Sh:604

THE PAIR (R,,8g) MAY FAIL R,-COMPACTNESS

SAHARON SHELAH

Abstract. Let P be a distinguished unary predicate and K = {M : M a model of cardinality
R, with PM of cardinality Ro }. We prove that consistently for n = 4, that for some countable first
order theory T we have: T has no model in K whereas every finite subset of T has a model in K.
‘We then show how we prove it also for n = 2.

ANNOTATED CONTENTS

. Introduction
1.  Relevant identities
We deal with the 2-identities we shall use.
2. Definition of the forcing

We define (historically) our forcing notion, which depends on
I', a set of 2-identities and on a model M * with universe A and
No functions.

The program is to force with (the finite support product)
[1, Pr, where the forcing Pr, adds a colouring (= a function)
cn: [A]* — N satisfying ID,(¢c,) NID* = [y, butnoc: [A]* — Ry
has ID,(c) too small.

3. Why does the forcing work

We state the partition result in the original universe which we
shall use (in 3.1). Then we prove that if, e.g., I" contains only
identities which restricted to < m(x) elements are trivial, then
this holds for the colouring in any p € Pr (see 3.2).

We prove that Pr preserves identities from ID; (4, u) which are
in I (because we allow in the definition of the forcing appropriate
amalgamations (see 3.3(1))). We have weaker results for [], Pr,,
(see 3.3(2)).
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On the other hand, forcing with Pr gives a colouring showing
relevant 2-identities are not in ID, (A, u). Lastly, we derive the
main theorem; e.g., incompactness for (X4, o), (see (3.5)).

4.  Improvements and additions 22
We show that we can deal with the pair (X, Xo) (see 4.1-4.6).
5. Open problems and concluding remarks 28

We list some open problems, and note a property of ID(R,,, R)
under the assumption MA +2% > X,. We note on when k-simple
identities suffice and an alternative proof of (R, ¥z) — (280, Xp).

§0. Introduction. Interestin two cardinal models comes from the early days
of model theory, as generalizations of the Lowenheim-Skolem theorem. Al-
ready Mostowski [Mo57] considered-a related problem concerning generalized
quantifiers. Let us introduce the problem. Throughout the paper A, 4 and &
stand for infinite cardinals and », k& for natural numbers.

We consider a countable language = vocabulary ¢ with a distinguished
unary relation symbol P and models M for 7; i.e., 7-models.

0.1. NoTaTION. We let
K= {M:|M| =2 & |PY|=p}.

0.2. DerNiTION. (1) We say that K, ,) is (< &)-compact when every first
order theory T in the vocabulary  (i.e., in the first order logic IL.(z)) with
|T| < k, satisfies:
if every finite # C T has a model in K{; ,, then T has a model in K, ,).

We similarly give the meaning to (< x)-compactness. We say that
(4, u) is (< )-compact if K(; ) is.
(2) We say that

(A, p) = (X p)

when for every first order theory T in L(z) with |T| < &, if every finite
t C T hasamodelin K(; ), then T has a model in Ky 4. Instead “rt”
we may write “< k”.

(3) We say that

() = (X, 1)

when for every first order theory T of L with |T| < &, if T has a model
in K(; ,), then T has a model in Ky, /).
(4) In both —/, and —, we omit & if K = No.
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Note. Note that —, is transitive and —1. is as well. Also note that —y,
and —y, are equivalent.

We consider the problem of K(; ,) being compact. Before we start, we
review the history of the problem. Note that a related problem is the one of
completeness, i.e., if

{w: w hasamodelin K(; ,)}

is recursively enumerable and other related problems, see in the end. We do
not concentrate on those problems here.

We review some of the history of the problem, in an order which is not
necessarily chronological.

Some early results on the compactness are due to Furkhen [Fu65]. He
showed that

(A) if u* = p, then K{; ,y is (< &)-compact.
The proof is by using ultraproducts over regular ultrafilters on , generalizing
the well known proof of compactness by ultrapowers. Morley related result is
(B) (Morley [Mo68]) If u™ < u’ < A < A, then (4, u) —<; (', u').
Next result we mention is one of Silver [Si71] concerning Kurepa trees,
(C) (Silver [Si71]) From the existence of a strongly inaccessible cardinal, it
follows that the following is consistent with ZFC:
GCH +(R3, Ry) =y, (N2, N0)
Using special Aronszajn trees Mitchell showed
(D) (Mitchell [Mi72]) From the existence of a Mahlo cardinal, it follows that
it is consistent with ZFC to have
(N1, Ro) =x, (K2, ).
A later negative consistency result is the one of Schmerl in [Sc74]
(E) (Schmerl [Sc74]) Con(if n < m then (R, Ryp1) = (R, Rpng1)).
Earlier, Vaught proved two positive results
(F) (Vaught [MV62]) (A%, 4) —f, (R1,Ro).
Keisler [Ke66] and [Ke66a] has obtained more results in this direction.
(G) (Vaught [Va65]) If 4 > 3,(1) and ' > 4/, then (4, u) =L ,, (A, ¢').

In [Mo068] Morley gives another proof of this result, using Erd6s-Rado The-
orem and indiscernibles.
Another early positive result is the one of Chang:

(H) (Chang[Ch]) If 4 = p=<# then (A*, 1) =L, (u*, u).
Jensen in [Jn] uses O, to show
(I) (Jensen [Jn]) If V = L, then (4*, 1) —, (u*, ). (The fact that 0* does
not exist suffices.)

v
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Hence, Jensen’s result deals with the case of u is singular, which was left
open after the result of Chang. For other early consistency results concerning
gap-1 two cardinal theorems, including consistency, see [Sh:269], Cummings,
Foreman and Magidor [CFM].

In [Jn] there is actually a simplified proof of (I) due to Silver. A further
result of Jensen, using morasses, is:

(J) (Jensen, see [De73] for n = 2) If V = L, then (4%, 1) —L, (u™", u) for
alln < w.

Note that by Vaught’s result [MV62] stated in (F) we have: the statement
in (I), in the result of Chang etc., (A*, 1) can be without loss of generality
replaced by (R, Ro).

Finally, there are many more related results, for example the ones concerning
Chang’s conjecture. A survey article on the topic was written by Schmerl
in [Sc74].

Note that many of the positive rsults above (F)—(J), their proof also gives
compactness of the pair, e.g., (o, X;) by [MV62].

We now mention some results of the author which will have a bearing to
the present paper.

(o) (Shelah [Sh:8] and the abstract [Sh:E17]). If K{; ) is (< Ro)-compact,
then K; ,) is (< u)-compact and (4, u) —<, (A, u') when A < A <
ML

More than (< u)-compactness cannot hold for trivial reasons. In the same
work we have the analogous result on —' and:

(B) (Shelah [Sh:8] and the abstract [Sh:E17]) (4, u) —y, (', ') is actually
a problem on partition relations, (see below), also it implies (4, u) —% .
(A7, u") see 0.4(1) below.

We state a definition from [Sh:8] that will be used here too. We do not consider
the full generality of [Sh:8], there problems like considering K with several
Ae-like (P, <) and |P}| = p, were addressed.

(We can use below only ordered a and increase 4, it does not matter much.)

0.3. DErINITION. (1) An identity! is a pair (a, e) where a is a finite set and
e is an equivalence relation on the finite subsets of a, having the property

bec=|b|=]c|.
The equivalence class of b with respect to e will be denoted b/e.

(2) We say that A — (a, e),,, if for every f: [A]® — u, thereish: a Lo
such that

bec= f(n"(b)) = f(h"(c)).

lidentification in the terminology of [Sh:8].
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(3) We define
ID(A, ) =:{(n,e): n < w & (n,e) is anidentity and 1 — (n,e),}
and for f: [A]<® — X welet

ID(f) =:{(n,e): (n, e) is an identity such that for some
one-to-one function 4 fromn = {0,...,n — 1} to A
we have (Vb,c Cn)(bec = f(h"(b))= f(h"(c)))}

0.4. Cramv (Shelah [Sh:8] and the abstract [Sh:E17]). (4, u) —f, (X, u')is
equivalent to the existence of a function f : [A'1<% — u’ such that

ID(f) C ID(4, u)

(more on this see [Sh:74, Theorem 3] statement there on "’;ﬁ’ see details in
[Sh:E28]).

0.5. REMARK. The identities of (3J,,No) are clearly characterized by
Morley’s proof of Vaught’s theorem (see [M068]). The identities of (X, Ro)
are stated explicitly in [Sh:37] and [Sh:49], when R, < 2% where it is also
shown that (Ry, Ro) —' (2%, Rg). For (X, No), the identities are character-
ized in [Sh:74] (for some details see [Sh:E28]). The identities for A-like models,
J strongly w-Mahlo are clear, see Schmerl and Shelah [ScSh:20] (for strongly
n-Mabhlo this gives positive results, subsequently sharpened (replacing n + 2
by n) and the negative results proved by Schmerl, see [Sc85]).

By the referee request we indicate the proof for (R, ®o) in 5.12.

We generally neglect here three cardinal theorems and A-like models (and
combinations, see [Sh:8], [Sh:18]), the positive results (like 0.4) are similar.
Recently Shelah and Vaananen deal with recursiveness, completeness, and
identities [ShVa:790] and see [ShVa:E47].

In Gilchrist, Shelah [GcSh:491] and [GceSh:583], we dealt with 2-identities.

0.6. DErINITION. (1) A two-identity or 2-identity? is a pair (a, e) where a
is a finite set and e is an equivalence relation on [a]*>. Let 1 — (a,e),
mean A — (a, e't), where be*c « (bec) V(b =c C a)foranyb,c C a.

