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Abstract. The relations M (k, A, 1) — B [resp. B(c)] meaning that if A C [k]* with
|A| = k is p-almost disjoint then A has property B [resp. has a o-transversal] had been
introduced and studied under GCH in [EH]. Our two main results here say the following:

Assume GCH and let ¢ be any regular cardinal with a supercompact [resp. 2-huge]
cardinal above p. Then there is a g-closed forcing P such that, in VP, we have both GCH
and M(g("_g"'l)7 ot,0) » B [resp. M(g(+g+1),)\, 0) » B(o™) for all A < Q(+Q+1)}.

These show that, consistently, the results of [EH] are sharp. The necessity of using
large cardinals follows from the results of [Ko], [HJSh] and [BDJShSz].

1. Introduction. The aim of this paper is to show that, assuming the
existence of certain large cardinals, the results of [EH| are sharp. Let us
recall these results, and first their terminology.

If £ < XA < k and o are infinite cardinals then M(k,\,u) — B(o)
[resp. M (k, A\, u) — B] abbreviates the following statement: Whenever A C
[k]* with |A] = k is p-almost disjoint (for short: p-a.d.) then A has a
o-transversal [resp. A has property B]. Here A is p-a.d. means that the
intersection of any two members of A has size < u; a o-transversal of A is
a set T such that 0 < [ANT| < o for every A € A; and A has property B
if there is a set T with ) # ANT # A for all A € A.

One of the main results of [EH] (see also [W, Chapter 1]) is as follows:

1.1. THEOREM. (GCH) If ¢ is any regular cardinal then for any A < k <

0t0) we have
M (kX 0) — B(o").
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The natural question whether the restriction x < o(t@ is essential here
had also been raised in [EH], especially because the following was also proved
there.

1.2. THEOREM. (GCH) If o is regular then for any A < k we have
M(k, X, 0) — B(0™™).
So if also A > oT then M(k, )\, 0) — B.

Concerning the above question it was much later shown in [Ko] and
than in [HJSh] and [BDJShSz] that the restriction x < o(+) in 1.1 can be
omitted if some weak [-like principles hold in addition to GCH, hence e.g.
if V= L. On the other hand, it was also shown in [HJSh] that the existence
of a supercompact cardinal implies the consistency of M (R, 11,81, Rg) - B,
hence also of M (R,41,81,Rg) - B(Ry), with GCH. The appearance of large
cardinals here is of course essential because one has to negate the above
mentioned [-like principles.

Our first main result generalizes this negative result from ¢ = Ng to any
regular cardinal p. This was not immediate because the method of proof
used in [HJSh] does not apply if o > Ny, so a new ingredient was needed.
The general result can be formulated as follows.

1.3. THEOREM. Assume that GCH holds, o is any reqular cardinal and
K 1S a supercompact cardinal with o < k. Then there is a o-closed notion of
forcing P such that, in V', we have GCH and

Mot ot o) - B.

(Note that since P is g-closed, no cardinals or cofinalities will be changed
in V¥ up to o.)

Of course, trivially here again M (o2t ot o) - B(p™) holds, but the
relations M (o(tetD X o) - B(o™1) are not excluded for ot < X < p(teth),
Our second main result, formulated below, takes care of these. (Compare
this with 1.2!)

1.4. THEOREM. Assume GCH, o is reqular and k is 2-huge with o < k.
Then there is a o-closed notion of forcing P such that, in VF, we have GCH
and

M(™etD, X, 0) - B(e")
for all X < p(tet1),

These results indeed show that, modulo some large cardinals, the re-
sults of [EH] are best possible. However, the question of exactly what large
cardinals are needed, in particular whether the rather large step from the
supercompact of 1.3 to the 2-huge of 1.4 is necessary, remains open.
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2. The proof of 1.3. We start by recalling the following simple result
from [HJSh]:

2.1. LEMMA. Let S C k be a stationary set such that $(S) holds and
{A, : a € S} be a family of infinite sets with A, C « for each o € S. Then
we can find sets B, C Ay with |By| = |Aa| for all a € S so that the family
{By : a € S} does not have property B.

