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PCF THEORY AND WOODIN CARDINALS

MOTI GITIK', RALF SCHINDLER, AND SAHARON SHELAH'

Abstract. THEOREM 1.1. Let o be a limit ordinal. Suppose that 2!*! < R, and 2lel® < R+
whereas R/*! > R, +. Then forallzn < w and for all bounded X C R+, MP*(X) exists.

THEOREM 1.4. Let & be a singular cardinal of uncountable cofinality. If {a < k | 2* = a*}is
stationary as well as co-stationary then for all n» < w and for all bounded X C &, M, f (X) exists.

Theorem 1.1 answers a question of Gitik and Mitchell (cf. [11, Question 5, p. 315]), and
Theorem 1.4 yields a lower bound for an assertion discussed in [10] (cf. [10, Problem 4]).

The proofs of these theorems combine pcf theory with core model theory. Along the way we
establish some ZFC results in cardinal arithmetic, motivated by Silver’s theorem [29], and we obtain
results of core model theory, motivated by the task of building a “stable core model.” Both sets of
results are of independent interest.

§1. Introduction and statements of results. In this paper we prove results
which were announced in the first two authors’ talks at the Logic Colloquium
2002 in Miinster. Specifically, we shall obtain lower bounds for the consistency
strength of statements of cardinal arithmetic.

Cardinal arithmetic deals with possible behaviours of the function (x, 4) —
x* for infinite cardinals «, 4. Easton, inventing a class version of Cohen’s
set forcing (cf. [4]) had shown that if ¥ = GCH and @ : Reg — Card is
monotone and such that cf(®(k)) > & for all & € Reg then there is a forcing
extension of ¥ in which ®@(x) = 2* for all kK € Reg. (Here, Card denotes
the class of all infinite cardinals, and Reg denotes the class of all infinite
regular cardinals.) However, in any of Easton’s models, the so-called Singular
Cardinal Hypothesis (abbreviated by SCH) holds true (cf. [14, Exercise 20.7]),
ie., kK = g+ . 240 for all infinite cardinals . If SCH holds then cardinal
arithmetic is in some sense simple, cf. [14, Lemma 8.1].

On the other hand, the study of situations in which SCH fails turned out
to be an exciting subject. Work of Silver and Prikry showed that SCH may
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indeed fail (cf. [21] and [29]), and Magidor showed that GCH below R, does
not imply 2% = R, (cf. [16] and [17]). Both results had to assume the
consistency of a supercompact cardinal. Jensen showed that large cardinals
are indeed necessary: if SCH fails then 0% exists (cf. [3]). We refer the reader
to [15] for an excellently written account of the history of the investigation
of =SCH.

The study of ~SCH in fact inspired pcf theory as well as core model theory.
We know today that —SCH is equiconsistent with the existence of a cardinal k
with o(k) = &+ (cf. [6] and [7]). By now we actually have a fairly complete
picture of the possible behaviours of (k, ) — x* under the assumption that
07 does not exist (cf. for instance [8] and [10]).

In contrast, very little is known if we allow 09 (or more) to exist. (The exis-
tence of 07 is equivalent with the existence of indiscernibles for an inner model
with a strong cardinal.) This paper shall be concerned with strong violations
of SCH, where we take “strong” to mean that they imply the existence of 0Y
and much more.

It is consistent with the non-existence of 09 that &, is a strong limit cardinal
(in fact that GCH holds below X,,) whereas 28> = X, where « is a countable
ordinal at least as big as some arbitrary countable ordinal fixed in advance
(cf. [16]). As of today, it is not known, though, if R, can be a strong limit and
2% > N, . The only limitation known to exists is the third author’s thorem
according to which RJo < 2% 4+ R, (cf. [27]).

Mitchell and the first author have shown that if 2% < R, and Nﬁf," > Ny,
then 0Y exists (cf. [11, Theorem 5.1]). Our first main theorem strengthens
this result. The objects M7 (X), where n < w, are defined in [30, p. 81] or
[S, p. 1841].

THEOREM 1.1. Let o be a limit ordinal. Suppose that 21%| < R, and 211" <
Rq+, whereas lel > Njq|+. Then for all n < w and for all bounded X C Nq+,
M#*(X) exists.

Theorem 1.1 gives an affirmative answer to [11, Question 5, p. 315]. One
of the key ingredients of its proof is a new technique for building a “stable
core model” of height x, where x will be the R4+ of the statement of The-
orem 1.1 and will therefore be a cardinal which is not countably closed (cf.
Theorems 3.7, 3.9, and 3.11 below).

Let x be a singular cardinal of uncountable cofinality. Silver’s celebrated
theorem [29] says that if 2 > " then the set {a < x | 2* > a*} contains
a club. But what if 2° = k%, should then either {a < k | 2* > a*} or else
{a < k| 2% = a*} contain a club? We formulate a natural (from both forcing
and pcf points of view) principle which implies an affirmative answer. We let
(%), denote the assertion that there is a strictly increasing and continuous
sequence (k; | i < cf(k)) of singular cardinals which is cofinal in  and such
that for every limit ordinal i < cf(k), k;" = max(pcf({x] | j < i})). Note
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that if ¢ f (i) > o then this is always the case on a club by [27, Claim 2.1,
p- 55]. We show:

THEOREM 1.2. Let k be a singular cardinal of uncountable cofinality. If (%),
holds then either {o: < k | 2* = a*'} contains a club, or else {a < k | 2% > a+}
contains a club.

The next theorem shows that —(x),, for  a singular cardinal of uncountable
cofinality, is pretty strong.

THEOREM 1.3. Let k be a singular cardinal of uncountable cofinality. If (x),
fails then for all n < w and for all bounded X C k, M}(X) exists.

The second main theorem is an immediate consequence of Theorems 1.2
and 1.3:

THEOREM 1.4. Let k be a singular cardinal of uncountable cofinality. If
{a < k| 2% = a*} is stationary as well as co-stationary then for all n < w and
Sor all bounded X C k, M¥(X) exists.

After this paper had been written, the first author showed that the hy-
pothesis of Theorem 1.4 is in fact consistent relative to the consistency of a
supercompact cardinal (cf. [9]).

The proofs of Theorems 1.1 and 1.3 will use the first @ many steps of
Woodin’s core model induction. The reader may find a published version of
this part of Woodin’s induction in [5]. By work of Martin, Steel, and Woodin,
the conclusions of Theorems 1.1 and 1.4 both imply that PD (Projective
Determinacy) holds. The respective hypotheses of Theorems 1.1 and 1.4 are
thereby the first statements in cardinal arithmetic which provably yield PD
and which are (in the case of Theorem 1.1) not known to be inconsistent or
even (in the case of Theorem 1.4) known to be consistent.