(2) We defined

ID;(A, 1) =: {(n,e): (n,e) is a 2-identity and A — (n,e),}
we define ID,(f) when f: [1]> — X as

2]t is not an identity as e is an equivalence relation on too small set.
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{(n,e): (n,e) is a two-identity such that for some 4,
a one-to-one function from {0, ...,n — 1} into 4
we have {£1,4,}e{ki, k,} implies that £; # ¢, € {0,...,n — 1},
ki #k,€{0,...,n—1}and

f{r(), n(&)}) = f({h(kr), h(k2)}) }.
(3) Let us define

IDY =: {("2,€): ("2, e)is a two-identity and if {1, 72} # {vi,v2}are C "2,
then {1’]1,1’]2}6{1)1, V2} =y = WﬂVz}.

By [Sh:49], under the assumption R, < 2%, the families ID,(R,,, Ro) and
ID$ coincide (up to an isomorphism of identities). In Gilchrist and Shelah
[GcSh:491] and [GceSh:583] we considered the question of the equality between
these ID, (2%, Ry) and ID$ under the assumption 2% = X,. We showed that
consistently the answer may be “yes” and may be “no”.

Note that (R, Rg) - (Rw, Ng) s0 ID(R;, Rg) # ID(R,,, Ro), but for identities
for pairs (i.e., ID;) the question is meaningful.

The history of the problem suggested to me that there should be a model
where K(; ) is not Ro-compact for some 4, u; I do not know about the opinion
of others and it was not easy for me as I thought a priori. As mathematicians
do not feel that a strong expectation makes a proof, I was quite happy to be
able to prove the existence of such a model. This was part of my lectures in
a 1995 seminar in Jerusalem and notes of the lecture were taken by Mirna
Dzamonja and I thank her for this, but because the proof was not complete,
it was delayed.

The following is the main result of this paper (proved in 3.5):

0.7. MaIN THEOREM. Con(the pair (R,, o) is not Xo-compact + 2% > R,,)
forn > 4.

Later in the paper we deal with the case n = 2 which is somewhat more
involved. This is the simplest case by a reasonable measure: if you do not like
to use large cardinals then assuming that there is no inaccessible in L, all pairs
(u*, p) are known to be Ro-compact and if V = L also all logic L(32%), 1 > R
are (by putting together already known results; V = L is used just to imply
that there is no limit, uncountable not strong limit cardinal).

How much this consistency result will mean to a model theorist, let us not
elaborate, but instead say an anecdote about Jensen. He is reputed to have
said: “When I started working on the two-cardinal problem, I was told it
was the heart of model theory. Once I succeeded to prove something, they
told me what I did was pure set theory, and were not very interested”; also,
mathematics is not immune to fashion changes.
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My feeling is that there are probably more positive theorems in this subject
waiting to be discovered. Anyway, let us state the following

THEsis. Independence results help us clear away the waste, so the possible
treasures can stand out.

Of course, I have to admit that, having spent quite some time on the inde-
pendence results, I sometimes look for the negative of the picture given by this
thesis.

The strategy of our proof is as follows. It seems natural to consider the
simplest case, i.e., that of two-place functions, and try to get the incompactness
by constructing a sequence (f: k < w) of functions from [X,]? into Xy such
that for all n we have ID;(fr) 2 IDy(fr+1), yet for no f: [X,]* — Ro do
we have ID:(f) C (\g<p ID2(fk). This suffices. Related proofs to our main
results were [Sh:522].

Note that another interpretation of 0.7 is that if we add to first order logic the
cardinality quantifiers (Elzlx) for A = Ny, Ny, N3, Ry we get a noncompact logic.

We thank the referee for many helpful comments and the reader should
thank him also for urging the inclusion of several proofs.

This work is continued in [ShVa:790] and [Sh:824].

§1. Relevantidentities. We commence by several definitions. For simplicity,
for us all identities, colorings etc. will be 2-place.

1.1. DeriNiTION. (1) For m, £ < w let
domy,, = {n €*'w: 5 | £ € 2and n(¢) < m}

ID}’m = {(domg,m, e): e is an equivalence relation on [domg,]?

such that {n;,72}e{vi, 2} & {n1,m2} # {v1, 2}

=mNm=viNvaAlgln,m) <L}

(2) Let

ID} = U{ID},,: m < w},

ID' = U{ID}: £ < w}.
(3) Fors = (domy, e) € IDy,, and v € 22 let

domg"'m = {p € domy,,: v < p}

and if v € ©2 we let
ewy(s) = e [ {{no.m}: v*({i) <n;fori =0,1}.

We use s to denote identities so s = (doms, e(s)); and if s € ID' then let

s = (domy () n(s)» €(8)).
(4) An equivalence class is nontrivial if it is not a singleton.
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Note that it follows that every e-equivalence class is an e(,)-equivalence
class for some v. We restrict ourselves to

1.2. DerntTioN. (1) Let IDj,, be the set of s € 1D}, such that for every
v € 2 the equivalence relation e(y)(s) has at most one non-singleton
equivalence class, which we call e;,; = ¢p,;(s).

So we also allow e(,y = empty, in which case we choose a represen-
tative equivalence class ef,) as the first one under, say, lexicographical
ordering.

(2) ID} = U{ID},,: m < w}.

1.3. DerINITION. (1) We define for k < w when's = (domy,,, €) is k-nice:
the demands are

(a) s € IDy,,

(b) ifv € “2and (v [ i) (1 —v(i)) < p; € domy,, for each i < £ then
{n:v <y € domy,, and for each i < £ the set {p;,n}/e is not a
singleton} has at least two members,

(c) the graph H[e], see below, has no cycle < k (for k < 2 this holds
trivially),

(d) the graph H{[e] has a cycle.

(2) We can interpret s = (domg,,, e) as the graph H[s] with set of nodes
domy,,, and set of edges {{#n,v}: {#, v}/e not a singleton (and of course

n # v are from domg )}

(3) We may write e(s) instead of s if domg,, can be reconstructed from e

(e.g., if the graph has no isolated point (e.g., if it is 0-nice, see clause (b)

of part (1)). Saying nice we mean [log,(m)]-nice.

1.4. Cramm. (1) If (A, u) is No-compact and c,: [A]<N — u and T), =
ID(c,) for n < w, then for some c: [A]<™ — u we have ID(c) C N,<, T
(in fact equality holds).
(2) Similarly using ID;.

REMARK. By the same proof, if we just assume (41, u1) —%, (42, 42) and
cn: [A1]1%° — uy, then we can deduce that there is c: [1]<%0 — u; satisfying
ID(c) C Ny ID(cn).

ProoF. Straightforward.

(1) Indetails, let F,, be an m-place function symbol and P the distinguished
unary predicate and let T = {y,,: n < w}U{—ws: ¢ is an identity of the form
(n, e) not from (N, ID(c,)} where

(@) wn = (Vx0)(¥x1) ... (Vxp—1)(P(Fy(x0, ..., Xn1)) &
A{(Yx0) ... (VXn) Fa(X0, . .. s Xn—1) = Fn(Xn(0) - - - » Xn(n1)) "
7 a permutation of {0,...,n — 1}},
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(b) if s = (n,e) is an identity then w5 = (Ix0) ... (Fxa—1)[ N\ xe # xm &

/\ Fip|(ooxe,. . )ees = Fipy (oo xe, 000 eee]. t<msn
b,cCn,bec

Clearly T is a (first order) countable theory so it suffices to prove the following
two statements X, X,.

X, if M € K(;, is a model of T, then there is ¢: [A]™ — u such that
ID(c) € NyeoDn-
[Why does X; hold? There is N & M such that N has universe |[N| = 1
and PV = u. Now we define ¢: if u € [A]<™, let {a}: € < |u|}
enumerate u in increasing order and let ¢(u) = Flfl" (o, 0t,..., aluul—l)‘
Note that because N = y, for n < w clearly c is a function from [A]<R
into u. Also because N = w,, if n < w and ayp,...,0n—1 < 4 are
with no repetitions then FN (o, ...,0,_1) = c{ag,...,an_1}. Now if
s € ID(c) let s = (n,e) and let u = {ap,...,an_1} € [A]" C [A]<M
exemplify that s € ID(c), hence easily N = s so necessarily ~ws ¢ T
hence s € (,.,,[». This implies that ID(c) € (,.,,I'» is as required.]
X, if T’ C T is finite then 7’ has a model in K{; ).
[Why? So T’ is included in {y,: m < m*} U {-ys, : k < k*} for some
m*,k* < w, sy = (n, e) an identity not from (,_,, ID(ce), so we can find
£(k) < w such that s, ¢ ID(cy)). Let H be a one-to-one function from ¥
into u. We define a model M:
(a) its universe | M| is 4,
(b) PM = p,
(¢) ifn < w,{ap,...,an—1} € [A]" then
FMay,...,on1)=H(cyq){00, ..., om-1},
ce(l){ao, e an_1}, ey C‘g(k*_l){ao, oe s ,an_l}).
Ifn < wanday,...,0,_1 < Aiswithrepetitionswelet FM (ay, ..., 0,—1) = 0.
Clearly M is a model from K ; ,) of the vocabulary of T'. Also M satisfies each
sentence w,, by the way we have defined FM. Lastly, for k < k*, M |= -y,
because (nx,ex) ¢ ID(co(x)) by the choice of the Fy,’s as H is a one-to-one
function.] Oia

Of course
1.5. OBSERVATION. (1) For every £ < w,k < w for some m there is a k-nice
s = (domg,, e).
(2) Ifsis k-nieand m < k, then s is m-nice.

