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a complex problem with many parame-
ters and degrees of freedom and allow-
ing it to tend to its extreme value.

I have been interested in each of
these questions, but particularly in the
second and third. For pattern forma-
tion, some specific interests of mine
have included finding a mathematical
derivation of the appearance of the sur-
prising “cross tie walls” patterns that
form in micromagnetics, and to ex-
plain the distribution of vortices along
triangular “Abrikosov lattices” for min-
imizers of the Ginzburg-Landau ener-
gy functional. In the latter case, as in
many problems from quantum chem-
istry, one observes that nature seems
to prefer regular or periodic arrange-
ments, in the form of crystalline struc-
tures. It remains almost completely

open to rigorously explain why this
crystallization occurs, i.e., demonstrat-
ing mathematically that the arrange-
ments which have the least energy
are necessarily periodic. To me, this is
a very fascinating question. While it is
quite simple to pose, we still do not
have much of an idea of how to ad-
dress it.

Some results have been obtained in
the very particular case of the sphere
packing problem in two dimensions,
and perturbations of it, in the works of
Charles Radin and Florian Theil. Prov-
ing the same type of result in higher di-
mension or for more general optimiza-
tion problem is a major challenge for
the fundamental understanding of the
structure of matter.
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Saharon Shelah (Jerusalem and Piscataway, NEwW JERSEY)”

Why are you interested in model theory
(a branch of mathematical logic)?

IN ELEMENTARY SCHOOL, mathemat-
ics looked (to me) like just a
computational skill -how to multi-

ply, how to find formulas for ar-
eas of squares, rectangles, trian-
gles etc—and the natural sciences
looked more attractive. Then, enter-
ing the ninth grade, Euclidean ge-
ometry captured my heart: from the

* We thank J. Baldwin, G. Cherlin, U. Hrushovski, M. Malliaris and J. Vaananen for helpful
comments. This is [E70] on the author’s publication list.
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bare bones of assumptions a magnif-
icent structure is built; an intellectu-
al endeavour in which it is enough
to be right.

Undergraduate mathematics was
impressive for me, but algebra consid-
erably more so than analysis. Read-
ing Galois theory, understanding equa-
tions in general fields, was a gem.
Finding order in what looks like a
chaos, not grinding water but find-
ing natural definitions and hard the-
orems; generality, being able to say
something from very few assump-
tions, was impressive. From this per-
spective mathematical logic was the
most general direction, so I took
the trouble to do my MSc thesis in
mathematical logic; the thesis hap-
pened to be on the model theory of
infinitary logics.

Model theory seemed the epitome
of what I was looking for: rather than
investigating a specific class like “the
class of fields”, the “class of rings with
no zero divisors” or whatever, we have
a class of structures, called here mod-
els. For this to be meaningful, we have
to restrict somewhat the class, first by
saying they are all of the same “kind’,
i.e. have the same function symbols
(for rings: addition, multiplication; al-
so the so-called “individual constants”
0 and 1, we may have so called predi-
cates, i.e. symbols for relations, but we
shall ignore that point; this informa-
tion is called the vocabulary). We have
to further restrict the classes we con-
sider, and the classical choice in mod-
el theory is to restrict to the so called

e.c., i.e. elementary classes, explained
below.

Naturally model theorists start
from the bottom: Consider K, an e.c.
(elementary class), i.e. the class of mod-
els of a first order theory T as ex-
plained below. The class K (i.e. T) is
called categorical in the infinite cardi-
nal A if it has a unique model up to
isomorphism of cardinality (= number
of elements) A. Lo$ conjectured that if
an e.c. K with countable vocabulary is
categorical in one uncountable cardi-
nal then this holds for every uncount-
able cardinal. After more than a decade,
Morley proved this, and when I started
my PhD studies I thought it was won-
derful (and still think so).