Now fix a regular cardinal p, and to simplify notation denote o{*¢*1 by
0. Also, given two regular cardinals A\ and x with A < k we set

Sy ={a €k :cf(a) = A}
Thus, by 2.1, M(g,0",0) - B if we can find a stationary set S C S§+

satisfying ¢(S) and a g-a.d. family {A4 : a € S} such that A, € [o]2" for
each a € S. Note that, as is well known (see e.g. [Gr]), GCH implies {(5)
whenever S C SY is stationary if A > w.

So far, everything has been done as in [HJSh| for the case o = Ng. It
is the following theorem that allows us to get the result for an arbitrary
regular cardinal p.

2.2. THEOREM. Let u be a singular cardinal of cofinality o and such that
w = p<2. Then there is a partial order @ = Q(u) with properties (1)—(v)
below:

(i) @ is p-closed;

(i) Q is u*-CC;

(iii) Q| < 2

(iv) in V9, u is collapsed to o, and ot = p™*;

(v) there is, in V. a set X € [o7]¢" such that for any set H € P(u+)n
V' we have |H ﬂX|VQ < o if and only if |H|V < p.

Proof. Put Q@ = Q1 X Q2, where Q1 is the natural g-closed partial order
that forces a map of p onto p, i.e. ¢ € @1 iff ¢ maps some « € p into p, and
extension is the partial ordering. Moreover,

Qo = [ ]=¢ x [ ]
with the following ordering: for (a, A), (a’, A’) € Q2 we have (a, A) < (a’, A’)
iffad>a’, ADA and A’ N(a\d)=0.

Clearly, both @; and Q4 are p-closed, hence so is @, i.e. (i) holds.

To show (ii), first note that from g = p<2 we have |Q1| = p and so it
suffices to prove that Qg is u™-CC. Thus let {(a;, 4;) : i € u*} C Qq; clearly
we may assume that |a; U A;| < X for a fixed regular cardinal A < p for all
i € ut. Now, for every v € S’f\LJr the set By = (ay U A,) N~ is bounded in
7, i.e. there is an f(vy) < v with By C f(v). So by Fodor’s theorem there
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is a stationary set S C Sé\ﬁ on which f takes the constant value «. Using
p<¢ = p we may also assume that a, Ny =a,Na=cforall ye€S.

Now pick 7,8 € S such that both v < 6 and ay U A, C ¢ (this is possible
because each a, U A, is bounded in p7), and set a = a, Uas, A = A, U As.
Clearly, (a, A) € Q2. We next show that (a, A) extends both (a., A,) and
(as, As). Indeed, this follows because a \ ay = as \ ¢ C p* \ d and A, C
imply A, N(a\ay) = 0, moreover a\as = a,\c C §\yand A5 C aU(ut\J)
imply A5 N (a\ as) = 0.

(iii) follows easily because |Q1| = p and |Q2| = (ut)<2(ut)<H < (u™)*
= 20,

(iv) is again trivial because @ collapses p to ¢ and by (ii), u™ is pre-
served.

Finally, to see (v), let G = G; x G2 be Q-generic over V and set, in
ViG],

X =|J{a: (34)((a, 4) € G)}.
Clearly, for every o € u™ the set
Do ={(a,A) € Q2:a\ a# 0}
is dense in Q2 and so X is unbounded in p* = oT, ie. X € [g+]9+.
Now, if H € [puT]<* NV then again
Dy = {<CL,A> € Qo ZHCA}
is dense in Q2 because (a, AU H) < (a, A) for each (a, A) € Q2. But then
GoN Dy # 0, and if (a, A) € Gy N Dy then clearly XN H C XN A C a,
hence [ X N H| < p.
If, on the other hand, H C u*, H € V and |H| > p then clearly
Eyg ={{a,A) € Q2 : anN H # (0}

is dense in Q2. Now, if we had |X N H| < p then by (i) we would also have
XNHeVandso H\ X € V and |H \ X| > p. This, however, contradicts
the denseness of Ep\ x. m

The following corollary is now immediate.

