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Absolutely rigid systems and 

absolutely indecomposable groups 

Paul C. Eklof* and Saharon Shelaht 

Abstract 

We give a new proof that there are arbitrarily large indecompos-

able abelian groupsj moreover, the groups constructed are absolutely 

indecomposable, that is, they remain indecomposable in any generic 

extension. However, any absolutely rigid family of groups has cardi-

nality less than the partition cardinal /i;(w). 

o Introduction 

Mark Nadel [11) asked whether there is a proper dass of torsion-free abelian 

groups {Av : v E Ord} with the property that for any v =j:. f-L, A v and Ai-' are 

not Loow-equivalentj this is the same as requiring that A v and Ai-' do not 

become isomorphie in any generie extension of the universe. In that case 

we say that A v and Ai-' are absolutely non-isomorphie. This is not hard 

to achieve for torsion abelian groups, since groups of different p-length are 

absolutely non-isomorphie. (See section 1 for more information.) 

Nadel's approach to the question in [11) involved looking at known con-

structions of rigid systems {Ai : i E I} to see if they had the property that 

for i =j:. j, Hom(A i , Aj ) remains zero in any generie extension of the universe. 

We call these absolutely rigid systems. Similarly we call a group absolutely 

rigid (resp. absolutely indecomposable) if it is rigid (resp. indecomposable) 

in any generic extension. Nadel showed that the Fuchs-Corner construction 

in [4, §89) constructs an absolutely rigid system {A v : v < 2>'} of groups of 

cardinality A, where >. is less than the first strongly inaccessible cardinal. 

But he pointed out that other constructions, such as Fuchs' construction [5) 

of a rigid system of groups of cardinality the first measurable or Shelah's 

[13) for an arbitrary cardinal involve non-absolute notions like direct prod-

ucts or stationary sets; so the rigid systems constructed may not remain 

rigid when the universe of sets is expanded. The same comment applies to 

any construction based on aversion of the Black Box. 
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258 P. Eklof and S. Shelah 

Here we show that there do not exist arbitrarily large absolutely rigid 

systems. The cardinal I\",(w) in the following theorem is defined in section 

2; it is an inaccessible cardinal much larger than the first inaccessible, but 

small enough to be consistent with the Axiom of Constructibility. 

Theorem 0.1 If I\", is a cardinal 2 I\",(w) and {A v : v < I\",} is a family 

of non-zero abelian groups, then there are /-L 1:- v in I\", such that in some 

generic extension V[G] of the universe, V, there is a non-zero (even one-

one) homomorphism f : Av --+ AI'" 

This cardinal 1\",( w) (called the "first beautiful cardinal" by the second 

author in [14]) is the precise dividing line: 

Theorem 0.2 If I\", is a cardinal < I\",(w) and Ais any eardinal2 I\",(w), there 

is a family {A JL : /-L < I\",} of torsion-free groups of eardinality A such that 

in any generic extension V[G], for alt /-L E 1\"" AJL is indeeomposable and for 

v 1:- /-L, Hom(A v , AJL) = O. 

Despite the limitation imposed by Theorem 0.1, the construction used 

to prove Theorem 0.2 yields the existence of a proper dass of absolutely 

different torsion-free groups, in the following strong form. This answers the 

question of Nadel in the affirmative, and also provides a new proof of the 

existence of arbitrarily large indecomposables. 

Theorem 0.3 For each uncountable cardinal A, there exist 2>' torsion-free 

absolutely indecomposable groups {Hi ,>. : i < 2>'} of cardinality A such that 

whenever A 1:- p or i 1:- j, Hi ,>. and Hj,p are absolutely non-isomorphie. 

We show that the groups AJL in Theorem 0.2 and the groups Hi ,>. in 

Theorem 0.3 are absolutely indecomposable by showing that in any generic 

extension the only automorphisms they have are 1 and -1. (The proof of 

Theorem 0.3 does not depend on results from [14].) However, we cannot 

make the groups absolutely rigid: 

Theorem 0.4 If I\", is a eardinal 2 I\",(w) and A is a torsion-free abelian 

group of eardinality 1\"" then in some generic extension V[G] of the universe, 

there is an endomorphism of A which is not multiplieation by a rational 

number. 

