Trends in Mathematics, © 1999 Birkhäuser Verlag Basel/Switzerland

Almost disjoint pure subgroups of the Baer-Specker group

Oren Kolman * and Saharon Shelah [†]

Abstract

We prove in ZFC that the Baer-Specker group \mathbf{Z}^{ω} has 2^{\aleph_1} non-free pure subgroups of cardinality \aleph_1 which are almost disjoint: there is no non-free subgroup embeddable in any pair.

In this short paper we prove the following result.

Theorem 1 There exists a family $\mathbf{G} = \{G_{\alpha} : \alpha < 2^{\aleph_1}\}$ of non-isomorphic non-free pure subgroups of the Baer-Specker group \mathbf{Z}^{ω} such that: (1.1) each G_{α} has cardinality \aleph_1 ; (1.2) if $\alpha < \beta$, then G_{α} and G_{β} are almost disjoint: if H is isomorphic to subgroups of G_{α} and G_{β} , then H is free. In particular, $G_{\alpha} \cap G_{\beta}$ is free.

Recall that the Baer-Specker group \mathbf{Z}^{ω} is the abelian group of functions from the natural numbers into the integers (see [1] and [18]). It contains the canonical pure free subgroup $\mathbf{Z}_{\omega} = \bigoplus_{n < \omega} \mathbf{Z}$. The group \mathbf{Z}^{ω} is not κ -free for any cardinal $\kappa > \aleph_1$, but it is \aleph_1 -free, so the groups G_{α} in Theorem 1 are almost free.

Theorem 1 answers a question of the second author, and has its place in the line of recent research dealing with the lattice structure of the pure subgroups of \mathbf{Z}^{ω} (see [2], [3], and [5]–[8]). For example, Irwin asked whether there is a subgroup of \mathbf{Z}^{ω} with uncountable dual but no free summands of infinite rank. This problem was resolved recently by Corner and Göbel [5] who proved the following stronger fact.

Theorem 2 [5] The Baer-Specker group \mathbf{Z}^{ω} contains a pure subgroup G whose endomorphism ring splits as $End(G) = \mathbf{Z} \oplus Fin(G)$, with $|G^*| = 2^{\aleph_0}$, where \mathbf{Z} is the scalar multiplication by integers and Fin(G) is the ideal of all endomorphisms of G of finite rank.

^{*}We thank the referee for constructive comments.

[†]This research was partially supported by the German-Israel Foundation project No. G-545-173.06/97; publication number 683.

Quotient-equivalent and almost disjoint abelian groups have been studied by Eklof, Mekler and Shelah in [9]–[11], who showed that under various settheoretic hypotheses, there exist families of maximal possible size of almost free abelian groups which are pairwise almost disjoint. Following [11], we say that two groups A and B are almost disjoint if whenever H is embeddable as a subgroup in both A and B, then H is free. Clearly if A and B are non-free and almost disjoint, then they are non-isomorphic in a very strong way. On the other hand, the intersection of two almost disjoint groups of size \aleph_1 need not necessarily be countable, so group-theoretic almost disjointness differs from its set-theoretic homonym. Theorem 1 establishes in ZFC that the Baer-Specker group contains large families of almost disjoint almost free non-free pure uncountable subgroups.

Our group and set-theoretic notation is standard and can be found in [10] and [14]. For example, $\omega_1 > 2$ is the set of partial functions from ω_1 into $\{0, 1\}$ whose domains are at most countable; $\omega_1 2$ is the set of all functions from ω_1 into $\{0, 1\}$; for a regular cardinal χ , $H(\chi)$ is the family of all sets of hereditary cardinality less than χ .

For a set $A \subseteq H(\chi)$ for χ large enough, we write $\operatorname{dcl}_{(H(\chi), \in, <)}[A]$ for the Skolem closure (Skolem hull) of A in the structure $(H(\chi), \in, <)$, where

< is a well-ordering of $H(\chi)$ (for details, see [16], 400-402, or [15], 165-170). In proving Theorem 1, we shall appeal to the well-known Engelking-Karłowicz theorem from set-theoretic topology:

Theorem 3 [13] If $|Y| = \mu = \mu^{<\sigma} < \lambda = |X| \leq 2^{\mu}$, then there are functions $h_{\alpha}: X \to Y$ for $\alpha < \mu$ such that for every partial function f from X to Y of cardinality less than σ , for some $\alpha < \mu$, $f \subseteq h_{\alpha}$.