It is straightforward to verify that both hypotheses of Theorems 1.1 and
1.4 imply that SCH fails. The hypothesis of Theorem 1.1 implies that, setting
a={k <R, ||a|t <k Ak cReg}, we have Card(pcf(a)) > Card(a). The
question if some such a can exist is one of the key open problems in pcf theory.
At this point neither of the hypotheses of our main theorems is known to be
consistent. We expect future research to uncover the status of the hypotheses
of our main theorems.

‘"Theorems 2.1, 1.2, and 2.5 were originally proven by the first author; sub-
sequently, the third author found much simpler proofs for them. Theorems
2.4 and 2.7 are due to the third author, and theorems 2.6 and 2.8 are due to
the first author. The results contained in the section on core model theory are
due to the second author.

We wish to thank the members of the logic groups of Bonn and Miinster,
in particular Professors P. Koepke and W. Pohlers, for their warm hospitality
during the Miinster meeting.



Sh:805

PCF THEORY AND WOODIN CARDINALS 175

The first author thanks Andreas Liu for his comments on the section on pcf
theory of an earlier version of this paper.

The second author thanks John Steel for fixing a gap in an earlier version
of the proof of Lemma 3.5 and for a discussion that led to a proof of Lemma
3.10. He also thanks R. Jensen, B. Mitchell, E. Schimmerling, J. Steel, and
M. Zeman for the many pivotal discussions held at Luminy in Sept. 02.

§2. Some pcf theory. We refer the reader to [27], [1], [2], and to [13] for
introductions to the third author’s pcf theory.

Let x be a singular strong limit cardinal of uncountable cofinality. Set
Si={a<k|2*=qa*}and S, = {a < k| 2¢ > a*}. Silver’s famous
theorem states that if 2* > x* then S, contains a club (cf. for instance
[13, Corollary 2.3.12]). But what if 2¢ = x*¥? We would like to show that
unless certain large cardinals are consistent either S} or .S, contains a club.

The third author showed that it is possible to replace the power set operation
by pp in Silver’s theorem (cf. for instance [13, Theorem 9.1.6]), providing
nontrivial information in the case where « is not a strong limit cardinal, for
example if & < 2%, Thus, if « is a singular cardinal of uncountable cofinality,
and if $; = {@ < k | ppla) = o™}, S = {a < & | pp(a) > a*}, and
pp(k) > &% then S, contains a club.

The following result, or rather its corollary, will be needed for the proof of
Theorem 1.4. The statement (), was already introduced in the introduction.

THEOREM 2.1. Let k be a singular cardinal of uncountable cofinality. Suppose
that

(x)x there is a strictly increasing and continuous sequence (k; | i < cf(k))
of singular cardinals which is cofinal in k and such that for every limit ordinal
i <cf(k), &7 = max(pef({x] | j < i})).

Then either {a < &k | pp(a) = a'} contains a club, or else {a < K | pp(a) >
a™} contains a club.

Proor. Let (k; | i < cf(k)) be a sequence witnessing (x),. Assume that
both S; and S, are stationary, where S} C {a@ < & | pp(e) = @™} and
S> C {a < k| pp(a) > a*}. We may and shall assume that S; U S, C {«; |
i < cf(k)} and ko > cf (k).

Let y > « be a regular cardinal, and let M < H,, be such that Card(M) =
cf(k), M D cf(k), and (k; | i < cf(x)), S1, S» € M. Seta = (M NReg) \
(cf(k) +1).

We may pick a smooth sequence (bg | 8 € a) of generators for a (cf. [28,
Claim 6.7], [1, Theorem 6.3]). Le.,if 6 € aand € b, then bj C by (smooth),
and if 6 € a then J<g(a) = Jg(a) + by (generating).

Let k; € S1. Aspp(k;) = &7, we have that aNx; € Jgn}(a), since by

[13, Lemma 9.1.5], pp(k;) = pps(x;) for all § with cf(x;) <& < ;. Thus
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(@ank;)\ by € j<,€;r(a), as b, generates Jgﬁj(a) over Joxt (a). Hence
(ank;)\ by; must be bounded below «;, as k; is singular and an unbounded
subset of (a N k;) can thus not force [J(a N «;) to have cofinality < x;. We
may therefore pick some v; < &; such that b,i;r D an|[vj,k;). By Fodor’s
Lemma, there is now some v* < « and some stationary S} C S; such that for
each k; eSl*,bn;r Dan[v* k;). 4

Let us fix &; € S5, a limit of elements of S. By (), max(pef({x] | j <
i})) = k' ie, {6} | j < i} € jg,c;r(a). Therefore, by arguing as in the
preceeding paragraph, there is some i* < i such that fc;’ € b,+ whenever i* <
Jj<i.Ifk; € S}, where i* < j < i, then by the smoothness of (by | 6 € a),
b,;;r C by, and s0 b+ D an[v*, k;). Asthe set of j with i* < j < i and
k; € S} is unbounded in i, we therefore get that bﬂf' D an|[v* k;). This
means that a N [v*, k;) € T<wr (a), which clearly implies that pp(x;) = ;" by
the choice of a. However, pp(k;) > &, since x; € S,. Contradiction! -

PROOF OF THEOREM 1.2. If & is not a strong limit then, obviously, {a <
k | 2* > a'} contains a club. So assume that « is a strong limit. Then
the set C = {a < Kk | aisa strong limit} is closed unbounded. If @ € C
has uncountable cofinality, then pp(a) = 2%, by [13, Theorem 9.1.3]. For
countable cofinality this equality is an open problem. But by [27, Chapter IX,
Conclusion 5.9], for & € C of countable cofinality, pp(a) < 2¢ implies that
the set {u | @ < 4 = N, < pp(a)} is uncountable. Certainly, in this case
pp(a) > a™. Hence, for every a € C, pp(a) = o if and only if 2% = a™.
So Theorem 2.1 applies and gives the desired conclusion. -

Before proving a generalization of Theorem 2.1 let us formulate a simple
“combinatorial” fact, Lemma 2.2, which shall be used in the proofs of The-
orems 1.1 and 1.4. We shall also state a consequence of Lemma 2.2, namely
Lemma 2.3, which we shall need in the proof of Theorem 1.4.

Let A < @ be infinite cardinals. Then Hj is the set of all sets which are
hereditarily smaller than 6, and [Hj,]* is the set of all subsets of Hy of size A.
If H is any set of size at least A then a set S C [H]" is stationary in [H]* if for
every model 9t = (H;...) with universe H and whose type has cardinality at
most A there is some (X;...) < Mwith X € S. Let & = (k; | i € 4) C Hy
with A < k; forall i € 4, and let X € [Hy]*. Then we write char,c’f for the
function f € [];c ;" which is defined by f (k) = sup(X N «}). If f,
g € [l;c4 ki then we write f < g just in case that f(k;") < g(s;) for all
i € A. Recall that by [2, Corollary 7.10]if |[4|* < k; for all i € 4 then

max(pef({x; | i € 4})) = cf(l_[({ﬁci+ |i€d}),<).