Theorems 0.1 and 0.4 are proved in section 3, Theorem 0.2 in section 4, 

and Theorem 0.3 in section 5. 
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1 Infinitary logic and generic extensions 

We will confine ourselves to the language of abelian groups. Thus an atomic 

formula is one of the form I:~=o CiXi = 0 where the Ci are integers and the 

Xi are variables. 

Lww consists of the closure of the atomic formula under negation (""'), 

finite conjunctions (1\) and disjunctions (V), and existential (3x) and univer-

sal (Vx) quantification (over a single variable - or equivalently over finitely 

many variables) . L(XJw consists of the closure of the atomic formula under 

negation, arbitrary (possibly infinite) conjunction (/\) and disjunction (V), 
and under existential and universal quantification (3x, Vx). Rather than 

give formal definitions of other model-theoretic concepts, we will illustrate 

them with examples. Thus the formula cp(y) : 

Vx3z(2z = x) /\ (....,3z(3z = y)) 

is a formula of Lww with one free variable, y, which "says" that every element 

is 2-divisible, but y is not divisible by 3. More formally, if A is an abelian 

group and a E A we write A f= cp[a) and say "a satisfies cp in A", if and 

only if every element of A is divisible by 2 and there is no b E A such that 

3b = a. 

Also, the formula 'I/J(x) : 

3y(py = x) 1\ (1\ 3z(pnz = y)) 1\ (x =1= 0) 

n2: 1 

is a formula of L(XJw with free variable x such that A f= 'I/J[a) if and only if 
a E pW+l A - {O}. 

A sentence is a formula which has no free variables; if cp is a sentence 

of Loow,we write A f= cp if and only if cp is true in A. We write A =oow B 

to mean that every sentence of Loow true in A is true in B (and conversely 

because ....,cp true in A implies ....,cp true in B.) Obviously, if there is an 

isomorphism f : A ~ B, then A =oow B. A necessary and sufficient 

condition for A =(XJW B is given by the following ([8], or see [1, pp. 13fj): 

Lemma 1.1 A =oow B if and only if there is a set P of bijections p 

Ap -+ Bp from a finite subset Ap of A onto a finite subset Bp of B with the 

following properties: 

(i)[the elements of P are partial isomorphisms) for every atomic formula 

cp(Xl' .. ·'Xm ) and elements al,· ·.,am ofdom(p), A f= cp[al, ... ,am ) if and 

only if B f= cp[p(b1 ), . . . ,p(bm )); 

(ii)[the back-and-forth property) for every pEP and every a E A (resp. 

bEB), there is pi E P such that p ~ pi and a E dom(p') (resp. bE rge(p')). 

It is an easy consequence that if A and Bare countable, then A =oow B 

if and only if A ==' B. Also, this implies that if it is true in V that A =oow B, 
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then A =oow B remains true in V[G]. The converse is easy, and direct, sinee 

a sentenee of L oow which, in V, holds true in A but false in B has the same 

status in V[G], sinee no new elements are added to the groups. 

(By a generic extension we mean an extension of the universe V of sets 

defined by the method of foreing. In general, more sets are added to the 

universe; possibly, for example, a bijection between an uneountable eardinal 

,\ and the eountable set w. So eardinals of V may not be eardinals in V[G]; 
but the ordinals of V[G] are the same as the ordinals of V. Also, the 

elements of any set in V are the same in V or V[G].) 

There exist non-isomorphie uneountable groups A and B (of eardinality 

l{I for example) sueh that A =oow B. (See for example [3].) However, 

for any groups A and B in the universe, V, there is a generie extension 

V[G] of V in whieh A and Bare both eountable (cf. [7, Lemma 19.9, p . 

182]). Therefore we ean eonclude that A =oow B if and only if A and B 

are "potentially isomorphie", that is, there is a generie extension V[G] of 

the universe in whieh they beeome isomorphie. Barwise argues in [1, p. 32] 

that potential isomorphism (that is, the relation =oow) is "a very natural 

notion of isomorphism, one of whieh mathematieians should be aware. If 

one proves that A ~ B but leaves open the quest ion [of whether A and B 

are potentially isomorphie] then one leaves the possibility that A and Bare 

not isomorphie for trivial reasons of eardinality. Or to put it the other way 

round, a proof that [A is not potentially isomorphie to B ] is a proof that 

A ~ B for nontrivial reasons." 

