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Abstract. A ring R is called an .E-ring if the canonical homomorphism
from R to the endomorphism ring End(flz) of the additive group Rz,

taking any r £ R to the endomorphism left multiplication by r is an
isomorphism of rings. In this case Rz is called an .E-group. Subrings
of Q are obvious examples of E-rings. However there is a proper class
of examples cpnstructed recently, see [8]. .E-rings come up naturally
in various topics of algebra (see the introduction). So it's not sur-
prising that they were investigated thoroughly in the last decade, see
[4, 10, 7, 18, 21]. This also led to a generalization: an abelian group
G is an E-group if there is an epimorphism from G onto the additive
group of End(G). If G is torsion-free of finite rank, then G is an E-

group if and only if it is an E-group, see [14]. The obvious question
whether the classes of .E-groups and E-groups coincide in general was
raised a few years ago. We will answer it by showing that the two
notions differ in the infinite rank case. Applying combinatorial ma-
chinery to non-commutative rings we shall produce an abelian group G

with (non-commutative) End(G) and the desired epimorphism with pre-
scribed kernel H. Hence, if we let H = 0, we obtain a non-commutative
ring R such that End(-Rz) — R but R is not an .E-ring.
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1. Introduction

Easy examples of E-rings are subrings of Q and further examples up to size 2^°
coming from p-a,dic integers have been known for a long time. Details on those
rings can be found in the two monographs [12, 13]. Arbitrarily large E-rings were
constructed more recently first in [8] and then in [7]. The examples in [7] share
additional properties related to their automorphism groups. E-rings are important
in connection with (strongly) indecomposable modules, see [1], [20] and [21]. They
are also crucial for investigating problems in homotopy theory, see the work of Far-
joun [10], [18] and Casacuberta, Rodriguez, Tai [4] or [22]. So it is not surprising
that they were studied in detail over the last decade. In this connection, some years
ago Feigelstock, Hausen and Raphael extended the notion of E-rings and called an
abelian group G an EE-group, (we prefer the shorter script E-group) if there is
an epimorphism from G onto the additive group of End(G). The results appeared
recently in [14]. In particular the authors show that, if G is torsion-free of finite
rank, then G is an E-group if and only if G is an E-group—the two notions coincide
for groups of finite rank. The obvious question was clear: It was asked whether this
is true in general. Here we want to answer this open question. The nice feature
about this problem is the fact that combinatorial arguments are used and applied
to non-commutative ring theory to produce the required examples.

We recall the two definitions.

Definition 1.1. If R is a ring, then 6 : R —> End(Rz) denotes the homomorphism
which takes any r € R to the Z-endomorphism 6(r) which is multiplication by r on
the left. If this homomorphism is an isomorphism, then R is called an E-ring and
RZ is called an E-group.

Recall from Schu'ltz [24] that E-rings are necessarily commutative. The rings
R we will construct are definitely not commutative and so not E-rings. However
they are close to E-rings in the sense that the following definition holds.

Definition 1.2. If R is the endomorphism ring of some abelian group G and there

is an epimorphism G —> R —» 0 with kernel H, then G is called an E(H)-group.
Moreover, G is called an 'E-group if G is an E(H)-group for some abelian group
H and G is a strong E-group if G is an E(0)-group, i.e., the epimorphism is an
isomorphism.

Note that trivially a strong E-group G is in fact a ring R with RZ = G and
such that End(-Rz) == R as rings. Thus a non-commutative strong E-group cannot
be an E-ring and hence we solve Vinsonhaler's 25-dollar-problem [23, Problem 1]
which was asked for the first time in [24].

One of the main results in a paper by Feigelstock, Hausen and Raphael [14] is
the following

Theorem 1.3. Let G be any torsion-free abelian group of finite rank. Then G is
an E-group if and only if G is an E-group.

We want to prove the following result which complements the theorem by Feigel-
stock, Hausen and Raphael and answers their problem.
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Theorem 1.4. For any infinite cardinal A = /u+ with /J.NO = n there is an ^i-free
abelian group G of cardinality \G\ = X which is a (strong] E-group.

Remark 1.5. A modification of our construction would also ensure that the con-
structed E(H)-groups are proper in the sense that they are not strong ̂ .-groups. All
one has to do is to satisfy that Ga/H ^ Ga for all a < X where G = (J Ga is the

a<X

~E,(H)-group. Then the group G can not be a strong ^,-group.

An .R-module is Hi-free if its additive group is Hi-free, i.e., all its countable
subgroups are free. Recall that endomorphism rings of Ki-free abelian groups have
Hi-free additive group. The key tool of this paper can be found in Section 2, where
we investigate non-commutative polynomial rings over rings. The construction of
G is based on a strong version of (Shelah's) Black Box as stated in [25] or slightly
modified in [17], see also [5]. The paper is based on heretofore informal notes
written in 1998.

