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1 INTRODUCTION

More than thirty years ago A. L. S. Corner [2] proved a very remarkable theorem concerning
the existence of “pathological” abelian groups: it is formulated in terms of endomorphism

rings.

If A4 is a countable ring with reduced and torsion-free additive group .4z, then there exists a
reduced and countable abelian group G with endomorphism ring EndzG = A.

This result has been generalized in various directions. e.g. replacing the ground ring Z by
a more general ring and dropping the cardinal restriction {in Corner’s result this is actually
| 4] < 2% see (2], [20], 8], [9], [4], [23].

Other extensions include abelian groups which are not necessarily torsion- free. see Cor-
ner, Gobel [4] for references.

Here we are interested in a different strengthening of Corner’s important result: As a
byproduct of older constructions of abelian groups G with prescribed endomorphism ring A
we have obtained (in a strong sense) almost-free groups provided .4z is free and provided
we are working in Godel’s universe V' = L. Let us recall the appropriate definition. An
R-module G {of cardinalitv \) with |R| < |G] is strongly A-free if G has a A-filtration a
continuous chain of submodules {G, : v < A} with |G,| < A and |J,., G, = G) with two
additional properties:
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{a) Any G, is a free R-module.
(b) I v is a successor ordinal and v < p < \. then G,/G,, is free as well.

We say that ¢ = J,., G, is a Mfiltration for strong \-freeness.
First results on almost-free groups of cardinality 2% are in [1].

Because strong \-freeness is a very natural definition. it can be reformulated in many
ways, see Eklof. Mekler [15] for equivalent characterizations and many results on this class
of modules. In order to illustrate such results we will restrict ourselves to abelian groups.
i.e. R=12Z. InV = L we have the following strengthening of Corner’s result indicated above.

If 4is aring, Az is a free abelian group and \ > | A} is any regular, not weakly compact
cardinal. then we can find a strongly A-free abelian group G with |G| = A and EndzG = A.

This older result [8] grew out of ideas of Eklof, Mekler [14], and Shelah [38]. It is closely
related to the work of Jensen [30]. It is only natural to ask if such almost free groups exist
without the vehicle of additional set theorv. Extending a result of Shelah [36]. Eda [11]
showed that there is at least some hope.

There exists an Ny-free abelian group G of cardinality Ny with trivial dual 7 = 1), see
also Corner. Gobel 51 Recall that Hom(G. R} = G* is the dual of an R-module. and G is
~-free for some cardinal « if any submodule L7 with |U] < & is contained in a free submodule.
In 22} we showed the following stronger result.

If 4 is a countable ring and Az is free. then we can find an X -free abelian group G of
cardinality X; with endomorphism ring EndzG = A.

This result provides a satisfving answer in ZFC, but unfortunately (from the algebraist’s
point of view) it remains restricted to the world X;.

In fact. assuming ZFC + Martin's axiom. it was shown in {22] that Ro-free groups of size
R, are alreadv alwavs separable (= pure subgroups of products Z'), hence they must split
into various summands. Their endomorphism rings will never be Z for instance. This brings
us to the starting point of this paper.

We want ro derive a realization theorem of rings A with Az free as 4 = End-G for
strongly [Gi-free abelian groups G with |G] > Ry, using as weak additional set rtheoretic
conditions as possible. From the result mentioned above we know that Martin’s axiom must
be excluded. Our results discussed below are surprising in two ways. First of all, we will
only need a special case of G.C.H., which ensures the existence of the desired modules. In
another paper {43], Shelah and Spasojevic will show by proper forcing arguments that even
G.C.H. will not be strong enough for End G = Z. |G} = \ and G A-free if \ is too large, e.g.
if A\ is any strongly inaccessible cardinal. Hence we are limited to “small large cardinals”.
Secondly it turns out that the restriction to G.C.H. forces us to develop novel ideas to get
rthe desired modules. A new Step-Lemma is needed! Here we will also apply combinatorial
tools fortunately developed by Shelah 351, (41] a decade ago. The main results of this paper
can be summarized as follows.
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In order to construct pathological groups we begin with the existence of groups with
trivial duals for cardinals R, (n € w). Then we derive results about strongly X,-free abelian
groups of cardinality R, (n € ) with prescribed free. countable endomorphism ring. Finallv
we use combinatorial results [35]. [41] to give similar answers for cardinals > N_. As in
Magidor and Shelah [31]. a paper concerned with the existence of s-free. non-ifree abelian
groups of cardinality . the induction argument breaks down at ®,. Recall that X, is the first
singular cardinal and such groups of cardinality R, do not exist by the well-known Singular
Compactness Theorem [34], see also Hill [28] for cardinals cofinal to w and. for a survey,
Eklof and Mekler [15. p. 107].

We will fix a countable commutative ring R with multiplicatively closed subsets S of
regular elements containing 1. An R-module G will be called torsion-free (with respect to
S)ifsg=0(s € S. g € G) implies ¢ = 0. Moreover G is reduced (with respect to S) if
MNses 3G = 0. If A is an R-algebra. and the R-module Ag is R-free (torsion-free or reduced)
we will say that the algebra 4 is free (torsion-free or reduced). We will also fix a countable,
free R-algebra A and derive the following results.

THEOREM 5.1 Let (R.S) be as above. If H is a strongly u-free R-module of regular
cardinality ¢ with trivial dual H* = 0 and A = 2# = 47 (the successor cardinal of u). then
there exists a strongly \-free R-module of cardinalitv \ with trivial dual.