As an example, eonsider redueed p-groups A v (v any ordinal) sueh that 

the length of A v is v, that is, pV Av = 0 but for all J-l < v, p/1 A v =1= o. 
Then for any VI =1= vz, the groups A V1 and A V2 are not even potentially 

isomorphie: this is beeause for any v there is a formula Bv(x) sueh that 

3x(B v (x) 1\ x =1= 0) is true in a p-group A if and only if A has length ~ v. 

Indeed, we define, by induetion, Bv to be 

3y(py = x 1\ B/1(Y)) 

if v = J-l + 1 and if v is a limit ordinal define Bv to be 

1\ 3y(py = x 1\ B/1(Y)). 

/1<V 

Thus there is a proper class of pairwise absolutely non-isomorphie p-

groups. Although there is not available a standard group-theoretie notion 

whieh will serve the same purpose for torsion-free groups, we will prove in 

seetion 5 that there is a proper dass of indeeomposable torsion-free abelian 

groups {H).. : ,\ a eardinal} sueh that for any ,\ =1= p, the groups HA and Hp 

are not Loow-equivalent. 
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2 Quasi-well-orderings and beautiful cardinals 

A quasi-order Q is a pair (Q, SQ) where ::;Q is a reflexive and transitive 

binary relation on Q. There is an extensive theory of weIl-orderings of quasi-

orders developed by Higman, Kruskal, Nash-Williams and Laver among 

others (cf. [12], [9]). A generalization to uncountable cardinals is due to the 

second author ([14]). The key notion that we need is the following: for an 

infinite cardinal K" Q is called K,-narrow if there is no antichain in Q of size 

K" i.e., for every f : K, --7 Q there exist v:j:. p, such that f(v) SQ f(p,). (Note 

that this use of the terminology "antichain" - in [10, p.32] for example -

is different from its use in forcing theory.) 

A tree is a partiaIly-ordered set (T, S) such that for all tE T, pred(t)= 

{s E T: s < t} is a well-ordered setj moreover, there is only one element r of 

T, called the root ofT, such that pred(r) is empty. The order-type ofpred(t) 

is called the height of t, denoted ht(t)j the height of T is sup{ht(t) + 1: t E 

T}. 
If Q is a quasi-order, a Q-labeled tree is a pair (T, <PT) consisting of a 

tree T of height S wand a function <PT : T --7 Q. On any set of Q-Iabeled 

trees we define a quasi-order by: (Tl, <Pd ::S (T2 , <P2) if and only if there is 

a function B : Tl --7 T2 which preserves the tree-order (i.e. t STl t' implies 

B(t) ST2 B(t')) as weIl as the height of elements and also is such that for all 

tE Tl, <Pl(t) SQ <P2(B(t)). 
One result from [14] that we will use implies that for sufficiently large 

cardinals K, and sufficiently small Q, any set of Q-Iabeled trees is K,-narrow. 

In order to state the result precisely we need to define a certain (relatively 

smaIl) large cardinal. 

Let K,(w) be the first w-Erdös cardinal, i.e., the least cardinal such that 

K, --+ (w)<W j in other words, the least cardinal such that for every function 

F from the finite subsets of K, to 2 there is an infinite subset X of K, such 

that there is a function c : w --7 2 such for every finite subset Y of X, 

F(Y) = c(lYl). It has been shown that this cardinal is strongly inaccessible 

(cf. [7, p. 392]) . Thus it cannot be proved in ZFC that K,(w) exists (or 

even that its existence is consistent). If it exists, there are many weakly 

compact cardinals below it, and, on the other hand, it is less than the first 

measurable cardinal (if such exists). Moreover, if it is consistent with ZFC 

that there is such a cardinal, then it is consistent with ZFC + V = L that 

there is such a cardinal ([15]). If K,(w) does not exist, then Theorem 2.1 

is uninteresting. On the other hand, Theorem 2.2 then applies to every 

cardinal K" and its consequences, given in section 4, are still of interest. 

