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Almost disjoint pure subgroups of the
Baer-Specker group

Oren Kolman * and Saharon Shelah !

Abstract

We prove in ZFC that the Baer-Specker group Z*“ has 2™ non-free
pure subgroups of cardinality R; which are almost disjoint: there is
no non-free subgroup embeddable in any pair.

In this short paper we prove the following result.

Theorem 1 There exists a family G = {Gqy : @ < 281} of non-isomorphic
non-free pure subgroups of the Baer-Specker group Z“ such that:

(1.1) each G4 has cardinality Ny ;

(1.2) if a < B, then G, and Gg are almost disjoint: if H is isomorphic
to subgroups of Go and Gg, then H is free. In particular, G, N Gg is free.

Recall that the Baer-Specker group Z“ is the abelian group of functions
from the natural numbers into the integers (see [1] and [18]). It contains
the canonical pure free subgroup Z,, = ®,<wZ. The group Z* is not s-free
for any cardinal k > R;, but it is N;-free, so the groups G in Theorem 1
are almost free.

Theorem 1 answers a question of the second author, and has its place
in the line of recent research dealing with the lattice structure of the pure
subgroups of Z*“ (see [2], [3], and [5]-(8]). For example, Irwin asked whether
there is a subgroup of Z“ with uncountable dual but no free summands of
infinite rank. This problem was resolved recently by Corner and Gébel [5]
who proved the following stronger fact.

Theorem 2 [5] The Baer-Specker group Z* contains a pure subgroup G
whose endomorphism ring splits as End(G) = Z®Fin(G), with |G*| = 2%,
where Z is the scalar multiplication by integers and Fin(G) is the ideal of
all endomorphisms of G of finite rank.

*We thank the referee for constructive comments.
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Quotient-equivalent and almost disjoint abelian groups have been studied
by Eklof, Mekler and Shelah in [9]-[11], who showed that under various set-
theoretic hypotheses, there exist families of maximal possible size of almost
free abelian groups which are pairwise almost disjoint. Following [11], we say
that two groups A and B are almost disjoint if whenever H is embeddable as
a subgroup in both A and B, then H is free. Clearly if A and B are non-free
and almost disjoint, then they are non-isomorphic in a very strong way.
On the other hand, the intersection of two almost disjoint groups of size
R; need not necessarily be countable, so group-theoretic almost disjointness
differs from its set-theoretic homonym. Theorem 1 establishes in ZFC that
the Baer-Specker group contains large families of almost disjoint almost free
non-free pure uncountable subgroups.

Our group and set-theoretic notation is standard and can be found in
[10] and [14]. For example, “*~2 is the set of partial functions from w; into
{0, 1} whose domains are at most countable; “*2 is the set of all functions
from w; into {0, 1}; for a regular cardinal x, H(x) is the family of all sets
of hereditary cardinality less than .

For a set A C H(x) for x large enough, we write dcl(H(X) e<) [A] for

the Skolem closure (Skolem hull) of 4 in the structure (H(x), €, < ), where
< is a well-ordering of H(x) (for details, see [16], 400-402, or [15], 165-170).

In proving Theorem 1, we shall appeal to the well-known Engelking-
Karlowicz theorem from set-theoretic topology:

Theorem 3 [13] If [Y| = p = p<% < X = |X| < 2*, then there are
functions h : X =Y for a < p such that for every partial function f from
X to Y of cardinality less than o, for some a < p, f C hq.

A self-contained short proof can be found in [17], 422-423. We shall need
just the case when p = 0 = Rg, and A = 2#. Since it may be less familiar
to algebraists, for convenience we deduce the fact to which we appeal later
on (although it also appears as Corollary 3.17 in [4]).

Lemma 4 There ezists a family {f, : n € “*72} such that fy : w — Z,
and whenever 1y, ...,n, are distinct and a1,...,ax € Z, then

{i <w: (VI<Ek)(fn (i) =ar)} is infinite.

Proof. Take p = 0 = Vo, A = 2¢, X = “?2 and ¥ = Z in the
Engelking-Karlowicz theorem. Since |“*~2| = 2% and |Z| = No, we know
that there exist functions A, : “1>2 — Z for n < w such that for every
partial function f from “*~2 to Z whose domain is finite, there is some
m < w such that f C hp,. Let {g; : ¢ < w} be an enumeration with
infinitely many repetitions of each h, for n < w.