A self-contained short proof can be found in [17], 422-423. We shall need just the case when $\mu = \sigma = \aleph_0$, and $\lambda = 2^{\mu}$. Since it may be less familiar to algebraists, for convenience we deduce the fact to which we appeal later on (although it also appears as Corollary 3.17 in [4]).

Lemma 4 There exists a family $\{f_{\eta} : \eta \in {}^{\omega_1 > 2}\}$ such that $f_{\eta} : \omega \to \mathbb{Z}$, and whenever η_1, \ldots, η_k are distinct and $a_1, \ldots, a_k \in \mathbb{Z}$, then $\{i < \omega : (\forall l \leq k)(f_{\eta_l}(i) = a_l)\}$ is infinite.

Proof. Take $\mu = \sigma = \aleph_0$, $\lambda = 2^{\mu}$, $X = {}^{\omega_1>2}$ and $Y = \mathbb{Z}$ in the Engelking-Karłowicz theorem. Since $|{}^{\omega_1>2}| = 2^{\aleph_0}$ and $|\mathbb{Z}| = \aleph_0$, we know that there exist functions $h_n : {}^{\omega_1>2} \to \mathbb{Z}$ for $n < \omega$ such that for every partial function f from ${}^{\omega_1>2}$ to \mathbb{Z} whose domain is finite, there is some $m < \omega$ such that $f \subseteq h_m$. Let $\{g_i : i < \omega\}$ be an enumeration with infinitely many repetitions of each h_n for $n < \omega$.

For each $\eta \in {}^{\omega_1>2}$, define $f_{\eta} : \omega \to \mathbb{Z}$ by $f_{\eta}(i) = g_i(\eta)$. The family $\{f_{\eta} : \eta \in {}^{\omega_1>2}\}$ is as required: for if η_1, \ldots, η_k are distinct and $a_1, \ldots, a_k \in$

Sh:683

Almost disjoint subgroups

Z are given, then the set $f = \langle (\eta_1, a_1), \ldots, (\eta_k, a_k) \rangle$ is a finite function, so there is some m such that $f \subseteq h_m$ and it is now easy to see that $\{i < \omega : (\forall l \leq k) (f_{\eta_l}(i) = a_l)\}$ is infinite. \Box

A well-known algebraic fact will also be useful:

Lemma 5 Let C be a closed unbounded subset of the regular uncountable cardinal κ . Suppose that H is an abelian group of cardinality κ , and $\langle H_{\alpha} : \alpha < \kappa \rangle$ is a κ -filtration of H (a continuous increasing chain of subgroups H_{α} , $|H_{\alpha}| < \kappa$, whose union is H). Let $S = \{\alpha \in C : H/H_{\alpha} \text{ is not } \kappa\text{-free}\}$. Then H is free if and only if S is non-stationary in κ .

Proof. Well known: see Proposition IV.1.7 in [10]. \Box

We refer the reader to [14] for the definitions of the characteristic $\chi(g)$ and the type $\tau(g)$ of an element g in a group.

Now we prove Theorem 1.

Proof. Let **P** be the set of prime numbers, and let $\{P_{\eta} : \eta \in {}^{\omega_1 > 2}\}$ be a family of almost disjoint (infinite) subsets of **P**: $\eta \neq \nu \in {}^{\omega_1 > 2} \Rightarrow |P_{\eta} \cap P_{\nu}| < \aleph_0$. By Lemma 4, there exists $\{f_{\eta} : \eta \in {}^{\omega_1 > 2}\}$ such that $f_{\eta} : \omega \to \mathbf{Z}$, and if η_1, \ldots, η_k are distinct and $a_1, \ldots, a_k \in \mathbf{Z}$, then $\{i < \omega : (\forall l \leq k)(f_{\eta_l}(i) = a_l)\}$ is infinite.

Define functions x_{η} and $x_{\eta,j}$ in \mathbb{Z}^{ω} as follows. Let $x_{\eta} = \langle \pi_{\eta,i} \cdot f_{\eta}(i) : i < \omega \rangle$ where $\pi_{\eta,i} = \Pi\{p \in P_{\eta} : p < i\}$, and let $x_{\eta,j} = \langle \pi_{\eta,i}^{j} \cdot f_{\eta}(i) : i < \omega \rangle$ where $\pi_{\eta,i}^{j} = \Pi\{p \in P_{\eta} : j \le p < i\}$ (=0 if $i \le j$). Note that $x_{\eta} = x_{\eta,0}$.

