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Abstract. We will answer a question raised by Emmanuel Dror Far-
joun concerning the existence of t6rsion-free abelian groups G such that
for any ordered pair of pure elements there is a unique automorphism
mapping the first element onto the second one. We will show the exis-
tence of such a group of cardinality A for any successor cardinal A = /i+

1. Introduction

We will consider the set pG of all non-zero pure elements of a torsion-free abelian
group G. Recall that g € G is pure if the equations xn — g for natural numbers
n ^ 1 have no solution x € G. Clearly every element of the automorphism group
Aut G of G induces a permutation on the set pG and it is natural to consider groups
where the action of Aut G on pG is transitive: for any pair x, y e pG there is an
automorphism tp € AutG such that x<p = y. In this case we will say that G is
transitive, for short G is a T-group. (Transitive groups are A-transitive groups in
Dugas, Shelah [5]). This kind of consideration is well-known for abelian p-groups.
It was stimulated by Kaplansky and studied in many papers, see [14, 15, 1] for
instance. If G is a free abelian group with two pure elements x and y, then there
are two sets X and Y of free generators of G such that x t X and y £ Y. We
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272 R. Gobel and S. Shelah

can chose a bijection a: X —> Y with xa = y which extends to an automorphism
a G AutG. Hence free groups are T-groups and a similar argument holds for a
wide class of abelian groups. There are T-groups like ZN l/ZlN ll with Z'NI! the set
of all elements in ZN] of countable support, which are Ki-free but not separable,
see Dugas, Hausen [4]. The existence of Ni-free, indecomposable T-groups in L for
any regular, not weakly compact cardinality was also shown in Dugas, Shelah [5,
Theorem (b), p. 192]. This was used to answer a problem in Hausen [11], see also
[12] and [5, Theorem (a), p. 192].

Thus we may strengthening the action of Aut G on pG and say that G is a
U-group if any two automorphisms <p,tp' € AutG with gtp — gtp' for some g e pG
must be the same <p = <p'. Hence G is a UT-group if and only if G is both a T-group
as well as a U-group. Thus G is a UT-group if and only if Aut G is transitive and
(every non-trivial automorphism acts) fix point-free on pG. In connection with
permutation groups such action is also called 'sharply transitive'. Note that pG
may be empty, if G is divisible for instance. In order to avoid trivial cases we also
require that 0 ̂  G ̂  Z and G is of type 0, hence G is torsion-free and every element
of G is a multiple of an element in pG. If G is of type 0 and not finitely generated
then |pG| = |G| is large and the problem about the existence of UT-groups becomes
really interesting. This question is related to problems in homotopy theory and was
raised by Dror Farjoun. In response we want to show the following

Theorem 1.1. For any successor cardinal X — p,+ with p, — p?° there is an Hi-/ree
abelian UT-group of cardinality A.

We will also determine the endomorphism rings of these groups. They are
isomorphic to integral group rings R — ZF of groups F freely generated (as a non-
abelian group) by A elements (with A as in the theorem). Since endomorphisms
of a group G will act on the right (in accordance with used results from [9, 10]),
we will also view G as a right ^-module (and as a left or right Z-module). Using
classical results on group rings it will follow that AutG = ±F, where — 1 e Z is
scalar multiplication by —1, hence ±F is a direct product of a group of order 2 and
F. Moreover ZF has no idempotents except 0 and 1, hence G in the theorem is
indecomposable and obviously the center of ZF is just Z, hence Z is also the center
of EndG. Therefore Theorem 1.1 strengthens the Theorem in Dugas, Shelah [5,
p. 192] substituting T-groups by UT-groups and removing the restriction V = L

to the constructible universe. Also note that it is straightforward to replace the
ground ring Z by a p-reduced domain S for some prime p. Hausen's [12] problem
can be answered also in ordinary set theory. Further applications can be found in
kjCCiiion u.

First we would like to explain why constructing UT-groups is a hard task, much
harder then finding suitable T-groups. Because R+ above is a free abelian group, we
can easily find groups G with R = End G, see [3, 2]. But there are still two obstacles
which must be taken into consideration.' Often |.R| < |G| in realization theorems,
thus the units of R which represent AutG will never act transitive on a bigger
group and G can't be a T-group. More importantly, inspecting the constructions
in [3, 2], it is clear that they provide no control about the action, thus both U and
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Uniquely Transitive Torsion-free Abelian Groups 273

T for UT-groups are a problem. Note that in many earlier constructions G has a
free dense and pure .R-submodule of rank > 1 mostly of rank \G\. But T-groups
must obviously be cyclic over their endomorphism ring R, hence [3, 2] do not apply
in principle. Inspecting the proof in [5] it is easy to see that G is not torsion-free
over its endomorphism ring. This comes from the list of new variables x,y,... added
to R in the construction in order to make R acting transitive on all pairs of pure
elements. Even refining the list of pure pairs in [5] it seems hard to avoid clashes
of related pairs such that x — y for example has a proper annihilator. Thus the
groups in [5] are T-groups and not UT-groups (even modifying the arguments).

Thus a new approach is need, which will be established in Section 3. We will use
a geometric argument choosing carefully new partial automorphisms for making G
transitive but with very small domain and image in order to preserve the U-property
for the new monoid. Then we will feed the partial maps with pushouts to grow
them up and become real automorphisms without destroying the UT-property. At
the end we will have a suitable subgroup F of automorphisms of some group G,

thus G becomes an .R-module over the ring ZF =df R.
Finally we have to fit these approximations to ideas getting rid of the endo-

morphisms outside R, see Section 4. We need the Strong Black Box as discussed
and proven in terms of model theory in Eklof, Mekler [6, Chapter XIV]. Note
that this prediction principle is stronger then (Shelah's) General Black Box, see
[2, Appendix]. The Strong Black Box is also restricted to those particular car-
dinals mentioned in the theorem. However, here we will apply a version of the
Strong Black Box stated and proven on the grounds of modules in ordinary, naive
set theory, which can be found in a recent paper by Gobel, Wallutis [10], see also
[9]. In order to show End G = R well-known arguments for realizing rings as en-
domorphism rings must be modified because the final ring and its action are only
given to us at the very end of the construction: We will first replace the layers
Ga from the construction by a new filtration only depending on the norm. Note
that the members of the new filtration of the right .R-module G must be right Ra-
submodules for suitable subrings Ra of R to have cardinality less than \G\. But
they are still good enough to kill unwanted endomorphisms referring to the predic-
tion used during the construction. Moreover note that the two tasks indicated in
the last two paragraphs must be intertwined and applied with repetition. While
the final G is an Hj-free abelian group, hence torsion-free, it is not hard to see that
G is torsion as an -R-module: If 0 ^ g € G, then we can choose distinct elements
g',x,y £ pG such that ng' = g, and x — y e pG. Hence there are distinct unit
elements rx, ry, rxy e U(R) = ±F such that g'rx = x,g'ry = y,g'rxy = x + y. The
endomorphism rx + ry does not belong to +F, in particular it can not be rxy. Hence
r = rx + ry — rxy ^ 0 but g'r = x + y— (x + y) = 0 and g is torsion. It is worth not-
ing that the result can be strengthened under V = L, where we get strongly-A-free
groups of cardinality A as in Theorem 1.1 for each regular, uncountable cardinal A
which is not weakly compact. In this case the approximations in Section 3 can be
improved, replacing 'Hi-free' by 'free' at all obvious places. The main result of this
section will then be a theorem on free groups G with a free (non-abelian) group
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274 R. Gobel and S. Shelah

F C Aut G acting uniquely transitive on G. Also Section 4 must be modified: The
Strong Black Box 4.2 must be replaced by <0> following arguments similar to [3].