If 6 is a regular uncountable cardinal then NS; is the non-stationary ideal
ond.
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LemMA 2.2. Let k be a singular cardinal with cf(k) =6 > W;. Let £ = (k; |
i < &) be a strictly increasing and continuous sequence of cardinals which is
cofinal in k and such that 2° < kg < k. Let§ < 1 < k Let 0 > & be regular,
and let ® : [Hy)* — NS;. Let S C [Hy)" be stationary in [Hyg]*.

There is then some club C C & such that for all f € [];cc & there is some
Y <Hpsuchthat Y € S,CN®(Y)=0,and f < char?.

PROOE. Suppose not. Then for every club C C § we may pick some f¢ €
[I;cc & such that if ¥ < Hp is such that ¥ € S and f¢ < char?, then
C N®(Y) # 0. Define f € [[,cc & by f(k}) = supc fc(x;), and pick
some Y < Hp which is such that ¥ € S and f (ki) < chary. We must then
have that C N ®(Y) # 0 for every club C C &, which means that ®(Y) is
stationary. Contradiction! -

The function ®@ to which we shall apply Lemma 2.2 will be chosen by inner
model theory. Lemma 2.2 readily implies the following.

LemMA 2.3. Let k be a singular cardinal with cf(k) =6 > Ny. Let £ = (k; |
i < &) be a strictly increasing and continuous sequence of cardinals which is
cofinal in k and such that 2° < ko < k. Suppose that (%), fails. Let 0 > & be
regular, and let ® : [Hg]zé — NS;.

There is then a club C C & and a limit point & of C with f([]({s; | i <
¢}). <) > & and such that for all f € [T;ec ki there is some Y < Hp such
that Card(Y) =2°,°Y C Y, CN®(Y) =0,and f < charg.

Let us now turn towards our generalization of Theorem 2.1. This will not
be needed for the proofs of our main theorems.
THEOREM 2.4. Suppose that the following hold true.
(a) k is a singular cardinal of uncountable cofinality 6, and (k; | i < ) is
an increasing continuous sequence of singular cardinals cofinal in k with
Ky > 5,
(b) S C 4 is stationary, and (y} | i € S) and (y}* | i € S) are two sequences
of ordinals such that 1 < y} < y}* < and /iiﬂ" < Kiq1 fori <o,
(c) forany& € S whichisalimit point of S, forany A C SNE withsup(4) = ¢
and for any sequence (f; | i € A) with B; < y} for all i € A we have that

pef ({k; 7 | i € 4}) 0 (ke 5% ] £0,

(d) pef({s{"*" | f<97}) = (&7 | B< i} foreveryi € 8,
(e) pp(k:) =K, " foreveryi € S, and
(f) S* is the set of all & € S such that either
(o) &>sup(SN&), or
(B) cf(&) > Ngand {i € SNE | yF = yr*} is a stationary subset of &, or

() pef (s | p<yre.j<eP) o {w;" [ 9r <<y}



Sh:805

178 MOTI GITIK, RALF SCHINDLER, AND SAHARON SHELAH

Then there is a club C C 0 such that one of the two sets Sy = {i € S$* |y} =
y*Yand S, = {i € S* | y} < p}*} contains C N S*.

It is easy to see that Theorem 2.1 (with some limitations on the size of
pp(x;) as in (b) and (e) above) can be deduced from Theorem 2.4 by taking
S = {i < cf(x) | pp(k:) > &}, ¥ = 1, and p}* = 2. Condition (c) in
the statement of Theorem 2.4 plays the role of the assumption (*), in the
statement of Theorem 2.1.

ProOF OF THEOREM 2.4. Let us suppose that the conclusion of the statement
of Theorem 2.4 fails.

Let, fori € S, a; = {n;“l”l | B < y*}, andseta = Ufa; | i € S}.
We may fix a smooth and closed sequence (bg | @ € a) of generators for a
(cf. [28, Claim 6.7]). Le., (bg | 6 € a) is smooth and generating, and if 8 € a
then by = a N pef(bg) (closed).

For each ¢ € 8* = S] U S5, by [27, 1 Fact 3.2] and hypothesis (d) in the

statement of Theorem 2.4 we may pick a finite d¢ C {Klg—ﬁ T p< 7¢} such

that (J{be | 0 € d¢} D {s"*' | B< y}.

If £ € Sy then yf = y#* and so pp(ke) = nzyf by (e) in the statement
of Theorem 2.4. By [13, Corollary 5.3.4] we may and shall assume that
U{bs | 6 € d¢} contains a final segment of (J{a; | j < &}, and we may
therefore choose some e(¢) < & such that

b 1 0 € de} o | J{a) | 8() < j <&}

There is then some ¢* and some stationary S} C S such that e(£) = &* for
every & € Sf. Let C be the club set {& <J | & =sup(& N ST)}.

If ¢ € S then condition (c) in the statement of Theorem 2.4 implies that
we may assume that (J{by | & € d;} contains a final segment of the set
{7 B<yrni<e}

Now let & € S, N C. Trivially, by the choice of &, (a) of the condition
(f) in the statement of Theorem 2.4 cannot hold. If (B) of the condition (f)
holds then by [27, Chapter II, Claim 2.4 (2)] we would have that y; = y;*,
so that & ¢ Sp. Let us finally suppose that (y) of the condition (f) holds.
Because pp(ke) = n;yf ,7¢ < 7£*, and (y) of (f) holds, there must be some
0 € (yg,yg*] such that b, contains a cofinal subset of (J{a; | j < £}. On the
other hand, this is impossible, as

Ut |0 edini<eyo| Jai|er<i<él

We have reached a contradiction! —

The next two theorems put serious limitations on constructions of models
of =(x),, where (%), is as in Theorem 2.1. Thus, for example, the “obvious
candidate” iteration of short extenders forcing of [8] does not work (but
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see [9]). The reason is that powers of singular cardinals § are blown up and
this leaves no room for indiscernibles between ¢ and its power.

THEOREM 2.5. Let k be a singular cardinal of uncountable cofinality, and let
(k: | i < cf(k)) be a strictly increasing and continuous sequence which is cofinal
in k and such that kg > cf (k). Suppose that S C cf(k) is such that

(1) there is a sequence (tio | i € S A o < cf(i)) such that cf ([, Tia/ D)
=k} for some ultrafilter D; extending the Fréchet filter on cf (i) and

Vj<cf(k) |k N{tia | i € S Aa < cf(i)}] < cf(x),

and
(2) ifi € S is alimit point of S then max(pef({s]* | j € iNS})) = ;.

Then S is not stationary.

PrROOF. Let us suppose that S is stationary. Seta = {x; [i € S} U {x}" |
i €S}U{tia | i € SAaecf(i)}. Let (bg | 6 € a) be a smooth sequence of
generators for a.

Let C be the set of all limit ordinals 6 < cf(x) such that for every i
with 0 < i < &, if j > S with j € S and if § € a () Ay O b then
d=sup({jeSnNs|0e bn}-+}). Clearly, C is club.