§2. Definition of the forcing. We have outlined the intended end of the
proof at the end of the introductory section. It is to construct a sequence
of functions (f,: n < w) with certain properties. As we have adopted the
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decision of dealing only with 2-identities from ID}, all our functions will be
colorings of pairs, and we shall generally use the letter ¢ for them.

Our present Theorem 0.7 deals with R4, but we may as well be talking about
some X, for a fixed natural number n(x) > 2. Of course, the set of identities
will depend on n(x). We shall henceforth work with n(x), keeping in mind
that the relevant case for Theorem 0.7 is n(*) = 4. Also we fix £(*) = n()+ 1
on which the identities depend (but vary m). Another observation about
the proof is that we can replace ¥y with an uncountable cardinal « such that
k = k<F replacing R, by ™. Of course, the pair (™", ) is compact because
[« = k¥ < A = (k, A) is < k-compact], however, much of the analysis holds.

We may replace (R, Ro) by (77, k) if s+7(*) < 2% we hope to return to
this elsewhere.

To consider (k*, k) we need large cardinals; even more so for considering
(ut, p), 1 strong limit singular of cofinality Ry, and even (s, k), u < K <
PR S ,uN".

We now describe the idea behind the definition of the forcing notion we
shall be concerned with. Each “component” of the forcing notion is supposed
to add a coloring

c:[AF - u

preserving some of the possible 2-identities, while “killing” all those which
were not preserved, in other words it is concerned with adding f,,; specifically
we concentrate on the case A = R,,(,), 4 = No. Hence, at first glance the forcing
will be defined so that to preserve an identity we have to work hard proving
some kind of amalgamation for the forcing notion, while killing an identity is
a consequence of adding a colouring exemplifying it. By preserving a set I'
of identities, we mean that I’ C ID(c), and more seriously I' C ID;(A, u); we
restrict ourselves to some ID*, an infinite set of 2-identity.

We shall choose ID* C ID$ below small enough such we can handle the
identities in it. )

We define the forcing by putting in its definition, for each identity that we
want to preserve, a clause specifically assuring this. Naturally this implies that
not only the desired identities are preserved, but also some others so making
an identity be not in ID(A, u) becomes now the hard part. So, we lower our
sights and simply hope that, if ' C ID* is the set of identities that we want to
preserve, than no identity (a, e) € ID* \T is preserved; this may depend on T

How does this control over the set of identities help to obtain the non-
compactness? We shall choose sets I', € ID* of possible identities for n < .
The forcing we referred to above, let uscallit P'», add a colouring ¢, : [A]> — @
such that ID,(c,) includes ', and is disjoint to ID* \I',; also it will turn out
to have a strong form of the ccc. We shall force with P =: [, co P, where
the product is taken with finite support. Because of the strong version of ccc
possessed by each P'», also P will have ccc. Now, in V¥ we have for every n
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a colouring ¢,: [A]> — « which preserves the identities in I',, moreover
VP =T, C ID(c,) N ID*.
We shall in fact obtain that

ID*=To2TI & 2T & -+ & (| Tw=0 & ID(cy) N T =T

n<w

If we have Ro-compactness for (4, Ry), then by 1.4(2) there must be a colouring
¢: [A]* — w in VF such that

IDy(c)NTo C ﬂ r,=0.

n<w

We can find a name ¢ in V for such ¢, so by ccc, for every {a, 8} € [A]%,
the name ¢({a, f}) depends only on R “coordinates”. At this point a first
approximation to what we do is to apply a relative of Erdés-Rado theorem to
prove that there are an n, a large enough w C 1 and for every {a, B} € [w]* a
condition p(q gy € [1,c, P, such that py, sy forces a value to ¢({c, f}) in a
“uniform” enough way. We shall be able to extend enough of the conditions
P{a,p} by a single condition p* in [],, P, which gives an identity in ID(c)
which belongs to (,,I¢ \ I'», contradiction.

Before we give the definition of the forcing, we need to introduce a notion
of closure. The properties of the closure operation are the ones possible to
obtain for (4, Xp), but not for (X,,, Ro). We of course need to use somewhere
such a property, as we know in ZFC that (X, o) has all those identities, i.e.,
ID$ = ID,(2, o).

On a similar proof see [Sh:424] (for w-place functions) and also (2-place
functions), [Sh:522]. The definition of the closure in [GcSh:491] is close to
ours, but note that the hard clause from [GcSh:491] is not needed here.

2.1. DEFINITION. Let IDj,) =: {s € ID},): s s O-nice}.

ReMARK. We can consider {s,: n < }, which hopefully will be inde-
pendent, ie., for every X C o for some c.c.c. forcing notion P, in \'%
we have 4 — (sn), iff n € X. It is natural to try {s,: n < } where
s» = (domy(,) n,, €n) Where m, = n (or 22" may be more convenient) and e, is
[log log(n)]-nice.

2.2. DErFINITION (A is our fixed cardinal). (1) Let M* (or M} ) beamodel
with universe 4, countable vocabulary, and its relations and functions are
exactly those defined in (# (), €, <}) for y = 4* (and some choice of
<3, a well ordering of Z (x)).

(2) For & € ®>(M}) let cfe(a@) = {B < A: for some first order ¢(y, X) we
have M} = o[, a] & (3=Rex)p(x,a)} and cf(a) = {B < A: for some
first order (y, X) we have M} |= ¢[B, @] & (3Nx)p(x, &)}
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(3) For amodel M and A C M let cfy(A) be the smallest set of elements
of M including 4 and closed under the functions of M (so including the
individual constants).

Note that
2.3. Fact. If By, p1 € clpi1(@) then for some i € {0,1} we have f; €

cly(a"(P1-i)).

Proor. Easy.

The idea of our forcing notion is to do historical forcing (see [RoSh:733]
for more on historical forcing and its history). That is, we put in only those
conditions which we have to put in order to meet our demands, so every
condition in the forcing has a definite rule of creation. In particular, (see
below), in the definition of our partial colourings, we avoid giving the same
color to any pairs for which we can afford this, if the rule of creation is to
be respected. We note that the situation here is not as involved as the one
of [RoSh:733], and we do not in fact need the actual history of every condition.

We proceed to the formal definition of our forcing.

Clearly Case 0 for k > 0 is not necessary from a historical point of view but
it simplifies our treatment later; also Case 1 is used in clause () of Case 3.

Note that in Case 2 below we do not require that the conditions are iso-
morphic over their common part (which is natural for historic forcing) as the
present choice simplifies clause (¢)(iv) in Case 3.

2.4. MAIN DErINITION. Let n(x) > 2,n(x) < £(x) < 0,4 = Ry, 4 = Ro

be fixed. All closure operations we shall use are understood to refer to M;;n( )

from 2.2(2). Let T C IDj(*) be given. For two sets # and v of ordinals with
|u| = |v|, welet OP,, stand for the unique order preserving 1-1 function from
utow.

We shall define P =: Pr = P, itis C ;.

Members of P} are the pairs of the form p = (u, ¢) =: (u?, ¢?) with

ue[A<™andc: [u]? - .
The order in P} is defined by
(u1,01) < (2, 02) & (1 Cwp & e1 =2 [ [wiP).

For p € P let n(p) = sup(Rang(c?)) + 1; this is < .

We now say which pairs (u,¢) of the above form (ie., (u,¢c) € P}) will
enter P. We shall have P = | J,_, P where P =: P+T are defined by induction
on k < w, as follows.

Case0. k =4L. Ifk = 01et Py =: {(0,0)}.
If k = 41 > 0, a pair (u,c) € Py iff for some (u',¢’) € U,,,Pm We have
u Cu' andc =c' | [u]; we write (u,c) = (u',¢') | u.
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Casg 1. k = 4£+ 1. (This rule of creation is needed for density arguments.)
A pair (u, ¢) is in P iff (it belongs to P} and) there is a (u1, ¢1) € U,pei P
and o < A satisfying @ ¢ u; such that:
(@) u=wu U{a},
(b) ¢ I [1]* = ¢1 and
(c) Forevery {8,7}and {#’,y'} in [u]* which are not equal, if ¢ ({8, y}) and
c({B’,7'}) are equal, then {B,y},{B’.y'} € [m1]*>. (Hence, ¢ does not
add any new equalities except for those already given by c1.)

CASE 2. k = 4£ +2. (This rule of creation is needed for free amalgamation,
used in the A-system arguments for the proof of the c.c.c..)
A pair (u, ¢) is in Py iff (it belongs to P} and) there are (u1,¢1), (42, ¢2) €
U n<i P for which we have
(a) u=u Uuy.
(b) ¢ I[mPP =cirandc | [2]* = ca.
(c) ¢ does not add any unnecessary equalities, i.e., if {8,y} and {8’,y'} are
distinct and in [u]* and c({£,7}) = c({#',7'}), then {7}, {B'.y'}} C
[i]? U [u2].
Note that [11]? N [12]? = [u1 N ua]?
(@) clo(uy Nuz) N (g Uug) C uy (usually clo(uy Nuz) N (g Uuz) C uy Nuy)
is O.K. too for present §2, §3 but not, it seems, in 4.6).

MaiN RULE.