For $\eta \in {}^{\omega_1}2$, let G_{η} be the subgroup of \mathbf{Z}^{ω} generated by $\mathbf{Z}_{\omega} \cup \{x_{\eta \mid \alpha, j} : \alpha < \omega_1, 0 \le j < \omega\}$.

We show that the family $\mathbf{G} = \{G_{\eta} : \eta \in {}^{\omega_1}2\}$ satisfies the conclusions of Theorem 1.

Claim 1: G_{η} is pure in \mathbf{Z}^{ω} .

Proof of Claim 1: Suppose that rx = g for some $x \in \mathbf{Z}^{\omega}$, $r \in \mathbf{N}$, and $g \in G_{\eta}$. Say $g = y + n_1 x_{\eta \mid \alpha_1, j_1} + \cdots + n_m x_{\eta \mid \alpha_m, j_m}$, $n_l \neq 0$, with $y \in \mathbf{Z}_{\omega}$. Without loss of generality (adding more elements from \mathbf{Z}_{ω} to the RHS if necessary), $(\forall l \leq m)(j_l = j)$ for some $j < \omega$, j > r, y(i) = 0 $(\forall i > j)$, and x(i) = 0 $(\forall i \leq j)$. Relabelling (if necessary), we may assume that $\alpha_1 < \cdots < \alpha_m < \omega_1$, and because $x_{\eta \mid \alpha_l, j}(i) = 0$ if $i \leq j$, we may write

$$rx = ry^* + n_1 x_{\eta|\alpha_1, j} + \dots + n_m x_{\eta|\alpha_m, j}, \quad \text{for some } y^* \in \mathbf{Z}_{\omega}.$$

Fix $k \in \{1, \ldots, m\}$. Since $\eta | \alpha_1, \ldots, \eta | \alpha_m$ are distinct $(\alpha_1 < \cdots < \alpha_m)$, letting $a_l = \delta_{kl}$ (Kronecker delta), we know that the set $N_k = \{i < \omega :$

O. Kolman and S. Shelah

 $(\forall l \neq k)(f_{\eta_l}(i) = 0, f_{\eta_k}(i) = 1)\}$ is infinite. For large enough *i* in this set (e.g. $i > \max_{1 \leq l \leq m} [\min(P_{\eta|\alpha_l} \setminus \{0, \ldots, j\})]), x_{\eta|\alpha_l,j}(i)$ is zero if and only if $l \neq k$. So for infinitely many $i < \omega$, for $l \neq k, x_{\eta|\alpha_l,j}(i) = 0$, and $x_{\eta|\alpha_k,j}(i) \neq 0$.

Unfix k. For each $k \leq m$, for infinitely many $i \in (j, \omega) \cap N_k$, $rx(i) = n_k x_{\eta \mid \alpha_k, j}(i) = n_k \Pi\{p \in P_{\eta \mid \alpha_k} : j \leq p < i\}$. Since r < j, we must have $rs_k = n_k$ for some s_k in \mathbb{Z} , and therefore $x = y^* + s_1 x_{\eta \mid \alpha_1, j} + \cdots + s_m x_{\eta \mid \alpha_m, j} \in G_{\eta}$ (G_{η} is torsion-free). Hence G_{η} is pure in \mathbb{Z}^{ω} , which establishes Claim 1.

Claim 2: G_{η} has cardinality \aleph_1 , so (1.1) holds.

Proof of Claim 2: If $\xi \neq \zeta \in {}^{\omega_1>2}$, then for some $j < \omega$, $P_{\xi} \cap P_{\zeta} \subseteq j$. Pick p, q > j with $p \in P_{\xi}$ and $q \in P_{\zeta}$; so the set $B = \{i < \omega : f_{\xi}(i) = p \text{ and } f_{\zeta}(i) = q\}$ is infinite, and if $i \in B$ is bigger than $\max\{j, p, q\}$, then $x_{\xi,j}(i) \neq x_{\zeta,j}(i)$, since $x_{\xi,j}(i)$ is non-zero and divisible by p^2 but by no prime in P_{ζ} , and $x_{\zeta,j}(i)$ is non-zero and divisible by q^2 but by no prime in P_{ξ} . It follows that G_{η} has cardinality \aleph_1 . After this observation, a second's reflection on the element types of G_{η_1} and G_{η_2} (for $\eta \neq \nu$) should convince the reader that the groups are neither isomorphic nor free.

Claim 3: (1.2) holds: if $\eta_1 \neq \eta_2 \in {}^{\omega_1}2$, then G_{η_1} and G_{η_2} are almost disjoint.