By (2) in the statement of Theorem 2.5, we may find 6* € C N S and some
i* < ¢* such that for every j with i* < j < d*,if j € S then ;" € by,
(cf. the proof of Theorem 2.1).

Let @ € bn;r:. Then 6 € a N k;4 for some i with 0 < i < §*. By the choice
of C there is then some j € S with i* < j < * and such that § € bﬂjﬁ.
By the smoothness of the sequence of generators we’ll have bﬂj++ C bK;*, and
hence 6 € b,e;*.

We have shown that b+ C b, , which is absurd because pp(ks+) > KiF
by (1) in the statement of Theorem 2.5. -

If 6 is a cardinal and k = N; > & then condition (1) in the statement of
Theorem 2.5 can be replaced by “i € S = pp(x;) > &/ ",” giving the same
conclusion.

THEOREM 2.6. Let k be a singular cardinal of uncountable cofinality, and let
(ki | i < cf(k)) be strictly increasing and continuous sequence which is cofinal
in k and such that ko > cf (k). Suppose that there is py < & such that for every
uwithuy < u < k, pp(u) < k. Let S C cf(k) be such that

(1) i € S = pp(k:) > &, and
(2) ifi € Sisalimitpointof S and X = {4;|j € iNS}withk; < A; < pp(k;)
regular then max(pcf(X)) = &

Then S is not stationary.
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PRrROOF. Let us suppose that S is stationary. Assume that uo = 0 otherwise
just work above it. We can assume that for every i < cf(k) if 4 < &; then
also pp(u) < k;. Let x > k be a regular cardinal, and let M < Hy be
such that Card(M) = cf(k), M D cf(k), and (k; | i < cf(k)), S € M.
Set a = (M NReg) \ (cf(k) + 1). If there is 4 < & such that for each
i € S|(@a\u) Nk | < cf(x) then the previous theorem applies. Suppose
otherwise. Without loss of generality we can assume that for every i € S and
u <k |(a\p) Nk =cf(k).

Let (bg | 6 € a) be a smooth and closed (i.e., pcf(by) = bg) sequence of
generators for a.

CramM. For every limit point i € S max(pcf(an ;) < pp(k:).

Proor. Fix anincreasingsequence (u; | j < cf(i)) of cardinals of cofinality
cf (k) with limit «; and so that (J(a N u;) = u;. Now max(pef(anu;)) <
pp(u; ) for every j < i, since |a N u;| = cf(k) = cf(u;). There is a finite
fj Cpef(anpu;)suchthatanu; C (J{by | 6 € f;}. Assume that |i| = cf(i).
Otherwise just run the same argument replacing i by a cofinal sequence of the
type cf(i). Consider v = max(pcf(J{f; | < i})). Then v < pp(;), since
|U{f; | J < i} <cf(i). So, thereis a finite g C pef(U{f; | j < i}) C
v+1C pp(k;)+1suchthat J{f; | j <i} C U{bs | 6 € g}. By smoothness,
then aNk; C (J{bg | 6 € g}. Since the generators are closed and g is finite,
also pef(ank;) € U{be | 6 € g}. Hence, max(pcf(an «;)) < max(g) which
is at most pp(k;). ' =

For every limit point i of S find a finite set ¢; C pcf(ank;) such thatank; C
(U{bg | 8 € ¢;} By the claim, max(pcf(ank;)) < pp(k:). So, ¢; C pp(k:) + 1.
Set d; = ¢; \ k;. Then the set aNk; \ J{bg | 6 € d;} is bounded in &;, since
we just removed a finite number of by’s for 6 < &;. So, thereis (i) < i such
that k) D ank; \ U{bs | 0 € d;}. Find a stationary S* C S and a* such
that for each i € S* a(i) = a*. Let now i € S be a limit of elements of S*.
Then there is © < &; such that (J{d; | j < i} \ t C b,+. Since otherwise it
is easy to construct X = {; | j € i N S} with k; < 4; < pp(k;) regular
and max(pcf(X)) > &;. Now, by smothness of the generators, b+ should
contain a final segment of a N x;. Which is impossible, since pp(x;) > &
Contradiction. -

The same argument works if we require only pp(x) < & for u’s of cofinality
cf(x). The consistency of the negation of this (i.e., of: there are unbounded
in kK many u’s with pp(u) > &) is unkown. Shelah’s Weak Hypothesis states
that this is impossible.

The claim in the proof of Theorem 2.6 can be deduced from general results
like [27, Chapter 8, 1.6].

Let again & be a singular cardinal of uncountable cofinality, and let (x; |
i < cf(k)) be a strictly increasing and continuous sequence which is cofinal
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in & and such that kg > cf(k). Let, for n < w + 1, S, denote the set
{k" | i < cf(k)}. By [11], if there is no inner model with a strong cardinal
and k® = (k)X for every i < cf(x) then for every n < w, if for each
i < cf(k) we have 2% > k" then there is a club C C cf(x) such that
kN pcf({x"| i € C}) C S,. Notice that (x) from the statement of 2.1 just
says that k N pef({x;] |i < cf(k)}) C S1, or equivalently k N pcf(S;) = Si.

The following says that the connection between the «;"’s and the S,,’s cannot
be broken for the first time at w + 1.

THEOREM 2.7. Let k be a singular cardinal of uncountable cofinality, and
let (k; | i < cf(k)) be a strictly increasing and continuous sequence which is
cofinal in k and such that kg > cf(k). Let, forn < w + 1, S, denote the set
{k" | i < cf(k)}. Suppose that for every i < cf(k), pp(x;}®) = Ko+,

If for every n < w there is a club C, C cf(k) such that pcf({x" | i €
C,}) Nk C S, then there is a club Cpy1 C cf(k) such that pef({x %t | i €
Cot1}) NE C Sy

ProOF. set C =(),_, Cy. Let x > k be aregular cardinal, and let M < H,
be such that Card(M) = cf(x), M D cf(k), and (k; | i < cf(k)) U{C, | n <
w}U{Sy |n<w+1} e M. Seta= (MnNReg)\ (cf(k)+1). Let (b | 6 € a)
be a smooth and closed sequence of generators for a.

For every n < w we find a stationary E, C C and some ¢, < cf(x) such
that for every i € E,,

(K" [en <j<iNj€Cp} Chyn.
This is possible since our assumption implies that

tef ( H K" /Frechet) = k"
JEING,
for each limit point i of C,.
Set e = U, &n- Let C, ., be the set of all i < cf(x) such that for every

n < @, i is a limit of points in E,. Then, for every o € C,,, and for every
n<w,

b,cgnj{nf”|£<j<a/\jeC},

since b, contains a final segment of {x/" | i € E, N a}, and so, by the
smoothness of (by | § € a), b D b.sn. Moreover, b, in turn contains
{&j" len <j<inj€Cyp}

Leta € C,,. Aspp(ki®) = k}®*!, there is some n(a) < w such that
for every n with n(a) < n < @, k}" € b.swn. Again by the smoothness
of (bg | 0 € a), begort O Up(a)<nce Otn- Therefore k1" € byran for every
jeCe<j<a,andn(a) <n<ow.
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Fix some j € C with e < j < a. The fact that pp(x;®) = /c;’”’“ implies
that fe}L”’“ € pef({x]" | n(a) < n < »}), and hence n;r”’“ € pef(bysos1). By
the closedness of (bg | 6 € a), a N pef(byso+1) = byron1. Thus n}“"“ € bygart.