As a consequence of (3.1) we obtain the existence of such R-modules of cardinality
tin (n € &) for the n-th successor u, of u provided 2# = p,, for all i < n. The existence of
H asin (5.1) for {H| = ¥, under 2% = X, is well-known. see Dugas [7]. Shelah [38] or Dugas.
Gobel [8). of. also Eklof. Mekler 115. p. 391]. Hence the existence of the derived strongly
N,-free R-modules of cardinality X, with trivial dual is immediate (see also (3.2)).

In §6 we will work with a stronger algebraic hypothesis, which again is satisfied auto-
matically for ®; = 2% by the papers [8],{38] above. We derive the

THEOREM 6.1 Let (R.S), A = 2* = u" and p regular as above. If H is a strongly
u-free R-module of cardinality pu with EndgH = A4 for some countable. free R-algebra A.
then there exists a strongly A-free R-module G of cardinality A with EndgG = 4.

Now the existence of strongly W, -free R-modules G of cardinality ¥, with EndgG = 4
follows for each countable. free R-algebra 4. provided X, = 2% for each i < n. As one
of manv consequences we see that under the mild restriction X;,; = 2% (i < n) there are
counterexamples to Kaplansky's test problems for each cardinal R, {n € w) even ones which
are strongly N,-free (see [3] for the required rings). Similarly, we obtain indecomposable.
strongly R,-free groups of cardinality R,. By the result of Shelah. Spasojevic [43] we know
that a realization theorem similar to (6.1) and even the existence of modules with trivial
dual (5.1) does not follow from G.C.H. for large enough cardinals, e.g. for the first strongly
inaccessible cardinal £&. What happens at smaller cardinals. for instance at X_.;” The Theo-
rems 6.1 and (5.1) can be extended to R, ., hence to R_,, (n € w) by (5.1) and (6.1), and
to certain larger cardinals < . We must strengthen the methods from §§3.4 and 3. and this
procedure is sketched in §7.
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2 REPRESENTATION OF STRONGLY p-FREE
MODULES AND THE NOTION OF A TYPE OF
FREENESS

We fix some notations throughout this paper.

(2.1) Let R be a commutative ring and S C R a countable. multiplicativelv closed subset
of regular elements such that Rz (as R-modules) is reduced and torsion-free {with respect
to S), compare §1. We will also assume 1 € S and enumerate S = {s, : n € «} and set

n
n = H S
=1

Our results concern almost free R-modules (mainly for |R| = Np), hence we will refine
the notion of almost free and strongly u-free R-modules from §1:

We say that a strongly p-free R-module H has freeness type ftH = uif u = (uy, . in)
s a descendlng sequence of regular cardinals y; with gy = g, u, = Rpand if H = U,Ku1 H,is
a py-filtration for strong ui-freeness with H,,,/H, either free or of freeness tvpe (.- -+ pn).
The definition is completed by induction if we sav that countable groups which are not tree are
of freeness tvpe (Ry). If H is of freeness tvpe w = {1y, -+ . p,). then we can choose a particular
filtration of H. which we will call a w-filtration of H. We will write H = J,,, ., f., . such that
H, -1/ H,, is either free or of freeness tvpe (s, - u,) and set S, ={a € 1y : H,.\/H,
is not free }. By inserting < ju; members between H, and H,., we mav assume that
Hy o /H, 2 Rifa & S,,. Moreover we assume S, T E,, = {a €y, cfa =} Ifas
S, then H, . /H, is not free and we proceed similarlv. We can tind a continuous chain

Hu:HQUg S Hay € v-~anu-_, :er+l “‘j<;u"_’)

with quotients H,y41/Hag either free or of type (i3, . un). Recursively we unravel all of
{pr, - fny and let w' = gy x -+ x p; (i = 1.--.n). We obtain a refined. continuous chain
{H,, a € u'} of free R-modules H,, with Hy/H,, free for 3 > «+ 1. Moreover H,.,/H, is
either = R or of type {u;,1, . un). The set u' is ordered lexicographically and each a € u!
is of the form o = o - - "y with @; < ;. As usual. & + 1 will denote the successor of « in
it whichis « + 1 = af - "o, = 1. and 0 denotes the initial element of «*.

Moreover. again refining the chain {H, : « £ u"}. we mayv assume that H,,, H, <
SR tor each o € w™ and Hy = 0. We will identify u"
S ={a€ep: H,.\/H, is not free }, hence

with g in 883 - 6 and write for

either Ho .y = Hy Bt if « € S or
(2.2) ¢ Hypvy = (Ha,tok © k € w) is a free R-module with qartaks1 = tak + Zj(kq tak,
where g,k € S, tak, € Ha 1 for aj <« and k < w.

REMARK The reader not interested in particular freeness-type or in modules of rank ¥,
may choose (2.2) immediately from {H,, « € u'}. Recall that H is uniquely determined
(up to isomorphism) by these generators and relations {as follows by a transfinite induction
on a < u). Inductivelv we will also use particular free resolutions.

DEFINITION 2.3 If u = (), - -. itn) is a (finite) descending sequence of regular cardinals,
then we say that the R-module .M has a u-resolution for & € u, if 4, < g and the following
holds:
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(1) M is strongly p-free of cardinality u.
(2) We have a free resolution M = F/K.
(3) A = Py Ak and F. R are free R-modules of rank p.

(4) R has a basis {Zak : @ < p} and if
Kop = 2oy j<kora<J3) for (k<k) (3 <pu) then F/Ky is free.

Sometimes R in (2.3) will be replaced by an R-algebra 4. provided M is a strongly u-free
A-module.