The following is a consequence of results proved in [14] (cf. Theorem 

5.3, p. 208 and Theorem 2.10, p. 197): 

Theorem 2.1 1/ Q is a quasi-order 0/ cardinality < K,(w), and S is a set 

0/ Q-labeled trees, then S is K,(w)-narrow. 
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On the other hand, it follows from results in [14] that for any cardinal 

smaller than K;(W), there is an absolute antichain of that size: 

Theorem 2.2 I/ K; < K;(W), there is a /amily T = {(TJL , <PJL) : J-l < K;} 0/ w-

labeled trees, each 0/ cardinality < K(W), such that in any generic extension 

0/ V, tor alt J-l ;j; v, (TJL , <PJL) i (Tv , <p v ). 

Here W is the quasi-order consisting of the set of natural numbers with 

the equality relation. Some commentary is needed on the absoluteness of 

the antichain T = {(TJL , <PJL) : J-l < K;}, since this is not dealt with directly in 

[14]. T is constructed in a concrete, absolute, way from a function F which 

is an example witnessing the fact that K < K;(W). First, a K;-D-barrier B 

and function q : B -t W is constructed (B is a kind of elaborate indexing 

for an antichain cf. [14, proof of 2.5, p. 195]). This gives rise ([14, proof of 

1.12, pp. 192m to an example showing that Pß(w) is not K-narrow for some 

ß < K;(W); this example is embedded into the quasi-order of w-Iabeled trees, 

giving rise to T ([14, p. 221]). The proof that T is an antichain reduces to 

the key property of F, a property which is absolute by an argument of Silver 

[15]. Using an equivalent definition of K(W), Fis taken to be a function from 

the finite subsets of K; to W such that there is no one-one function er : W -t W 

such that for all n E w, F( {er(O), ... , er(n - I)}) = F( {er(I), ... , er(n)}); this 

property of F is preserved under generic extensions because it is equivalent 

to the well-foundedness of a certain tree; more precisely, the tree of finite 

partial attempts at er has no infinite branch. 

3 Abound on the size of absolutely rigid 

systems 

In this seetion we will prove Theorems 0.1 and 0.4. Suppose that {A v : 

v < K} is a family of non-zero abelian groups, where we can assurne that 

K = K(W). For each v < K, let Tv be the tree of finite sequences of elements 

of A v ; that is, the elements of Tv are 1-1 functions s : n s -t A v for some 

n s E wand s ::; t if and only if ns ::; nt and t r ns = s. 
Let Q ab be the set of all quantifier-free n-types of abelian groups; that 

is, Y E Qab if and only if for some abelian group G, some nE w, and some 

function s : n -t G, Y is the set tPqf(s/G) of all quantifier-free formulas 

cp(xo, ... , xn-d of L ww such that G 1= cp[s(O), ... , s(n - 1)]. Partially-order 

Q ab by the relation of indusion. 

Define <P v : Tv -t Qab by letting <pv(s) = tPqf(s/Av). Now we can apply 

Theorem 2.1 to the family of Qab-Iabeled trees S = {(Tv , <Pli) : v < K;}. 

(Note that the cardinality of Q ab is 2No which is < K(W) since K(W) is 

strongly-inaccessible.) Therefore there exists v ;j; J-l such that (Tv , <pv) ::S 
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(TJ." q,J.')' say 8 : Tv -+ TJ.' is such that 8 ~ t implies 8(s) ~ 8(t) and for aB 

8 E Tv , q,v(8) ~ <I>J.'(8(8)). 

Now move to a generic extension V[G] in which A" is countable. In V[G], 
let u : w -+ Av be a surjection. We will define an embedding f : A v -+ AJ.' 

by letting f(u(n)) = 8(u f n + l)(n) for aB n < w. To see that f is an 

embedding, note that f(u(n)) = 8(u r k)(n) for aB k > n since 8 preserves 

the tree ordering; moreover, for any a, b, c E A v , there is a k such that 

a, b, cE rge(u f k) so since 

<I>,,(u r k) ~ <I>J.'(8(u r k)) = <I>J.'((1(0), ... , f(k - 1))) 