We may now pick a stationary set E C C,,; and some n* < w such that

n(a) = n* for every a € E. Let C,4; be the intersection of the limit points
of E with C \ (e + 1).

Cram 1. Foreverya € C,,,,, pef({s}e i€ (Cna)\(e+1}) \ ke C
{i"0<n<w+1}.

PrROOE. Suppose otherwise. By elementarity, we may then find some A €
anpef({x** | i € (Cna)\ (e+1)})\ ke which is above x}®*!. For
everyi € CNaand m < o, k™ € pef({k/™ | m < n < w}), since
pp(;}®) = k}°*1 Hence A € pef({k/™" | i € (CNa)\(e+1)Am < n < w})
foreach m < w. Buta € C, ), so forevery n < w, bepn D {k/" | i €
(Cna)\ (¢4 1)}. The fact that pp(k}?) = kF**! implies that there is some
m < o such that for every n withm < n < w, 3" € b4o1. The smoothness
of (bg | 8 € a) then yields

b,qwﬂD{nf’"|m<n<w/\i€(Cﬂa)\(s+l)}.

Finally, the closedness of (bg | @ € a) implies that pcf(bysort) Na = byron,
and $0 4 € byzo1. Hence b; C byyv1, which is possible only when 4 < KO+
Contradiction! -

Now let o be a limit point of C,y; and let A € pef({x;**! | i € Cpy1 N
a}) \ ke Then by Claim 1, 4 € {s}" | n < w + 1}. We need to show that
1= Iiiw+l.

Cram 2. pef({s}°*! | i € E}) Nk C Sepp1-

PROOF. Let B < cf(k) be a limit of ordinals from E. We need to show that
pef ({571 |1 € EN 1)\ kg = {31},

Suppose otherwise. By Claim 1, there is then some m < @ such that
K" € pef({x;**! | i € EN B}). Then for some unbounded 4 C EN B we'll
have that for every i € 4, **1 ¢ bn}-m. By the choice of E, 57" € b, +o+1 for
everyj € C,e<j<i,andn* <n<ow. i

Fix some 7 > max(m,n*). By the smoothness of (bg | 8 € a), k" € bn;m
forevery j € (CNB)\ (¢ +1). But

pef ({7 |je(CNP)\(e+1)})\rp= {/cl}rﬁ )
So n}ﬁ € bn}-m and hence bn}-ﬂ - bn;m. This, however, is impossible, since
7i > m. Contradiction! -

We now have that x7°*! € b; for unboundedly many i € C,4; N . By

Claim 2, by the smoothness of (bg | 6 € a), and by the choice of C,1, we
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therefore get that n}“’“ € b, for unboundedly many j € E N«. Hence again
by Claim 2 and by the closedness of (by | 6 € a), k}®*! € b;. Bo by the
smoothness of (bg | 6 € a), byror1 C by. This implies that 1 = kF°*1 and we
are done. -

M. Magidor asked the following question. Let s be a singular cardinal of
uncountable cofinality, and let (x; | i < cf(x)) be a strictly increasing and
continuous sequence which is cofinal in . Is it possible to have a stationary
and co-stationary set S C cf(x) such that

tef ( H K?+/(Clubcf(,€) + S)) =gtt

i<cf(k)
tef (

The full answer to this question is unknown. By methods of [11] it is possible
to show that at least an inner model with a strong cardinal is needed, provided
that cf (k) > N,.

We shall now give a partial negative answer to Magidor’s question. A
variant of this result was also proved by T. Jech.

and

T ##*/(Clubege + (cf(x) \s))) ey

i<cf(k)

THEOREM 2.8. Let k be a singular cardinal of uncountable cofinality, and let
(ki-| i < cf(k)) be a strictly increasing and continuous sequence which is cofinal
in K. Suppose that for some n, 1 < n < w, pp(k) = k™ and pp(k;) = ;™" for
eachi < cf(k).

Then there is a club C* C cf (k) so that pef({}* | i € C*})\ k = {k**}
Jorevery k with1 < k < n.

PrROOF. Leta = {k* | 1 <k <nAni<cf(k)}U{st* |1 <k <n}
Then pcf(a) = a by the assumptions of theorem. Without loss of generality,
min(a) = k§ > cf(k) = Card(a). Fix a smooth and closed set (bg | 6 € a) of
generators for a.

By [2, Lemma 6.3] there is a club C C cf(k) such that for every k with
1<k<n,

{ci*lieC}c|J{bow |1 <K <k}

Let C* be the set of all i € C such that for every j with 1 < j < i, k;isa
limit point of b,.+; \ U{b,+» | ' < j}. Clearly, C* is club.

Let us show that C* is as desired. It is enough to prove that for every k&
withl <k <nandi e C*,

ktF € b \|J {bur [ 1 <1< K}
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Suppose otherwise. Then for some i € C* and some k with 1 <-k < n,
k7% € U{byw | 1 <1< k}. Define d; to be

max pcf((b,cﬁ \ U{b,wv [1<j'< ]}) ﬂn,-)

forevery j,1 < j <'n. Thend; € b+ by the closedness of (by | 6 € a). Also,
6; € {&{° | 1 <'s < n}, since pp(k;) = K;}™.

Cram. Forevery j with 1 < j <n,8; > &;7.

Proor. Asi e C, n,-”’ € U{bn | 1< j" < j'}forany j' with1 < j' <
n. By the smoothness of (bg | 8 € a), Ul o | 1< <G CU b | 1<

J' < j}. Recall that b \ U{b,.r | 1 < j' < j}isunbounded in x;. Hence
8 =max pof ((bews \ [ {buer 115/ < j}) 1)

should be at least &;" B -

Let us return to &;*. By the claim, dy > &%, But x7* € J{bow | 1 <
I <k} Sob CU{be+ | 1 <1<k} Letl* <k —1 be least such that
b+ Nb s isunbounded in ;. Thend;» > nl?Lk . Hence for some j; < j; < n,
9jy = 0j,-

Let s = 6j, = 0j,, where I < n. Then b_u C by N b+, by the
smoothness of (bg | @ € a), since d;, € b+, and d;, € b,+;,. But now
b+ \U < j<, br+s and b should be disjoint. This, however, isimpossible, as

;! = 8;, = max pef ((b,cﬂ'2 \ U b,;+j) N n,-).
1<j<j2
Contradiction! -
The previous theorem may break down if we replace n by w. lLe., it is
possible to have a model satisfying pp(k) = &***!, pp(k;) = & for
i < cf(k) = w1, but

max pef ({s/* |i<wi}) =x".