3 A STEP-LEMMA AND
A FREENESS-PROPOSITION

THE u-No-STEP-LEMMA 3.1 Let H be a strongly u-free R-module of cardinality p
and H* = 0. Moreover. let F = &,,K, be a direct sum of free modules K, of rank u.
Choose a partial basis zan (@ < p) for each K,, let K| = (fan : a < p) and let f € KA be
anv pure element with Iy, f R free. Then we can find two extensions F* D F (i = 0. 1) with
the following properties.

(1) I Kyp ={Ta: t<nor a<J) =8NS (Ta : ¢ 2 n. < J)then F'/Ky, is free
R-module for each n € w. J < p.

(2) F{YF = H (i=0.1).
(3) If o € F* extends to both ¢* € F** (i =0,1), then fp =0.

REMARKS It follows from (1) that F* is free, because Kjg, is free as well. The particular
case J = 0 with Ky, = @;, K; looks more familiar in connection with older Step-Lemmas.
but we need more ~ that is stated in (1). Conditions (1) and (2) say that H has an (Rq)-
resolution for Ny as defined in (2.3).

Later on we will need a more general Step-Lemma as well, in order to deal with abelian
groups of cardinality > X, ;. This however is postponed to Section 7.

Proof: Recall our representation (2.2) of H. We have

Hoiy = (Hg tan: n€w) with
(2) Gontan+1 = ton + Zj<nq t,,]n’. if a € S and
Hort = Ho®t,Rifa€p\S

where gon € S, tan, € Ha i fora; <o. Let C' = @, . g Pe, 5an REDB,c,, 554 be freely
generated by elements s, and s, for i = 0,1. Next we choose two submodules N* C F 5 ("
by generators

A0 0 0 § 0 . \
N° = <QQnSan+1 — San — su)nj ~ZTgn:@ Q€ S, ne u.4>
n
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and
N' = {GanShns1 = Shn — Z Sasn; —Lan — f 1 @€ 8. n€ L.
J<Na
where f € R is taken from the hyvpothesis of the Lemma. [f F* = F & C7/N'. then we
identifv r € F 3 C" with £ — V' in F*. hence FF C F* {1 = 0.1) and the following relations
hold in F* by choice of V'

(") GanSoni; = Son + Z Sayn, T Lan + f 01 (1=0.1)
J<na

where 0;; = 1 and 6,0 = 0.

In order to show (2), we consider the maps v; : F* — H defined by w;|F = 1) and
SiaWi =tan foralla € S.n € w. siw; =t, for « € p\S and i = 0,1. These maps preserve
the relations (r*) and (i), hence ¥; can be extended to an R-homomorphism v, : F* — H.
Its kernel is clearly F'. v is epic and (2) follows.

We have a decomposition into free summands K|, & L, = K, where K| = (Zan : @ < ),
and L, comes from the complement of the partial basis. hence

F = $m<nA’m B @manm B (I(.m < u,m 2 ‘7L> and
i) F¥ = Bncnlm ® Bmsnlm B C where
C = {Zam. 5% 3% eS8 Jeu\S. m>n ke

Using (r°) we see that the r,,,'s can be expressed by s, 's. hence C is also generated by
C=(2 5% we S, Jeu\S. k<w)

If i = 0 is replaced by i = 1 we note that f € K, and a similar submodule (" is a
new complement satisfying (ii). In order to show (1), we consider the case : = 0 only. Let
- F% - FY%/ Ky, denote the canonical epimorphism. The first step in proving that Fis
free is

(141) Crs =32, 3% : o’ €pu\Sand a € Ssuch that k <nork>n
and o'.a < 3) C C is freelv generated.

YiraeS dep\Swithk<n d.a<vyork>n o a<d)
{3 < v < u)is an ascending, continuous chain of submodules of C,4 with C,y = .., C,.

Yy T

Note that C, := (3%, 3°

Because |C,| < |y + 18] +Ng < pand C, C s strongly p-free by (2), as an extension of
a free module by a strongly u-free module, each C, is free as well. Now (iii) will follow if we
show

Cyar/Cy = <§gn—x +C,) (=R)
for each v > 3. Observe that this is trivial if v € S, hence we assume v € §. For simplicity
we will ignore the elements s¢, (o« € §)! The relation (r’) under ~ become

CHEE N
GrkSyket = Sok T Syiny

J< N,

as in (i), and C,4,/Cy = (35 + C, : k < n). For large enough ¢ € S we get ¢59,_,
q’E?,O + Z, 4;35;0 and Z, ;3,0 is in Cy, q'|q. Hence the n generators above can be replaced

by Cyy1/Cy = (3%,_, + C,) and (iii) holds.
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Next we show that

is freely generated by the 59,5

(iv) { 6nd®€m’ =C where O = e I<a<u k>n

Clearly C is generated by Cns and fﬂu

Any linear combination s =3 raksak ec™ may be multiplied by a large enough ¢ € S
such that the summand qr,x35, by (r°) becomes a sum with summand ¢'raxLak. Now s € Chs
is only possible if all the independent terms ¢'ToxZar (@ > 3. kK > n) vanish. hence ro = 0
and s = 0. The sum (iv) must be direct. The freeness of ™ follows similarly, again using
independence of the z,, under ~. and (iv) follows.

The quotient F*’/ém, =P L, T is free by (iv) and s free by (iii) and (1) is
shown for i = 0.

In order to show (3) we consider any ¢ € F* extending to ¢* € F** for i = 0.1 and recall
that f € Fy C F is a prescribed basic element by hypothesis.