2. Warming up: Construction of a special group

We begin with a particular case of an old theorem and discuss extra properties of
the constructed group. Part of this proposition will be used in Section 3.

Proposition 2.1. Let K be a cardinal with KK° = K, F be a free (non-abelian)
group of rank < K and R = ZF be its integral group ring. Then there is a group G

with the following properties.

(i) G is an Ki-/ree abelian group of rank K with EndG = R.
(ii) G is torsion-free as an R-module.

(iii) Aut G = ±F
(iv) // (f e End G, then f is injective.

Proof. Note that the integral group ring R = IF has free additive group R+ with
basis F. We can apply a main theorem from [2] showing the existence of an Ki-free
abelian group G with End G — R. The free group F is orderable (i.e. has a linear
ordering which is compatible with multiplication by elements from the right), see
Mura, Rhemtulla [16, p. 37]. However note, that torsion-free groups may be non-
orderable, see [16, pp. 89 - 95, Example 4.3.1.]. The integral group ring ZF of
any orderable group F satisfies the unit conjecture, this is to say that the units of
R = ZF are the obvious ones, hence C/(ZF) = ±F, see Sehgal [17, p. 276, Lemma
45.3]. Moreover, any group ring which satisfies the unit conjecture also satisfies
the zero divisor conjecture, hence R has no zero-divisors, see Sehgal [17, p. 276,
Lemma 45.2]. Therefore R is torsion-free as an .R-module.

Now the remaining part of the proof is easy: Aut G = U(R) = i-F and if
0 7^ g 6 G, then g 6 (&R C G because G is also an tti-free .R-module by construction
in [2]. If we consider multiplication of g by some r € R on a non-trivial component
of g in this free direct sum, then r = 0 because R is torsion-free as an .R-module.
Hence G is torsion-free as an .R-module. Any ip G End G = R is scalar multiplication
by a suitable r & R hence injective because G is a torsion-free R-module. D

We will use Proposition 2.1 in Section 3. We get more out of it if we know that
a particular endomorphism is pure:

Lemma 2.2. Let F be the free (non-abelian) group and EndG = ZF be the
endomorphism ring of the Ki-/ree abelian group G given by Proposition 2.1. //
<p € ZF \ ±F, then <f> is a monomorphism and not onto. If Q ̂  (p e ZF, then f is
pure in ZF+ if and only if Imp is pure in G.

Proof. All endomorphisms of G in Proposition 2.1 are monomorphisms as shown
there. If ip e R = ZF = End G would be onto, then (p must be an automorphism,
thus if 6 U(R), which is ±F; and this was excluded.

We come to the last assertion. We shall write 0 ^ <p = r & R and suppose
that r = nr' (n ^ ±1) is not a pure element of R+. Note that nG / G, hence
Gr' =£ Gnr' and we can pick an element g e Gr' \ Gr which is mapped into Gr
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Uniquely Transitive Torsion-free Abelian Groups 275

under multiplication by n. Hence Gr is not pure in G. Conversely let r be pure in
R and consider any g G G such that gp £ Gr for some prime p. Hence gp = g'r

and by construction of G (just note that G is Ki-free as .R-module) there is h e G

such that g' e hR and hR is a pure subgroup of G. Hence also g £ hR and we
can write g — hrg,g' — hrg> which gives hprg = hrg>r and prg = rg>r because G

is R- torsion-free. Using that p cannot divide r by purity in R and that r, rg> are
elements of the group ring "LF we can write ry = r'p for some r' € R. Finally
gp = g'r = (hr'p)r, hence g = hr'r € Gr and Gr is pure in G. D

If we replace [2] in the proof of Proposition 2.1 by [3], then we can strengthen
Proposition 2.1 in the constructible universe L. We get a

Corollary 2.3. Let K be a regular, uncountable cardinal which is not weakly com-

pact such that OK holds and let F be a free (non-abelian) group of rank < K and

R = 1,F be its integral group ring. Then there is a strongly-K-free abelian group G

of rank K with EndG = R and properties (ii), (Hi) and (iv) of Proposition 2.1.

Recall that G is K-free if all subgroups of cardinality < K are free, and G is
strongly K-free if also any subgroup of cardinality < K is contained in a subgroup
U of cardinality < n such that G/U is «-free as well.

3. Growing partial automorphisms

Besides the set pG of pure elements of a group G we consider a particular subset
pAut G of all partial automorphisms tp of G. Here tp is an isomorphism with domain
Dom ip and range Im tp subgroups of G. The inverse isomorphism will be denoted
by tp~l. However note that <f~l is not the inverse of (p as a member of pAutG
because tpip~l — tp~1tp = 1 only holds if Domtp = limp = G. If we want to stress
this point, then we call (p~l a weak inverse element of tp. Surely 0 € Dom<£ but
it will happen often that (p ̂  0 but <p2 = 0 for partial automorphisms tp. Here we
denote with 0 the trivial partial automorphism with DomO = 0(= {0}).

Because we are working exclusively with Kj-free groups, we require that tp &

pAut G if and only if <p is a partial automorphism and G/ Dom tp, G/ Im <p are KI-
free abelian groups. The composition of partial automorphisms tp,ij) is again a
partial automorphism with Dom(tptp) = (Imip n Dom'0)<P~1 and range Im(tpip) =
(Imtp n Domifi)ijj. Thus products of partial automorphisms of G act naturally on
G as partial automorphisms and domain and range are well defined. If ip, tp £

pAut G, then we want to show that ip~l,tpip & pAut G. Hence it is enough to check
the freeness condition. If we replace ifr by i/>~1, then only domain and image are
interchanged, thus trivially ip~1 e pAut G. It remains to consider domain and range
of tpijj. Passing to an inverse, as just noted, it is enough to deal with
We already observed that

(3.1) Dom(tpip) = (Im'tp n Dom i
i

From ip e pAutG follows that GfDoimp is Ni-free, hence

Im </V(Im <p n Dom ip) = (Im ip + Dom ip)/ Dom ip C G/ Dom i
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is Ni-free. We apply tp l and (3.1) to see that Dom ip/ Dom(y>VO is Ki-free. More-
over tp € pAutG, and therefore G/Domcp is ttj-free, hence G/Dom(y>i/>) is Hj-free
as desired.

We arrive at our first

Lemma 3.1. The set pAutG of all partial automorphism tp of G with G/Domy>
and G/ Im ip both K! -free abelian groups is a submonoid of all partial automorphisms

with 1 = idc and —1 = — idc acting as multiplication by I and —1 respectively,
which is closed under taking (weak] inverses.

Moreover, if 3 C pAut G, then (3) C pAut G is the submonoid of all products
taken from the set {±1} U 3 U 3"1, where 3"1 = {ip~l \ ijj & 3}.

We begin with an observation which allows us to consider induced partial au-
tomorphisms on a factor group.

Observation 3.2. If U C G are abelian groups and (p £ pAutG with (Imy n
U)tp~l ^ U ana (Dom(p fi U)(p C U, then w induces a partial automorphism ip of
G where G = {g=g + U\g& G} taking ~g to ~g!p for any g 6 Dom (p. Moreover

Domip = Domtp and Imp = Im <p.