The construction is as follows. Start from a coherent sequence £ = (E (@p) |
a < kAB < w)of (o, a4+ w + 1)-extenders. Collapse x*+ to x*. Then force
with the extender based Magidor forcing with E to change the cofinality of
to w; and to blow up 2% to k*®*1. The facts that x**" will have cofinality
k1 in the extension and no cardinal below x will be collapsed ensure that
max pcf ({1 |i<w}) =&t

§3. Some core model theory. This paper will exploit the core model theory
of [31] and its generalization [32]. We shall also have to take another look at
the argument of [19] and [18] which we refer to as the “covering argument.”
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Our Theorems 1.1 and 1.4 will be shown by running the first ® many steps of
Woodin’s core model induction. The proof of Theorem 1.1 in [5] uses the very
same method, and we urge the reader to at least gain some acquaintance with
the inner model theoretic part of [5, §2].

The proof of Theorem 1.1 needs a refinement of the technique of “stabilizing
the core model” which is introduced by [23, Lemma 3.1.1]. This is what we
shall deal with first in this section.

LeMMA 3.1. Let M be an iterable premouse, and let 6 € M. Let T be a
normal iteration tree on M of length 0 + 1 such that lh(EéT) > J whenever

& < 0 and § is a cardinal of M} . Then the phalanx (M} , M), ) is iterable.

PrOOF. Let U/ be an iteration tree on ((M7, M),5). We want to “absorb”
U by an iteration tree 4* on M. The bookkeeping is simplified if we assume
that whenever an extender EY is applied to M7 to yield #f,, then right
before that there are § many steps of “padding.” I.e., letting P denote the set
of all 7 + 1 < Th(U) with EY = 0, we want to assume that if crit(E¥) < ¢
then & + 1 = & + 1 + 4 for some & such that 7 + 1 € P forally € [£,&).

Let us now construct U*. We shall simultaneously construct embeddings

ot MY — MY,

where & € 1h(U) \ P, such that n, | Ih(E¥) = np | 1h(EY) whenever
a< Belhld)\ Pand¢ < aorelse (a,&] C P. The construction of 2/* and
of the maps 7, is a standard recursive copying construction as in the proof of
[20, Lemma p. 54f], say, except for how to deal with the situation when an
extender is applied to M7 .

Suppose that we have constructed * | &+ 1 and (7, | @ € (§ + 1)\ P),
thaty+1 € Pforally € [, +1+6 — 1), and that crit(Eé{rB) < 8. We then

proceed as follows. Let & +1=¢& + 1+ 6. We first let

*

o: M —r(EY) MY

&
and we let
T M — g ult (M, E¥).
We may define
k :ult (M;Eg) — M?;l
by setting

ke, f134) = [re(a), f124 520, = o () (@)

for appropriate @ and f. This works, because 7z [ P(crit(EY)) N M = id.
Notice that k [ Ih(EY) = 7; | In(EY).
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u*
We now let the models M . and maps
AT ur
o i My — My
for# < 0, arise by copying the tree 7 onto M?J:l using o. We shall also have
models M7 and maps

T M — M7,
forn < 6, which arise by copying the tree 7 onto ult(M, E¥), using 7. Notice
that for # < 6 there are also copy maps
ky s MT — MY

E+l4n
with kg = k. Because lh(EéT) > § whenever £ < 0, lh(EgT) > 7(6) whenever
& < 60, so that in particular kg | ©(6) = k | ©(), and thus kg | lh(Eé”) =k
lh(Eé”).
We shall also have that 74 | § =t [ J, so that we may define
k' MY, =ult (M, EY) — MG"
by setting
K (e, /1) = w(/)(a)
for appropriate a and f. Let us now define
ert s MY,y = ult (M, EY) — MY,
by mep1 = kg o k’. We then get that 7z, | Ih(EY) = kg | Ih(EY) = k |
lh(Eé‘) =g flh(Eéu). =
Let Q be an inaccessible cardinal. We say that Vg is n-suitable if n < w and

Va is closed under M, but M, | does not exist (cf. [30, p. 81] or [5, p. 1841]).
We say that Vy is suitable if there is some n such that Vg, is n-suitable. If Q is
measurable and Vg is n-suitable then the core model K “below n + 1 Woodin
cardinals” of height Q exists (cf. [32]).

The following lemma is a version of Lemma 3.1 for M = K. It is related to

[19, Fact 3.19.1].

LemMA 3.2 (Steel). Let Q be a measurable cardinal, and suppose that Vg is
suitable. Let K denote the core model of height Q. Let T be a normal iteration
tree on K of length 0 + 1 < Q. Let 0’ < 0, and let 6 be a cardinal ofMoT
such that v(E}) > & whenever & € [0',0). Then the phalanx (M2, M7),5)
is iterable.

PROOF SKETCH. As K° is a normal iterate of K (cf. [23, Theorem 2.3]), it
suffices to prove Lemma 3.2 for K¢ rather than for K.

We argue by contradiction. Let 7 be a normal iteration tree on K¢ of length
6+1<Q,letd <0,andletd bea cardinal of M7 such that v(E7) > 6
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whenever & € [#,60). Suppose that I/ is an “ill behaved” putative normal
iteration tree on the phalanx (M7, M7),5). Letn : ¥ — Va4, be such that
V is countable and transitive and { K¢, 7, §',6,U} € ran(n). Set T = n~1(T),
0=n"10),0 =r"10"),6 =n"1(6), and U = =~ (U4). )

By [31, §9] there are £’ and £ and maps ¢’ : Mg — Nz ando : M7, — N
such that Mz and N; agree below ¢’(5), and ¢’ | ¢/(5) = o | o’(5). (Here
N and N; denote models from the K¢ construction.) We may now run the
argument of [31, §9] once more to get that in fact { is “well behaved.” But
then also U is “well behaved” after all. -

In the proofs to follow we shall sometimes tacitly use the letter K to denote
not K but rather a canonical very soundness witness for a segment of K which
islongenough. If M is a premouse then we shall denote by M|« the premouse
M as being cut off at o without a top extender (even if EM # ), and we
shall denote by M||a the premouse M as being cut off at o with EM as a
top extender (if EM # 0, otherwise M|o' = M|a). If B € M then g+M
will either denote the cardinal successor of B in M (if there is one) or else
pM = MNOR.

LemMA 3.3. Let Q be a measurable cardinal, and suppose that Vg, is suitable.
Let K denote the core model of height Q. Let k > X, be a regular cardinal,
and let M > K ||k be an iterable premouse. Then the phalanx (K, M), k) is
iterable.