First we consider the pushout D of F C F*, which is

ma>n

D=F'@&F'/A withA={(g.—g): g€ F}=F

We also have a pushout extension ' C & € D™ (i = 0.1) by the pushout properties and
s Sy

If7=1(9.00+A. 5= (0. g) + A for g € FY and g € F! respectively. then we have
canonical identifications F° + F' = D with F = FONF! = {(9.0)+ A : ge F} =
{(0.g)y+4: ge F}. We omit “~" in the following. Let

= (Fdan,do : @€ S. n<w. & €p\S)C D forda, =55, — sk, da=5%— sk

Observe that
U+F =F+F'=DandUNnF' =FNnF'=F

The desired relations from (r*) are
Ganlan+1 = don + ZI<"-Q d&.’ﬂf + f.

(v) The map ton — don + (f) induces V/{f) = H. with
"={f, dan, dw : @€ S. n€w. o €u\S).

In particular. U'/F = H. Let f¢ =r € R and consider the new homomorphism v =& —r :
D — R.
Now we have fw = f(® —7) = 0 and the relations (v) become

Qan( an+1€0) (danw) + Z ain; ¥

i<na

and toy -5 dant), fv =0, induces an epimorphism
n:H -V

and H* = 0 forces 1"y = 0. Hence ®|V is multiplication by r, which by cardinality reasons
is only possible for 7 = 0. We conclude f¢ = 0.
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The following Freeness-Proposition is a special case of a more general Freeness-Proposition.
In order to make the idea of the construction more transparent. we postpone again the ex-
tension of (3.2) to Section 7. The more general Freeness-Proposition 7.2 involves a tew more
technical difficulties. due to more complicated notation. The Proposition will ensure rhat
continuous chains of free submodules in our construction remain free at limit ordinals below

"

THE .-FREENESS-PROPOSITION 3.2 Let u be a regular cardinal and § < ¢~ he an
ordinal with {G, : ¢ < J} an ascending, continuous chain of submodules with the following
properties for all i < 9.

(a) G, is free of rank pu.
(b) Gin1/G; is strongly u-free and let § = {2 <0 : Gi11/G; is not free }

{c) There exist G, € H, C Giy, and H? a free summand of G; with free quotient such that
H, = G, ®yo H} is a pushout with HY C H! free modules of rank u.

(dy G,oy = H, B K, with A, freelv generated by r,, (o < p).
je) If /2 S.then G, = H;, and H! = H:) (hence G,, = G, = K,).
(fy If i € S. then cf(i) = «. Moreover

(1) there exists a, C i of order tvpe w with ¢, 7S =¥ and sup a, = 1.

(ii) there exist A4;, € u for all j € q, such that 4,, "4, =0 for ; # ) and 4, 4,,
is bounded in u for (:7) # (2')').

(iii) Let K'Y = (Iqy : a € Ay). H' = Djea, K7 Ifk € ai 3 < pand
Ky = @cs K92 (ay 1 j € j =k < 3). then H'/Ky is free.

It follows that G; is free as well.

Proof: Enumerate S = {¢, : ¢ < 7} for some 7 < p. By induction on ¢ < o choose ordinals

", < g and suppose k.o, are defined for all v < . Define «, subject to the following

condition
(+] Forall v < e, j € a; MNa,;, we have 4, ,NA;,, =0.

This can be arranged: we collect all troublemakers at stage e, which is a set

M=U,.. U]@mha” (Ai,; N A4;,,) € u. and observe that 4;,, M A, , is bounded below pu by
(£)(ii). p is regular and |ej < u. Hence M is bounded by some «. < u and (+) toilows.
Rename «, = «;,. Then (+) can be restated as

{(+) Foralli#£teS. )€a;Na, we have 4\, N A\ = 0.

7

I[f 1 £ 8. choose any fixed J; < u such that o; < .3 and observe that H? = R & C, by
(f)(iii) for k = min a,, 3 =3, and Ayg = K = (Za; © J € @, @ < F).
Now we are able to collect a basis of Gs: Choose all basis elements r,; not involved in
extension of G; at ¢ € S. and we have the set
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B ={z4,: j <6 thereisnoi € S with j € a;, a € 4;; and a > J;}.

Moreover C = @zeS C, is direct because of (=), and each C, is free bv {f}(iii}. We mav
collect its basis Be. Finally choose all basis elements t,, (¢« < J;) which are nsed for rhe
distinct A, say B'. Then B U B¢ U B’ is a basis for Gj.

4 THE PREDICTION PRINCIPLES

We will use prediction principles that hold under G.C.H. First recall some well-known defi-
nitions, tailored for our applications. Let x be a regular cardinal and § = {4, : v < x} bea
x-filtration of A = |J, ., Au. i.e. 8 is an ascending continuous chain with 4o = 0 and |4,[ < &
for all v < k. Let E C s. Then O(F) holds if there is a family {S, € A, : v € E} such
that for all X C 4 theset {v € E: X NA, =S5,} is stationary in . Besides this diamond
principle, we also consider the weak diamond ®.(E). If P, : P(A4,) »2={0.1} (v € E) is
a given partition of subsets of A4,, then ®,(E) provides a prediction function y» : £ — 2 such
that for all X C dtheset {v e E: P,(XNA4,) = p(v)} is stationary in . In this case E
is called non-small. While Q(E) holds in V" = L for all stationary subsets E of regular. not
weakly compact cardinals by Jensen [30], prediction principles are quite often valid under
weaker assumptions. cf. Eklof, Mekler [15. pp.175-178], Shelah [35. p.376. Theorem 32]. See
also Gregory [24].