Case 3. k = 4¢ + 3. (This rule® is like the previous one, but the amalga-
mation is taken over a graph s = (domy(,) ., €) € T'). '

A pair (u, ¢) € Py iff there are s = (domy,) ,(s)> €) € T and a sequence of
conditions

p=(py:y€Y)where Y = {y € [dom]*: |y/e| > 1}
from | J,,.,P» AND we have a sequence of finite sets & = (v,: # € YT) where
Yt={t:teYort=0ort={n}, wheren € doms}
such that
(@) u=U{ur:yer},
(b) (u,c) ePiandc [ [u»)? =cP forally € Y,
(C) ifa1 75 az,ﬁ1 7é ﬂz are from u and {al,az} 7é {ﬁl,ﬂz} and c{al,az} =
c{pr, B2} then (3y)[{a1, 02} C uPr]and (3y)[{f1. f2} C u’],
(d) viNvg Cuns fort,s,e Y+,

(e) clo(v))NuPr Cw,forally € Yandzt € {0} U {{n}: # € doms},
(f) ubr Cu,forally e Y,

3You may understand it better seeing how it is used in the proof of 3.3.
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(g) if yi,y2 € Yandt € {0} U{{n}:n € doms} and # = y; N y, then
Py | vr = py, | v equivalently: {p,: n € Y} has a common upper
bound in P;.

2.5. Ctam. (1) P, satisfies the c.c.c. and even the Knaster condition.
(2) For each a < A the set o = {p € Pt: a € uP} is dense open.
(3) IFpa “c =U{cP: p € G} is a function from [A)* to »”.

Proor. (1) By Case 2.

In detail, assume that p, € P fore < w; and let p. = (4, c.). Aseachu, is
a finite subset of 1, by the A-system lemma without loss of generality for some
finite #* C A we have: if € < { < w; then 4, Nu; = u*. By further shrinking,
without loss of generality o € u* = (luc Na|: € < w;) is constant and
€ <{ < = |u| = |u|. Alsowithoutloss of generality theset { (¢, m, k): for
some o € ue and f§ € u. wehave £ = |aNue|,m = |fNu| and k = c.{c, B}}
does not depend on . We can conclude that e < { < w; = OPy, ,, maps pe
to pr over u*. Clearly for € < w, the set c£(u.) is countable hence for every
{ < w; large enough we have u; N cfy(u.) = u* so restricting (pe: € < wy)
to a club we get that e < { < w1 = cfp(ue) Nu; = u* (this is much more
than needed). Now for any ¢ < { < w; we can define . = (Uer,Cer)
with uer = ue Uug and ce¢: [uer]* — o is defined as follows: for a < f
in ug ¢ let c.c{a, B} be c.{c, B} if defined, c;{c, B} if defined, and otherwise
sup(Rang(c.)) + 1 + ([ueg Nl + ueg N BI)? + Jtog N al. Now g € P by
Case 2, and p, < ¢., pr < g by the definition of order. '

(2) By Case 1.

In detail, let p € P} and a < 1 and we shall find g such that p < g € .%,.
If o € u? let ¢ = p, otherwise define g = (14, ¢?) as follows u? = u? U {a}
and for f <y € u? welet c?{f,y} be: c?{B,y} when it is well defined and
sup(Rang(c?)) + 1+ (| Nu?| + |y Nu?|)? + |B N u?| when otherwise. Now
q € P} by Case 1 of Definition 2.4, p < ¢ by the order’s definition and g € .7,
trivially.

(3) Follows from part (2). O s

§3. Why does the forcing work. We shall use the following claim for u = Ny.

3.1. Ceam. (1) If f: [A* — u and M is an algebra with universe A,
ltar] < poand w, C {A], |w,| < Vo for t € [A? and 2 > Th(u*)*,
then for some (v, : t € [W]S?) we have:

(a) W C Ais infinite in fact |W| = u™,

(b) f I [W7 is constant,

(c) tUw, Cu, € A<M fort € [WT?,

(d) vy, Moy, C vynr, when t, ty € [W]S2 but for no o < f < y do we

have {ll, t2} = {{as ﬂ}, {ﬂ’ y}}’



Sh:604

416 SAHARON SHELAH

(e) ifti,t2 € [WY, wherei € {1,2} then |v,,| = |v,,| and OP,, ,, maps
t1 onto t, and wy, onto wy, and vy, ONL0 Viy, W pgin(r,)} ONLO W afin(y)}
andw  pax(n)} ONLO W{Max(t,)} > V{Min(1y)} OMEO U { Min(1y)}» ANAV ax(1,)}
ONLO V{ Max(1y)}>

(f) viapr Nelu(vgy) Cv, foro, fy e W.

(2) If[u € [AI<N0 = clyr(u) € [M]<H, then A = (D (1))* is enough.

REMARK. See more in [Sh:289]; this is done for completeness.

PrOOF. (1) Let w, Ut = {{¢: £ < n,} with no repetitions and we define
the function c, ¢y, c; with domain [A]* as follows: if & < f < y < A then

co{a, By} = {(£1.62): &y < nyapy. £a < Miayy and Lo pye = Claytan )}
cifes .7} = {(l1,&2): by < nayy. & <mypyy and Loy = Lippra b
c{a, By} = (cofa, B, 7} er{e. B.v}, f{e B}).

By Erdds-Rado theorem for some W; C A of cardinality and even order

type u** for part (1), ut for part (2) such that ¢ [ [W,]® is constant. Let
{ae: e < ut*} list W) in increasing order. If 2 < i < ut+, let

Via} = {{{anan }a : fOr some £, we have (€1, 4) € co{oy, i1, aiy2}}
U {C{ao’ai}’[l : for some ¢, we have (41,0,) € c1{a, al,a,-}}
(clearly a; € v{q,})-
Fori < jin (2, ™) let v(g, 0,3 = V{a} U V{a;} UW(a;q;}- Now for some
unbounded W, C W;\{ao, a1} and Y € [A]S# we have:
ifa # f € W, then CZM(U{Q}) N CZM(’U{[;}) cY.
Now by induction on e < u* we can choose y. € W, strictly increasing with

€, 7. large enough. It is easy to check that W = {y.: e < ut*} is as required.
(2) The same proof. O

3.2. CLAM. Let n(x),£(x), A be as in Definition 2.4, and see Definition 2.1.
Assume that T'1, Ty, m*, p* satisfies:

(a) I',T, C IDZ(*),

(b) if (domy(,) . €) € ID},y and (domy,) ,, €) is not m*-nice
then (domy,) ,,,€) € T'1 & (domy,) . €) € T2,

(c) p* € P} and [uP"| < m*.

Then p* € IE”’}1 & pr e Pf—z.

Proor. We prove by induction on k < « that

() ifr' € IP,’}F‘ (see Definition 2.4 before Case 0) and r < r’ and |u"| < m*,
then r € P} .

This is enough by the symmetry in our assumptions.
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For a fixed k we prove this by induction on |u"|. The proof splits according
to the Case in Definition 2.4 which hold for #’.

Cask 0. Trivial.

Cask 1. Easy.

Case 2. Should be clear but let us check, so ' = (u/,¢’) is gotten from
(u],cf), (ub, ch) asin clauses (a)—(d) of Case 2, and let r = (u,c) < r'.

Let ug = uy Nu, ¢, = cj | [ug]*. By the induction hypothesis (ue, ;) € P,
and it is enough to check that (u, c), (u1, ¢1), (42, c3) are in Case (2) of Defini-
tion 2.4 which is easy, e.g., in clause (d) we use monotonicity of c£p.

Case 3. So let r’ be gotten from s = (domy(,) . €), (py: ¥ € Y), (v;:
t € Y*) as there. Of course, we have (domy(,) ,,.e) € T'; and p, € UkkIP’ﬁ‘r‘
so by the induction hypothesis clearly p, [ u" € ]P’f-z.

SUBCASE 3A: nice(domy,) ,,, €) < m* (see Definition 1.3(1)).

Hence (domy,) ., ¢) € I'; and the desired conclusion easily holds.
[Why? We can find p} = p, [ 4" = p, | (u? Nu") =" | (uP» Nu") hence
[u?y | < m*. ‘

By the induction hypothesis p} belongs to ]P’%—2 foreach y € Y. Now r,
(p;:y € Y)and (v: t € Y) satisfies clauses (a)-(g) of Case 3 of Defini-
tion 2.4. Hence by Case 3 of Definition 2.4 r” =: v/ | (UW{u?:y € Y})
belong to Pf: butr = r" sor € P ]

SuBcask 3B: Not subcase 3A.

So nice(domy,) ,,, €) > m* > |u"|. For a C domy,),, let us ={a € u":
a € u?r forsome y € Y satisfies y C a or o € vy}, 7 €aora € vg}. Now
(*)o if u" C vyyy for some # € domy,) ,, then r € PE .

[Why? By applying Case 2 (and 0) of Definition 2.4.]
(*)1 if for some 7 € domy,),, we have [({a1, fi} # {a2, o} € [u]?) &
c’{al,ﬁl} = c’{az,ﬂz} = {al,ﬂl, a3, ,32} - ’U{,,}] thenr € Pfiz.
[Why? By ()¢ and uses of Case 1 of Definition 2.4.]
(x)2 ify € Y andu” C v, thenr € PL.
[Why? Similarly.]
Now
()3 Itis enough to find a, b C domy,) ,, such that: "
()2 ta # ua Nutp,up # tg Ny, u” C g Usty,u” & ug,u” ¢ up and
[m € us\up & 12 € up\us = ({y1,m2}/e) is a singleton] and
lanb| < 1.
[Why is this enough? As then r is gotten by Case 2 of Definition 2.4
from (ug,c? | [4a]?), (up,c® ['[up]?). The main point is why clause (d)
of this case holds; now we shall prove more cfo(u, Nup) N (g U up) C
u, N up; now by clause (e) of Case 3 of Definition 2.4 letting t = a N b
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(it € {0} U{{n}: n € domyy,) ,} by the last statement in (x)? ) we have
ug Nup = u, (see (d), (f) Deﬁmtlon 2.4, Case 3), hence cZo(ua Nuy) =
clo(us), uy C v, hence clo(u, Nup) C clo(vanp) which is disjoint to u, \up
and to u; \u, by clause (e) in Case 3 of Definition 2.4 as u, Nv, = u, and
up N vy = uy.]
So now why can wé find such a, b?