Proor. We shall exploit the covering argument. Let
n:NZX < Vo

such that N is transitive, Card(N) < &, {K,M,k} C X, X Nk € &, and
K = n71(K) is a normal iterate of K, hence of K ||«, and hence of M. Such
a map 7 exists by [18]. Set M = n~!(M) and & = n~!(k). By the relevant
version of [31, Lemma 2.4] it suffices to verify that ((K, M), &) is iterable.
However, theiterability of (K, M), &) readily follows from Lemma 3.1. Using
the map 7, we may thus infer that ((K, M), &) is iterable as well. -

LemMma 3.4. Let Q) be a measurable cardinal, and suppose that Vg, is suitable.
Let K denote the core model of height Q. Let k be a cardinal of K , and let M be
a premouse such that M|s*M = K|ktM, p,(M) < &, and M is sound above
k. Suppose further that the phalanx (K, M), k) is iterable. Then M < K.

ProOF. This follows from the proof of [19, Lemma 3.10]. This proof shows
that ((K, M), k) cannot move in the comparison with K, and that either
M < K or else, setting v = kt™, EX #£ () and M is the ultrapower of an
initial segment of K by EVK . However, the latter case never occurs, as we’d
have that u = crit(EX) < & so that u*XIV = 4+K and hence EX would be a
total extender on K. -
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Let W be a weasel. We shall write (W) for the class projectum of W, and
¢(W) for the class parameter of W (cf. [19, §2.2]). Let E be an extender or
an extender fragment. We shall then write 7(E) for the Dodd projectum of E,
and s(E) for the Dodd parameter of E (cf. [19, §2.1]).

The following lemma generalizes [25, Lemma 2.1].

LemMma 3.5. Let Q be a measurable cardinal, and suppose that Vg, is suitable.
Let K denote the core model of height Q. Let k > X, be a cardinal of K, and
let M > K ||k be an iterable premouse such that p,(M) < &, and M is sound
above k. Then M < K.

Proor. The proof is by “induction on M.” Let us fix & > N,, a cardinal
of K. Let M > K||x be an iterable premouse such that p, (M) < x and M
is sound above x. Let us further assume that for all /' <« M with p, (V) < &
we have that /' <1 K. We aim to show that M < K.

By Lemma 3.4 it suffices to prove that the phalanx ((K, M), k) is iterable.
Let us suppose that this is not the case.

We shall again make use of the covering argument. Let

n:N%X-<VQ+2

be such that N is transitive, Card(NV) = Ny, {K, Mk} C X, X N R, € Ry,
and K = n~!(K) is a normal iterate of K. Such a map = exists by [18].
Set M = 771 (M), & = n71(k), and § = 7~ 1(X,). By the relevant version
of [31, Lemma 2.4], we may and shall assume to have chosen n so that the
phalanx ((K, M), &) is not iterable.

We may and shall moreover assume that all objects occuring in the proof
of [18] are iterable. Let 7" be the normal iteration tree on K arising from
the coiteration with K. Set § + 1 = 1h(7). Let (k; | i < ¢) be the strictly
monotone enumeration of Card® N(& + 1), and set 4; = kX fori < p. Let,
fori < ¢, a; < 6 be the least o such that x; < v(E7), if there is some such «;
otherwise let o; = 6. Notice that MZ |4; = K|2; foralli < ¢. Let, fori < ¢,
P; be the longest initial segment of Mg such that P(k;) NP; C K. Let

R; = ult(P;, E; | 7(k;)),

where i < . Some of the objects R; might be proto-mice rather than premice.
We recursively define (S; | i < @) as follows. If R; is a premouse then we set
S; = R;. If R; is not a premouse then we set

Si = ult (Sj,FRi),

where ; = crit(FP) (we have j < i). Set A; = sup(n4;) for i < .
The proof of [18] now shows that we may and shall assume that the following
hold true, for every i < ¢.

Cramm 1. If §; is a set premouse then S; <1 K ||7(4;).
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ProOF. This readily follows from the proof of [19, Lemma 3.10]. - Cf. the
proof of Lemma 3.4 above. —

Cramm 2. If S; is a weasel then either S; = K orelse S; = ult(K, EX) where
v > A; is such that crit(EX) < 6 and t1(EX) < n(k;).

ProoF. This follows from the proof of [19, Lemma 3.11].

Fix i, and suppose that S; is a weasel with S; # K. Let

Rik = Sik I Sik—l
be the decomposiﬁon of §;, and let o; : S; — &; for j < k (cf. [19,
Lemma 3.6]). We also have
Mooy, K — M3 =P

Notice that we must have

_)..._)Siozsi

u = crit (ngl‘,k) < 6 = crit(n),
as otherwise Mg_k couldn’t be a weasel. Let us write
p:P, — ult(P,-k,E,, rn’(fiik)) =R;.

Notice that we have x(R;,) < n(x;,) and ¢(R;,) = 0 (cf. [19, Lemma 3.6]. It
is fairly easy to see that the proof of [19, Lemma 3.11] shows that we must
indeed have E,Ifik #0, crit(E,’fik) =u, r(E,’fik) < n(ky), s(Effik) =0, and

R;, = ult (K, EX, ).

The argument which gives this very conclusion is actually a simplified version
of the argument which is to come.
We are hence already done if £ = 0. Let us assume that & > 0 from now on.
We now let F be the (u, 1)-extender derived from o;, 0 p oz, where

Oa,-k i
A =max({rn(k:)} Uc(S;)) .
We shall have that 7(F) < n(k;) and s(F) \ (ki) = ¢(S;) \ 7(x;). Let us
write t = s(F) \ #(k;). We in fact have that
(= Uosls(E™)) \ al)
Jj<k
(cf. [19, Lemma 3.6]). Using the facts that E /I\{:‘k € &; and that every R;, is

Dodd-solid above n(fs,-j) for every j < k, it is easy to verify that we shall
have that

Fi((Hhutihes;

for every / < 1h(z).

Now let U, V denote the iteration trees arising from the coiteration of K
with ((K, S;),n(k;)). The proof of [19, Lemma 3.11] shows that 1 € (0, o]y,
and that crit(EY) = p and ©(E¥) < n(k;). Let us write s = s(E¥). If § < s
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then EY | (n(k;) US) € MY, which implies that MY does not have the 5-hull
property at 7(x;). Thus, s is the least § such that ult(K, EY') = MY has the
§-hull property at z(x;).

Let N = MY = MY,. We know that s is the least § such that N = MY,
has the §-hull property at z(;).

The proof of [19, Lemma 3.11] also gives that 1 = root”, i.e., that V sits
above S; rather than K. We have n}_ : R; — N. As R; has the #-hull
property at n(x;), N has the zn}_(¢)-hull property at z(k;). Therefore, we
must have that s < zY_(¢).

SuBcLam. s = n} ().