PPROPOSITION 4.1 (Shelah [35] ) Suppose A =2“ = u* and for some regular cardinal
# < p eivher

(i) w*=por

(if) u is singular with ¢fp # «x and |6]* < pfor all 6 < p

Then O(Ey) holds, where £, = {a < A: cfa = «}.
In particular we have a

COROLLARY 4.2 Assume G.C.H. and p is some regular cardinal. Then {, holds for
any regular cardinal £ < pu.

In the first application we will use ®,(Ey,), a weak consequence of (4.2). Later we will
replace x = Ny by some regular £ > Ry (cf. §7). Moreover we will use

PROPOSITION 4.3 If A = u* and £ C A is non-small, then we can decompose
E =]]4.. Es and each Ej is non-small as well.

Proof: See Eklof and Mekler [15. p.144].



Sh:579

262 Gobel and Shelah

5 CONSTRUCTION OF MODULES WITH
TRIVIAL DUAL

We applv the 1 — Rg-Step-Lemma 3.1. the w-Freeness-Proposition 3.2 and combinatorial
ideas from §4. The arguments are however partly standard (for working in Lj. so we keep
them short. The reader may consult [15], [38] or [8] for details.

Let A = u7 = 2* for some regular cardinal u. and let £ = {a € A. ¢fa = +}. Recall
that E is non-small by (4.1), for instance. Hence we assume ®,(E), the weak diamond
and decompose E = [];_, E; into non-small sets Ej, cf. (4.3). For each : € E we also
fix a; = {1n : n € w}, a strictly increasing sequence i, < ¢ of successor ordinals ¢, with
sup ¢; = (. hence ENa; = 0. For each j € a; we find 4;; T p with:

(a) A, unbounded in g and A;; N Ay, bounded in p if (i) # (¢'j') and
(b) AN Ay =0for j # ) €a,.

Choose a set of 2* = A subsets .X',.X C u with | X N X’| < p for distinct pairs .Y, X"
Decompose each .\ into w subsets of cardinal x to define the 4;;'s. Hence (b) follows and
(a) holds because p is regular. Suppose now that H is a given strongly p-free R-module with
{H| =y and trivial duval H* = Hom (H. R) = 0.

We want ro derive the existence of a strongly A-free R-module G of cardinality \ such
that G* = 0.

We have to fix the “prediction” and choose a A-filtration {G, : ¢ < A} such that G, =0
and |G| = |G, \G,y = pfor all @ < A Let {g, : v < A} = G be an enumeration of
G = U, Gi such that g5 € G, for all i € E;. We define partitions P° : P(G, x R) — 2 for
all J <« i € E3 predicting homomorphisms in G;.

Formally we also must predict an R-module structure on G,, hence G, x R must be
replaced bv G; x G; x --- x R to take care of this; however we will ignore this for simplicity:
compare (8] or {19. p.284].

If X C G, x R. then define P;’(X) = 0 if the following holds.

Gi,G,.G;i/G, are free R -modules for j € a, and gg € G,;, with G,;/gsR free.
(1) ¢ sav jo = mun a,. Moreover G, = G; @ K, with K freely generated
bv some 1o, (@ < p).

X is (as a graph) a homomorphism hyx € G;. If K7 = (24,1 @ € 4,))(J € @)
and if we identify (Gi, ©;<n Ky, g5, hx : n € x) with

(F. 95K, f.o 9 n€w) in(3.1), then we require that ¢ does not
extend to F°*.

(2)

From ®,(F;) we have prediction functions s : Eg — 2 such that
X3(X) = {1 € E;. PP(XNG, x R) = 23(i)}

is stationary in A for all X € G, 3 < A. The structure of the R-module G = | J,, G: is given
inductively on the continuous chain {G,: i < A} subject to the following conditions.
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(1) Gy is a free R-module for any ¢ € \.

G, = H; = Iy where K, is freelv generated by elements £, (o < ul.

G, C H, CG,.. Giiy/G, is strongly p-tree and

) H, =G, 2yo H' is a pushout for some free summand HY = G, N H/ of G,
with free quotient and H° C H} all free of rank u.

If i € E5 and (1) holds. then we choose H; as an extension F¥#s(*)
(122) ¢ given by the identification (F, @K}, f. 1 ne w) in (3.1)
with (G,’, @j<nK;/. 93, hy: n€w).

Let H; = G; otherwise. Hence G is defined.

Note that G5 = Ui<5 G; is a free R-module for limit ordinals § < ) as follows from

(3.2). We conclude that G is a strongly A-free R-module of cardinality A by (3.1) and the
construction above.
If v € G* and ¥ # 0. then C = {i < A : ¥|G; # 0} is a cub. Moreover fuw # 0 for some
f € G with G;/fR free for large enough i € C. and f = gg € G, for some 3 < \. Choose
an ordinal 1 € C N A3(w) and observe that vi{G; extends to G;,,. hence PL"(L'EG{) =1 and
G,,, = F' as in the Step-Lemma 3.1. However P,‘j((,'iGi) = 1 and (2) tell us that wiG;
extends to F as in (3.1) as weil. Therefore fu = 0 by (3.1). a contradiction. Hence G* =0
follows. We conclude the following results.

THEOREM 5.1 Let R be a countable commutative ring as in §2. If H is a strongly p-free
R-module of regular cardinalitv u with trivial dual H* = 0 and A = 2¥ = y~. then there

exists a strongly A-free R-module of cardinality A with trivial dual.