For each n € “*>2, define f, : w = Z by f,(i) = gi(n). The family
{fn :m € “*>2} is as required: for if ny,...,mi are distinct and ay,...,ax €
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Z are given, then the set f = ((n1,a1),...,(nx,ax)) is a finite function,
so there is some m such that f C h,, and it is now easy to see that
{i <w: (VI<k)(fn (i) = ay)} is infinite. O

A well-known algebraic fact will also be useful:

Lemma 5 Let C be a closed unbounded subset of the regular uncountable
cardinal k. Suppose that H is an abelian group of cardinality k, and (Hy :
a < k) 18 a k-filtration of H (a continuous increasing chain of subgroups
H,, |Ho| < K, whose union is H). Let S = {a € C: H/Hy is not k-free}.
Then H 1is free if and only if S is non-stationary in k.

Proof. Well known: see Proposition IV.1.7 in [10]. O

We refer the reader to [14] for the definitions of the characteristic x(g)
and the type 7(g) of an element g in a group.

Now we prove Theorem 1.

Proof. Let P be the set of prime numbers, and let {P, : n € “1~2}
be a family of almost disjoint (infinite) subsets of P: n # v € “172 =
|P, N P,| < No. By Lemma 4, there exists {f, : n € “*”2} such that
fo:w— Z, and if n1,...,mi are distinct and ag,...,ax € Z, then {i <w:
(V1 < k)(fn, (1) = a;)} is infinite.

Define functions z,, and z, ; in Z* as follows. Let z, = (7, fy(i) : i <
w) where 1, ; = II{p € P, : p <1}, and let z,, ; = (m) ;- fn(i) : i <w) where
. =T{p€ Py:j<p<i} (=0ifi < j). Note that z, = zp 0.

For n € “12, let G, be the subgroup of Z“ generated by Zy, U {Zya,; :
a<w,0<j<w}

We show that the family G = {G,, : n € “*2} satisfies the conclusions
of Theorem 1.

T

Claim 1: G, is pure in Z“.

Proof of Claim 1: Suppose that rz = g for some z € Z¥, r € N, and
g €Gy. Say g =y + NiTyay s+ + MmThlam,jmr ™ F 0, With y € Z,.
Without loss of generality (adding more elements from Z, to the RHS if
necessary), (V! < m)(j; = j) for some j < w, j > r, y(i) =0 (Vi > j),
and z(i) = 0 (Vi < j). Relabelling (if necessary), we may assume that
a; < -+ < & < wy, and because Tp)q,,;(1) = 0if ¢ < j, we may write

TT = Ty* + nlm’)lalyj +ot nmxnlam,j’ fOI' some y* € Zw.

Fix k € {1,...,m}. Since nlay,...,n|an are distinct (a1 < --- < Am),
letting a; = 6 (Kronecker delta), we know that the set Ne = {i < w:



Sh:683

228 O. Kolman and S. Shelah

(V1 # k)(fn(3) =0, fn.(3) = 1)} is infinite. For large enough 7 in this
set (e.g. i > maxici<m [Min(Pye,\{0,...,5})]), Zyjar,;(6) is zero if and
only if [ # k. So for infinitely many i < w, for | # k, z,4,,;(i) = 0, and
Tplay,i (1) # 0.

Unfix k. For each k£ < m, for infinitely many ¢ € (j,w) N N, rz(i) =
NkTplay,i (1) = i ll{p € Pyq, : j < p < i}. Since r < j, we must have
sy = ny for some sy in Z, and therefore £ = y*+s12pj, j+  +SmTh|an,,i €
Gn (G4 is torsion-free). Hence G, is pure in Z*, which establishes Claim 1.

Claim 2: G, has cardinality Ry, so (1.1) holds.

Proof of Claim 2: If £ # ¢ € “1~2, then for some j < w, P NP C j.
Pick p,g > j with p € P and g € P;;sotheset B = {i < w: fe(i) =p
and f¢(:) = ¢} is infinite, and if 7 € B is bigger than max{j,p,q}, then
z¢ (i) # z¢;(1), since ¢ (i) is non-zero and divisible by p* but by no
prime in P, and ¢ j(¢) is non-zero and divisible by ¢> but by no prime in
Py. Tt follows that G, has cardinality X;. After this observation, a second’s
reflection on the element types of G,, and G, (for n # v) should convince
the reader that the groups are neither isomorphic nor free.

