delta$, and (d) $c(\gamma, \delta) = \zeta$.

For suppose the claim is false. Then, for each $\zeta < \lambda$ there is a counter-example X_{ζ} . Let $X = \bigcup \{X_{\zeta} : \zeta < \lambda\}$. Then $X \subseteq \delta$ and $|X| \le \lambda$ and so, for some $\alpha \in A_0$, $\sup(X) < \alpha < \delta$. There are $\eta < \kappa$ and $\sigma < \lambda^+$ such that $\alpha = \rho_{\eta} = i_{\sigma}$, and therefore, by the choice of $\rho_{\eta+1}$, there is γ such that $\rho_{\eta} < \gamma < \rho_{\eta+1}$ and $\gamma e_X \delta$. Since $\alpha = i_{\sigma} \in A_0$, $i_{\sigma+1} = \min(C_{\delta} \setminus (\alpha+1)) \in K$. So $\rho_{\eta+1} \le i_{\sigma+1}$. Therefore, $\sup(C_{\delta} \cap \gamma) = i_{\sigma}$, and since $\alpha = i_{\sigma} \in A_0$, we have that $h_{\delta}^*(\sup(C_{\delta} \cap \gamma)) = 0$. Therefore, $\{\gamma, \delta\}$ is an edge of G and there is some $\zeta \in \lambda$ such that $c(\gamma, \delta) = \zeta$. But this contradicts the choice of $X_{\zeta} \subseteq X$, and hence $(*)_{\zeta}$ holds for some $\zeta < \lambda$.

By induction on $n < \omega$ we now choose ordinals $\alpha_n, \beta_n, \gamma_n, \delta_n$ in δ and $\sigma(n) < \lambda^+$ so that the following conditions are satisfied:

- A: $\langle (\alpha_m, \beta_m, \gamma_m, \delta_m) : m \leq n \rangle$ is an intial segment of a play in the game \mathcal{G}_{ζ} in which P_1 uses the winning strategy τ_{ζ} .
- B: $\alpha_0, \beta_0 < \min(C_\delta)$.
- C: $\gamma_n = \min\{\gamma : \gamma > i_{\sigma(2n)} \land \gamma e_{X_n} \delta \land c(\gamma, \delta) = \zeta\}$, where

$$X_n = \left(\ \left| \{ \{\alpha_\ell, \beta_\ell, \gamma_\ell, \delta_\ell\} : \ell < n \} \cup \{\alpha_n, \beta_n\} \cup \left| \ \left| \{ \{i_{\sigma(\ell)}, i_{\sigma(\ell)+1}\} : \ell < 2n \} \right| \right| \right) \right|$$

- D: $\delta_n = i_{\sigma(2n+1)}$.
- E: For n > 0, $[\alpha_n, \beta_n] \subseteq (\delta_{n-1}, i_{\sigma(2n-1)+1})$.
- F: $i_{\sigma(n)}$ belongs to A_0 or A_1 according as n is even or odd and $\sigma(n)+1 < \sigma(n+1)$.

We have to prove that it is possible to choose the α_n etc., so that these conditions are satisfied. Clearly (B) holds since, by (00), the first moves by P_1 using the stategy τ_{ζ} are $\alpha_0 < \beta_0 < \rho_0$ and $\rho_0 \leq \min(C_{\delta}) \in K$. By $(*)_{\zeta}$, there are $\sigma(0) < \lambda^+$

and γ such that $i_{\sigma(0)} \in A_0$, $i_{\sigma(0)} < \gamma < i_{\sigma(0)+1}$, $\gamma e_{X_0} \delta$, where $X_0 = \{\alpha_0, \beta_0\}$ and $c(\gamma, \delta) = \zeta$; let γ_0 be the least such γ . Now let $\sigma(1) > \sigma(0) + 1$ be minimal so that $i_{\sigma(1)} \in A_1$, and put $\delta_0 = i_{\sigma(1)}$. Now suppose that n > 0 and that the $\alpha_m, \beta_m, \gamma_m, \delta_m, \sigma(2m)$ and $\sigma(2m+1)$ have been suitably defined for all m < n. Let $\rho \in K$ be minimal such that $\rho > \delta_{n-1}$. P_1 chooses α_n, β_n using the strategy τ_ζ so that $\delta_{n-1} < \alpha_n < \beta_n < \rho$. Since $\delta_{n-1} = i_{\sigma(2n-1)} \in A_1$, it follows that $i_{\sigma(2n-1)+1} \in K$ and hence $\rho \leq i_{\sigma(2n-1)+1}$. Now by $(*)_\zeta$, there are $\sigma(2n)$ and γ so that $i_{\sigma(2n)} \in A_0$, $i_{\sigma(2n)} < \gamma < i_{\sigma(2n)+1}$, $\gamma e_{X_n} \delta$ (where X_n is as described in (C)), and $c(\gamma, \delta) = \zeta$; let γ_n be the least such γ . Note that, since $i_{\sigma(2n)} \in A_0$, $i_{\sigma(2n)+1} = \min(C_\delta \setminus (i_{\sigma(2n)} + 1)) \in K$. Finally, choose a minimal ordinal $\sigma(2n+1) > \sigma(2n)+1$ so that $\delta_n = i_{\sigma(2n+1)} \in A_1$. This completes the definition of the α_n etc., so that (A)-(F) hold.