2.3. COROLLARY. With the assumptions of 2.2, we can, in V@, associate
with every ground model set A € V with |A] = o™ = put a subset A* € [A] e"
such that for any set B € V. we have |A* N B| < o iff |ANB|Y < p. In
particular, if A is a p-a.d. family of sets of size u* in V then A* = {A* :
A€ A} is a g-a.d. family of sets of size ot in V<.

Proof. Let h: u™ — A be a bijection of 4™ onto A in V. Clearly,
A" ={h(§) : £ € X}
is as required by (v) of 2.2. m
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Let us now return to the proof of 1.3. Put A = (9. Since x is \*-
supercompact we can fix a normal, k-complete ultrafilter & on [AT]<*. Using
GCH we get (AT)2 = AT, hence we may also fix a bijection G of [AT]¢ onto
A1, Standard reflection arguments and Solovay’s Theorem 2 from [S] then
imply the existence of a set A € U such that

(i) the map P+ J P is one-one on A;
(ii) each P € A is G-closed;
(iii) P Nk is an inaccessible cardinal and

tp(P) = (PN r)FetY  for each P € A.

Now the set S; = {{JP : P € A} is clearly stationary in A" since U is
normal and, by (i), we have A = {P, : a« € S1} where |J P, = « for a € 5.

Now consider the map o — P, Nk on S1. By (iii) we have a fixed
inaccessible cardinal 7 such that

S={aeS :P,Nk="1}

is also stationary. We claim that the family {P, : « € S} C [)\+]T(+g+1> is

also 7(t2)-a.d. Indeed, if |P, N P3| > 7+ held for some distinct o, 3 € S
then by (ii) we would also have |P, N P3| = 7(¢*Y using the fact that
P, N Ps is G-closed. This, however, contradicts tp(P,) = tp(Ps) = (¢!
and |JPy, =a#JPs=p.

Note that the singular cardinal p = 7(t@) satisfies the conditions of
2.2, hence in V@ the GCH holds, S remains stationary, and the family
{Pr:aeS}c[rt]e is g-a.d., according to 2.3. All that remains to be done
is now to do a further p-closed forcing that turns A* into 9 and preserves
both GCH and the stationarity of S. This job will clearly be done by e.g.
Lv(k, o1 T), i.e. the Levy collapse of k to o7t in V@), Then P = Q(u) *
Lv(k, 0" ") is a p-closed forcing such that V¥ satisfies GCH; moreover, in
VP {Pr:aecS}cC[ple isp-a.d. Buthere S C S§+ is stationary and so by
GCH we also have <>(5), so Lemma 2.1 applies and hence M (g, 0", 0) - B
inV"P. m

3. A “stick”-like principle. The aim of this section is to introduce
a “stick”-like combinatorial principle that will play an essential role in the
proof of Theorem 1.4. We also look at some other results of purely combina-
torial nature and thus separate the combinatorial arguments from the rest,
to be given in the next section.

3.1. DEFINITION. If K > X\ > p > w then we denote by ?(k,\,p) the
following statement: There is a p-a.d. family A C []* with |A| = & such
that for every set X € [k]" there is some A € A with A C X if A is like
this then we say that A is a ?(k, A, p)-family.
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The relevance of this to our subject, in particular to 1.4, becomes clear
from the following result.

3.2. LEMMA. % (k,\, ) implies that M (k, k, 1) -+ B(X).

Proof. Let A be a ?(k,\, p)-family and fix a partition {X¢ : € € x} C
[£]" of k into k-many sets of size k. Then we set

B={AeA: (Ve €r) (AN X < 1)}

Clearly |B| = |A| = k, hence we may also fix a one-one enumeration B =
{B¢ : € € k}. Now, for every £ € Kk we set
Ye = Xe U Be.

Then it is obvious that the family Y = {Y; : { € k} C [k]" is p-a.d., hence
we shall be done if we can show that ) has no A-transversal.

So assume that 7' is such that TN Y # 0 for all £ € k. We claim that
then the set a = {€ € k : TN X¢ # 0} has size k.