2. Almost free rings over non-commuting variables

Polynomial rings R[X] over a ring R -with commuting variable X are obviously
free ^-modules. We will extend this to the non-commutative case, showing that
the non-commutative polynomial ring R(X) as abelian group is Ki-free if RZ is so.
This will be needed in Section 3. The ring construction is easy and well-known, see
Bourbaki [3, pp. 216, 446 ff.]. Let R be a ring of characteristic 0, then M denotes
all monomials, the elements
(2.1)

r-i-X"*1 • • • rnX*», ijt ^ 0 (j < n), rj £ R \ {1} (1< j < n) and rj ^ 0, (j < n).

The ring R(X) is formally generated by all sums of the monomials in M. First
we assume that RZ = ® Zt is freely generated as abelian group by T = {tj : i £ /}

teT
and to — 1 without loss of generality. Then the multiplication on RZ is coded into
the so-called "constants of structure", see Bourbaki [3, p. 437], which are

(2-2) 7jfc e Z ( i , j , k e Z) with tj • tk = X>jVi-
i€i

The constants are well-defined by independence. We want to use T to find a
representation for elements in R(X). Any element in R can be expressed as a sum
over T with coefficients in Z. If r 6 R(X) is a sum of monomials in M, then we
may substitute any TV e R from (2.1) as indicated, and the polynomial in M turns
into a sum of what we will call T-monomials.

(2.3) m = t^Xh • • • tinX
jn e TM, with jk + 0 (k < n), tik ^ I (1< k < n).

Hence R(X) is generated as abelian 'group by all T-monomials and multiplica-
tion is ruled by the structure constants (2.2) restricted to T-monomials. Hence it
seems plausible that the next lemma holds. We use the structure constants on R
to define the ring multiplication on R(X). If m, m' e TM, let m = mt, m' = t'm'
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with m,m' £ TM and m ending with Xn, m' beginning with Xm> . Then the
product is defined by cases.

(2.4)

If t ^ 1 = t', then mm' = mtm' , and ift'^'i—t, then mm' = rnt'm' ,

(2.5)

if t' = 1 = t, then mm' = mm', with 'middle term' Xm+m'

(2.6)

if t' ^ I ^ t, (2.2) for tt' = 5^7Jfeti,t = tj,t' = tk, is mm' =

If to = 1 is involved in the last equation, then the summand 7°fcmm' has a

'middle term' xm+m as in case t = t' = I . So clearly mm' is a sum of T-monomials.

Lemma 2.1. If R is a ring with RZ = 0 Zt, T = {i, : i € 7} and structure
teT

constants (2.2) as a&oi>e, then let R'z — 0 Zm be the direct sum taken over all
rotTM

T -monomials TM as above. The multiplication on R' is now defined by (2. 4) -(2. 6)
and it follows that R' = R(X) as rings with center %R' — 1Z.

Proof. Reducing elements in R(X) to sums of T-monomials we have seen that
R' = R(X) as sets. Moreover, considering sums of T-monomials it is obvious that
R% = R(X)z as abelian groups. We finally must show equality as rings. There
are two natural ways to do this. Either we extend the structure constants on R

to R', R(X) and check their ring properties (see Bourbaki [3, p. 438]) or we check
that ^'-multiplication is 7?{X)-multiplication. We prefer the second way. Hence
we must show that (2.2), (2.4)-(2.6) and its linear extension define uniquely the
ring structure on 7?' which is the same as R(X). Any case of the ring laws reduces
to consider distributivity of a product

(2.7) (zm + z"m")mr

with z,z" e Z, m, m' as in (2.4)-(2.6) and m" = m"t" similar to m above. If
t = t" = 1 or t' = I , then (2.7) becomes immediately the unique T-monomial
zmm' + z"m"m' by (2.4)-(2.6) and linear extension. If m — m", then (2.7) can be
treated with (2.4) and distributivity in T given by (2.2):

m(zt + z"t")t'm? = m(ztt' + z"t"t'}m' = zmtt'm' + z"m"t"t'm' = zmm' + z"m"m'

showing the unique 7?(X)-multiplication (by TO') in this case. If m ^ m', then
zmm' and z"m"m' are sums of distinct T-monomials, hence (2.7) defines the unique
7?(JSL")-multiplication by linear extension. D

Our main interest in Lemma 2.1 is extracted as the following

Corollary 2.2. (a) 7/7? is the ring above with R% free, then R(X)z/R% is free.

(b) IfRz is Hi-/ree, then R(X)z/Rz is Hi-/ree.

Sh:681



Generalized .E-Rings 295

Proof. By Lemma 2.1 we have T < TM and TM is a Z-basis of R(X)Z, hence
(a) follows. For (b) choose any countable set C of R and let RC = {{G}} be the
subring generated by C and Rc(X) the subring of R(X) generated by C and X

respectively. The ring RC is free by hypothesis and Rc(X}/Rc is free by (a), hence
(b) follows. D

If J denotes the sum of all those monomials with at least one factor X, then J is
a two sided ideal of R(X) (of 'non-constant' polynomials). We have R(X) = R® J

and if R is a field, then J is a maximal ideal of R(X). Separating summands of
higher order becomes more complicated and fortunately is not needed.