Proof of Claim 3: Suppose (towards a contradiction) that for some $\eta_1 \neq \eta_2 \in {}^{\omega_1}2$, for some non-free abelian group H, there exist isomorphisms $\varphi_l : H \to \operatorname{range}(\varphi_l) \leq G_{\eta_l}, \ l = 1, 2$. Since G_{η_l} is \aleph_1 -free, H must have cardinality \aleph_1 . Let $\langle H_i : i < \omega_1 \rangle$ be an ω_1 -filtration of H. Without loss of generality, we may assume that each H_i is pure in H, so that H/H_i is torsion-free.

Let $G_{\eta,i} = \langle \mathbf{Z}_{\omega} \cup \{ x_{\eta|\beta,j} : j < \omega, \beta < i \} \rangle$ for $i < \omega_1$ and $\eta \in \{ \eta_1, \eta_2 \}$.

Note that $\langle G_{\eta,i} : i < \omega_1 \rangle$ is a ω_1 -filtration of G_η , since it is increasing and continuous with union G_η , and each $G_{\eta,i}$ is countable. For large enough χ , the set C defined by $\{\delta < \omega_1 : \operatorname{dcl}_{(H(\chi), \in, <)} | \delta \cup \{G_{\eta_1}, G_{\eta_2}, \{x_\nu, f_\nu : \nu \in \omega_1 > 2\}, \eta_1, \eta_2, \varphi_1, \varphi_2, \{H_i : i < \omega_1\}\}] \cap \omega_1 = \delta\}$ is a club of ω_1 (well known, or see [16], 401). Note that if $\delta \in C$, then φ_l maps H_δ into $G_{\eta_l,\delta}$. Since H is not free, it follows by Lemma 5 that $S = \{\delta \in C : H/H_\delta \text{ is not } \aleph_1 - free\}$ is stationary. By Pontryagin's Criterion, for each $\delta \in S$, H/H_δ has a non-free (torsion-free) subgroup K_δ/H_δ of finite rank $n_\delta + 1$ such that every subgroup of K_δ/H_δ of rank less than $n_\delta + 1$ is free. Let H_δ^+/H_δ be a pure subgroup of K_δ/H_δ of rank n_δ . Then H_δ^+/H_δ is free with basis $y_0 + H_\delta, \ldots, y_{n_\delta - 1} + H_\delta$ say. So $K_\delta/H_\delta^+ \simeq (K_\delta/H_\delta)/(H_\delta^+/H_\delta)$ is a torsionfree rank-1 group which is not free, and hence there is a non-zero element $y_{n_\delta} + H_\delta^+$ which is divisible in K_δ/H_δ^+ by infinitely many natural numbers. Call this set of natural numbers A.

Sh:683

228

For l = 1, 2, for large enough $j_l(*) < \omega$, and $\beta_0^l < \cdots < \beta_{k_l}^l < \omega_1$, $\varphi_l(y_m)$ is an element of the subgroup of G_{η_l} generated by $G_{\eta_l,\delta} \cup \{x_{\eta_l}|\beta_{0,j_l}(*), \ldots, x_{\eta_l}|\beta_{k_l,j_l}(*)\}$ for all $m \le n_{\delta}$.

Taking large enough $\delta \in S$, we may assume that $\min\{\alpha : \eta_1 | \alpha \neq \eta_2 | \alpha\} < \beta^l_0, \ l = 1, 2$. Since $\delta \in C$, we can show the following claims: (*)₁: The set A does not contain infinitely many powers of one prime.

(*)₂: The set $Q = (\mathbf{P} \cap A) \subseteq P_{\eta_l \mid \beta^l_0} \cup \cdots \cup P_{\eta_l \mid \beta^l_{k_l}}$.

Now $(*)_1$ is true because non-zero sums of elements in $G_{\eta_l,\delta} \cup \{x_{\eta_l|\beta^l_0,j_l(*)}, \ldots, x_{\eta_l|\beta^l_{k_l},j_l(*)}\}$ are divisible by at most finitely many powers of any given prime (by the definition of the elements $x_{\eta_l|\beta,j}$). Note that $\chi(y_{n_{\delta}} + H_{\delta}^{+}) = \bigcup_{\{y \in y_{n_{\delta}} + H_{\delta}^{+}\}} \chi(y) \leq \bigcup_{\{y \in y_{n_{\delta}} + H_{\delta}^{+}\}} \chi(\varphi_l(y))$, where the characteristics are taken relative to $K_{\delta}/H_{\delta}^{+}$, K_{δ} and $G_{\eta_l,\delta} \cup \{x_{\eta_l|\beta^l_0,j_l(*)}, \ldots, x_{\eta_l|\beta^l_{k_l},j_l(*)}\}$ respectively. Hence $(*)_1$ holds. By $(*)_1$, since A is infinite, the set $Q = \mathbf{P} \cap A$ is infinite.