We try to choose a; C domg mfori=273,...orfori =1,2,...,

such that |a;| = i,a; C a;41 and i < |ug]. FlI‘St assume that we
cannot find neither a; nor aj, then y € ¥ = |[u”» Nu'| < 1 and
n € domy,), = |vgy Nu'| = 0. If (x); applies we are done, so

there are ((yg,7e): £ < k) satisfying y; = {514,724} € Y such that
u" NuPre\vg, 3 \viy,,y = {ve} and k > 2s0 u"\vp = {y;: £ < k}. Let
ur = (u" Nwg)U{po}, u2 = u"\{ypo}, clearly r is gotten from r [ uy,r | uy
as in Case 2 of Definition 2.4.

Second, assume a; or a; is defined. So we are stuck in g;(,) for some
z(*) i.e, ay(,) is chosen but we cannot choose a;(,)41. If ug,,, # u', let
a = ay b = domy,) », \@j(x), SO We get (*)Z,b and we are done. So
u" = ua ,» hence i(x) = |a(, | = |u"| < m* and we can assume that (x);
does not apply By the niceness of (domy,) ,, €) the graph H[e] | a;(,
has no cycle so is a tree in the graph theoretlc sense and so for some
¢,b C a;,y wehavec Nb = {n},cUb = a,,),b # {n},c # {n} and
[ € b\{n} & n" € c\{n} = {#'.n"} not an H[e]-edge]; so we get
(*)2 », and we are done. (So if we change slightly the claim demanding
only 2|u"| < m*, the proof is simpler). O,

3.3. THE PRESERVATION CLAIM. Let n(x),£2(x),A, 4 = No be as in Defini-
tion 2.4 and assume 1 > Jp(u™).

(1) If P = PL and (domy(,)m.e) € T C ID},, then in VE we have

(domy(,) > €) € ID2(4, Ro).

(2) Assume that P = [],_ Pt where T, C IDy, yandy < w and p* € P

n<y
forces that ¢ is a function from [A]? to w. Then for some finite d C y for
any s € (,cql'n we have p* Wp “s & ID1(c)”.

Proor. (1) Follows from (2), lettingy = 1,y =T..

(2) Assume p* € P and p* IFp “c is a function from [1)* to w”. Let

k(%) = 2¢*) — 1 and let k( ) = |{p € {®>2: p <ex v}| for v € ¢{*)>2, For

p € Plet u[p] = U{u?™: n € Dom(p)}, so u[p] € [A]<™ and for any g € P
we let n[g] = sup(U{Rang(c?™): n € Dom(q)}). For any a < f < A letting
t = {a, B} we define, by induction on k < k() the triple (n, 4, w,x, d;x) such

that:

(*) mx < 0, w;x € [A]<N and d,; C y is finite.
Casel. k = 0:ny, = n[p*] +2 and wyx = {a, B} Uu? and d;y =
Dom(p*).
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Case2. k+1:

Let #,, = {q € P: p* < q,ulq] C w,; and n[q] < n,; and Dom(g) C
di i }; clearly it is a finite set, and for every ¢ € &, we choose p;, such that
g < pig € P and p,, forces a value, say {; 4 to ¢(¢). Now we let

Wrgt1 = Wei U U{u[Pt,k]3 q € 'got,k},
dt,k+1 e dt,k U {Dom(qt,p)3 VS g’t,k},
nt‘k+1 = Max{|wt‘k+1|2, nt‘k + 1, n[pq] + 1: q c c@t‘k}t

We next define an equivalence relation E on [A]?: t; Et, iffletting ¢; = {a1, 1},
th = {az,ﬂz}, a; < f1, oo < B and letting & = OP,,
we have

{282} k(%) Wy fy 1 k(%)

(1) Wy, k(x)> Wy, k(») has the same number of elements,

(i) A maps o to ap and B to B> and wy, x onto wy, ;. for k < k() (so h is
onto),

(iii) dy, x = dyx for k < k(x) (hence h maps %, x onto %, ),

(iv) if g1 € Py k. k < k(x) then h maps ¢; to some ¢, € %, ; and it maps

D 10 Prg, and we have {, 4 = 100+
Clearly E has < X equivalence classes. So let c: [A]> — ¥, be such that
C(tl) = C(tz) & thEt and let w, = Wy ke(+)-

By Claim 3.1, recalling that we have assumed A > J,(R;) wecanfind W C 4
of cardinality u* and ¥ = (v,: t € [W]=?) as there; i.e., we apply it to an
expansion of M; such that cfy(—) = cly(—). ’

Let df = dix C w fort € [W] and k < k(x), now we choose d =
d,:(*) C y, and we shall show that it is as required in the claim. Lets =
(domy(y) m(x)»€) € Npeqle andlet Y, = Yo, = {{no,m}: v'(i) < n; € doms
for i = 0,1 and {#o,71}/e is not a singleton} for v € ¢{®>2 and let ¥ =
U{Y,,: v € t®)>2}, '

We now choose o, € W for 7 € doms such that 771 <iex 172 = ay, < 0y,.
Let S = {ay:n € doms}. For y € Y let t(y) = {ay:n € p}. Let
(vi: €< k(x) =200 — 1) list £(*)>2 in increasing order by <jex.

We now define ¢, and gy, for n € domy,) ) and p,, for y € Y by
induction on £ < k(*) such that

(@) pye € Pyy)0 hence uPre C wyy forevery y € Y,

(b) PE“pPym < pye”form<e,

(c) if y € Y and n € Y then Dom(g,,) = Dom(p,,) and for each g €
Dom(gy,¢) we have g,¢(8) = pye(B) | viyy hence m < £ = gym < qye
and Dom(g;) = Dom(gy.) N vy and for each B € Dom(q,) we have
(gr.e(B) [ vp = qe(B) som < £ = gm < qu,

(d) if v;™(i) < n; € domy(y m(s) for i = 0,1 then p, 441 forces a value to
cfay:n €y}
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For £ = 0 there is no problem. For £ + 1 choose 77§, #* such that v;"(i) < 5¢ €
domy(,) ym(«) fori = 0,1and {#§, n%}/e*isnotasingleton andlet y, = {10, 71 }.
As Pyt € Piiye by the choice of %, 5.1 thereis pl, € Py(,,) 4.1 above py, 4,
which forces a value to ¢(¢(y;)). For p e Pandu C Alet g = p 1 u means
Dom(p) = Dom(q) and # € Dom(p) = q(p) = (p(B)) I u.
Now we define (p,s41: y € Y,,):
if y € Yy, then py i1 = OPy, (p%,)-
So necessarily
(%)1 if y” # y" € Y,, then pyrp11 1 vg = pyres1 | g is above (by <p) go,
(%) if ' # y" € Y,, and y' N y"” # ( then for some # € doms we have
y'ny" ={n}and py e411 vy = Pyre+1 1 vy is above gye.
[Why? Asiflety’ = {ny.n}, " = {ng.n{'}.ve (i) < nj.n) fori =0,1
then either ny = ¢, y' N y" = {ny} or n; = n,y' Ny" = {n;} but
ny # ny & n} # nf. Now use the properties from 3.1 and clause (iv)
above.]
Let gpoy = pf;” 1 vp. The gy ¢ is defined as g, 011 = Py yry.e41 1 Vi) for
i=0,1ifve"(i) In; & {ng, m} € Yy,
Let gy¢+1 be the result of free amalgamation (i.e., Case 2 of Definition 2.4)
in each coordinate § of g, , and gg ¢4 if 7 € doms A (v, < %) and 5 € doms.
Let py¢+1 be the result of free amalgamation (i.e., Case 2 of Definition 2.4)
in each coordinate (twice) of py.e, gyiy.e415 gmye+1 if ¥ = {no.m} € Y\Y,,.
Of course, putting two conditions together using Case 2 of Definition 2.4,
not repeating colours except when absolutely necessary.
Lastly, let p* be such that Dom(p*) = dy,) and for each f € 4},

" (B) = U{uP: y € Y
if uPrx(B) is not defined, it means ()
i (B) extend each P B) otherwise is 1-to-1 with new values.

So p* > p* forces that {ay, : 7€ domy(,) (.} exemplify s = (domy(,) m(x)- €) €
ID(f), a contradiction. Oss

3.4. THE EXAMPLE CLAIM. Let n(x),£(x), A be as in Definition 2.4. Assume

(a) (dome(*),m(*), e*) (S IDZ(*),

(b) T C 1D},

(¢) if's € T thens is (2!®m(x))-nice,

(d) P=Pf,

(e) c is the P-name U{c?: p € Gp},

(f) £(x) > n().

Then l-p “c is a function from [A1* to u exemplifying (domy(,) m(x), €*) does not
belong to ID,(A, u)”.
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ReMARK. The proofis similar to [GcSh:491].

Proor. So assume toward contradiction that p € P and o; < A fory €
domy,) »(x) are such that p forces that # — q, is a counterexample, i.e.,
(ay: n € domy(,)m(,) is With no repetitions and p forces that t1e*t, =
c({ay:n € 11}) = c{ay: n € 1,}). By 2.5(2) without loss of generality
{aﬂ: ne doml(*),m(*)} Cu?.