Corollary 2.3. Let R be as above. The set J of sums of monomials which are not

constant are a two-sided ideal of R(X) and R(X} = R@ J is a ring split-extension.

3. A class of quadruples for constructing E-groups

We want to find an abelian group G with R = End G and u : G —> R an epimor-
phism with prescribed kernel ker(cr) = H. Hence G is a left .R-module and the
epirnorphisrn a induces a Z-homomorphism

cr* :-G -> R

such that <j» (x) G R = End G is defined by

(3.1) a,(x)(y)=<j(y)xfoiaQ.x,y e G.

The construction of (G, R, <r, cr«) is done inductively by extending approximations
of such quadruples such that the final one is as required. Let H be a fixed but
arbitrary abelian group which is Ki-free.

Definition 3.1. The quadruple q — (Rg, Gq, crg,cr?») = (R, G,cr, <r*) belongs to the

class &H if the following holds.

(a) R is a unital ring of characteristic 0.
(b) G is a left R-module,

(c) Gz,Ri are ^i-free,
(d) cr : G —> R is a Z-homomorphism with kera = H, and IR €E Im(cr) C» R,

(e) cr» : G —» EndG is a Z-homomorphism defined by (3.1) and a*(g) € R for each

g € G, hence cr» : G —* R,

(f) Amifl G = 0 and R C+ End(G).

We often use qa = (Ra,Ga}aa,aa*) £ £# for those quadruples. The next
lemma is used to prove Proposition 3.3.

Lemma 3.2. (a) If G is a free abelian group of finite rank, then EndG is a free

abelian group.

(b) If G is Hi-/ree, then EndG is an ^i-free abelian group as well.

Proof. Any endomorphism of G can be represented as an element of the cartesian
product GG and End G C GG as abelian group. However Hi-freeness is closed under
cartesian products and subgroups, hence EndG is Ni-free. If G is freely generated
by a finite set E, we may replace GG by GE which is free and (a) follows. D
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The class R.R of quadruples is partially ordered by inclusion, i.e., if

q = (R,G,a,af),q' = (R',G',a',a'j £ &H,

then

q < q' if and only if R C R', G C G', a C a' and (hence) cr, C cr^.

The following proposition will ensure that our construction of an E(JJ)-group will
take place within &H.

Proposition 3.3. (a) If qi = (.Ri,G!t,0t,0'i»), (i & I) is a continuous, ascending

chain of quadruples in &H, and G; C* Gj+i, 1̂  = l.Ri+i /or oZZ i £ I, tften

U 9i = (|J fli, U G4, (J ̂  U ffi.) € £«.

ie/ t€/ t€/ i€/ t6/

(b) (Z, Z® H,a,(7f) £ &# w/iere cr : Z® H ^ %, is the canonical projection.

(c) I/ q £ £ff , iften i/iere exists q < q' € RH such that RQ C aq>(Gq') and

G, C. G,/.

Proof, (a) By continuity and (3.1) we have cr* = (U CTJ), = U <TJ*, hence cr* : G —>
ie/ »e/

.R with pure image, where G = [J Gj and H = U Uj. Moreover, JJ is a unital ring
te/ te/

with lfl = 1̂  for alH £ / and G is a left .R-module. GZ is Hi-free since G» is
pure in GJ+I for all i £ / and therefore R C End^ G is Hi-free as well by Lemma
3.2(b). Note that Ann^ G = 0. Finally, keru = H and IK £ Im(a) is clear. Hence
it remains to show that R is pure in Endz G. Assume that tp £ Endz G and n(p £ R

for some integer n. Thus there is some i s / such that n<p — r' € Ri C,, EndzGi.
We claim that (p \GJ& EndzGj for all j > i. Let g £ Gj, then n^(^) = r'^ € Gj

and hence ^(5) £ Gj by purity. Thus <p \GJ— rj € -Rj f°r all i < j £ J because
-Rj ^* Endz Gj. Since nip = r', we obtain nr,, = r' for all j and therefore r := TJ =
rfc for all j,k >i by torsion-freeness. Thus <p = r £ R.

(b) is obvious, and (c) needs some work: Let R" = RXQ ® /?x be a ring direct
sum, x, XQ two central orthogonal idempotents. We put RXQ = R if there is no
ambiguity. Let G' = G © Re an J?"-module with R" acting component-wise, hence
Ann#" e = RXQ = Anna; and Ann^// G = Rx. Next we extend a and let a C a'

be such that cr'(re) = rx for all r £ R (and CT'(g) = ff(g)xo, g £ G). Hence
cr' : G' —> /?" satisfies kercr' = kercr = H and J? C Imcr' as required. Clearly,
Im<r' = Imcrxo © Rx C, R" since Imcr was pure in R. Note that cr^, is actually
defined by (3.1), such that a'^ : G' —> EndgG', hence /?" must be enlarged for
cr^, : G' —> fZ' in Definition 3.1(e). The ring R" acts by scalar multiplication (on the
left) on G'. The action is faithful by hypothesis (Definition 3.1(f)), hence R" can
be viewed as a subring of Endz G'. Let R' = R"[Im cr^]* be the pure unital subring
of Endz G' generated by R" and Im a*.