Proof. If g £ G and gy = 0 in G, then g<p = g' £ U and

g = g'v~
l e (Im (p n U)<p~l C [/,

hence "g = 0 and ip € pAut G. The other assertions are also obvious. D

In order to show Proposition 3.9 we relate elements of free (non-abelian) groups
and elements in pAut G. It is important to be able to work with elements of pAut G
acting on a partial free basis of G. To be precise, we will need the following definition
extending freeness frdm G to pAut G.

Definition 3.3. Let $ = {ipt \ t € u] C pAutG be a finite set of partial au-

tomorphisms. Then (G, 5?) is called 'Ri-free if any countable subset of G belongs
to a countable subgroup X C G with basis B and the following properties for any

ye (5-).

(i) G/X is Ki-/ree.
(ii) ip induces a partial injection on B, that is, if b e B n Domtp, then also

b<p &B.
(iii) X n Dom ip = (B n Dom (p).

Passing to weak inverses, it follows from (iii) that also X f i lmy? = (B filmy;}.
Moreover X fi Dom ip and X fi Im ip are summands of X with free complements
generated by B \ Dom y and B \ Im y>, respectively. It also follows that G is
HI-free. We can ease arguments in Lemma 3.11 and Lemma 3.12 to note here
that we only need a partial basis bffl (a subset of B) with the property (ii) and
(&{#)} nDomy = (b($) f iDomy); see Proposition 3.9.

Next we relate basis elements of free non-abelian groups and partial automor-
phisms with care. Suppose the set 5 ='{y>t | t € J} generates a free group (5)
and as in Definition 3.5 there is a map TT: ^ —» pAutG (acting on the left), then
this map can be extended to (3). The extension is unique if we restrict ourselves
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Uniquely Transitive Torsion-free Abelian Groups 277

to reduced elements ip = ( p \ . . . ipn in (5") with ipi € # U # 1 and define natu-
rally Tr((f) = T T ( < P I ) . . . 7r(</3n). However, if <p\,ipz G (?) are reduced and ip is the
reduced element which coincides with the formal product tpitpz in (#), then only
Tr(<pi)ir(<p2) C ?r(y) holds as a graph and this means Doni(7r(9?1)7r(</32)) Q Dom7r(</?)
and TT(</J) f Dom(7r(y>i)7r(i£>2)) = ^(vi)71"^)- Thus we have equality if also the for-
mal product tpi<p2 is reduced.

Definition 3.4. With TT: # —> pAutG as above we say that TT (or 7r(3r) = {TT(^)
tp e 5"}) satisfies the U-property ij (f = ip1 for any reduced elements ip, ip' e ($) with

xir(ip) = x-rr((f>') and some x 6 Dom(y) n Dam(ip') O pG.

The last definition is crucial for this paper because it is the microscopic version
of U-groups discussed in the introduction. We also must pass from groups Gf with
this U-property to suitable extension G5 with the U-property. All this we encode
into our main definition of quintuples y and their extensions. Normally our maps
will act on the right, but we allow three exceptions, the maps e, it and h below.
Also $Pn0(.7) denotes all finite subsets of the set J.

Definition 3.5. Let 8. be the family of all quintuples

r = (G,£,£,7T,/i).= (G>,y,£',7r>,/i ')

such that the following holds.

(i) G is an K^/ree abelian group.

(ii) # = {<Pt t e J} is a set of free generators <ft indexed by J = Jl of a group

(3).
(iii) e: J —» {!,—!} is a map.

(iv) TT : $ —> pAut G is a map which satisfies the U-property. We shall write

7rr((^t) = (f>\ and omit y if the meaning is clear from the context.

(v) h: ^Pn0(J) —> Im(/i) is a partial function from Dom/i C ^3^0(J). If u £

Dom/i and U = h(u), $ = {tpt | t & u}, then the following conditions must

hold.

(a) U is a countable subgroup of G and (Domip* H U)<pT C U for all

(f € {#}; hence <pf induces ̂  e pAut(G/t/); see Observation 3.2. Let

G_=_G/U andff = {^r | <p e ff}.
(b) (G,5") zs Hi-/ree; see Definition 3.3.

It follows that G above is Hi-free. Prom Definition 3.5 (iu) and Lemma 3.1
follows

Corollary 3.6. Iff. e A then (<pf
t t e J?) C pAutGf.

Hence Gf/Dom<pf is Hi-free for all </3 G (J). We will carry on this condition
inductively, just checking the generators in 5" and using the following simple

Test Lemma 3.7. IfU C G are groups and any countable subset ofG is contained

in a countable subgroup X with free generators B\ U B% such that B\ C U and

U n (B2) = 0 then G/U is K^/ree.

The same test lemma will be used inductively for U in Definition 3.5 (i>)(&). We
will pass from groups Gr to larger groups G5 related to p, rj £ .£ by taking pushouts
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or unions. This is reflected in the next definition (in particular condition (Hi)) of
an ordering on .&. This is the final step before we can start working.

Definition 3.8. Lefy < t) (y,t) 6 £) if the following holds for y = (Gf ,$*,£*,•**,&)

and ^(G'^V,^,/*').

(i) G' C G> and G'/G' is Ki-/ree.
(ii) TT'' extends TTJ in i/ie weafc sense (?rr ^ Tr0), i/iai is Jr C J"> (equivalently

3? C 3rt)) and a/so 92* C 93 j? extends for all t G J f .
(ui) //t S Jr, then one of the following cases holds

(a) e*(t) = e'(t) and tf = tf.
(b) Gr CDom^nlmv??.
(c) e*(t) = 1 = -e»(t) and Gf C
(d) e"(i) = 1 = -£r(t) and Gf C

(iv) /V C /i» extends (i.e., ifh*(u) C Gr, i/ien V(u) = /^(u) C

(v) //u £ Dom/ir and Gr =df G^/hf(u) C GD =df Gt>/h^(u), then any basis B

of a countable subgroup X C Gf as in Definition 3.5 extends to a basis B'

of some countable subgroup X' of G which also satisfies Definition 3.5.

Proposition 3.9. Suppose that p < 5 in ^ and u € Dom/i1', [G^l > Ko,G' =
Dom ̂  = Im </?^ for every t 6 u. If F is the group freely generated by {tpt t e u}
and 0 = Z)ie/ a»^ e ^-^ *s an element of the integral group ring, a» ^ 0 for
all i e / and i/ tfie 0jS are pairwise distinct (reduced) elements of F, such that

0^ — X3i6/ ai@i *s bijective, then I is a singleton and its coefficient is 1 or —1.

Proof. If F = (</?t t £ u), then by hypothesis F5 = {<£>)? | i e u) is a free subgroup
of AutG". If also 6 = E^aA £ ZF is as above, then ^ e ZF^ and we may
assume that ker 9** =*• 0. It remains to show that 0^ is surjective if and only if
I = {0} is a singleton and OQ = ±1- If / = {0}, then it is clear that 0^ is surjective
if and only if ao = ±1. Hence we may assume that 0^ is an isomorphism, and
|/| > 1 for contradiction. In order to apply Definition 3.5 we pass to the quotient

G = G^/h(u) and to the induced maps lpt, which we rename again as G9,^- It
follows that ft(w)^1' C h(u) and silently we assume that h(u) is invariant under
(fl5)"1; otherwise we must enlarge h(u) by a back and forth argument such that

the quotient satisfies again Definition 3.5 (v). Also G5 = G°/h(w) ^ 0 because

If X ^ 0 is a countable subgroup of G9, then X is free. We may assume
without restriction that XQ*> C X, XF*> C X and X(ef>)~1 C JY and 0X =df 0' \

X e End A". If x £ A, then x = o^ e G^" = G1', thus 5 = x^")"1 e X
and ^x is °*s° surjective (on X). We can start with some X' with a special basis
B' / 0 as in Definition 3.5 (v) (the weak version mentioned after the Definition
3.3) and let X be its closure as above. Then X' will be a summand of X because
G/X' is Hx-free. Hence B' extends to a basis B of X: The maps ipx = ̂  \ X,
(</? € F) (by hypothesis) are total automorphisms of X, thus all automorphisms of
FX = {<fx I f £ F} are permutations of B' when restricted further to B'.