Assume, indirectly, that |a| < k. It is clear that for any set H € [k]"
which satisfies |H N X¢| <1 for all £ € k, we have

|{B§EB:B§CH}|:I€.

In particular, if o¢ is the minimal member of X¢ for any £ € &, then we may
apply the above observation to the set
H={a¢:£€k\a}e€r]".

So there is some ¢ € k \ a such that B C H. But then, by the definition
of a, we have both TN H = (), hence TN Be = 0, and TN X, = 0, i.e.
T NYe =0, a contradiction.

Now, for every ¢ € a pick an element 5 € T'N X¢ and set K = {5 :
¢ € a}. We may then apply the above observation to the set K € [k]*
and find B¢ € B with B C K. So we conclude that T'N Y D Bg, hence
T NYe| > |Be| = A, ie. T is not a A-transversal. m

REMARK. We have actually shown that ) has the following stronger
property: For any set T, if [{¢ € kK : TNYe = 0}] < k then there is some
Ye € Y with [T NYe| > A

Our next result yields a method for “stepping down” in the second pa-
rameter A\ of a negative relation of the form M (k, A, u) - B(o).

3.3. LEMMA. Assume that 7 < A and we have both

(%) M(r, A, p) = B(0o)
and
(%) M (k,\, 1) — B(T™T).

Then we also have M (k, T, ) - B(o).
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Proof. Let Y = {Y¢ : £ € sk} C [k]* be a p-a.d. family with no o-
transversal. By transfinite recursion on o € 7 we define sets T}, that are all
Tt-transversals of ) as follows.

Let Tp be any 71 -transversal of V; it exists by (xx). If T3 has been defined
for each B € a € 7 then for every Ye € Y we have |Y: \ | {Ts: B € a}| = A
because, by the inductive hypothesis, |Ye N Tg| < 7 for each § € a. So we
may now apply (xx) to the family Vo = {Yz: \U{Is : B € a} : { € K} and
obtain a 7t -transversal T,, of )V,,. Note that we may assume T, C |J), and
hence T}, is a 7T-transversal of ) as well.

Having completed the recursion, set T' = | J{T : « € 7} and Z¢ = Y. NT
for each £ € k. It is clear from the construction that |Z¢| = 7, hence Z =
{Z¢ : € € k} is a p-a.d. subfamily of [x]", so we will be done if we can show
that Z has no o-transversal.

Since |J Z C T, it suffices to show that if U C T intersects every member
of Z then |U N Z¢| > o for some Z¢ € Z. However, we know that there is
a & €k with |[UNYe| > o, which by U C T and Zg = T N Y implies
|U N Z¢| > o, completing the proof. m

Putting 1.2 and 3.3 together we immediately obtain the following result.

3.4. COROLLARY. (GCH) If M(k,k,0) - B(o") then for any X\ with
ot < X\ < k we have M(k, )\, 0) - B(o") as well. =

This implies that to prove 1.4 it suffices to concentrate on M(g, g, o) -
B(p"), and so, by 3.2, on (2, 07, 0).

Let us now make a few observations about the principles ? (s, \, ) that
are less closely related to the main subject matter of this paper.

If ?(k,\, p) is valid then we obviously have a % (k, A, 1) family A such
that tp A = X for every A € A. Now put

SA:{UA:AE.A},

so Sy C Sg, where ¢ = cf(\) < A < k. We claim that if s is regular then
S 4 is also stationary. Indeed, if C' C k is c.u.b. then, as |C| = k&, there is
some A € A with A C C and thus [JA € Sy N C # . So, if GCH holds
and ¢ > w then we also have {(S4), and consequently from 2.1 and 1.2 we

easily obtain the following result.

3.5. PROPOSITION. (GCH) If s is reqular then ¥ (k,\, u) implies
M(k,\,pu) - B. Hence if Kk > X\ > ot where k and ¢ are regular then

? (K, A, o) is false.