Obviously q < q' for q' — (R1, G',u',cr(,) and a1 = a'q satisfies (c) of Proposition
3.3. It remains to show that q' £ &H. We must check Definition 3.1 (c), (d) and
(f). We have kercr' = kera = H. Moreover, if g £ G', then a'*(g)(G') = 0 implies
o-'f(g) = 0, hence Annn< G' = 0 and (f) follows. It remains to show that Imcr' is
pure in R'. As shown above, Imcr' is pure in R", hence it suffices to show that R"
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is pure in R'. We will even show that R" is pure in Endz G'. Let ip e Endz G' and
assume that rap = rx0 ® r'x e R" for some integer n. By torsion-freeness of G'
and RZ it follows that <p is of the form <p' ® r* for some ip' e Endz G and r* £ .R.
Hence r' = nr* and ny>' = r and therefore <p' = r" £ R since .R is pure in Endz G.
Thus </? = r"xo®r*x e /J" and the purity of R" is established. Finally, the abelian
groups G, RZ are Hi-free by hypothesis on q, hence G' is Hi-free and EndzG" is
HI -free by Lemma 3.2, and therefore q' 6 AH- d

From the last proof we extract a useful

Definition 3.4. If cr» : G — > Endz G is a 'Z-homomorphism and R acts faithfully
on the left R-module G by scalar multiplication, then we denote by

Ra, C, EndzG

the pure unital subring of Endz G generated by R C Endz G and Ima*.

The next proposition provides the link to our construction in Section 4.

Proposition 3.5. Let q = (R,G,a,crt) 6 AH- Then there exists a 'transcendental
extension' q < q' £ AH such that the following holds for q' = (R': G', CT', <7»).

(a) G' = G ® R(X)e as R(X}-module where X acts as identity on G.

(b) ff'(g) = cr(g)Xe, a' (re) —re if r 6 R and a' (re) = rXe otherwise.
(c) R' = (R(X))< with R(X) from Section 2.
(d) EC

Proof. We must show that q' 6 &H. The ring R is Hi-free by hypothesis, hence
R(X) is Ki-free by Corollary 2.2(b) and R' is Hi-free by Lemma 3.2. Clearly,
keru' = kercr = H and Imcr' C^ R' with R C Im(cr) follow as in the proof of
Proposition 3.3. Mdreover, G' is HI -free and Ann#> G' = 0, so the proposition
follows. D

We have an immediate corollary-definition.

Corollary 3.6. If Kfa = {q 6 B-HiGq rnaps onto Rq}, then 8.°H is dense in AH-

Proof. Apply Proposition 3.3(c) u> times and note that Proposition 3.3(a) can be
used because the union of the countable sequences of rings and modules respectively
are Hi-free by construction. Hence any q e &H is below some q' & Kfa. D

4. Construction of E-groups by black box arguments

The combinatorial ideas of Sections 4 and 5 can be found in Shelah [25], see also
the appendix Shelah' s Black Box in Corner, Gobel [5] and this Black Box could
be used. However, we will use a stronger version of the Black Box as developed in
[17]. The Black Box needs, as usually, some minor alterations, which are obvious
and the proof is left to the reader.

Let A be some infinite cardinal, and <{Xa : a < A} a sequence of transcendental
elements which will be used to define ririg extensions.

First we define ring extensions 'locally' and let Ra+i 2 Ra (Xa) = Ra (Xa) =
Raca ® JaC'a a rmS direct sum with central idempotents ca and c'a where Ja is
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defined as in Corollary 2.3. Since there is no danger of confusion we usually will
omit the 'place holders' ca and c'a. The sequence of rings Ra with \Ra\ < X

(a < A) will be completed during the construction of the abelian group G (with
End^G = U Ra)i taking unions at limit steps, i.e., Ra = \J R@ if a is a limit

a<\ P<a

ordinal. Note that |J Ra = \J Ra(Xa).
a<\ ct<\

Similarly we define

B = 0 Ra (Xa) eaCGCB

a<X

where B denotes the p-adic completion of B (as an abelian group) for some fixed
prime p. Since we want to apply the Black Box later on we need a free basis-module
inside B. Therefore, we assume that our rings Ra (and hence Ra(Xa}~) (a < A) are
Hi-free, hence homogeneous of type Z. By a well-known result [16, Theorem 128]
there exists for each a < A a completely decomposable group Fa C* Ra(Xa) such
that \Ra(Xa)\ < Fa\*° and

fr'a C^ Ka(Xa) c_t t<'a

where Fa is the p-adic completion of Fa (a < A). Note that Fa is a free abelian
group since Ra(Xa) is Ni-free. We collect the Fa (a < A) and define F := 0 Faea.

a<\

Thus F is a free abelian group of cardinality at most A such that

FC*BCf F.