Let Y = Y,» = {y: y € Dom(e) and y/e is not a singleton} and for
v et®>21et Y, = Yier = {{no.m} € Yex: v (i) < y; fori = 0,1} asin
the previous proof. We now choose by induction on £ < n(*) the objects
7e, Ve, Zp and first order formulas ¢, (x, yo,...,ye—1), <f,o ..... et (x,y) in the
vocabulary of M} such that:

X (a) ve € £2,7p € domy() (s and M = (FSNew—2x )0y (x, g, - . ., Oy, ),
(b) <&+, is a well ordering of {x: M} |= ¢elx, apy, ..., 0,1}
of order type a cardinal < R,,(,)_,,
(©) vo= ()0 =[x=x],
(d) ves1 = (me 1£)"(1 —1¢(€)) and v <7,
(€) Ze = {n: ve <1 € domy(,) m(x) and {75,7} € e, for
| s=0,1,...,0—1},
() n € Zy = oy € {B: M = pulB, ... g, 1}
(g) #e is such that:
(@) ve <ime € Zy,
(B) ifve <1 € Z, then o Sﬁ'm

(See similar proof with more details in 4.3).

Let v = v, Z = Zyw), Z1 = {me: £ < n(x)} U Z; note that by Defi-
nition 1.3(1), clause (b) and Definition 2.1 we have |Z| > 2, i.e., this is part
of (domy(,) n(«), €*) being O-nice. For v € {v;: £ < n(x)} let s, be such that:
piNpr=v&p1,p2 € {ne: £ <n(x)}UZ = s, = c{a,,, a,,} (clearly exists).
By Case 0 in Definition 2.4, without loss of generality

u? ={ay:neZ*},

that is, we may forget the other o € u?; by claim 3.2 we have p € ]P’é so for
some k we have r € IP’,AC’Q.
So we have
B (ne: £ < n(*)),Z Z*, (vp: £ < (%)), (sy,pe: £ < n(x)) and p are as above,
that is
(@) 7e € domyiy my,vo = (overr = (e [ €)1 — ne(€))), Z =
{p € domy(y m(x): Vux) < p and {ne,p}/e is not a singleton for
each £ < n(x)} hence |Z| >2and Z* = Z U {n,: £ < n()},
(i) p e P,
(i) ay €uP forne Z*,
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(iv) (ay: 7 € Z*) is with no repetitions,

(v) ¢? | {ay: n € ZT} satisfies:
if¢<n(x)andve ZU{n:L<t<n(*)}sonNv=rn!|£then
(o # ay, and) c({av’ aﬂe} = Sne e

(vi) {ay:n € Z} C clo{ay,: £ <n(x)},

(vil) Z has at least two members.
Among all such examples choose one with £ < @ minimal. The proof now
splits according to the cases in Definition 2.4.

Case0. k£ =0.
Trivial.

Case 1. Let p1, a be as there, so recall that {a, f}e?' {a’, f'} = {a,f} =
{a’, B’}. Hence obviously, by clauses (v) and (vii) above, n € Z* = o, # a,
so {a,:n € Z*} C uP, contradicting the minimality of k.

Case2. Let p; = (u,¢;) € Uy BY? for i = 1,2 be as there. We now
prove by induction on £ < n(x) that a,, € up Nu;. If £ < n(x) and it is
true for every £’ < £, but (for some i € {1,2}), a, € u;\u3_;, it follows by
clause (v) of H that the sequence (c({r¢,v}): v € Z;) is constant where we let
Z; = {Ne+1:Me425 -+ - My(x)—1} UZ, hence {a,: v € Z;} is disjoint to uz—;\u;,
so{a,: v € Z*} C u;, so we get contradiction to the minimality of k.

As {ay,: £ < n(¥)} C up N uy necessarily (by clause (vi) of ) we have
{aviveZy, )} Cclofay: £<n(x)} CcloluzNu). But {on:v € Zy 1} C
up Uuy by A(iii), and we know that cfo(u; Nuy) N (uaNuy) C uy by clause (d) of
Definition 2.4, Case 2 hence {a,: v € Z§} C u contradiction to “k minimal”.

Cask 3. This case never occurs as p € ]P’ﬁ‘w. 04
3.5. THEOREM. (1) Let n(x) = 4 (or just n(x) > 4), 1 = R, £(x) =
n(x) + 1 and 2% = Ry, for £ < n().
For some c.c.c. forcing P of cardinality 1 in VP the pair (A, Xg) is not
No-compact.
(2) For given y = y™ > A we can add VF |= “2®0 = 5.

Proor. (1) LetT, = {s € ID’;(*): s is n-nice}, see Definition 2.1, clearly
It CT,and T, #0 (see 1.5) forn < w and § = (., T and let P, = P{.
and let ¢, = U{c?: p € Gp,}, it is a P,-name and P is [, P, with finite
support. Now the forcing notion [P satisfies the c.c.c. as P, satisfies the Knaster
condition (by 2.5(1)). By 3.4 we know that I- “ID;(c,) N IDy,) C I'y”
for P, hence for P, in fact it is not hard to check that equality holds. If No-
compactness holds then in V¥ for some ¢: [A]2 — « we have IDy(c)N Dy, C
N, I'» = 0 by claim 1.4.

But VF | if ¢ : [A]> — o then by 3.3(2) it realizes some s € U{T,: n < 0} C
ID;(*) (even k-nice one for every k < w).

Together we get that the pair (4, Rg) is not Ro-compact.
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(2) Welet Q be adding y Cohen reals, i.e., {h: A a finite function from y to
{0, 1}} ordered by inclusion. Let P be as above and force with P =P x Q,
now it is easy to check that P* is as required. Oss

§4. Improvements and additions. Though our original intention was to deal
with the possible incompactness of the pair (X;, Ro), we have so far dealt with
(4,Ro) where 2™ > A = R,y & n(x) > 4. For dealing with (X3, Ro), (R, Ro),
that is n(*) = 3,2 we need to choose M more carefully.

What is the problem in §3 concerning n(x) = 27

On the one hand in the proof of 3.4 we need that there are many dependencies
among ordinals < A by M'; so if A is smaller this is easier, but really just make
us use larger £(x) help.

On the other hand, in the proof of 3.3 we use 3.1, a partition theorem,
so here if A is bigger it is easier; but instead we can use demands specifically
on M;. Along those lines we may succeed for n(*) = 3 using 3.1(2) rather
than 3.1(1) but we still have problems for the pair (R,,Xg); here we change
the main definition 2.4, in Case 3 changes (v,: y € Y*), i.e, for # € dom
we have va}, v{'”} instead vy,y. For this we have to carefully reconsider 3.3,
but the parallel of 3.1 is easier. Note that in §2, §3 we could have used a
nontransitive version of ¢ (—).

4.1. DEFINITION. We say that M* is (A, < u, n(x), £(*))-suitable if:

(a) M* is a model of cardinality A,

(b) Ais > pu, < p™™) and n(x) < £(%) < o,

(c) T+, the vocabulary of M*, is of cardinality < u,

(d) for every subset A of M* of cardinality < u,
the set cfys- (A) has cardinality < u,

(e) for some m* < w we have:
if s = (domy,) ., e) € IDj, and a, € M* for n € domy,),, and s is
m*-nice, m >m*,
then we can find (77,: £ < n(*)) and (v, : £ < n(x)) such that
(a) Me € doml(*),m:

(B) vo = ()i ves1 = (me 1 £)°(1 = n2(8)),

(y) ve <ime,

©0) Zz={pe domy,) ., : Vy(+) <p and in the graph H[e], p is connected
toneforl =0,...,n(x) — 1},

() {ap: p€ Z} C cly{ay,: £<n(*)}.

4.2. DerINITION. (1) We say that M is explicitly! (A, < u,n(*))-suitable
if
) M* is a model of cardinality A,

(a
(b) A= ptn®,
(¢) tar+, the vocabulary of M*, is of cardinality < u,
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(d) for A C M* of cardinality < u, the set ¢y« (A) has cardinality < u
and A Z DA u >Ry = w C cly-(A4),

(e) for some (R;: £ < n(x)) we have
() Ry isan (£ + 2)-place predicate in 7,7+ ; we may write

Re(x,9,20,..,20-1) 88 X <zp.z0_, Y OL X <(z 7 1y Vs

(B) for any cy,...,co—1 € M*, the two place relation < oot
(ie, {(a,b): (a,b,cq,...,co—1) € RM"}) is a well ordering of
Aco ..... oy —- A(co ..... cg_|> = {b (Elx)(x <cgyeenCot bv

b <e....co_, x)} of order-type a cardinal,
(y) R} is a well ordering of M* of order type A,
(8) if ¢ = (cp: £ < k) and <; is a well ordering of 4; of order
type u*" then for every ¢y € M} we have Az, = {a € 4;:
a <; ¢} sois empty if ¢ ¢ Ag, so if Ig(¢) = n(x) thisis a
definition of 4z (,) as it is not covered by clause (8)
(6) if ¢ = (co: £ < k) € ¥(M*) and |4;z| < u then A; C cly ().
(2) We say that M is explicitly? (1, < u, n(x))-suitable if:
(a)—(d) asin part (1),
(e) for some (R;: £ < n(x)) we have (like (¢) but we each time add z’s
and see clause ())
() Ryisa (2¢ + 2)-place predicate in 7,; we may write

Rg(x, Y, 20,... aZzZ—l) OF X <gz,.zpe1 Y OT X <(z5,...20_1) V>

(B) for any cq,...,c—1 € M* the two-place relation <, c,_,
(ie, {(a,b): (a,b,co,...,co—1) € RM"}) is a well ordering of
Aco..cns = Acy,...cnr_,) = 1b: forsomea, (a,b,co, ..., cn-1) €
R,f,”* or (b,a,co,...,c—1) € RY},

(y) RY " is a well ordering of M* of order type A; for simplicity
RV =c 1A,

(8) if ¢ = (ce: £ < 2k) and <; is a well ordering of A4; of order
type u*™ then for any cy, cory1 € M* we have Az, cy,,) 1
empty if {cax, cox+1} € Az and otherwise is {a € 4;: a <z ca
and a < ¢y41}. If k = n(x) this is a definition of Az.