Let G be the group given by Proposition 2.1. Note that y;t € F (t e u)
is given by Proposition 3.9 and ZF = EndG, hence any </5j can be viewed as an
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Uniquely Transitive Torsion-free Abelian Groups 279

automorphism of G. In order to distinguish it from the element in F we will call the
automorphism ip* €. Aut G and F becomes F* . The mapping * extends naturally
to all of ZF, (by the identification IF = End (7), thus 0* = Ei6/aA* e EndG,
where 0* e F*. From [J| > 1 and Lemma 2.2 it follows that 9* is not surjective.
Let y 6 G \ GO* which will help us showing that 9x can not be surjective either, in
fact we want to show that B' n Xdx — 0- Fix an element c € B' and define a map
$ : B — > G such that c$ = y. lib & B and there is <p e F such that apx — b, then
put 6$ = c3><p*. If (f exists, then it is unique by the U-property. Hence $ is defined
on cFx(= cF9). If b € B'\cFx, then let b$ = 0. Hence $ is well-defined on B and
extends uniquely to an homomorphism $ : X — > G. It follows 6</?x$ = &<&<£*! hence
6#x$ = b$ff* for all b € B, i.e. commuting with $ replaces the x by *. If c G XOx,

then there is a; — X^es xfa^ e -^ with x9x = c. Thus c = x9x =
and we apply $ to this equation to get the contradiction

Thus Ox, hence 9** is not surjective. D

It is convenient to check the U-property by the following simple characteriza-
tion.

Proposition 3.10. Let ($) be the group freely generated by 5" and IT: $ -» pAutG*
be a map as in Definition 3.5 with ir(<pt) = f\ for a^ t £ J. Then $ satisfies
the U-property if and only if any reduced product ip € (3) with xtp* = x for some

x € Dom^f npG is (p = I 6 ($}.

Proof. If we can choose a reduced element <p £ (#} with xip* — x = (xlr) for some
x 6 Dom <prnpG, then tp = I follows by the U-property of $. Conversely, if there are
reduced elements <p,ijj € ($) with xipf = x^f for some x e Dom ̂  n Dom tpf n pG,
then we can write x = x</?r(V)f)~1. Hence x & Domipf(i{}f)~l and we can cancel
^V"1 to get a reduced 0 e (#) with 6 — (p4>~1 in (&). From x E Domip*^)'1 C

it follows x = xOf. We have 9 = 1 by hypothesis, and (p = tp follows. D

The last proposition shows that the U-property is a strong restriction on ir($).

If only x<pf = x for a reduced ip and pure x 6 G, then <p = 1. However note that if
ip e ($) \ {!}, then x(/?j:((^j:)~1 = x for some x 6 pG, hence ^((p5)"1 C idg but not
(pr(<^f)~1 = idc because y>ip~l is not reduced.

The next lemma will be used to make the desired group 'more transitive'. We
want to isolate the argument on the existence of h(u): If f = (G,-J, £,7T, h) € &,
<po € pAutG with 0 ^ J as in Lemma 3.11, then we extend h: ^^.0(J) — > Im(/i)
to ft': !PN0(J') -^ Im(/i') where J' = J U {0}. If u e Dom/i, then /i''(u) = h*(u).

If x,y and p are from Lemma 3.11, then let h(u') for u' = u U {0} be a countable
subgroup [/' C G containing {x, y} U /i(«) such that G = G/U' and the induced

maps y satisfy Definition 3.5 (v) (the weak version mentioned after Definition 3.3
will suffice). Note that we only use extensions of groups Gf as in Lemma 3.11
or Lemma 3.12 and unions of ascending chains of such groups. By a back and
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forth argument, and a moments reflection about the action of the extended partial
automorphisms by the pushouts, it follows that such a countable subgroup U' exists.

Lemma 3.11 (to get more partial automorphisms), //y = (G,^, £ ,TT, / I ) e A

and x, y e pG such that xipf ^ ±y for all tp 6 (3), then let tp% : xL — > yZ(x — > y)
6e the natural isomorphism. If $*> — 3~U {<p0}, J*> = «7U{0},£° = e U {(0, l)},7r" =

7rrU{(</3o,^o)} and /i' = h' as above, then{< t) = (G^V,^,/^) e£

Proof. Obviously y < rj. Also </?Q £ pAutG because zZ,yZ are pure subgroups of
G and G is Ni-free, hence G/xL and G/yZ are Ki-free. But it is not clear at the
beginning that t) satisfies the U-property. We will check this with Proposition 3.10.

Let be y = 3', y>o = r/ and <p 6 {3'}- We write ^ = ipir/eiif>2 • • • r/ek~llPk with
0 ^ £i € Z and </?j € (y) reduced and assume that all </Vs are different from ±1,
except possibly <f>i,<f>k- Now we assume that zip** = z for some z £ Dom</?5 n pG
and want to show that <p = 1.

However next we claim, that the product (p must be very special and show first
that £j = ±1 for alH < k. If this is not the case, then some rj2 or ry~2 is a factor of if.

We may assume that if appears. Note that Domfr?1')2 = (Im(?7t') r\T)amirf))(rf>}~i ,

and Im??1' n DomTy15 = 1y n Zx = 0 by the choice of x,i/. Hence (T?5)2 = 0 and
if'1 = 0 is a contradiction, because 0 ̂  z'& Domip^, so the first claim follows. Next
we show that

(3.2) <p = ±<f>1rieiw.

We look at the path of z, the set [z] of all consecutive images of z:

z0 = z,z1

In order to apply (TJ')£I to z\ we must have z\ & Dom(7/')£l, but Dom(?7t')£l

is either Zx or Zy, hence z\ is one of the four elements of the set V = {±£, ±j/}
by purity. Inductively we get Zi € V for all 0 < i < 2k — 1. Suppose that rj£2

appears in y>, then z% = z<2<p\ € V because z4 = z3(r)t))e2 is defined and z3 is pure.
However x € Domi/?^ or y e Domi/?^, respectively. Hence </?2 is multiplication by
±1 on Zx or on Zy or zy2 = ±y- The last case was excluded by our hypothesis on
x, y and the first two cases and the U-property would give if>2 = ±1 which also was
excluded. Hence (3.2) follows.

Our assumption is reduced to z = ± z < f l ( i f } e i <p\ for some z e pG. We may
replace r/ by r)~l, hence £1 = 1 without loss of generality and z = ±z<p\rf <p\. We
consider the path [z] and have z\ = z(p\ = ±x from purity of z\ e Domrj0. It
follows z-2 = ±y and z3 = y(p\ = ±z from our assumption. Thus j/y'Vi = ±x and
r'2'y'i G (3"), which contradicts our choice of x,y. Hence only >p = \ is possible and
t) € ^ follows. D

The next lemma will increase domain and image of partial automorphisms,
respectively.