COROLLARY 5.2 If2% =W,,, fori =0, ---,n — 1, then there exists a strongly X, -free
abelian group of cardinality R,, with trivial dual.

The corollary follows by induction. If i = 0, then any subgroup of Q different from Z

.serves as [ in (5.1). From (5.1) we obtain a strongly R;-free abelian group of cardinality N,

with trivial dual. and so on.

6 ENDO-RIGID MODULES

The following result establishes the existence of R-modules with endomorphism ring R, the
so-called rigid R-modules. Such modules are known in ZFC. see e.g. Corner [2] or {20], [21],
[40]. However we will also assume that the R-modules in question are almost free. A result in
ZFC + MA (= Martin’s axiom) shows that extra axioms are needed. because such modules
turn out to be separable under ZFC + MA, see Gébel, Shelah [22]. Assuming V' = L, almost
free modules were constructed in Dugas (7], Shelah [38] and Dugas, Gébel [8] several years
ago. Here we have to work harder to derive the existence under ZFC and a weak form of

G.C.H.
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THEOREM 6.1 Let R be a countable. commutative ring as in (2.1) and assume

A = 2% = 4% for some regular cardinal p. Suppose there exists a strongly p-free R-module
H of cardinalitv  with End H = R. Then we can find a strongly \-free R-module G of
cardinality \ with End G = R.

The proof is ~ as in (3.1) - divided into three parts. a Step-Lemma similar to 3.1).
however with crucial. not-so-obvious changes. The construction of G and the acrual proof
of the claims in (6.1) are similar to §3. We will keep the proof short. However. the reader
familiar with §§3-5 will follow the arguments easily. We begin with the Step-Lemma.

THE u-X,-STEP-LEMMA 6.2 Let R be as in §2 and let H be a strongly u-free R-
module of cardinality u with End H = R. Moreover, let F' = ®,c, K, be a direct sum of
free modules K, of rank u. Choose a partial basis z,, (a < u) for each K,, let f = K,
and h € H such that Ky/fR is free and H/hR is strongly p-free. Then we can find two
extensions F' C F* (7 = 0.1) with the following properties.

(1) If Kgn = (Tw : ¢ < nor a < J), then F'/Ky, is a free R-module for each n € w.
3 < .

(2) F'Y/F = H/hR is strongly p-free.
(3) If 2 € End F extends to both o* € End F* (i = 0.1). then fy € fR.

Proof: Let H' = H/hR and choose a p-filtration H = |J,, fI; for strong p-freeness with
h € Hy. Since H/hR is strongly u-free. also H) = H,/hR is free and {H! : | < p} constitutes
a p-filtration of H' for strong u-freeness.

Let S = {a < p with Hay i/ H, not free }. Next we apply the representation (2.2) to H'
and obtain

a continuous chain of free submodules H, (o < u) of H =,, Ha
such that Hy = hR and Hayy = Hy Dt Rifa g S

or Hopi = (Hpytan @ n < w) with qantantt = ten + ZK% tayn, + Fanh
for gan.Tan € S. tan, € He oy with o < . n < w.

(*)

Similar to {3.1). but identifving f and A. we define two extensions F* of F for : = 0. 1. Let
"' =D,cs Pucr RS @"ems s, R be freely generated and N* T F & C" such that

VO — 0 0 0 )
N? = {danSan+1 = San = 2j<ng Sagn, ~ Fan : @ € S, n € w)

o 1 1 1 . ‘
NY = (danSan+1 ~ San = 2j<ng Sagn, — Tan —Tanf: @ €S, n € w)

Let F' = F& C'/N* and identify £ € F @ C' with z + V' in F*. The new relations are

(rl) (Iansim.,.l = Sim + Z S;,‘nj + Tan — ran‘slzf (7' = O$ 1)
J<na
The maps ¢, : F* — H/hR given by w,|F =0, sy, = t, + hR and 5!, v = tan + AR
preserve the relation in (*) modulo hR and are epic, hence (2) follows.
The proof of (1) is the same as in (3.1).
Suppose v € End F extends to ¢* € End F* (1 = 0,1). Again we consider the pushout
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F'4+ F'=D with F = F'n F' as in (3.1), and let

U={(Fdwmdy: €S nev oc\S)CD

for dnn = 52, — 54, and d, = 5% — 5. We also have (" — F' = D and "1 F* = F. however
the relations for d,, from (r!) are ¢andan—t = dan ~ :Kn" dayn, *+ ranf. Hence

V= (fidon,de: €S nevanda € p\SY = H

by (*). We find a projection 7 : D — 1/, because - as in (3.1) - fR has a complement L_; in
Ky C F (cf. 3.1) and we find complements L, of each K, in K11, hence D C VP P, _, Ln
gives 7. The pushout D provides ® € End D extending * (i = 0,1) and &' = ®{V"- 7 is an
endomorphism of V. Finallv End H = R forces f¢o = f® € fR.

Proof (6.1): The proof is similar to §5. however (3.1) is replaced by (6.2). We only
indicate the changes. Assuming A\ = u™ = 2# we prepare the application of ®,(E) for
E ={a €\ cfa=w}. Condition (2) in §5 must be replaced by a new condition

X is an endomorphism hy € End G;. If K7 = (zq,: a € Ay J € a)
and if we identifv (G, tBj<nI\';" 93, hy : n € w) with

(F. @]<n1\’;~ f. 2 n€w) in (6.2). then we require that - does
not extend to End F°.