Let Fa = 0 Za£ where p = |F|. Writing e(£]«) for a£ea it follows that B' =
e<p t ___

0 Ze(£)Q) satisfies B = B' . For later use we put the lexicographic ordering
(e,a)6pxA

on p x A; since p, A are ordinals p x A is well ordered.
We are ready to define supports of elements in -B. If 0 ^ g e B then we can

write g = £ gaea and / C A, |J| < H0, ga e Ra(Xa). Moreover, each ga = g^
a£l

with g'a € Ra and g'^ S Ja. We define two kinds of support.

(4.1) The A-support of g is the set [g}\ = {a < A : ga ^ 0}.

The notion of A-support naturally extends to subsets of B, see again [17].

On the other hand, any element 0 ̂  g & B = B' can be written as

9 = (#(e,a)e(£,a))(e,c<)epxA & B' C

and we define the 'usual' support of g by [g] = {(e, a) e p x A | P(e,a) 7^ 0}. Note
that |[^]| < HO and that the A-support of g is [g]^ = {a < A ] 3e < p : (e,a) € [g]}.

As usual we may define a norm on B' by ||'{o;}|| = a+1 (a < A), ||M[| = supa6M ||a[|

(M C A) and \\g\\ = \\\g]>\\ (g ej?), i.e., ||5|| = min{/? < A [<?]A C /?}. Note,

[5] A ^ /? holds if and only if g £ B'^ where B'p = 0 Ra (Xa) ea. Finally, we also
a<0
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have a ring support and ring norm denned by [g]nng = {£ < P \ 3a < A : (e, a) 6 [g]}

and \\9\\ring = \Mring\\-

We will now state a suitable version of the Strong Black Box as developed in
[17]. The proof is almost identical with the one in [17, Section 1] and will therefore
be left to the reader but we will give all the necessary definitions and results.

Fix cardinals K > KQ, p, = JJLK such that A = /K+. We need to say what we mean
by a canonical homomorphism. For this we fix bijections <?7 : /J, — > 7 for all 7 with
p, < 7 < A where we put <?M = id^. For technical reasons we also put g~, = g^ for

7 < ju. Moreover, let <7(£iQ) = ge x ga for all (e, a) e p x A.

Definition 4.1. We define P to be a canonical summand ofB' ifP = 0 Ze(e a)
(e,a)e/

for some I C p x A with \I\ < K such that:

• if (e, a) e / tfien (e, e) e /;
• i/ (e, a) e I, a 6 p then (a, e) e /;
• if (e, a) e / then (/ n (/x x /i)) g£>a = / n lmgEia; and

• ||P|| < A", where A° = {a < A | cf (a) = H0}.

Accordingly, ip: P — > £?' is said io 6e a canonical homomorphism i/P is a canonical

summand of B' and Im</5 C P; we pui [ip] = [P], [</?]A = [P]A and \\ip\\ — \\P\\-

If we denote by C the set of all canonical homomorphisms, then \C\ = A holds
(see [17]). Our version of the Strong Black Box reads as follows (compare to [17,
Theorem 1.1.2.]), where A° = {a < A : cf(a) = w}:

Black Box Theorem 4.2. Let E C A° be a stationary subset of X with A = p,+ ,

MK = M-
Then there exists' a family C* of canonical homomorphisms with the following

properties:

(i) I f i p t C * , then \\tp\\ e E.

(ii) If ip,<f' are two different elements of C* of the same norm a then \\[<p]\ n
__

(iii) PREDICTION: For any homomorphism $ : B' —> B' and for any subset I of

A with |/| < K the set

{a €E \3ip€C*: \\p\\ =a,^C^,I

is stationary.

For the proof of the Theorem we have to define an equivalence relation on C:

Definition 4.3. Canonical homomorphism <p, <p: are said to be equivalent or of
the same type (notation: <p = </?'). if \(p] n (u x JJL) = [</?'] n (/j, x M) and there exists

an order-isomorphism f : [y] — > [</>'] such that (xf)<p' = (x(p)f for all x & donap

where f : dom<^ — > domt/j' is the unique extension of the R-homomorphism defined

by e(e,a)f = e(e,a)/ ((e, a) e [</?]).

As in [17] it is easy to see that there are at most /n different types. Next we
have to recall the definition of an admissible sequence.
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Definition 4.4. Let ipo C <pi C • • • C <pn C • • • (n < w) be an increasing sequence

of canonical homomorphisms.

Then (~Pn)n<ul is said to be admissible if [ipo] n (n x n) = [ipn] n (/i x /x) for

all n < ui. Also, we say that (fn)n<u} is admissible for a sequence (/3n}n<u of

ordinals in A if (<pn)n<u is admissible satisfying \\y>n\\ < Pn < \\<Pn+\\\ ana (<Pn\ =
[Vn+i] n (/?„ x /?„) for all n<u>.