Lemma 3.12 (growing the partial automorphisms) . 7/p = (G, 3", e, TT,/I) e ̂
withy = {ips s e J} andt £ J, then there is y < 5 = (G",#t',£9,7r1', ft) € £ suc/i

ifte following holds.
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a pushout with D — GO n GI and Gr = GO = GI.

(b) Ife*(t) = -1, then G0 = Imp?, GI = Domp? and D = Impji.

Proof. The set J and h do not change when passing from y to t}. Thus we consider
7rf next and restrict to £f = 1 (the case ef = — 1 follows if we replace pt by p^~ ).
For the pushout we let G" = (G x G)/H with ff = {(xp, -x) x € Dom pt}. If we
also say that «70 = (t/ x 0) + H/H C G« and C/i = (0 x U) + H/H for any UCG,
then in particular G" = G0 + GI and D =d! G0 n GI = (ImpJ)0 = (Domp^)i by
the pushout. Moreover we identify G0 = Gr, hence Domp]; = (Domp^)0 =df D'
and D = Imp*. The canonical map

extends p£ because ((x, 0) + F)p? = (0,x) + H = (xpj[, 0) + H for all x G Dom(p\.
Clearly GO = Domp? and GI = Imp?. Moreover G'/D = Go/Dompj©Gi/Irnpj
is Hi-free, hence also G"5 and G'/G5 = G\/D are Hi-free, and the maps pj = p-j
(t ^ s G J) remain the same. It follows that TT" : 5" —> pAutG". The existence
of a partial basis satisfying Definition 3-3 was discussed before Lemma 3.11. So
for y < y £ £ we only must check the U-property for $ with the new partial
automorphisms from p-j (s G J) and apply Proposition 3.10:

Consider a reduced product p = pipt
1p2 . . . (pt

n~1(pn, where 1 ̂  p$ <
except possibly pi = ±1 and pn = 1.

Suppose that zip** = z for some z 6 pG^ and let

ZQ = Z, Zi =

be the path [z] of z. Thus zn = ZQ by assumption on p. First we note that p? = <p\
for all i < n with the possible exceptions for pi = ±1 or pn = 1. If also all
the (p?)5i can be replaced by (<fl)6i, then [z] C Gr and by the U-property of J,
ztfP = zpf = z it follows p = 1. We will consider the two cases ZQ G GO and
ZQ G GI \ GO-

First we reduce the second case ZQ G GI\GQ to the first case. Since ZQ G Dom pi
it follows pi = ±1, hence z\ = ±ZQ G GI \ GQ. From z\ G Dom(p?)lSl it follows
5i < —1 and t'i =df zi(p?)-1 G GO- From zn = ZQ it follows zn_i(p?)'5"-1p^ =
ZQ G GI \ GO and therefore pn = 1 and <5n_i > 1. The equation zop5 = ZQ reduces
to

±t'1(p?)5l+1p2(p?)'52 • • • p^_]^ = ij with i^ G GO,

which is the first case for a new z = t( G pGo-
If ZQ G GO, then also ZQ G Dom p* and z\ = zop* € GQ. We will continue along

the path step by step having two subcases each time, but one of them will lead to
a contradiction. In the first step either z\ G D' or z\ £ D'. In any case 5± = 1
and in the second case t\ = Zip? G GI \,D, but t\ G Dompj so necessarily p2 — 1
and n = 2. We get t\y>\ = z% = ti, and'ti = ZQ G GO contradicting t\ G GI \ D.
We arrive at the other case z\ € -D'. Hence t\ = z:pj G D and we must have
ti G Domp2. Therefore also Z2 = tip2 G Go, and <5j = 1. Again we have two cases
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22 G D' and z<2 <£ D' with 5^ = 1, where the second case leads to a contradiction.
Hence t% = z ^ f l 6 D and we continue until we reach n and all the y?j? s are replaced
by the yjs. Now our first remark applies and ip = 1 follows from the U-property
for £. D

Lemma 3.13. Let a be a limit ordinal. Then any increasing continuous chain

f = (G-7', & , £J , 7r3', hi)jea in (&, <) obtained by applications of Lemma 3.11 and
Lemma 3.12 /ios a natural supremum j: = (G, #, e, TT, ft.) in £., where G — Ujga ^J >

'7) ^ = Ujea JJ ant^ ^i h are defined below.

Proof. The map h extends uniquely, because h is defined on finite subsets of J.

Similarly we can handle TT. We define ?r : £ — > pAut G by taking unions: If t € J,

then t e J-3 for all i < j € a and i 6 a large enough. Therefore we can let

fl =df Ui<jeo: ^'(Vt)) an<^ Dom^j = (Ji<jea Dom 7T-3 (</3^ ) . We found a well-defined
partial automorphism (p\ : Dom</?j — * G and also want that 7r((^t) = Vt € pAutG.
Hence we must show that G/Dom^ and G/Im^ are Hi-free. Passing to an
inverse it is enough to consider G/Dom<^. Either there is a strictly increasing

chain ji 6 a (t e /) cofinal to a such that Tr3*^') 96 7rJ*"^1((/3t'+~) for all i 6 7 or

the sequence TTJ'((^) becomes stationary, say at jo € a. In the first case Lemma

3.12 applies and Dom7rJ'i+1(^f +1) = G^1 and \Ji&I Gf
0

Ji = Gf by cofinality, hence
= G and G/Domi^ = 0 is trivially Hi-free. In the other case we have

l — Dom<^°, hence GJO/Doni(^J is Hi-free by induction. Moreover G/GJ°
is Ki-free because Hi-free is of finite character by Pontryagin's theorem (speaking
about subgroups of finite rank). Hence G/Dom<^ is Ni-free, as required. Now it
is easy to see that y £ £: Definition 3.3 is easily verified by taking union of partial
bases. The U-property carries over to limit ordinals. D

The next main result of this section follows by iterated application of the
Lemma 3.11, Lemma 3.12 and Lemma 3.13. Without danger we now can iden-
tify the free groups F' and ($') by the isomorphism TT' in the theorem.

Theorem 3.14. 7/ j = (G, #, £, TT, h) is in £, then we can also find a quintuple

f' = (G',y,e',-ir',h') in & with j: < y' such that the following holds.

(a) y is a set of automorphisms of G' which freely generates ($') C Aut G,
hence G' is a module over R' = Z{3"').

(b) (y') acts uniquely transitive on pG'.
(c) |G'| + |y = |G| + |5|

Proof. We will proceed by induction to get a chain ? < fn € A (n € w) taking
several steps each time. Finally y' will be the supremum of the yns.

In the first step we apply | GO (-times Lemma 3.11 and Lemma 3.13 to r. =
yo taking care of all appropriate pairs of elements in pGo and let Jo < fi =
(Gi,3i,£i,7ri, hi) be the union of this chain such that (3i) acts transitive on pGo.
In this case GO = GI but the other parameters in T.Q increase (along a chain) by
Lemma 3.11. In the next step we apply |Gi -times Lemma 3.12 and Lemma 3.13
to get ji < y2 = (G2,3r2,£2,7'"2,/i2) such that G0 C Dom^2 and GO C Imtpl2 for
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all t £ Jf2 = Jf l . We continue this way for each n. Prom Lemma 3.13 follows
J < ?' 6 &, and by construction (3"'} C Aut G' acts uniquely transitive on pG' such
that also (c) of Theorem 3.14 holds. D

Now we can restrict elements in & to triples and say that y = ( G * , $ f , i r f )

belongs to A* if and only if G? is an Kj-free abelian group, # = {ft t & J*} freely
generates a (non-abelian) group (3) and ?r f : ^ —> Aut Gr is an injective map such
that 7rf (-5) = {7rf(<£t) = ¥>£ t € Jf} satisfies the U-property. Still we can view &*
as a subset of ^ and have an induced ordering, compare Definition 3.8: We have
? < 9 (?) *) € £*) if (v) and the following holds.