Also, the same characteristic inequality implies that $Q \subseteq P_{\eta_l | \beta_0} \cup \cdots \cup P_{\eta_l | \beta_{k_l}}$. So $(*)_2$ is true. Hence, $Q \subseteq \bigcap_{l=1,2} (\bigcup_{k \leq k_l} P_{\eta_l | \beta_k})$ which is finite (since the family $\{P_{\eta} : \eta \in \omega_1 > 2\}$ is almost disjoint). This is a contradiction, and so Claim 3 follows, completing the proof of Theorem 1.

Corollary 6 Every non-slender \aleph_1 -free abelian group G has a family $\{G_{\alpha} : \alpha < 2^{\aleph_1}\}$ of non-free subgroups such that: (6.1) each G_{α} is almost free of cardinality \aleph_1 ; (6.2) if $\alpha < \beta$, then G_{α} and G_{β} are almost disjoint.

Proof. By Nunke's characterisation of slender groups (see Corollary IX.2.5 in [10] for example), G must contain a copy of the Baer-Specker group.

Remark: For the same reason, the corollary is true for any non-slender cotorsion-free abelian group.

References

- R. Baer, Abelian groups without elements of finite order, Duke Math. J. 3 (1937), 68-122.
- [2] A. Blass, Cardinal characteristics and the product of countably many infinite cyclic groups, J. Algebra 169 (1994), 512-540.
- [3] A. Blass and R. Göbel, Subgroups of the Baer-Specker group with few endomorphisms but large dual, Fund. Math. 149 (1996), 19-29.
- [4] W. W. Comfort and S. Negrepontis, The Theory of Ultrafilters, Berlin: Springer-Verlag (1974).

O. Kolman and S. Shelah

- [5] A. L. S. Corner and R. Göbel, Essentially rigid subgroups of the Baer-Specker group, Manuscripta math. 94 (1997), 319-326.
- [6] A. L. S. Corner and B. Goldsmith, On endomorphisms and automorphisms of some pure subgroups of the Baer-Specker group, in Abelian Group Theory and Related Topics (R. Göbel, P. Hill and W. Liebert, eds.), Contemp. Math. 171 (1994), 69-78.
- [7] M. Dugas and J. Irwin, On pure subgroups of cartesian products of integers, Results in Math. 15 (1989), 35-52.
- [8] K. Eda, A note on subgroups of Z^N, in Abelian Group Theory (R. Göbel et al, eds.), Springer Lecture Notes in Mathematics 1006 (1983), 371–374.
- [9] P. C. Eklof and A. H. Mekler, Infinitary stationary logic and abelian groups, Fund. Math. 112 (1981), 1-15.
- [10] P. C. Eklof and A. H. Mekler, Almost Free Modules. Set-theoretic Methods, Amsterdam: North-Holland (1990).
- [11] P. C. Eklof, A. H. Mekler, and S. Shelah, Almost disjoint abelian groups, Israel J. Math. 49 (1984), 34-54.
- P. C. Eklof and S. Shelah, A combinatorial principle equivalent to the existence of non-free Whitehead groups, in Abelian Group Theory and Related Topics (R. Göbel, P. Hill and W. Liebert, eds.), Contemp. Math. 171 (1994), 79-98.
- [13] R. Engelking and M. Karłowicz, Some theorems of set theory and their topological consequences, Fund. Math. 57 (1965), 275-285.
- [14] L. Fuchs, Infinite Abelian Groups, Vols. I and II, New York: Academic Press (1970, 1973).
- [15] L. Heindorf and L. B. Shapiro, Nearly Projective Boolean Algebras, Springer Lecture Notes in Mathematics 1596 (1994).
- [16] S. Shelah, Classification Theory and the Number of Non-Isomorphic Models, Revised edition, Studies in Logic and the Foundations of Mathematics, Vol. 92, Amsterdam: North-Holland (1990).
- [17] S. Shelah, Cardinal Arithmetic, Oxford: OUP (1994).
- [18] E. Specker, Additive Gruppen von Folgen ganzer Zahlen, Portugaliae Math. 9 (1950), 131-140.

230

Sh:683