Moreover, two admissible sequences (<£n)n<u, and (¥>'n)n<u> are said to be equiv-

alent or of the same type if <pn = (p'n for all n < u.

Note that the union (J ipn of an admissible sequence (fn}n<u is also an fil-
TT,<OJ

ement of C. Moreover, if we let T be the set of all possible types of admissible
sequences of canonical homomorphisms, then clearly |T| < /J,K = \L. If (f>n)n<u is
admissible of type r , then we also use the notion of r-admissible. As in [17], the
following proposition is the main ingredient of the proof of the Black Box Theorem
4.2.

Proposition 4.5. Let ip : B' — » B' be a homomorphism, I C p x X a set of

cardinality at m,ost K and Ti. = "H^j = {<f 6 C <p C ib, I C lip}}.

Then there exists a type T e T such that

<po • • • ^n

with (l{>n)n<u is r-admissible.

The proof is in [17] and also for the proof of the Black Box Theorem 4.2 we
refer to [17, Section I]. Finally we have a corollary suitable for application.

Corollary 4.6. Let the assumption be the same as in the Black Box Theorem

4.2. Then there exists an ordinal A* > A with |A* = A and a family ((fi3)g<\, of

canonical homomorphisms such that

(i) (pp e C* and \\<pp\\ £ E for all /? < A*.
(ii) | |^7 | |< | |^ | | / 0 r an7</3<A*.

(iii) ||fag]A H [<^]A|| < \\vp\\ for all 7 < /? < A*. _

(iv) PREDICTION: For any homomorphism ip : B' — > B' and for any subset I of

A with |J| < K the set

{a 6 E | 3/3 < A* : H^H =a,90C^,IC [c^]}

is stationary.

5. The inductive steps in the construction of q — (R, G, a, a*).

We now use induction along a < A* given by the Black Box to find quadruples
qa = (Ra,Ga,aa,aa<t) € AH for a fixed Hi-free group H, see Definition 3.1. Let
H be given and choose QQ S &H arbitrary, e.g., qo = (Z, Z ® H,a,a*) which is
in &H by Proposition 3.3(b). We must assume that \H\ < A. Let (<f>p)p<\* be a
family of canonical homomorphisms as given by Corollary 4.6. For any J3 < A* let
P/3 = dom</3/3. Suppose that the quadruples qp = (Rp , G p , a p , & pf) are constructed
for all /3 < a subject to the following conditions:

(i) Rp is a unital ring with 1̂  = IJJT for all 7 < (3
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(ii) Rp,Gp are N
(iii) ap(Gp] C Rp

(iv) Gp C. Gp+i

( v ) RpCImffp+i i f f 3 £ E

(vi) Gp = U G~f if /? is a limit ordinal

^_^

(vii) .80 = 0 Ry (Xy) BJ C.f Gp C» Bp where Bp is the p-adic completion of Bp.
i<P

We first have to prove a Step Lemma.

Step Lemma 5.1. Let P = ® Ze(e Q) /or some /* C p x A* and let M be
^ (£,«)€/•___

a subgroup of B' with P C, M C» B' which is Ni-/ree and an R-module, where

R = U -Ra (-X"a) ™^ /' = {a < A : 3e < p, (e,a) € /*}. Assume t/iot q =

(/?, M, cr, cr*) € ^jy. 4/so suppose, that there is a set / = {(en, an) : n < w} C [P] =

/* SMC/I irtai ao < ai < • • • < an < • • • (n < u>) and

(i) M= U Gan,R= U flan;
n<cj n<a>

(ii) (^an,Gan,o-Qn,aQrl*) 6 ^ff /or all n< u

(iii) JA n [5] A is /mi£e /or all g £ M (Ix = [I}\).

Moreover, let (p : P — > M 6e a homomorphism which is not multiplication by an

element from R.

Then there exists an element y € P and an element q C q' = (R', M',a',a'f'} e

&# swc/i i/iai M C, M' C» B7, y e M' anrf y<p £ M' .

Proof. By assumption M is an .R-module and hence the completion M is an .R-

module. Thus for any y e P and r e R it follows that ry is denned inside M

and

N] C [j/].

We construct a new group M C,, Mj, for y G P as follows:

Put M^ = (M, Ry)f C B'. Since Im a is a pure subgroup of .R there is a unique
extension

a :M -^R

of a such that ker<7 = kera = H. Moreover, Im<7 is pure in R. We choose
R], = R[lma tMi]» C ̂  and let

Again we may choose R^ = R^ [Im a [Mi C P]f C R. Continuing this way we obtain

a sequence of groups M™ and rings R™ (n 6 w) such that

M™+1 is an .R"-module and a(M£) C R™.