Thus, under GCH, for regular x and ¢ the best we may hope for is
? (k, 0%, 0); moreover, in view of 1.1, o is the smallest possible value for x
where this may happen. Moreover, by the next result, ?(k, 0", 0) fails for
“most” regular k > p* even in ZFC.
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3.6. PROPOSITION. If x is regular and for every A < Kk we have \? < K
then ¥ (k, 0", 0) is false.

Proof. Assume that A C [k]¢" is g-a.d. with tp A = ot for all A4 € A.
According to what we have seen above, it suffices to show that S4 is non-
stationary in w.

Assume, indirectly, that S 4 is stationary and for each o € S4 let A, € A
be such that | J A, = a. For every a € Sy let f(a) be the gth element of
Aq. Then f is a regressive function on S4 so by Fodor’s theorem we have
a stationary set S C Sy and a v € k with f(«a) = 7 for every a € S. But
then, using |v|¢ < &, we clearly have distinct o, 5 € S with yN A, = vNAg,
hence |A, N Ag| > o, contradicting A being p-a.d. m

REMARK. The above argument actually yields the following stronger re-
sult: Under the assumptions of 3.6 even T(H, o+w, o) is false, with the obvi-
ous interpretation of this symbol. Thus we have arrived “down” to ¥ (, o, 0)
that is “easy” to satisfy, being e.g. a consequence of the appropriate version
of & at x and p. In fact, in many cases it holds even in ZFC.

We close this section with two simple results concerning the behaviour
of ?(k,\, u) in forcing extensions. The first one is a preservation result.

3.7. PROPOSITION. Assume ¥ (k,\,p) where k is regular and P is a
forcing notion with |P| < k such that both X and p remain cardinals in V¥
(k does so automatically). Then ¥ (k, A\, ) remains valid in V'

Proof. Let A be a ¥ (k,\, u)-family in V. Now |P| < k = cf(x) clearly
implies that if X € [k]" in V¥ then thereis a Y € [X]*NV, hence A CY C
X for some A € A, ie. Aremains a ?(k,\, u)-family in VF. =

The second result gives a method to obtain the consistency of T (x,0%,0)
for a given regular cardinal p, assuming that we have T(X,;ﬁ,,u) for a
singular cardinal p of cofinality o.

3.8. PROPOSITION. Assume ¥ (x,ut, ), where cf(p) = o, u<¢ = u, and
21 < x = cf(x). Then ¥ (x, 0", 0) holds in VO,

Proof. Let A C [X]“+ be a T (x, uT, u)-family in the ground model V.

Then, in V@ applying 2.3 we have for every A € A a subset A* € [A] ot
such that

A" ={A": Ae A}
is p-a.d. We claim that A* is a ¥ (x, 0T, 0)-family. Since, by 2.2(iii), we have
|Q(1)| < 2* < x, similarly to the proof of 3.7, every set X € [x]X in V@®)
has a ground model subset Y with |Y| = |X| = x. But then there is an
A € A with

A*CACY CX,
and the proof is complete. =
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4. The proof of 1.4. Assume GCH and that ¢ = cf(p) < k, where k
is 2-huge. Concerning the property of 2-hugeness we refer to 24.8 in [Kal,
p- 332. In fact what we really need is the following property of  that is just
a little more than being 1-huge:

There is an elementary embedding j : V' — M with crit(j) = &, j(k) = A

and MY o M , or equivalently there is a k-complete normal ultrafilter

D* over P(H(A(+2+3))) such that
{M: M < HNFe)) & M = H(x(tet3))}) e D*.
We shall be working with the projection D of D* to H(A(+et)) i.e.
D={Ac HAFe D) : {a c HAFH)) :an HOAFeD) € A} € D*}.

Then, of course, D is a k complete normal ultrafilter over P(H (A*Te*+1)) such
that

X ={M:M<HNFD) & M = H(xTet))} e D.

Write, for simplicity, 4 = (T and y = A(+¢*1_ Combining the above with
Solovay’s result as in the final part of Section 2, we conclude that there is a
stationary set S C Sier such that for each € S we have some M; € X with

U(Ms N x) =6, and moreover {Ms : 6 € S} € D is p-a.d. In what follows,
we write Y5 = MsNy for § € S.
The crucial part of our proof is the following result.