every quantifier-free formula satisfied by a, b, c in A" (e.g. a i 0, a - b = c, 

ab = c) is satisfied by f(a), f(b), f(c) in AI-'" This completes the proof of 

Theorem 0.1 0 

The argument is very general and could be applied to any family of struc-

tures (for example, to those in [6]). If we start with a torsion-free group A 

of cardinality K, ~ K,(w), and apply the argument to the family of structures 

{(A,av ) : v < K,(wn where {a v : v < K,(wn is a linearly independent subset 

of A, then we obtain vip, such that in a generic extension in which A 

becomes countable we have an embedding f : A -+ A taking av to aJ." This 

proves Theorem 0.4. 0 

Ernest Schimmerling has pointed out that there is a "soft" proof of 

these results (not relying on Theorem 2.1) using a model of set theory (with 

{A v : v < K,} as additional predicate) and a set of indiscernibles given by 

the defining property of K, = K,( w). 

4 Existence theorem 

In this section we will prove Theorem 0.2. So let K, < K,(w) and let A be a 

cardinal ~ K,(w). Let {(TJ.', <I>J.') : p, < K,} be the family of w-labeled trees 

as in Theorem 2.2. We can assurne that each node of TJ.' of height m is a 

sequence of length m and the tree-ordering is extension of sequences; so the 

root of the tree is the empty sequence <>. 
Let (Pn.m.i: n, mE w,j E {O, I}) and (qn,m,l,j: n, m, fE w,j E {O, I}) 

be two lists, with no overlap, of distinct primes. 

For any ordinal Q, Zn be the tree of finite strictly decreasing non-empty 

sequences z of ordinals ~ Cl' such that z(O) = Q. (Thus for some n E w, 

z : n -+ Cl' such that Q = z(O) > z(l) > ... > z(n - 1).) 

For nE w let 9n : A -+ P([An, A(n + 1))) such that for each v < A, 9n(V) 

is a subset of [An, A(n + 1)) which is cofinal in A(n + 1) = An + A. (Here the 

operations are ordinal addition and multiplication, so, in particular, An is 
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less than A +, the cardinal successor of A.) We also require that for J.-L i:- v, 

gn(J.-L) n gn(v) = 0. For n > 0, let Yn = U rge(gn), and let Yo = go(O). 

Für J.-L < K, let W" be the Q-vector space with basis UnEw An U Bn ,,, 

where for n > 0 

An {a~ : 0 E Yn - 1 , Z E Z",}, 

Bn ,,, {b~,,, : 0 E Yn - 1 ,T) E T" - {<>}} 

and Ao = {a~} = Bo,,,. We are going to define A" to be a subgroup of 

W", Since J.-L is fixed throughout the construction, we will usually omit the 

subscript J.-L from what follows (until we come to consider Hom(A", A,,)). 
For each n > 0, let hn be a bijection from AnuBn onto A; let ho(aO) = O. 

Then for any W E An U Bn, and any 0 E gn(hn(w)), we will use a~> or b~> 

as a notation for w. (So a~> = b~>; moreover, a~> = a~> if and only if 0 

and ß belong to the same member of the range of gn.) Now we can define A 

(= A,,) to be the subgroup of W generated (as abelian group) by the union 

of 

1 U {-k--a~ : m, k E w, z E Z", U {<>}, 0 E 1';" dom(z) = m} (1) 
n2: 0 Pn,m,O 

1 U {-k--(a~ + a~rm-1):m, k E w - {O}, z E Z"" 0 E Yn , dom(z) = m} 
n2:0 Pn,m,l 

(2) 

and 

Un>O{-:J,...l--(b~ + b~rm_1):m,k E w - {O},T) E T",o E 1';" 
- Qn,11"'/"t. 

dom(T)) = m, ifl,,(T)) = f!}. 

(where b~r-l = 0). We will use the sets (1) and (2) to prove that (I) A" is 

absolutely indecomposable and the last set to prove that (Il) Hom(A", A,,) = 

o for all J.-L i:- v. 