(2)

In the construction of G we must change condition (iii). Now we have

If 1 € £y and (1) holds. then we choose H, as an extension F¥3t"
(i2d) ¢ given by the identification (F. 9, K, f. »: n€w)in (6.2)
with (G,»,SBK,J\’]". gg, hy @ n€w).

Asin §5. the final R-module G has size A and is strongly A-free. In particular R C End G
by scalar multiplication. If w € End G\R. then we can find a cub

C = {’L <\ w,G; =y; € End G,\R}

Moreover we can choose f € G; with G;/fR free such that fv &€ fR and f = g3 bv enumer-
ation. Choose an ordinal i € C' N X;(%) and observe that w; extends to an endomorphism
w' € End Giyy. The latter follows from the fact that Giv v C G; for some j < \ and
Gi+1 is a summand of G;. so v’ = |G, - 7 for some projection m. Hence P,J(U,‘,) =1 and
Giw1 = F! as in the Step-Lemma 6.2. However Pf(w,) = 1 and (2) tell us that ; extends
to FY as in (6.2) as well. Therefore f1y € fR by (6.1), a contradiction, and End G = R
follows.

Inductively we derive a

COROLLARY 6.3 If2% =R, fori=0.---,n — 1, then there exists a strongly R,-free
abelian group G with |G| = R, and End G = R.

We also have a corollary from the proof of (6.1) observing that the R-algebra R can be
replaced by an R-algebra A.



Sh:579

266 Gobel and Shelah

THEOREM 6.1 Let R be a countable. commutative ring which is S-reduced and
S-torsion-free for some multiplicativelv closed set S of regular elements in R. Assume

A = 2# = 47 for some regular cardinal  and suppose there exists a strongly g-free {-module
H of cardinalitv g with EndgH = A and [4| < p. Ag free. Then we can find @ strongly
A-free A-module G of cardinality \ with EndgG = 4.

Hence we have a corollary which ensures counterexamples for Kaplansky's test problems.
cf. Corner [3] and Corner. Gobel [4]. The next corollary strengthens (6.3).

COROLLARY 6.3* Let R be as in (6.1*) and assume 2% = ¥N;,; for i = 0.---.n — 1.
If 4 is a countable. free R-algebra, then there exists a strongly N,-free R-module G with
|Gl =R, and End G = A.

7 ALMOST FREE ABELIAN GROUPS WHICH ARE
OF CARDINALITY > R,

In order to derive results like the existence of strongly Gj-free groups G with |G] = X__,
and End G = Z under G.C.H.. the induction used in §83. 4 and 3 breaks down at X, and
we must extend the basic results of the earlier sections in order to overcome this difficulty.
The changes will be sketched below. If y is a regular cardinal. then let r(u) be the set of
all decreasing sequences u = {uy, - - -. u,) of regular cardinals & > s, > -+ > u,. Recall the
notion of a u-resolution from (2.3) and of the freeness tvpe of an R-module H from §2. In
case End H = 4 we assume that H is a strongly u-free 4-module and replace R bhv 4 in the
above definitions. If Hy/hA is A-free for Hy as in (2.2) and h € Hy, then ftH = ft(H/hA)
follows. Observe that we showed in (3.1) (1) and (2) that a strongly u-free R-module H
of freeness type u = (u.Rg) has a (Ng)-resolution. This implication does not depend on
additional properties of H as H* = 0 or End H = A.

Moreover. we must refine the use of w-sequences converging to particular ordinals. If
w={pup. . tn) € (u). then let xu = y; x -+ x u, be equipped with the lexicographical
order. We consider strictly order preserving monomorphisms « : xu — y and let « = Imia)
and + = sup a which is cofinal to p,.

We sav that Y C a is bounded (with respect to «) if there is 3 = (J,---..3n) € xu such
that X C Im(«a|3).

We may view «a as an “n-ladder” at a. A bounded set .X is bounded “on each ladder” in
an obvious sense. If n = 1, then a is a u;-sequence representing ¢f(:) = p;. The bounded
subsets of a constitute an ideal of the set of subsets P(a) of a. The set a C 7 will be used
to find an extension on G; C G4, which will lead to the desired module G = | J,_, G:. If
u = {Np), as is the case considered in §3-6, then the l-ladder system is an w-sequence q;
at each ordinal ¢ with ¢f(i) = w which has an additional property (+) (§3) which ensures
freeness of G4 at limit ordinals 6 < 7. A similar condition is required for a general u:

If ¢f(i) = w1, then there exists an n-ladder system a; C ¢ such that
(+) ¢ for each 0 < u™ there exist bounded subsets b; C a; (as defined above)
such that the sets (a;\b;) ¢ € S,,, ¢ < ¢ are pairwise disjoint.
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This is ensured by the following combinatorial result of Shelah. which follows from the
main theorem of (35].

THEOREM 7.1 (ZFC + G.C.H.) If S = {i € N_.. cf(1) = «\} then O__;(5) holds.
Moreover. for anv : € S we can find a 2-ladder svstem o' : w; X » — + such that the sers
a; = I'm(a’) satisty (+).

The p-Rp-Step-Lemma 3.1 and (6.2) can be refined to

THE p-u-STEP-LEMMA 7.2 Let (R.S) be as in (2.1) and 4 be a countable. free R-
algebra. We will distinguish two cases (a) and (b). In case (a) let H = H' be a strongly u-free
R-module of cardinality u of freeness type ftH = u. In case (b) let H be a strongly p-free 4-
module of cardinality p with EndgH = 4 and h € Hy (in (2.2)) such that ftH = ftH' =u
for H' = H/hA.