4.1. LEMMA. There is a sequence (fs : § € S) such that

(i) fs : Ys — Y5 for each 6 € S;
(ii) for every f:x — x the set {6 € S : fs C f} is stationary in x.

Proof. For § € S, let Y5 = {as¢ : ¢ € ut} be the increasing enumer-
ation of Ys. The functions f5 : Y5 — Y5 are defined by a simple transfinite
recursion in such a way that for each 6 € S the set Hs = {¢ € pT : fas. |
Ys N Yy, . C f5} be non-stationary in p™, if this is possible at all.

All we have to do now is to check that (ii) holds. Assume, indirectly,
that there exists f : x — x and C C x c.u.b. such that fs ¢ f for every
desSncC.

For any « € x, as normality of D implies its fineness, we have
Aa:{M(S:OZEMg}GD.
Also, for any pair («, 8) € x* we can define A, g € D so that

{M;s : f5(a) = B}
Ay p =4 or

{Ms : f5(a) # B}
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Then, by the normality of D, there is a (clearly stationary) subset S; C SNC
such that

X1:{M5:5€S1}€D
and if § € S1, o, B € Y5 then Ms € A, N Aq .
Let Ms € X1 N A, € D where a € x. Then clearly g(a) = fs(«) does
not depend on ¢, and moreover

{Ms : fs(a) = g(a)} € D.
This implies that for every « € x we have

A gla) = {Ms : fs(a) = g(a)},
and consequently fs C g whenever 6 € Sy. In particular, as S; C C and
fs & f for § € C, we have f # g.

Now, applying the normality of our original ultrafilter D*, we can find
N < H(x**) such that N = H(ut+t), and moreover

(a) <M5 NS S>7<f5 NS S>7517f7gac7D€ Na

(b) for any Z € NND we have NN H(x) € ZN X;y;

(c) NN H(x) =My with 6* € 5.

Let h : N — H(uttt) be the Mostowski collapse. Then h(x) = u*.
By elementarity N = “S; is stationary in x”, hence h(S) is stationary in
h(x) = pt, or in other words the set

H = {C S /L+ Qs ¢ € 51}
is stationary in p*. But if as« ¢ € S then we have Jase . C g as well as
Jor C g, hence fo,. [ Ys- NYa,. . C fo+. So we conclude H C Hy«, i.e. at
step 6* of the transfinite construction we could not make Hs- non-stationary.

However, as f,.5,C € N, on the other hand we have fy = f[ Y5 : Y5« —
Y5+, and the set

{C € ,u+ Qs ¢ € C} = h(C)
is c.u.b. in pt. By elementarity, for every ¢ € h(S N C) there is a v €
N N Mg, . such that f(y) # fas.  (7), e

fage N Yo NYosu o & [

This, however, contradicts our above conclusion because fy would make, at
step 0%, the set Hs- non-stationary in u*. m

Now from 4.1 we easily obtain the following result, where the notation
is the same.

4.2. ProrosITION. T (x, u't, u) is valid.

Proof. Let S* = {6 € S : fs is strictly increasing} and for each § € S*
let Zs = f5"Ys. We claim that Z = {Zs : 6 € S*} c [x]*" isa P(x, ut, p)-
family. Since Zs C Mj, Z is clearly p-a.d. Now, for any set Z € [x]X let f be
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its increasing enumerating function. Then Sy = {6 : fs C f} is stationary
and also Sy C S*. But for any § € Sy we clearly have Zs C Z. =

Now, it is very easy to complete the proof of 1.4. First note that 3.8 may
be applied, i.e. in VO we have ¥ (x, o, o). Next, as in § 2, if one collapses
A to ot in VR using Lv(), o1 F) then the forcing P = Q(u) *Lv(), o7 )
is as required because it is g-complete, preserves GCH, and T(E, o', 0) holds
true in V. Indeed, the last part follows because x = gin V¥ and ? (x, o™, 0)
is preserved by the Levy collapse (use 3.7 and |Lv(\, 07 1)| < x). =
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