<c2k,02k+l) :

4.3. OBSERVATION. (1) If M is an explicitly! (A, < u, n(x))-suitable model,
then M is a (A, < u,n(*) + 1, £(x))-suitable model if £(x) > n(x) + 1.

(2) If M is an explicitl?* (A,< u,n(x))-suitable model, then M is a
(A, < u,2n(x) + 2,2n(x) + 3)-suitable model.

ProoF. (1) Straightforward, similar to inside the proof of 3.4 and as we
shall use part (2) only and the proof of (1) is similar but simpler, we do not
elaborate.

(2) Clearly clauses (a)-(d) of Definition 4.1 holds, so we deal with clause (€).
So assume £(x) > 2n(x) and s = (domy,) .. €) € D}, and o, € M for
n € domy,) ,, are pairwise distinct. We choose by induction on £ < n(x) the
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objects 72¢, Vao+1, Zae, N20+1> Vae+2, Z2e+1 such that node v, = () and vyp4 is
chosen in stage £
X (a) Ve € 22, e € domg(*),m(*) and M '——— (ESN("(*)—ex)L,Dg (x, Qs - - ,a,m_l),

e . .
(b) ey, 15 @ well ordering of

A(aq0,~-~,au—1) = {X: M }= pelx, Aoy e e e ’am—l]}
of order type a cardinal < R,,(,)_,
) Vo= (), 0 =[x = x],
(d) verr = (me 1 £)°(1 —n4(£)),
) Zy = {n: vy <n € domy(, (s and {ns,n} € e, fors =0,1,...,
-1},
) nezZy=ae A(a,, : k<2e)>
(g) #e is such that:
(@) v <AMe € Zy,
(B) ifve <Ay e Z,

then [£ even = oy <q,,...ay,_,

ay]and [€ odd = o, < ay,].
How do we do the induction step? Arriving to £ we have already defined
(vkt kb < 28), (i k < 2¢) and (Z: k < 2¢), recalling vp = (). So by
the definition of Z; also Zy, is well defined and {a,: 7 € Zy} is included
in A, : k<2ey and let m2e € Z be such that # € Zy = aq, lay, : k<2t) Gz
and vapy1 = vae (1 — 720(2£0)) = (m2e | (2£))°(1 — 120(2€)) 50 Zg1 is well
defined. Let #2041 € Z2e41 be such thaty € Zy = a, < ay,,,, and vy =
v20+17(1 — 72041(2€ + 1)) and we have carried the induction. O.s
Are there such models? We shall use 4.4(2), the others are for completeness
(i.e., part (3) is needed for A = N3 and part (4) says concerning A = ¥; it
suffices to use ID3):
4.4, OBSERVATION. (1) For u regular uncountable, there is an explicitly!
(ut?, < p,2)-suitable model.
(2) If u = Ro, then there is an explictly? (u*?, < u,2)-suitable model.
(3) If u is regular uncountable,t = 1 or u = Ng & t =2 andn € [3, ), then
there is an explicitly' (u*", < u, n)-suitable model.
(4) If2% = Ry, u = Ry then for some Ry-c.c., Ni-complete forcing notion Q of
cardinality X, in V@ there is an explicitly (R,, < Ry, 2)-suitable model.

4.5. REMARK. (1) It should be clear that if V = L (or just —0%), then this
works also for singular x4 but more reasonable is to use nontransitive closure.

ProOF (1), (2). Let t = 1 for part (1) and ¢ = 2 for part (2). Let n(x) = 2
and A = u*2. We choose M,, by induction on a < A such that:
(@) M, isat~-model where = = {Ry, Ry, Ry} with Ry is (£ + 2)-predicate
and x <; y means Ry(x, y, Z),
(B) M, is increasing with o and has universe 1 + a,

(y) Ry=is <! a (and A’(”; =a),
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() for ¢ € *(M,),k = 0,1,2 we have <; is a well ordering of Aé”“ =
{a: M, E (3x)(a <; x Vx <z a)} of order type a cardinal <
1K)

() () ift=1,6 €¥(M,),k=0,1,2andd € 4=

then Agfgb ={aca¥: M, Ea<;d},
(i) ift =2, € *(M,),k = 0,1,2and dy, d; € AY=
then A]E‘{gdo,dl) ={acA¥ M, =“a<:dy & a<d’},

(¢) if A4 is a subset of M, of cardinality < u

then c£;, (4) is of cardinality < u and c£j;_(cly; (A4)) = cljy; (4) where

X for A C Ma/,céj’([a (4) is the minimal set B such that: 4 C B

and (V¢ € ¥B)(|4¥~| < u — 4; C B); clearly B exists and
cly (0) =0,

(n) forevery f < o,k = 1,2 and ¢ € ¥(Mjp) we have 42= =

(@) if A C B < o then by, (4) = ct3; (4),

(1) ift =2and u = Rgand 4 C « is finite, B is the last element in 4, then
for some finite B C 8 we have cfy; (4) = {f} U iy, (B).

My
c

We leave the cases @ < u and o a limit ordinal to the reader (for (¢) we
use (0)) and assume & = f + 1 and M, for y < B are defined. We can
choose (Bp;: i < u*), a (not necessarily strictly) increasing sequence of
subsets of 8, each of cardinality < u, Bgo = 0 and U{Bg;: i < u*} = f and
cliy, (Bpi) = Ba.

For each i < u* let (Bg;.: € < u) be (not necessarily strictly) increasing
sequence of subsets of Bg; with union Bg; such that ch(Jp (Bpic) = Bpes
Bgo = 0. Let <j be a well ordering of {y: y < f} such that each By,
is an initial segment so it has order type u*. For y € Bg;.1\Bg; let <py
be a well ordering of Al = {&: ¢ <p y} of order type < u such that
(Ve < u)(Bp,it1,e N Afp,, is an initial segment of Afp ) by <,

Now we define M,,:

universe is o
Rg'"’ =<l a

Casel. t =1.

RM= = R U{(a,b,B): a <} b}

RY® = ng” U{(a,b,B,y): y < B,and a <j,bhencea<jy &b <jy
and a,b € Bg; for the unique i such that y € Bg;1\Bg,;}.

CASE 2. tM= 2.
R¥= = R U{(a,b,B.7):
- a<jbanda<yb<yand, of course,a,b,f € al.
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R = Ry U{(a,b, B30, fr.71): @.byyo. B € aand a < B,
b < ﬁ,a < yO,b < Y0,
a,b, P1,y1 € A<pyo> and

a<p, banda<y,b<n}

To check for clause () is easy if u = cf(u) > Ro and follows by clause (1)
if 4 =No.

Having carried the induction we define M: itis M expanded by (FM: i < p)
such that: if ¢ € ¥4 = ¥(M,) and 4; is a non empty well defined and of cardi-
nality <  (which follows) then {FM(¢): i < u} list A<cy e, ,c,> U{0} otherwise
{FM(¢): i < u}is {0}.

(3) Similar and used only for (X3, Rg) so we do not elaborate.

(4) Let Q be defined as follows:

p €Qiff

(o)) pisat~-model, asin (o) of the proof of part (1),
(B) the universe univ(p) of p is a countable subset of A, we let Af y =
univ(p),
(y) R§ =<! univ(p) and <(y= R{,
(6) if ¢ € *(univ(p)),k = 1,2 then <;=<Z is a well ordering of 4% =
{a€p:pE 3x)a <z xVx <;a)and for d € AL we let
AL, ={acAdl:a<id},
(¢) (AZ,<;) has order type w if k = 2,
(¢) if A C univ(p) is finite, then c£,(4) is finite (is defined as in(2)).
the order:
QEp<qiff
(i) pisasubmodel of g,
(i) if ¢ € 2(univ(p)) then A2 = A%,
(iii) if ¢ € !(univ(p)) then 47 is an initial segment of 47 by <.
The rest should be clear. O e
4.6. CLAIM. Assume (main case isn(x) = 2)
(¥) 2< n(x) <o, 4 =R, L(x) =2n(x) + 3and A < x = y™.
Then for some P* we have
(a) P* is a forcing notion of cardinality y,
(b) P* satisfies the c.c.c.,
(c) inVE the pair (Ryy(x)» No) is not compact,
(d) inV®" we have 2% = .

RemMARK. We intend to prepare a full version.