The point of view explained above
naturally leads to the classification pro-
gram. The basic thesis of the classifi-
cation program is that reasonable fam-
ilies of classes of mathematical struc-
tures should have natural dividing
lines. Here a dividing line means a par-
tition into low, analyzable, tame class-
es on the one hand, and high, compli-
cated, wild classes on the other. These
partitions will generate a tameness hi-
erarchy. For each such partition, if the
class is on the tame side one should
have useful structural analyses apply-
ing to all structures in the class, while
if the class is on the wild side one
should have strong evidence of chaot-
ic behavior (set theoretic complexity).
These results should be complemen-
tary, proving that the dividing lines are
not merely sufficient conditions for be-
ing low complexity, or sufficient con-
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ditions for being high complexity. This
calls for relevant test questions; we
expect not to start with a picture of
the meaning of “analyzable” and look
for a general context, as this usual-
ly does not provide evidence for this
being a dividing line. Of course, al-
though it is hard to refute this thesis
(as you may have chosen the wrong
test questions; in fact this is the nature
of a thesis), it may lead us to fruitful
or unfruitful directions. The thesis im-
plies the natural expectation that a suc-
cess in developing a worthwhile the-
ory will lead us also to applications
in other parts of mathematics, but for
me this was neither a prime motiva-
tion nor a major test, just a welcome
and not surprising (in principle) side
benefit and a “proof for the uniniti-
ated”, so we shall not deal with such
important applications.

We still have to define what an e.c.
(elementary class) is. It is a “class of
structures satisfying a fixed first order
theory T”. For our purpose, this can be
explained as follows: given a structure
M, we consider subsets of M, sets of
pairs of elements of M, and more gen-
erally sets of n-tuples of elements of
M, which are reasonably definable. By
this we mean the following: start with
the family of the sets of n-tuples satis-
fying an equation (or another atomic
formula if we have also relation sym-
bols). Those we call the atomic rela-
tions. But we may also look at the set of
parameters for which an equation has
a solution. More generally, the set of
first order definable relations on M is
the closure of the atomic ones, under

union (i.e. demanding at least one of
two conditions, logically “or”) and in-
tersection (i.e. “and” ), under comple-
ment and lastly we close under pro-
jections, which means “there is x such
that..”; but we do not use “there is a
set of elements” or even “there is a fi-
nite sequence of elements”. The way we
define such a set is called a first order
formula, denoted by @(xo, ..., xp-1). If
n = 0 this will be just true or false
in the structure and such formulas are
called sentences. The (complete first
order) theory Th(M) of M is the set
of (first order) sentences it satisfies.
An e.c.(=elementary class) is the class
Modr of models of T, that is the struc-
tures M (of the relevant kind, vocabu-
lary) such that Th(M) = T. Natural-
ly, N is an elementary extension of M
(and M is an elementary submodel
of N) when for any of those definition,
on finite sequences from the smaller
model they agree. There are many nat-
ural classes which are of this form,
ranging from Abelian groups and alge-
braically closed fields, through random
graphs to Peano Arithmetic, Set Theo-
ry, and the like.

A reader may well say that this set-
ting is too general, that it is nice to
deal with “everything”, but if what we
can say is “nothing”, null or just dull,
then it is not interesting. However,
this is not the case. The classification
program has been successfully done
for the partition to stable/unstable and
further subdivisions have been estab-
lished on the tame side for the fam-
ily of elementary classes. Critical di-
viding lines for the taxonomy involve
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the behavior of the Boolean algebras
of parametrically first order definable
sets and relations, ie.: @(M,a) :=
{b : M satisfies p(b,a)}. Eg. T =
Th(M), i.e. K = Modr is unstable iff
some first order formula @(x,y) lin-
early orders some infinite set of el-
ements (not necessarily definable it-
self!) in some model from K, or sim-
ilarly for a set of pairs or, more gen-
erally, a set of n-tuples. A prominent
test question involves the number of
models from K up to isomorphism of
cardinality (= number of elements) A,
called I(A,K). The promised “analyz-
able” classes include in this case no-
tions of independence and of dimen-
sion (mainly as in the dimension of
a vector space), and (first order de-
finable) groups and fields appearing
“out of nowhere”.

Clearly having many non-isomor-
phic models is a kind of “set-theoretic
witness for complexity” but certainly
not a unique one.

Of course what looks like a small
corner, a family of well understood
classes from the present point of view,
looks like a huge cosmos full of deep
mysteries from another point of view,
and some of these mysteries have re-
sulted in great achievements.