By (C) it follows that $c(\gamma_n, \delta) = \zeta$ for all $n < \omega$, and hence $c(\gamma_m, \gamma_n) = \zeta$ holds for all $m < n < \omega$ since $\gamma_m \in X_n$ and $\gamma_n e_{X_n} \delta$. There is no edge of G_{κ} from δ to (α_0, β_0) since $\beta_0 < \min(C_{\delta})$. Since $\gamma_n e_{X_n} \delta$ and $\beta_0 \in X_n$, it follows that $\beta_0 < \min(C_{\gamma_n})$ also, and so there is no edge from γ_n to (α_0, β_0) either. By the construction, for $0 < m < \omega$, $i_{\sigma(2m-1)} < \alpha_m < \beta_m < i_{\sigma(2m-1)+1}$, and hence $C_{\delta} \cap (\alpha_m, \beta_m) = \emptyset$. Therefore, for any $\xi \in (\alpha_m, \beta_m)$, $h_{\delta}^*(\sup(\xi \cap C_{\delta})) = h_{\delta}^*(i_{\sigma(2m-1)}) = 1$ by (F), and so there is no edge of G from δ to (α_m, β_m) . If $0 < m < n < \omega$, then $\gamma_n e_{X_n} \delta$ and therefore,

$$\operatorname{tp}(\alpha_m \cap C_{\gamma_n}) = \operatorname{tp}(\alpha_m \cap C_{\delta}) = \operatorname{tp}(\beta_m \cap C_{\delta}) = \operatorname{tp}(\beta_m \cap C_{\gamma_n}).$$

Therefore, for any $\xi \in (\alpha_m, \beta_m)$, it follows that

$$h_{\gamma_n}^*(\sup(\xi\cap C_{\gamma_n}))=h_{\gamma_n}^*(\sup(\alpha_m\cap C_{\gamma_n}))=h_{\delta}^*(\sup(\alpha_m\cap C_{\delta}))=1$$

and so there are no edges of G from γ_n to (α_m, β_m) either.

Thus we have produced a play in the game \mathcal{G}_{ζ} in which P_1 uses the strategy τ_{ζ} but the second player P_2 wins! This contradicts the assumption that σ_{ζ} is a winning strategy for the first player, and completes the proof.

References

- P. Erdős and R. Rado, A partition calculus in set theory, Bull. Amer. Math. Soc. 62 (1956) 427-489.
- A. Hajnal and P. Komjath, Embedding graphs into colored graphs, Trans. Amer. Math. Soc. 307 (1988), 395-409; Corrigendum: 332 (1992), 475.
- P. Komjath and E.C. Milner, On a conjecture of Rödl and Voigt. J. Combin. Theory, Ser. B 61 (1994), 199-209.
- V. Rödl and B. Voigt, Monochromatic trees with respect to edge partitions, J. Combin. Theory Ser. B 58 (1993), 291-298.
- Saharon Shelah [Sh: 289], Consistency of positive partition theorems for graphs and models, in: Set theory and its applications (Toronto, ON, 1987), Lecture Notes in Mathematics 1401, (J. Steprans and S. Watson, eds.), Springer, Berlin-New York, (1989) 167-193.

S. SHELAH AND E. C. MILNER

- 6. Saharon Shelah [Sh: 365], There are Jonsson algebras in many inaccessible cardinals, in: Cardinal Arithmetic, Oxford Logic Guides 29 chapter III, Oxford University Press, 1994.
- Saharon Shelah [Sh: 413], More Jonsson Algebras and Colourings, Archive for Mathematical Logic, to appear.
 Saharon Shelah [Sh: 572], Colouring and N2-cc not productive, Annals of Pure and Applied Logic, 84 (1997), 153-174...