(i) Gr C G" and G«/Gf is Hi-free,
(ii) TT* CTT".

The other conditions in Definition 3.8 are vacuous.

4. Construction of uniquely transitive groups

In this section we will sharpen Theorem 3.14 which shows that a group ring R = ZF
for some free group F can be represented as R C EndG of some Ni-free group G
(hence G is an ^-module), such that the units U(R) = ±F act uniquely transitive
on G. If ±F C AutG is not necessarily transitive but satisfies the uniqueness
property (( <p,<p' £ ±.F and 3x € pG,x<p = x<p'} => (p = ip'), then we will also
say that the pair (G, F) has the U-property. We will modify G such that equality
holds, that is R = End G. Thus we have to kill unwanted endomorphisms, which is
done using the Strong Black Box 4.2. We need some preparation to work with this
prediction principle. ,

First we need an §-adic topology. Let S = {qn \ n 6 01} be an enumeration of
a multiplicatively closed set generated by 1 and at least one more natural number
different from 1 and define SQ = l,sn+i = sn • qn for all n £ w which obviously

defines a Hausdorff S-topology on the groups G under consideration. Let G be the
S-adic completion of G and G C, G naturally, where purity "Ct" is S-purity.

Next we must formulate the Strong Black Box and adjust our notations; see
Strong Black Box 4.2. We rely on the version adjusted to and proven for modules
using only naive set theory as explained in the introduction, see [10, 9]. Thus we
have to fix a few parameters next. To do so we choose an enumeration by ordinals
a £ A, with A = fj,+ a successor cardinal such that ^° = p.: Let Fa be a free
non-abelian group with a set of n free generators 3a, the $as constitute a strictly
increasing, continuous chain in a < A. We will write .Ra = ZFa with R = UaeA R<*

and note that .R+ and R+ are free abelian groups. By Theorem 3.14 there is an
.RQ-module Ga of cardinality n which is cyclic as .RQ-module and Nj-free as abelian
group and Fa acts sharply transitive on pGa. We can choose a free abelian and

§-dense subgroup Ba Cf Ga C» Ba. Also the Bas constitute a strictly increasing,
continuous chain in a < A. Passing to & + 1 we can let £a+i = Ba ® Aa with
Aa = 0i<pZflj (and p = fj,). It helps (when using [10, 9]) not to identify p and p,

in the formulation of the Strong Black Box 4.2.
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Thus the construction is based on a free abelian group B of rank A and its S-
adic completion P., in fact the desired group G will be sandwiched as B C* G C* B.

Put B = 0a<A eaAa. Then, writing ea<i for eaa,i, we have B = ©(cM)eAxpZea,i-
For later use we put the lexicographic ordering on A x p; since p, A are ordinals A x p

is well ordered.

For any g = (ga,iea,i)(a,i)e\xp e B C ri(a,i)eAxp^W we denne the support

of g by [p] = {(a, i) G A x p ptt)i ^ 0} and the support of H C B by [H] =

(J eH [g]- note |[p]| < NO for all g & B. Moreover, we define the X-support of

g by [g]A = { a e A | 3 i G p : (a,i) & [g]} C A and the A-support of 5 by
[S]A = {» G p | 3a e A : (a,i) e [g]} C p C A. Recall that ea^ = Ojea, where
di € AQ,, which explains the use of the notion "^-support" .

Next we define a norm on A, respectively on B, by |]{a}|| — a + I (a € A),

\\H\\ = supa6H||a|| (tf C A), hence ||a[| = a, and \\g\\ = \\[g}x\\ (g £ B), i.e.

H 0 I I = min{/3 G A | [$i]A C /?}. Note, [p]A C /3 holds if and only if g € B0 for
^/3 = ©a<,aea^a- We also define an A-norm of g by \\g\\ A = \\\g]A\\. Also let
A° := {a < A | cf (a) = uj}.

Finally, we need to define canonical homomorphisms used in the Strong Black
Box for predictions. For this we fix bijections g^ : /z — > 7 for all 7 with yU < 7 < A
where we put g^ = idM and so |7| = \p\ = p, for all such 7's. For technical reasons
we also put g7 = gM for 7 < /^.

Definition 4.1. Lei i/ie bijections gy (7 < A) 6e 05 afeoue and put 7a>j = 7a x 7$
/or aH (a, i) e A x p. We de/me P to be a canonical summand of B if P —

©(a i)6/ ^e",i /or some / C A x p wrfft, |/| < NO SMC/I ^ftai:

• z/ (a, i) € I, then (i, i) 6 /; if (a, i) e /, a £ p then (i, a) e / and
• i/ (a, i) e J, t/ien (J n (/i x JJL)) ga,i = I Da x i.

Accordingly, a homomorphism <f> : P — > B is a canonical homomorphism i/ P is
a canonical summand of B and Imrf* C P; we pui [</>] = [P], [i^]A = [P]A and

IHI =

Note, by the above definition, a canonical summand P satisfies ||P||A £
Let £ denote the set of all canonical homomorphisms. From assumption yuH° = JJL

follows |£| = A. We are now ready to formulate the Strong Black Box:

The Strong Black Box 4.2. Let A = ^+ and [i = p,*0 be as before and let E C A°
6e a stationary subset of A.

TTien i/iere exists a family £* o/ canonical homomorphisms with the following

properties :

(1) / / 0 € £ * , toen We£ .
(2) // 0, $ are two different elements of C* of the same norm a, then ||[</>]A Pi

fe'U<"-
(3) PREDICTION: For any homomorphism i/>: B — > B and for any subset I of

A x p uwt/i |/| < KO tfte set
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is stationary.

We will enumerate €* taking care of the order of the norm and can write
£* = {4>a | a < A} such that ||[^Q]A|| < ||[0,g]A|| for all a < /3 < A. Note that we
distinguish between (p E # and </> given by the Strong Black Box 4.2.

The enumeration is now used to find a continuous, ascending chain Ga (a < A)

such that Ba C* Ga C* Ba and the corresponding yQ — (Ga,3a,7ra) € &*. Let
£ C A° be a fixed stationary subset of A° and choose fo = (Go,So,TO) to be any
triple given by Theorem 3.14 for cardinality fj,. For any /? < A, let Pp = Dom(j)p

and suppose that the triples fp = (Gp,$p,Trp) are constructed for all /3 < a. If a is
a limit ordinal, then by continuity we let j:a = sup/3<a fp, thus yQ = (Ga, $a, ira) is
well defined and belongs to $.* by Proposition 4.3 and Theorem 3.14; in particular
Ga = U/3<a Gp is an #Q-module over the integral group ring Ra = \J0<a Ra = %Fa

of the free group Fa = [J/3<Q Fp and Ba C» GQ C» Ba.

We may assume that a = /? + 1 and distinguish two cases, the trivial situation
and the ordinal a where we have to work.

The first case arrives if we do not want to work or cannot work: If 0 is also
a discrete ordinal, then we apply two steps. First let G'a = Gp ® Glp where G^ =
epRp is a "new" free summand. In the second step we apply Theorem 3.14 to get
G'a C» GQ and yQ = (Ga, 3a, TO) € •£*• Note that in particular Ga is an J?a-module
with Rp C Ra as integral group rings (because Fp C Fa) and Ga/Gp is Kj-free.