In your opinion, what are the most
challenging problems in model theory?

We may think that the restrictions
to elementary classes is too strong, but
then what takes the place of the first or-
der definable parametrized sets? Natu-
rally, at least a posteriori, we may gen-
eralize this concept but we may won-

der can we really dispense with it?
See § 1.

Dually, we may feel that as success-
ful as the dividing line stable/unstable
(and finer divisions “below” that) has
been, not all unstable classes are com-
pletely wild, (and what constitutes
being complicated, un-analysable de-
pends on your yard-stick). Moreover,
though many elementary classes are
stable, many mathematically useful
ones are not.

In fact there are provably just two
“reasons” for being unstable. The two
“minimal” unstable elementary classes
correspond to the theory of dense lin-
ear orders and the theory of random
graphs. Much attention has been given
on the one hand to so-called simple the-
ories which include the random graphs
and also “pseudo-finite fields” (see § 1),
and on the other hand to the dependent
theories, which include the theories of
dense linear order, the real field, the p-
adics, and many fields of power series
(see §3).

It is tempting to look for a “max-
imal (somewhat) tame family of ele-
mentary classes” A natural candidate
for this is the following.

We may look for an extreme con-
dition of the form of unstability; such
a condition is “K is straight maxi-
mal”, which means that for some for-
mula ¢(x, y) (or @(%, 1)), for every n
and non-empty subset ¥ of 7, :=
{f : f is a function from {0,...,n —
1} to {0,1}} we can find a model
M € K and by,...,b,.1 € M
such that: if f € &, then there is
a € M such that “M satisfies ¢(a, b;)
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iff f(i) = 1”7 iff f € F. Does
this really define an (interesting) di-
viding line? I am sure it does, and
that we can say many things about
it; unfortunately I have neither idea
what those things are, nor of any nat-
ural test problem; so we shall look in-
stead at problems which have been
somewhat clarified.

1. Non-elementary classes

We may note that the family of
elementary classes is a quite restrict-
ed family of classes, and many math-
ematically natural classes cannot be
described by first order conditions.
For example “locally finite” structures,
such as groups in which every finitely
generated subgroup is finite, (or, simi-
larly, is solvable or the like), or struc-
tures satisfying various chain condi-
tions are not elementarily axiomatiz-
able.

So a fundamental question is “have
a generalization of the existing stabil-
ity theory for a really wide family of
classes, where the basic methods of e.c.
completely fail (in particular, nothing
like the family of parametrically first
order definable sets), but we still have
the same test questions”

A good candidate for this broader
context is the family of aec (abstract el-
ementary classes), T = (K, <;) where
K is a class of models of a fixed vo-
cabulary, <; is a partial order on the
class refining the sub-model relation,
and satisfying the obvious properties
of e.c’s (which means, that of K and <
are closed under isomorphism, for any
directed system there is a <;-lub, every

member can be approximated by <¢-
submodels of cardinality bounded by
some x = LST(f) and if M; C M, are
<i-sub-models of some N then M; <;
Ms; for example, those defined by in-
finitary logics like the so-called L+ g,
where we allow conjunctions of A for-
mulas but not quantification over in-
finitely many variables).

Here a natural test question is the
large scale, asymptotic behaviour of
I(A, K), the number of models in K of
cardinality A up to isomorphism. Our
dream is to prove the main gap conjec-
ture in this case (see § 4 below).

The simplest case is the categoric-
ity conjecture: having a unique mod-
el up to isomorphism for every large
enough cardinal or failure of this in ev-
ery large enough cardinal; in-spite of
some advances we still do not know
even this, but there are indications that
a positive theory along these lines ex-
ists.

2. Unstable elementary classes —
friends of random graphs

Being a simple e.c. can be defined
similarly to stability, by “no first or-
der formula @(X, i) represents a tree”
(rather than a linear order, as in the
case of stability) For simple e.c’s. we
know much on analogs of the stable
case, as well as something on non-
structure results.