If x E A", we will write poolx if for every k E w, there exists v E A" 

such that pkv = x. For example, if w E An U Bn and 0 E gn(hn(w)) and 

ifl,,«» = Ro, then p~o,olw and q~o,dw. Assertions about divisibility in 

A" are easily checked by considering the coefficients of linear combinations 

over Q of elements of the basis UnEw An U Bn of W,,; for example, P~m,olx 
if and only if X = 2:~=1 cia~: for some 01, ... , Or in Yn , Zi of length m, and 

Ci E Q (with denominator apower of Pn,m,o). 
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Proof of (I) 

We will show, in fact, that in any generic extension V[G) the only au-

tomorphisms of A (== AlL) are the triviaIones, 1 and -1. This part of 

the proof does not use the trees in T; the absoluteness is a consequence of 

an argument using formulas of L oow , which therefore works in any generic 

extension. We will use the following claim: 

(lA) there are formulas 'l/Jn a:(x) of L oow (n E w, Cl! E Yn) 

such that for any u E A, A 1= 'l/Jn,a[u) if and only if there 

are W1,,,,,Wr E An U 8 n , and C1, ... ,Cr E Z - {O}, such that 

u = 2:;=1 CiWi and Cl! E U;=l 9n(hn(Wi)). 

Assuming the claim for now, suppose that in V[G] there is an auto-

morphism F of A. For any n E w, consider any w E An U 8 n; since 

w = a~> for Cl! E 9n(hn(w)), p~o,olw; therefore p~o,oIF(w), and hence 

F(w) = 2:~=1 CiWi for some distinct Wi E An U 8n. Moreover, by (lA), 

A 1= 'l/Jn,a:[W) if and only if Cl! E 9n(hn(w)) if and only if A 1= 'l/Jn,a:[F(w)]. 

Thus, since the elements of the range of 9n are disjoint, we must have that 

r = 1 and W1 = w, that is, F(w) = cw for some C = c(w) E Q. 
If we can show that c(w) = c(aO) for all w E UnEw An U 8 n, then F is 

multiplication by c(aO), and then it is easy to see that c(aO) must be ±l. It 
will be enough to show that if w = a~ (resp. w = b~) for some Cl! E Yn - 1 , 

then c(w) = c(a~», for then c(w) = c(wl) for some wl E A n- 1 U 8 n- 1 
(namely, the unique wl such that Cl! E 9n-1(hn- 1(wl))) and by induction 

c(wl) = c(aO). 

So suppose W = a~; the proof will be by induction on the length of z 

that c(a~) = c(a~». Suppose that the length of z = m > O. Let c = c(a~) 
and Cl = c(a~rm_1)' By induction it is enough to prove that c = Cl. Since 

P~m,ll(a~ + a~rm-l), it is also the case that P~m,l divides 

F(a~) + F(a~rm_l) = ca~ + cla~fm-1 = c(a~ + a~fm-1) + (Cl - c)a~fm_l 

so P~m,ll (Cl - c)a~fm-1' which is impossible unless c = Cl . 

The proof is similar if w = b~, but uses the primes qn,m,l' So it remains 

to prove (lA). We will begin by defining some auxiliary formulas of L oow • 

First, we will use poolx as an abbreviation for 

/\ :JVk(pkvk = x). 

kEw 

Define <Pn,m,o(Y) to be P~m,oly· Then for u E A, A F <Pn,m,O[u] if and only 

if u is in the subgroup (Z-submodule) generated by {~a~ : Cl! E Yn , k E 
Pn"n,O 

W,z E Za:,dom(z) = m}. Define 'Pn,m,ß(Y) for each m > 0 by recursion on 

ß: if ß = 'Y + 1, <Pn ,m,ß(Y) is 

<Pn,m,,,(Y) 1\ :Jyl(<Pn,m+1,"(y l) 1\ (P~m+l,ll(y + yl)). 
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If ß is a limit ordinal, let <Pn,m,ß (y) be 

1\ <Pn,m,,,!(Y)' 
"!<ß 

Then for U E A, A F <Pn,m,ß[u] if and only if u is in the subgroup generated 
by 

{a~ : a E Yn , z E Za, dom(z) = m and z(m - 1) 2: ß}. 

In particular, for m = I, recalling that z E Za satisfies z(O) = a, we have 

that A F <Pn,l,ß[U] if and only if u is in the subgroup generated by 

Now define 'l/Jn,a(x) to be 

If u = I:~=l CiWi, for some Wi E An U Bn, then P~l,ll(u + y) iff y = 
I:~=l Cia~iai> for some ai E 9n(hn(Wi)); using the cofinality of members of 

the range of 9n, it follows easily that 'l/Jn a(x) has the desired property. 