Taking My = (J M™ and R'y = \J Ry we get that My is an .R^-module and ay =
n(Eoi n£uj

& \My'- My — > E^. By a standard support argument we see that My and (hence) R'y
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are still Hi-free. Finally take Ry = (R'y) , C Endz(My). By construction Imay is

pure in Ry and hence qy = (Ry,My,<Jy,cr*) G AH-

At this stage we determine y more specifically in order to obtain that ip g

EndzMj,. Let y = £ p"e(enian) and x = </?(y) 6 M. If x 0 M,,, then choose
n£iL>

M' = My and R' = Ry and hence qy € &H with <p g Endz M^.
If x € My, then there exist integers fc and n such that

p 2 / = Tng + rny

for some rn,r'n e J?™ and g 6 M. It follows that

(pk(P - ^) J/ = ^nff.

Since (pk(p — r'n} ^ 0 there is b' £ P such that

(pV-O^Vo.
Note that b' has finite support. Moreover, by the cotorsion-freeness of R there
exists TT £ JJ such that irb £ M with 6 = (pk<p — r'n^ b'. Let y' = y + -Kb' . We claim
that (f> $. Endz (My). By way of contradiction assume that

pl<p(y + TT&') = C5* + r^(7r6' + y)

for some integer I > A; and elements r^,r^ € -R™, and 5* e M. Without loss of
generality, we may assume n = m, hence

Let s = pl /pk . Hence

TT&') - spkip(y) = r*ng* + r'*(-Kb' + y)- s(rng + r'ny) =

= (r*ng* - srng) + r'jirb' + (r* - sr'n)y.

Since [ntf] = [b'}, (ip(-Kb')} = \<p(V)] and g*,g € M an easy support argument shows
that r*n = sr'n and hence

b') = (r^g* - srng) + sr'nnb'

and thus

' rn5 e M.

By purity we get Tt(pk<f>(b') - r'nb') = nb £ M — a contradiction. Finally we put
M' = Myl, R' = Ry, and q' = qy e &H. Thus

where j,<*> = E e(£n,Qn) or j/W = E §e(,n,«n) + n^b. D
n>fc ^ n>fc V
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We will now carry on the construction to a and distinguish three cases.
Case 1: Suppose a is a limit ordinal. Then Ga = (J GQ is Hi-free by (iii)

0<a

and hence Proposition 3.3(a) shows that we can take unions, i.e., qa = (J qp.
/3<a

Case 2: Suppose a = 0 + 1, then ||<^g|| G A°. Assume that Imipp <2 Gp or

(pp G -R/3. In this case we let Gp+i = Gp © Rp(Xp)ep as in Proposition 3.5 with
R'a = Rp (Xp) - Rp (Xp) with X acting as identity on GQ. We let Ra = (-R'Q)CT,

and by Proposition 3.5 it follows that (Ra, Ga, aa, a*a) G &H where aa and cr* = craf

are taken from Proposition 3.5. Put yp = 0.
Case 3: Suppose that a = /3 + 1 and Imipp ^ Gp, ipp £ Rp. In this case

we try to 'kill' our undesired homomorphism <pp which comes from the Black Box
prediction.

Recall that \\ipp\\ £ A°, hence there are (en,/3n) G [(pp] (n G u>) such that
@o < Pi < • • • < fin < • • • and supnew/3n = ||<p^||. Without loss of generality we
may assume that j3n 0 E for all n € u) and hence Gpn+i = Gpn ® -R/3n \Xpn} epn.

We put / = {(en, /3n) n < w}. Then /x H [g]\ is finite for all g G G/j. We apply the
Step Lemma 5.1 to / as above, P = domtp^ and M — Gp. Therefore there exists
an extension qa = qp+i of qp and an element yp € Ga such that yp<pp $ Ga and

\\y0\\ = \\v0\\ = \\Pp\\-
Finally put qH = (GH,RH,VH,CH*) = U 9« e &H- Obviously, GH has

a<A

cardinality A and R C Endg G. Moreover,

k<ui

Next we describe the elements of GH •

Lemma 5.2. Let GH be as above and let g G GH \ B. Then there are k < LJ and a

finite subset N of A* such that g G B+ ^ RpUg ana [ f fJA H [J//J]A is infinite if and
/3eJV

/5 ^ -W- In particular, if \\g\\ is a limit ordinal then \\g\\ = \\yp, \\ = \\f@, \\ for

/?* =

Proof. Let g G GH = B + ^ ^3 Rpyp • Then there exist a finite subset AT' of
/3<A* n<w

A*, 6 G B, fc G w, a^n & Rp (0 & N', n<k) such that

Since y^ — ̂ y& £ B' C B this expression reduces to

9 = b +
'/3GAT'

for some ap € Rp (0 G A^'), b' G B'. Putting W = {/? G AT' | a^ / 0} (A/' ^ 0 for
g ^ B) the conclusion of the lemma follows since [yp}\ n [y/j'JA is finite for /?//? '
by Corollary 4.6(iii). D
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Using the above lemma we prove further properties of GH-

Lemma 5.3. Let GH be as above and define Ga (a < A) by Ga := {g £ GH \

\\9\\ < a, \\g\\ring < a}. Then:

(a) GH H Pp C Gp+i for all 0 < A* ;
(b) {Ga a < X} is a X-filtration of GH', and
(c) if (3 < A*, a < A are ordinals such that \\<pp\\ = a then Ga C Gp.