Using Ap, we can arrange that -Bg+i C,, Gp+i C» Bp+i. If /? is a limit ordinal and
not in E, we proceed similarly. If 0 £ E, then we also apply the trivial extension if
(f>p is scalar multiplication by some r G Rp when restricted to Pp or if Im<pp 2 G/j.
Otherwise we will meet the condition of the Step Lemma 4.4 and must work:

Suppose that a — 0 + I with 0 e E and Im^ Q Gp, <fip £ Rp. In this case
we try to 'kill' the undesired homomorphism ftp which comes from the black box
prediction. (However note that it could be that </>p e R later on, so in this case
<j>p is a good candidate which should survive the massacre. This we must and will
see clearly at the marked place near the end of the proof!) Recall that \\<t>p\\ € A",
hence there are (/3n,in) £ [<j)p] (n 6 w) such that &Q < 0i < • • • < /3n < • • • and
suP«ew/3n = l l ^ / s l l - Without loss of generality we may assume that j3n $. E for all
n e w and hence G^n+1 — Gpn ® e@nRpn- We put I = {((3n,in) \ n < u>}. Then

I\ n [g]\ is finite for all g e Gp. We apply the Step Lemma 4.4 to /, P — Domfip

and H — Gp. Therefore there exists an extension pQ = fp+i °f ?/3 and an element
yp £ Ga such that ypfip ^ Ga and \\yp\\ = \\<j>p\\ = \\Pp\\- Thus the chain Ga

(a < A) is constructed up to the used Step Lemma 4.4. Finally let G = (JaC\ Ga-

it remains to show R = End G, the Step Lemma 4.4 and the following propo-
sition which ensures that the U-property can be extended when applying the step
lemma. We will use obvious simplified notations:

Proposition 4.3. Let G = Unew Gn>
 xn* 6 G\ be pure (Rn-torsion-free) elements,

where G'n+l = Gn ® G^ C» Gn+i and Gn+i is obtained from G'n+1 by Theorem

3.14. IfbeGo,x = Ene^n^-i + b and G/ = (G,xRw)*, then U(RU) = ±F
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for the free group F = \Jne^ Fn, the pair (G', F) satisfies the U-property and G' is

Proof. It is well-known that G' is Ni-free, see [2] or [6, 9] for instance. We want to
show that the pair (G',F) satisfies the U-property.

If r 6 RU and tp € F, then r £ Rn and tp e Fn for some n e w large enough.
Hence there is no restriction to write any 0 ^ y £ G' as y = xkr + g with xk =

5Z >k '"-1 xn ~^~" i r ^ Em b — b e GQ. g = go ~\~ 5i> 9o € GQ, 0 ^ g\ € Gn and

[Go] n [07] = [xkr] n [5] = 0.
Suppose yy> = y, hence (xkr)ip + gtp = xkr + g and by continuity

/ (xmr)lP ~l~ 5V == / (Xmr) i 9'

m>k Sk m>k Sk

We consider any m > n, k and note that xm is a torsion-free element of the En-
module Gm and also (p e U(Rn}. (hence Gm is invariant under application of y,r)
and 0 7^ xmnp,xm(p e Gm. Restricting the support [xkr] of the last displayed
equation to xm shows that ^-1 (xmr) = s™,~1 (xmr}<p. Hence 0 ̂  (xnr) = (xnr)(p

and passing to h e pGm with hq = xnr we get h(p = h, hence ip = 1 by the U-
property for (Gm,Fm). So tp acts as id"cm for all m e w large enough. Thus <p is
the identity on G, and the same holds for G' by continuity (G is dense in G' in the
S-topology). D

Next we prove the step lemma.

Step Lemma 4.4. Let P = @ ^ea,i for some I* C A x p and let H be

a subgroup of B with P C* H C* B which is ^i-free and an R-module, where

R =df Rf = |J Ra with I' =df [/]A = {a < A 3i < p, (a,i) e /*}.

y = (F^.TT) e &* (i/iws Er = Z(5r}). Also suppose that there is a set I =
{(an,zn) | n < u)} C [P] = /* SMC/I t/iot «o < ^i < • • • < an < • • • (n < uj) are

discrete ordinals and

(i) H = (J GQn, J? = |J E^; where #Qrv = Z{3r
Qn>, yn = (£<,„,&,„,*•„) e

n<cj n<u;

^*
(ii) 7A n [5] A is finite for all g & H (7A = [I] A) .

If 4>: P —* H is a homomorphism which is not multiplication by an element from

R, then there exists an element y € P and f < y' = (H',3s',7r') & A* such that

H C* H' C*B,y€ H' and y<j> i H1 .

Proof. By assumption H is an .R-module and hence the S-completion H is an R-

module. Let Z be the 8-completion of Z and let x — ^2 snean,in € P. We will use
nGuJ

y = o : e P o r y = x + 6ePfo r some 6 e,P to construct two new groups H C,, Hy:

Let F^ = (H,yR)* C B. By Proposition 4.3 and Theorem 3.14 we obtain

ty = (Hy, ^j/, TTy) € ^* such that y < yy and y e Hy. Clearly y^) e H. Put z = y0

Sh:650



Uniquely Transitive Torsion-free Abelian Groups 287

and y = x. If z £ Hx, then we choose H' = Hx and have px € A* with <j> £ End Hx.

Also RX = Z($X}.
If z € Hx, then also z € H'x by an easy limit argument and there exist integers

k and n such that SkX<j> = grn + xr'n for some rn,r'n 6 .R and g & H. It follows
x(sfc<j!) — r'n) = grn and rn,r'n 6 #n' for some n' £ w. Since (sfc$ - r'n) ^ 0 there
is 6' e P such that b =df b'(sk(f> - r'n) ^ 0. Note that b' has finite support.

Moreover, by the cotorsion-freeness of H there exists TT € Z such that Trb £ H. Let
y = x + irb'. We claim that 0 ^ End(Hy). By way of contradiction assume that
Si(x+Trb')<f> = g*r*m + (x+-Kb')r^ for some integer I > k and elements r£,, r^* £ flm/
for some m' G w and g* £ ff. Without loss of generality, we may assume n = m,
hence sj(x + 7r6')0 = £*r* + (x + 7r6')r** and if s = s;/Sfc, then

> = si(x + Trb')(f> - ssfeX</> = g*r*n + (x + 7r6')r** - s(grn + xr'n) =•

= (9*< - sgrn) + TrbV;' + x(rZ - sr'n}.

Since [Trb'j = [&'], [7r6'^>] = [b'(j>] and g* ,g & H an easy support argument shows that
rn* = sr'm hence ssk(-Kb')4> = (g*r^ - sgrn) + s-rrb'r'n and thus sir(skb'(j) - b'r'n) —

(g*rn~syrn] € H. By purity we get ~(skb'(f) — b'r'n} = Trb & H - & contradiction. D

Proof of Theorem 1.1. If R = EndG, then also Aut G = ±F, because U(R) = ±F

and any r £ R\ U(R) viewed as endomorphism of G is not bijective by Proposition
3.9. Hence it remains to show that EndG C R.

First we choose a new filtration of G and define

G° =df
 {g 6 G | \\g\\ < a} (a < A).

Lemma 4.5. The new filtration on G has the following properties.