Then we can find two u-resolutions of H' for u; (with respect to R in case (a) and to A in
case (b)) of the form F?/K (j = 0.1) such that for any basic element f € K, the following
holds

{a) If H* =0 and ¢ € K" extends to both ¢/ € (F?)* (j =0.1). then f¢ =0.

(b) If v € Endr(K’) extends to both ) € EndF? (j =0.1), then fo € fA.

Proof: We consider case (a) only and must find suitable extensions F7 of A". Recall that
R = @Kn K; for = py is a direct sum of free R-modules K, of rank pu. f. {2.3). We will
define F7 for j = 0.1. We fix an n-ladder a C p and write A" as a continuous increasing
chain K = UK“ F; of free R-modules of rank u such that £y, = F, ® K, for all i € a. The
module H can also be represented by (2.2) using a in the form H = |J,c, Ha- Using the
ordering on a {induced by u and also by xu), equations (2.2) can be expressed as

Galat+1 = ta + Saj<<:|rtcx,~

The free resolution is now similar to (3.1)(r7). Defining C? and V7 according to (3.1) we
let F7 (j = 0. 1) be generated by K and new elements s/ {(a € a) subject to the relations

P . i
TaSa+1 = 54 + Zay<adh, + Ta + 051f,

where 1z, € K, are fixed basic elements. Arguments as in (3.1) will give (a) and (b).

In order to ensure that unions at limit ordinals remain free in the construction of §3,
the w-Freeness-Proposition 3.2 was used. At limit ordinals not cofinal to w, the construction
was trivial. This is different here. If u = (uy, -, un) is a certain type of freeness, then the
new construction will be non-trivial at limit ordinals cofinal to some ;. Hence we have to
work at those limit ordinals to ensure freeness of the constructed u* filtration. We need the
generalized

u-FREENESS-PROPOSITION 7.3 Let u be a regular cardinal, u = (u, - - . ttn) € 7(1)
some freeness type with u; < p and § < p* an ordinal with {G; : : < 0} an ascending,
continuous chain of submodules with the following properties for all 7 < 4.
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{a} G, is free of rank pu.
(b) G,.1/G, isstronglyv u- free and let. § = {1 <3 G,.,/G; is not free}.

{¢) There exist G, < H, C G,., and H a free summand of G, with free quotient such that
H, = G, =50 H! is a pushout with HY C H! free modules of rank p.
f ! H, ! p i 1

d) Giyy = H, 3 ®T€u K7 with A7 freely generated by r7, (o < ul.
{e) If i€ S. then G, = H; and H} = H? (hence Giy = G B P, .o K7).
(f) If ¢ € S. then cf(i)= x € u. Moreover

(i) there exists a; C i of order type x with ¢; N S = 0 and sup a; = ¢.
(ii) there exist A4;, C u for all j € a, such that A; N4, =0 for j # j' and A4, N Ay
is bounded in pu for (i) # (¢'y').
(iii) Let K7 = (z5,: a € 4;). H? = @7-60‘ Kr. Ifk€a, 3<pand

K5 = @k KF® ek, - j€ai, j >k a<J) then H'/K is free.

JEa, vrag

It tollows Gy is free as well.
The proof of (7.3) follows the proof of (3.2) up to minor changes.

Combining (7.1) and our next result (7.3} we can pass N, and obtain the existence of
certain modules of cardinal A = R, ;.

COROLLARY 7.4 (ZFC + G.C.H.) If (R.S) is as in §2 and 4 is a countable.
free R-algebra. then we can find strongly R, ;-free R-modules G of cardinality X, with
EndrG = 4 and of freeness type (X1, N;).

We would like to remark that a further extension of (7.3) would provide modules as
in (7.4) for cardinals RX_z,, (k € w). Clearly (7.4) in conjunction with (5.1) and (6.1%).
respectively. provides examples for all X, ., (n > 1). A similar result then follows for all
N_ksn (Aon > 1), Magidor and Shelah [31] show, however. that there are models of ZFC +
G.C.H. in which R_._,-free abelian groups of cardinality R_.., are free. This shows that the

results above cannot be extended any further.

THEOREM 7.5 (ZFC + G.C.H.) Suppose that the following conditions hold.

(1) Let (R,S) be as in §2 and A a countable, free R-algebra.

(2) There exists a strongly yu-free A-module H of cardinality p with EndgH = A4 of freeness
LYPe = ({1, - fin)

{3) Let \ be a regular. uncountable cardinal with a stationary, non-small subset § of
ordinals cofinal to some cardinal u,.

(4) There exists an n-ladder system a; C 1 (i € S} with (+) and sup a; =1, a;,N S = 0.
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If A\ = u™. then there exists a strongly A-free R-module G with |G} = \. ft(G) = \"u
and EndgG = 4.

REMARK A similar result holds for modules with rrivial dual.

Proof: We indicate the changes in the construction of G. which are based on (2.2) using
u"® = xu and the n-ladder a' : xu — ¢ with Im(e*) = a;. Recall that c¢f(i) = px. From
a;NS = 0 and the inductive construction of F = U, F, we have Fi,,1 = Fu & K, for o € a;.
We choose basic elements r, € K, (with respect to 4 in case of EndgG = 4 and with re-
spect to R for G* = 0) which are used in (7.2) in order to find F7_, (j = 0.1) with the desired
properties. Moreover, (7.3) takes care of freeness at limit ordinals. The prediction princi-
ple (7.5)(c) picks the right branch in 2* which leads to EndgG = 4 and G* = 0. respectively.
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