Claim 3: (1.2) holds: if n; # n, € “!2, then G,, and G,, are almost
disjoint.

Proof of Claim 3: Suppose (towards a contradiction) that for some n; #
ny € “12, for some non-free abelian group H, there exist isomorphisms
o+ H — range(p;) < Gq,, | = 1,2. Since Gy, is Ni-free, H must have
cardinality ;. Let (H; : i < wi) be an w;-filtration of H. Without loss
of generality, we may assume that each H; is pure in H, so that H/H; is
torsion-free.

Let Gy = (Zw U{zpp,; - j <w, B <1i}) for i <w; and n € {n1,m2}.

Note that (Gp; : ¢ < wy) is a wy-filtration of G, since it is increasing
and continuous with union G, and each G ; is countable. For large enough
X, the set C defined by {§ < w; : dcl(H(x) e<) BU{Gn,,Gnp {20, fv:V E

“1>9} 1,2, 01,02, {Hi 11 <wi}}] Nwy = 6} is a club of w; (well known,
or see [16], 401). Note that if § € C, then ¢, maps H; into Gy, 5. Since
H is not free, it follows by Lemma 5 that S = {6 € C : H/H; is not N;-
free} is stationary. By Pontryagin’s Criterion, for each § € S, H/Hs has
a non-free (torsion-free) subgroup Ks/Hjs of finite rank ns + 1 such that
every subgroup of K;s/Hs of rank less than ns + 1 is free. Let H6+/H5
be a pure subgroup of K;5/Hs of rank ns. Then H;"/H; is free with basis
Yo+Hs, ..., Yns—1+Hs say. So Ks/Hst ~ (Ks/Hs)/(H,* /Hs) is a torsion-
free rank-1 group which is not free, and hence there is a non-zero element
Yns +H, 5+ which is divisible in K5/ H 5"’" by infinitely many natural numbers.
Call this set of natural numbers A.
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For | = 1,2, for large enough ji(+) < w, and !, < --- < B <
w1, ¢@i(ym) is an element of the subgroup of G, generated by G,, s U
{xmlﬂ’o,jz(*)v'"’xmlﬁ'k, Ji(x ) for all m < ns.

Taking large enough 6 € S, we may assume that min{e : n1|a # n2|a} <
B, 1 =1,2. Since § € C, we can show the following claims:

(*)1: The set A does not contain infinitely many powers of one prime.
(*)2: The set Q = (P N A) g Pnllﬂlo U--- UPmlﬂlkl .

Now (*); is true because non-zero sums of elements in
Gris U{zn 80, u(a)r - T8, Jji(+)} are divisible by at most finitely many
powers of any given prime (by the definition of the elements z,, 3 ;). Note
that X(¥ns + H;") = Ugyeyn,+a,+3 X¥) < Ugyeyn,+a,+ X(@1(y)), where
the characteristics are taken relative to Ks5/H, 6+, K and
Gns U {mmlﬁzo’jl(*),..‘,mmlﬁlkl Jji(+)} respectively. Hence ()1 holds. By
(*)1, since A is infinite, the set @ = P N A is infinite.

Also, the same characteristic inequality implies that @ C P g, U+ U

le:kl. So ()2 is true. Hence, Q C ﬂ[;-l,z(UkSk,Pmlﬁlk) which is finite

n
(since the family {P, : n € “1~2} is almost disjoint). This is a contradic-
tion, and so Claim 3 follows, completing the proof of Theorem 1. ]

Corollary 6 FEvery non-slender R, -free abelian group G has a family {Gq :
a < 2%} of non-free subgroups such that:

(6.1) each G4 is almost free of cardinality R;;

(6.2) if o < B, then G and G are almost disjoint.

Proof. By Nunke’s characterisation of slender groups (see Corollary
IX.2.5 in [10] for example), G must contain a copy of the Baer-Specker
group. O

Remark: For the same reason, the corollary is true for any non-slender
cotorsion-free abelian group.
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