But it may well be that we should
consider also different questions. Just
as not whole group theory consist of
generalization of the Abelian case, so
also there are other natural families
(extending the simple case), so-called
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NSOP; and NSOP3, on which we know
basically nothing.

Probably a good test problem here
is the Keisler order; (an e.c. K is said
to be smaller than K5 when for every
so-called regular ultrafilter D in a set
I, if MIQ/Dl is |[I|*-saturated for every
M, € K then this holds for Kj.)

We have a reasonable understand-
ing of this order for stable elemen-
tary classes, and we also know that be-
ing like the theory of linear order im-
plies maximality. The challenge is to
understand the order for simple ele-
mentary classes and for a wider fami-
ly, so-called NSOP3; we hope that this
will shed light on those families, and
lead us to a deep internal theory.

3. Unstable elementary classes:
dependent theories

Simple theories include random
graphs but not linear orders. On the
other side we find dependent theories,
for which the class of dense linear or-
ders serves as a prototype (and depen-
dent theories include many classes of
fields, including many fields of formal
power series).

Particularly in the last decade
there has been much work on these
classes, but usually in more restricted
contexts.

We can count the number of so-
called complete types over M;; which
can be defined by: a,b € M realize
the same type over M; where My is
an elementary extension of M; if in
some elementary extension N of M,
there is an automorphism f of N over
M, (that is, f [ M is the identity)

mapping a to b. Now the class is sta-
ble when for many cardinals A, if My
has < A elements, then the number of
those types is < A, and this fails for
unstable T. However, we may count
the above types only up to conjugacy,
that is demanding only that f maps
M, onto M. Now this number may be
large because M; has too few automor-
phisms, so (ignoring some points) we
should restrict ourselves to M; with
enough automorphisms, so-called sat-
urated models. From this perspective,
for stable K, the number is bounded
(i-e., does not depend on the cardinal);
for dependent K, we get not too many;
and for independent K we get almost
always the maximal values 2",

A great challenge is to under-
stand those types, and hence depen-
dent classes.

4. Back to the stable setting

There are great challenges which
remain for the stable case. The main
gap conjecture for a family of class-
es, says that for a class K (from the
family), the function I(A,K) either is
usually maximal (i.e. 2}) or is not too
large, and that there is a clear char-
acterization. We hope that when this
is not maximal every model can be
represented by a graph as a “base”
which is a tree with a root and the
nodes are coloured by not too many
colours. More specifically, every mod-
el can be described by such a tree
of small models put together in a
“free” (hence unique) way, the mod-
el is so called prime over this tree
of models, but it is not claimed that
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the tree is unique. For general elemen-
tary classes K we still do not know
it; but if the vocabulary is countable -

we know. Also, even for countable vo-
cabulary, for Nj-saturated models we
do not know.
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Michel Talagrand (Paris)

Why are you interested in basic
structures in probability?

wIsH I couLD say that I have un-

derstood a lot of mathematics, and
then that I have chosen my areas on in-
terest because they are the most beau-
tiful and fundamental. The truth is
more down to earth, my current inter-
ests were reached by percolation from
a somewhat random starting point
(which was pretty far from probability
theory).

I had the privilege to be the stu-
dent of a truly great person, Professor
Gustave Choquet. This was somewhat
wasted on me, since Choquet’s genius
was a sublime “geometric understand-
ing” which I utterly lack. Nonetheless,
I greatly profited from his teachings.

The first advice he gave me was
as follows: when considering a prob-
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lem, always formulate it in the setting
that requires minimal hypotheses. This
simple age-old advice has lost none of
its relevance, and several of the results
to which I probably owe to write this
now directly benefited from it. A typ-
ical example is in the study of Gaus-
sian processes (X;)ser. The natural dis-
tance d(s,t)? = E(Xs — X;)? on T in-
duced by the process has the property
that the metric space (X, d) is isomet-
ric to a subspace of a Hilbert space, and
these are very special metric spaces. It
turns out however that it is a deadly
trap to try use this specificity, while if
one forgets about it, and simply think
of (X, d) as a general metric space, one
in readily led to the correct approach.
Of course, meeting success a few times
with this type of approach develops
the taste for basic structures, so Cho-
quet’s advice had a considerable influ-