Proof of (11) 

Suppose that there is a non-zero homomorphism H : A", --t AlL' We 

are going to use H to define B: T", --t TJ1. showing that (T"" <I>",) :S (TJ1.' <I>J1.)' 
contrary to the choice of the family of labeled trees. Now H (w) :j:. 0 for some 

W E An U Bn,,,, for some n E w. Thus for some a E Yn, H(b~>,,,,) :j:. O. Fix 

such an a (which can in fact be any member of 9n(hn(w))) . Let <I>",( <» = 
eo· Then q~o,lo,olb~>,,,, so q~o,eo,oIH (b~> , ,,,), and hence H(b~>,..,) must be 

of the form I:~=l cib~i>,J1. where Ci E Q - {O}, and <I>J1.( <» = eo. So letting 

B( <» = <> (as it must) , we have confirmed that <I>!,(B('f/)) = <I>//('f/) for 

rJ =<>. 
Now suppose that for some m 2: 0, B('f/) has been defined for all no des rJ 

of T", of height :; m such that <I>!,(B(rJ)) = <I>",(rJ). Moreover, suppose that 

for every rJ of height :; m, the coefficient of bO(!)) ,J1. in H(b~,,,,) is non-zero. 

Now consider any node ( of Tv of height m + 1; let rJ = ( r m. In A v , 

for e = <I>v((), q~m+1,l , llb~,v + b,(,v so q~m+1,l,lIH (b~,v) + H (b,(,"') in AlL' 
Since the coefficient - call it C - of bOi!)),!' in H(b~,v) is non-zero, there 

must be anode (' in T!, of height m + 1 such that (' r m = B(rJ) and the 

coefficient of b'(,,!, in H(b(,"') is c, and moreover such that <I>J1.((') = e. So 

we can let B(() = ('. This completes the proof of Theorem 0.2. 0 
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5 Absolutely non-isomorphie indeeomposables 

In this section we sketch how to modify the construction in the preceding 

section in order to prove Theorem 0.3. (Note that this construction does 

not require the trees Tp. ofTheorem 2.2.) Let (Pn,m,j: n,m E w,j E {O, I}) 

be a list of distinct primes. Fix an uncountable >.; for any a < >.w, let Zo: 

be defined as before. Let (Si,>. : i < 2>') be a list of 2>' distinct subsets of >., 
each of cardinality >. (and hence cofinal in >.). 

For n i- 1, let gn : >. -+ P([>.n, >.(n + 1))) be defined as before. For 

i < 2\ define g1,i : >. -+ P([>',>. + >'))) as before but with the additional 

stipulation that for all 1/ < >., g1 ,i(l/) ~ {>. + 'Y : 'Y E Si,>.}. (Here again the 

operation is ordinal addition.) Let Y1,i = U rge(g1,;) we will also choose g1,i 

such that Y1,i = {>. + 'Y : 'Y E Si,>.}. For convenience, for n i- 1 we let Yn,i 

denote Yn (independent of i). 

For each n > 0, let hn,i be a bijection from {a~ : a E Yn- 1,i, z E 

Zo:} onto >.; use these bijections to make identifications as in the previous 

construction. 

Then Hi,>. is defined to be the subgroup of the Q-vector space with 

basis 

{aal U {a~ : n > 0, a E Yn - 1 ,i, z E Z".} 

which is generated (as abelian group) by the union of 

1 U {-k--a~ : m, k E w, z E Z". U {<>}, a E Yn,i, dom(z) = m} 
n2:0 Pn,m,O 

and 

1 U {-k--(a~ + a~fm-1):m, k E w - {O}, z E Zo:, a E Yn,i, dom(z) = m}. 
n2:0 Pn,m,1 

As before, the groups H i ,>. are absolutely indecomposable. It remains 

to show that for >. i- p or i =I- j, Hi ,>. and Hj,p are not Loow-equivalent 

(and hence not isomorphie in any generic extension). For this we use the 

formulas 'lj;1,o: (x). If A = p and i =I- j, without loss of generality there exists 

'Y E Si,>. - Sj ,>.; let a = A + 'Y. If A < p, let a = >. + 'Y for any 'Y in any Si,>.. 

In either case, 3X'lj;1,o:(X) is true in Hi,>. but not in Hj,p' 0 
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