Note, we used the lower index (/? < A*) for the construction while we use the
upper index (a < A) for the nitration.

Proof. First we show (a). Let g £ GH n Pp for some /3 < A*. Since .6/3+1 Q Gp+i

we assume g £ G^r \ Bp+i. Then, by Lemma 5.2, g £ B + 53 ^72/7 f°r some

finite N C X*, k < uj such that [5] A n [A^A is infinite for 7 £ Af.

Since g £ Pg we also have [#]A C [Pfl]A (= [P^U).
If HsH < ||P0|| then TV C /? by Corollary 4.6(ii) and thus g&G0C Gp+i.
Otherwise, if ]|p|| = \[Pf,\\ (e A°) then \\g\\ = \\y^\\ = ||̂ .|| for 7. = max AT

and [5] A n [t/7, ]A C [(,0/3] A H [VT.]A is infinite. Hence /? = 7, by condition (iii) of
Corollary 4.6 and so g £ Gp+\ as required.

Condition (b) is obvious.
To see (c) let /? < A*, a < A with \\<fp\\ = a and let g € G". If g £ Bp we are

finished. Otherwise, by Lemma 5.2, we have g 6 B + £3 -^7^7 (A^ ^ A* finite,

k & uj) with [#]A f~l [j/7]x is infinite for •y € N. This implies ||<p7|| = ||j/7|| < ||g|| <
a = l lv / s l ) for all 7 € A^ and thus N C /? by Corollary 4.6(ii), i.e., p € G/3, which
finishes the proof. D

6. Proof of the Main Theorem

In this final section we want to prove our Main Theorem which reads as follows:

Main Theorem 6.1. Let X be an infinite cardinal such that X = n+ with p?° = n
and let H be an Hi-/ree abelian group of size less than X. Then there exists an
^i-free E(H)-group of cardinality X with non-commutative endomorphism ring. In
particular, there is a strong HL-group of cardinality X.

Proof. Let A and H be given as stated in the theorem and choose a stationary subset
E of A whose members have cofinality u>. We construct qn = (Rn, GH, O~H,&H*) =
U qa as in the previous section. Thus RH C* Endz GH and a : GH — * RH with

a<A

kernel kercr# = H. Moreover, GH is Ni-free and RH is obviously non-commutative.
We first claim that an is surjective. Therefore let r £ RH, hence there exists a < A
such that r £ Ra. Without loss of generality we may assume that a 0 E. By (v)
we conclude that r e Ra C Imaa+i- Since cra+i C <JH as functions it follows that
r £ Im O~H and thus O~H is surjective.

It remains to prove that RH = EndzG/f- Assume that <p £ EndzGff \ R.
Let if' — ip \B>, hence <p' (£ R. Let / = {(en,an) \ n < ui} C p x A such that
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a0 < ai < • • • an < • • • and JA n [g]\ is finite for all g e GH- Note that the
existence of I can be easily arranged, e.g., let E C A°, a € A° \ E, £„ € p (n < LJ)

arbitrary and (an}n<u any ladder on a.

By Lemma 5.1 there exists an element y € B' such that yip' $ G'H which is an
extension of GH • By the Black Box Theorem 4.2 the set

E' = {a e E | 3/3 < A* : ||̂ || = a,^ C y,', [y] C [V0]}

is stationary since |[j/]| < KQ. Note, [y] C [1^3] implies that y e dom<^0. Moreover,
the set C = {a < X : <f(Ga) C Ga} is a cub in A, hence E1 n C / 0. Let
a e £" n C. Then G°V Q GQ and there exists an ordinal j3 < X* such that

\\pp\\ = a, <ffj C (p and y € domy^. The first property implies that Ga C G/3 by
Lemma 5.3 and the latter properties imply that <pp £ R. Moreover, doia.if>0 C B'

with || domip /}\\ring < \\6omipp\\ = a and hence domipp, and also (domip^ip are
contained in Ga C Op .

Therefore <pp : domtpg — > Gp with <p,g 0 .R^ and thus it follows form the
construction that ypipp $. Gp+\. On the other hand it follows from Lemma 5.3 that

— yp'-P € GH n Pp C Gj3+i — a contradiction. Thus Endz GH = /?, D

Corollary 6.2. iet A te an infinite cardinal such that A^° = A. Then there is a

non-commutative ring R such that Endz(.Rz) — R-

Proof. Let H = {0} and apply Theorem 6.1 to obtain a strong E-group G. Thus
IT : G — > Endz G is an isomorphism, where Endz G is non- commutative. Hence,
R := G has a non-commutative ring structure such that Endz(-Rz) = R. D
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