ProOF. We repeat §2, §3 with the following changes.
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If n(x) > 3, we need change (A) below and using 3.1(2) instead of 3.1(1).
For n(*) = 2 we need all the changes below
(A) we replace M; by any model as in 4.4(2) if n(x) = 2, 4.4(3) if n(x) > 3,
(B) in Definition 2.4, Case 3: we add (vfﬂ}, vy i€ domy(,) ), vy vy
(d) () vy2oubrforyey,
(i) if 711 <iex 712 <1ex 773 are from domy,) ,, and {n1,m2}, {n1. 13} €
Y, then

—
Vimm} VVmms} = Uy >

(iii) if 71 <iex 772 <1ex 713 are from domy(,) ,, and {n1,73}, {n2. 13} €
Y, then

Vimm} O Vinans} = Uy

P{nms} 1 Uﬂ_ = P{m.mns} Tv

(iv) Vi) = 'U,_;_ Uv,,

(v) if m # 72 then v Nvf = v and vy, N, = vy,

(vi) if 71 <iex 712 <tex 712 are from dom[(* Yms then p vy € UiPr,
(e) if 71 <iex 772 are from domg(* andt ={m,m} ey

then cl(v) NV 3 =01, cé( V) N Vg m} = Uy,

if {’71 772} € Y” € doml(*)m \{1 ’71}

then c£(vE) Nvgy, 4,y C Vi,
(f) the functlons (cP1: n € y) are pairwise compatible,

(C) in3.1

(@) 4> ("), u=p<*, (VA € [M]#)(|ctu(4)] < p),

(b) the conclusion: change as in Definition 2.4, Case 3,

(c) proof:

Casel. u=Np: letg: [A? » wbeg(t) = |cly(a,t Uw,)| < o.

Let W) € [A]*" be such that g | [W]? is constant say k(x) and f | [W]? is
constantly y. Let cla(¢) = {{10: £ < g(¢)}. By Ramsey theorem, there is an
infinite W C W such that:

® thetruthvalueon (s, g,}.6; = {{a.p}.0, depend just on £y, £, T.V.(av;, B;),

TV(ﬂJ < a,-) fori,j € {1,2

The conclusion should be clear.

(D) p in the proof of 3.2: only Case 3B need care, assuming m (%) > 2[u?" |,
the relevant subgraph has no cycle by clause (e) of Case 3 of 2.4 we are
done,

(E) in the proof of 3.3, we will have q;,f ¢>d,¢ With domain C v, ,v," re-
spectively and ¢/ ,g, such that if #1 <ix 72 and {51,772} € Y then
Pimaye | ’UJZ = 61,;“,,@ and pgymye [y, = 'y and q,',f 0>y ATE compat-
ible, ¢,5, [vg =4;.4,, Tvo =4, ,

(F) 3.4: part of the work has already been done in 4.1-4.3.
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§5. Open problems and concluding remarks. We finish the paper by listing
some problems (some are old, see [CK]).

5.1. QUESTION. Suppose that A is strongly inaccessible, 4 > Ny is regular
not Mahlo and OJ,. Then A — u in the A-like model sense, i.e., if a first order
v has a A-like model then it has a u-like model.

If A is w-Mahlo, the answer is yes, see [ScSh:20] by appropriate partition
theorems. The assumption that 4 is Mahlo is necessary by Schmerl, see [Sc85].

5.2. QuesTioN. (Maybe under V = L.) Suppose that A7=*) = } and
A = A1 > k1. Then (A*, 4, k) — (AF, A1, &1).

5.3. QuesTioN. (GCH) If A and u are strong limit singulars and 4 is a limit
of supercompacts, then (A", A) — (ut, u).

5.4. QuEsTION. Find a universe with (3, (Rg), ¥g) — (221, ) for every A.

(The author has a written sketch of a result which is close to this one. He
starts with Rg = k9 < K1 < - -+ < K, which are supercompacts and let P, be
the forcing which adds &,,; Cohen subsets to &, in VEo*Pi-Pri for n < m.
The idea is using the partition on trees from [Sh:288, §4]).

5.5. QUESTION. Are all pairs in the set
{(p): 2 =p* & p=p<* & p+® <A <2V}

such that there is u*-tree with > u* branches, equivalent for the two cardinal
problem? More related to this particular work are

5.6. QUESTION. (1) Can we find #n < w and an infinite set I'* of identities
(or 2-identities) such that for any I' C I'* for some forcing notion P in V¥ we
have I' = I™* N ID(X,, Ro).

(2) In (1) we can consider (4, ) with u = ™, A = u*", so we ask: can we
find a forcing notion P not adding reals such that for every I' C T™* for some
u=pu<#wehavel = I™* N ID(u*", u).

5.7. QuesTioN. (1) Can we get results parallel to 3.5 for (R, ¥;) 428 > X,
(so we should start with a large cardinal, at least a Mahlo).
(2) The parallel to 5.6(1),(2).

5.8. QUESTION. (1) Can we get results parallel to 3.5 for (Ry41, Ne) +
G.C.H. (or (u*, ), u strong limit singular + G.C.H.
(2) The parallel to 5.6(1),(2).

5.9. QuesTiON. How does assuming MA + 2% > R, influence ID(X,, ¥o)?
(see below).

We end with some comments:

5.10. DerFiNiTION. (1) For k& < N, we say (4, u) has k-simple identities
when (a,e) C ID(A, u) = (a,e’) € ID(A, u) whenever:
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() @ C w,(a,e) is an identity of (1,u) and e’ is defined by be'c iff
|b] =|c| & (Vb’,c’)[b' Cb&|b|<k & c'=O0P.,(b") —»b’ec']
recalling
OP,p(a)=pifa € 4 & p € B & otp(a N A) = otp(8 N B).

511. Ctam. (1) If (A1, m1) has k-simple identities and there is f:
[A2]5% — pasuchthat ID<i(f) € ID<k (A, 1), then (Ay, pr) — (A4, ).

(2) If eflh1) > , then we can use f with domain [11]S*\[A;]1=).

Proor. Should be easy.

5.12. Cram. (1) [MA + 2% > R,]. The* pair (R, Ro) has 2-simple iden-

tities.

(2) If p = p=# and y < w then for some u*-c.c., (< p)-complete forcing
notions, P in V¥ we have 2¢ > u*’ andn <y & n < w = (4™, u) has
2-simple identities.

(B) Ifm<n<w,u=pu<* then[ut", u*™) has (m + 2)-simple identities in
VT for appropriate u*-c.c. (< p)-complete forcing notion.

Proor. (1) For any c: [R,]<® — w we define a forcing notion P = P, as
follows:

p € Pift:

(@) p=(u, f) =, f7),

(b) u is a finite subset of X,

(c) f is a function from [u]? to w,

(d) ifk < wk >2and o < --+ < a,_1 are from u, fo < -+ < Pr_1
are from u and [¢(1) < £(2) < k = f({eeq), 2o }) = £ { By oy D]
then C({ao, . ,ak_l}) = C({ﬁ(), cees ﬁk—l})-

The rest should be clear.

(2), (3) Similar (use e.g., [Sh:546]). Osi
We can give an alternative proof of [Sh:49], note that by absoluteness the
assumption MA is not a real one; it can be eliminated and (u*?,u) —'
(2%, Rg) can be deduced.

5.13. CLAIM. Assume MA + 2% > R,,.

Then (Rq, Rg) — (2%, Rp).

PROOF. Let {7,: a < 2%} list 2, and define f: [2%]? — “>2 by:

(%) f{ao, a1} =1, N1y € ©>2 for ap # o.
So by 5.11, 5.12 it is enough to prove that ID,(f) C ID;(R,, Ro).
Clearly
(x); if A < 2%, (u,e) € IDy(A,Np) then (u,e) € ID,(f | 1) hence (u,e) €
ID;,(f) hence for some n, (1, €) can be embedded (in the natural sense)
into ("2, e}) where ({n1,72}e}{v1,v2}) = (i) N2 = vi Ny).

4Of course the needed version of MA is quite weak; going more deeply in [Sh:522].
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So it is enough to prove
(¥)2 ("2, e;) € IDy(u", ).
We prove this by induction on #.
n = 0: Trivial.
n+1: Letc: [ut"*1]? — u, choose M < (#(u*"*?), €) of cardinality u*"
suchthat u™ +1C M,c € M,soletd = M Nu*™.

Define ¢,: u*" — p by cx{a, B} = (c{a, B}, c{d,a},c{s,B}) fora < f <
u*". By the induction hypothesis there is a sequence (f,: n € "2) of distinct

ordinal < *" such that {11, 72} € {n1.v2} = cu{By- Bin} = cn{n. fin}-
Let

A={y<u™':y ¢ {By:ne"2}and
for every # € "2 we have c{B,,7} = c¢{B,.9}}.
Clearly A € M and 6 € 4 so A ¢ M, hence necessarily |4| = ™. So
by the induction hypothesis we can find a sequence (y,: # € "2) of distinct
members of 4\ such that
{m.m2}es{vi.v2} = c{vpnvm} = c{vw. v }-
Now we define
o — Bin(i+0): <y if7(0) =0,
" Yin(140): e<ny i 7(0) = 1.

It is easy to check that (o, : 7 € "*12) is as required. Osis

We further can ask:

5.14. QuUEsTION. Assume I'; C ID* for i < i*,Pis II{PL : i < i*} with
finite support, ¢: [R,,]> — @ in V¥ then ID(c) is not too far from some
Uieoli»w C i* finite.

5.15. DiscussioN. We can look more at ordered identities (recall)

(%)1 for ¢;: [A]™ < u let OID(c) = {(a,e): a a set of ordinals and there
is an ordered preserving f: a — A} such that bieb, = c¢{f" (b)) =
c(f"(by)) and OID(A,u) = {(n,e): (n,e) € OID(¢) for every
c: [A]<® — u, and similarly OID,, OIDy.

Of course,

(x)2 ID(A, u) can be computed from OID(A, u).
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