(a) G n P0 C G^ for all /3 < A;
(b) {Ga 1 a < A} is a X-filtration of G;

(c) Ifa,(3<\ are ordinals such that \\<j>p\\ = a then Ga C G$.

Proof. Inspection of the definitions, or [10, 9]. D

Assume that </> £ EndG \ R and let </>' — ((> \ B, hence 4>' ^ R. Let I =

{(an,in) \ n < uj] C A x p such that ao < a\ < • • -an < • • • is a sequence of
discrete ordinals and I\ n [g] \ is finite for all g € G. Note that the existence of I
can be easily arranged, e.g. let E C A°, a G A° \ E, in 6 p (n < w) arbitrary and
(an)n<tj any discrete ladder on a.

By Lemma 4.4 there exist an element y e B, (G, #, TT) < (G',$',ir') € ^* such
that y G G' and y</>' ^ G'. (The last innocent sentence uses 4>' £ R and not just
0' ^ .R/3 for a suitable /?, see our comment in the construction of G.) By the Black
Box Theorem 4.2 the set

E' = {a e E | 3/3 < A : ||̂ || = a, ̂  C 4>' , [y] C

is stationary since ][y]| < H0. Note, [y] C [0^] implies that y e P/j. Moreover, the
set G = {a < A | Ga0 C Ga} is a cub in A, hence E' n G ̂  0. Let a e S' n G.
Then Gac/>' C Ga and there exists an ordinal /3 < A such that ||0^|| = a, </>0 C </>

and y £.Pp. The first property implies that G" C G/3 by Lemma 4.5 and the latter
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properties imply that <j)p £ R. Moreover, Pp C B with \\Pp\\ = a and hence Pp,

and also P@(j) are contained in Ga C Gp.
Therefore <j>p: Pp —> G/j with <f>@ £ Rp and thus it follows form the construction

that yp4>Q ^ Gp+i. On the other hand it follows from Lemma 4.5 that yp<p@ = y@<p £

G n Pp C G/3+i - a contradiction. Thus End G = R. D

We conclude this section with an immediate corollary of Theorem 1.1. In
Section 2 we noted that R — ZF for some free group F has only trivial zero
divisors. Therefore Theorem 1.1 has the following

Corollary 4.6. For any cardinal X = fj.+ with n^° = fj, there is an ^-free, inde-

composable abelian UT-group of cardinality X.

5. Discussions and applications

We want to discuss some consequences of our Main Theorem 1.1. Let MonG be
the monoid of all monomorphisms of an abelian group G. Also let be

Mont G — {'£ £ MonG | Gj Im</? is torsion}.

We immediately note a

Proposition 5.1. If G is an abelian group of type 0, then MontG is a submonoid

o/MonG.

Proof. If tp,ij} £ Monf G, then ipip & MonG. To see that G/Im(<pip) is torsion,
consider any x £ G. There are i/ £ G, 0 ̂  n £ W with nx = yip; similarly my = zip,

hence ranx = m(yip) = z(<pip) and tpifi e Mont G. D

We notice at many steps of the proof of Main Theorem 1.1 that UT (with
respect to Aut G) is a very strong property. If we replace Aut G by Mon G or
End G in the definition of UT, this is even stronger: We either get nothing new or
arrive on classical territory as shown next. We begin with an easy

Observation 5.2. If G is an abelian group of type 0 and MonG acts UT on pG,
then Aut G = Mon G.

Proof. Suppose ip e MonG and x € pG, then y =df xtp £ pG and there is if) &

MonG with yip = x, hence xipip = x,yipif = y and a;id = x,yid = y. Thus
yn/j = ip(p = id follows by the U-property and (p 6 Aut G. D

Hence UT is the same for automorphisms and monomorphism. If we require
even more, that EndG acts transitive on G, then G is a vector space and the
problem on the existence of UT-modules becomes trivial.

Definition 5.3. We will say that G is E-transitive if for any pair x,y £ pG there

is a € End G such that xa = y.

Any CT 6 Aut G induces a permutation of pG, but this does not hold for a £
EndG. Our next results removes the set theoretic assumption V — L from a
main theorem in Dugas, Shelah [5] and strengthens the outcome. Recall from the
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introduction that A-transitive in the sense of [5] is the same as transitive (or just
T) in this context.

Corollary 5.4. For any cardinal X = n+ with ̂ ° = ^ there is an ^i-free abelian

group of cardinality X which is E-transitive, but not transitive.

In view of Proposition 5.1 we will strengthen this corollary further and sketch
a proof:

Theorem 5.5. For any cardinal X = p,+ with /UN° = fj, there is an Ki-/ree abelian

group G of cardinality X with AutG = ±1, which is transitive with respect to

Mon( G. From Aut G = ±1 follows immediately that G is not a T-group.

Sketch of a proof. The proof is very similar to the proof given for Aut G but simpler
because the U-property must go, see Observation 5.2. We must run through the
paper once more, essentially replacing Aut G by Mont G. First we will replace the
definition pAut G by

pMont G =df {tp \ ip: Dom<£> —» Imip C G, (p an isomorphism, G/Domip Hi-free}.

If tf L pMont G, then (3) is the submonoid of plvlont G which is generated as a
monoid by {±1} U #, hence (#} C pMont G by Proposition 5.1. The Definition 3.3
of an Ki-free pairs (G, (<pt)teu) remains the same, except that pAut and automor-
phisms must be replaced by pMont and monomorphisms, respectively. Moreover
condition (Hi) is weaker (automatically) because (3) is not closed under weak in-
verses.

The U-property must be replaced by a very weak condition assuring that finally
a free monoid will act on the group as monomorphisms which are not automor-
phisms. This is incorporated in the new definition for & (compare Definition 3.5).
We say that a quadruple j: = (G, 3", IT, h) belongs to ^ if and only if the following
holds.

(i) G is an Ni-free abelian group,
(ii) J = {ift | t e J} is a family of symbols tpt indexed by J = Jr, which

generates a free monoid ($}.

(iii) TT : $ —> pMont G is a map which naturally extends to {#) and satisfies the
weak U-property: If <p,(p' € (3), D = Dom7r(<£>) n Dom7r(<p') ^ 0 and
xif> = xip' for all x e pG n D then tp = if'.

(iv) h: y$x0(J) —> Im(/i) is a partial function from Dom/i C ^3No(J) such that
for u & Dom h C G the following holds.

(a) h(u) is a countable subgroup of G and (Dom^ n h(u))ipl C h(u) for
all_t e u

(b) If G = G/h(u) and Tp\ denote the monomorphism induced by ifl, then

(G, (vl)teu) is Hi-free.

The definition of an order on 8. remains the same, except that condition
(iii)(d) must be removed. Following the arguments along Section 3 we note that
Lemma 3.11 and a simple version of Lemma 3.12 are crucial for the weak U-property.
We obtain a theorem parallel to Theorem 3.14: For each j: = (G,3;,ir,h) £ ^ we
can find r/ = (G',^', TT', h') 6 £ with y < y' such that 3" C pMont G' which freely
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generates {#') as a submonoid, {#'} acts transitive on pG', all members of (5") \ {1}
are proper monomorphisms and \G'\ + ]#' = \G\ + \3\. As in Section 4 we mod-
ify G' and get a new G with endomorphism ring R = Z(^). Recall that (y) is a
free monoid generated by #, hence U(R) = ±1. Modification of Proposition 3.9
will show that any <f> e R \ U(R) is not in Mont(G); thus Mont(G) = ($} and
AutG = U(R) = ±1. The group G cannot be transitive. D
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