PrOOF. Suppose that s < nloo(t) Let / be largest such that s [ | =
nYo(t) 1. Set F = F | (¢(I)Ut | ). We know that F € S;, which implies
that ¥ _(F) € N. In partlcular,

G=nl (F)| (z(k;)Us) €N.

Let us verify that G = E'.

Letus write # = ). Pick a € [n(k;)Us]<?, and let X € P([u]**¥@)NK.
We have that X € G, if and only if #(X) € G, (because crit(%) > n(k;) > u)
ifand only if #(X) € #(F | (¢(I) Ut | 1)), if and only if

ach({u| X eF @)Ut l).}),
which is the case if and only if
aci({u|ucoa, opon{j;ik(X)}) ={ulucfoo, opong;ik(X)}.
However, this holds if and only if a € =¥ (X), i.e., if and only if X € (E¥(),,

because, using the hull- and definability properties of K, Zoa;, 0po ng;ik (X) =

s (X) = = (X).

We have indeed shown that G = EY. But we have that G € N = MY,
This is a contradiction! -
%

loo

oM — S

By thesubclaim, s € ran(z}_ ), and we may define an elementary embedding

by setting
MG &, 8] — 15 &L () (&), &),

where 7 is a Skolem term, él < n(k;), éz € s,and 63 € I" for some appropriate
thick class I'. However, t = (n}, ) ~'(s), and S; = HS'(n(k;) Ut UT'). Hence
® is onto, and thus S; = MY = ult(K, EY').

If we now let v be such that EX = EY then v is as in the statement of
Claim 2. 5
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Let us abbreviate by Sy the phalanx
(Sili<e)™" M, (Ai|i<p)).

Cram 3. Sy is a special phalanx which is iterable with respect to special
iteration trees.

PrROOF. Let V be a putative special iteration tree on the phalanx Sum. By
Claims 1 and 2, we may construe V as an iteration of the phalanx

(K, M),0).

The only wrinkle here is that if crit(Eg)) = n(k;) for some i < ¢, where
S; = ult(K, EX), then we have to observe that

ult (K, FUKINED)) — it (ult(K, EX), EY),

and the resulting ultrapower maps are the same.
Lemma 3.3 now tells us that the phalanx ((K, M), d) is iterable, so that V
turns out to be “well behaved.” -

By [19, Lemma 3.18], Claim 3 gives that
(Rili< )" M, (A |i< o))

is a very special phalanx which is iterable with respect to special iteration trees.
By [19, Lemma 3.17], the phalanx

(P |i<@)™M, (ki |i< ),
callit P 11> 18 finally iterable as well.

Cramv 4. Either M is an iterate of K, or else M P,.

PrOOF. Because P v 1s iterable, we may coiterate 73/\71 with the phalanx
P=(Pii<e)(li<ep),

giving iteration trees )V on P and V' on . An argument exactly as for (b) =
(a) in the proof of [31, Theorem 8.6] shows that the last model MY of V must
sit above M, and that in fact MY, = M, ie., Vis trivial. But as p,(M) < &
and M is sound above &, the fact that V is trivial readily implies that either
V' is trivial as well, or else In(V’) = 2, and MY, = MY’ = ult(P;, E)’) where
crit(EY') = ki < R, po(MY') = pp(P;) < ki, 1(EY') < &, and s(E(})I) =0.

We now have that M is an iterate of K if either V' is trivial and M < P,

orelse if V' is non-tr_ivial. On the other hand, if M is not an iterate of K then
we must have that M > P,. =

Let us verify that M > P, is impossible. Otherwise P, is a set premouse
with po,(P,) < &, and we may pick some a € P(&) N (Z,(P,) \ P,). As
M > P,, a € M. However, by our inductive assumption on M (and by
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elementarity of 7) we must have that P(§) "M C P(k)N K C P,. Therefore
we’d get that a € P, after all. Contradiction!

By Claim 4 we therefore must have that M is an iterate of K. Le., K and
M are hence both iterates of K, and we may apply Lemma 3.2 and deduce
that the phalanx ((If , M), &) is iterable. This, however, is a contradiction as
we chose 7 so that ((K, M), &) is not iterable. 4

Jensen has shown that Lemma 3.5 is false if in its statement we remove the
assumption that & > N,. He showed that if K has a measurable cardinal (but
0' may not exist) then there can be arbitrary large K-cardinals x < X, such
that there is an iterable premouse M > K || with p, (M) < K, M is sound
above k, but M is not an initial segment of K. In fact, the forcing presented
in [22] can be used for constructing such examples.

To see that there can be arbitrary large K -cardinals x < N; such that there
is an iterable premouse M 1> K||x with p,,(M) < k, M is sound above &, but
M is not an initial segment of K, one can also argue as follows. K N HC need
not projective (cf. [12]). If there is some # < N; such that Lemma 3.5 holds
for all K-cardinals in [77, X;) then K N HC is certainly projective (in fact XJ).

By a coarse premouse we mean an amenable model of the form P = (P; ¢
, U) where P is transitive, (P;€) = ZFC™ (i.e., ZFC without the power set
axiom), P has a largest cardinal, Q = Q7 and P E “U is-a normal measure
on Q.” We shall say that the coarse premouse P = (P; €, U) is n-suitable if
(P;€) = “VZ is n-suitable,” and P is suitable if P is n-suitable for some n.
If P is n-suitable then X7, the core model “below n + 1 Woodin cardinals”
inside P exists (cf. [32]).

DEerFINITION 3.6. Let k be an infinite cardinal. Suppose that for each x €
H = {J,y., Ho+ there is a suitable coarse premouse P with x € P € H. Let
a < k. We say that K ||« stabilizes on a cone of elements of H if there is some
x € H such that for all suitable coarse premice P, Q € H withx €¢ PN Q
we have that K2||a = K ||a. We say that K stabilizes in H if for all a < &,
K ||« stabilizes on a cone of elements of H.

Notice that we might have & < & < A such that K|« does not stabilize
on a cone of elements of | J,_, Hy+, whereas K || does stabilize on a cone of
elements of | J,_, Hp+. However, if we still have o < k < 1 and K ||« stabilizes
on a cone of elements of | J,_, Hg+ then it also stabilizes on a cone of elements
of g, He+. The paper [23] shows that K|« stabilizes on a cone of elements
of Hijom0)+ (cf. [23, Lemma 3.1.1]). What we shall need is that [23, Lemma
3.1.1] shows that K ||X, stabilizes on a cone of elements of Hy,.(;x0)+ -

In the discussion of the previous paragraph we were assuming that enough
suitable coarse premice exist. A
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THEOREM 3.7. Let k > N3 - (2%)* be a cardinal, and set H = |y, Hp+.
Suppose that for each x € H there is a suitable coarse premouse P with x € P.
Then K stabilizes in H.

ProoF. By [23, Lemma 3.1.1], K||X; stabilizes on a cone of elements of H,
because k > N3 - (2%)*+. By Lemma 3.5 we may then work our way up to
by just “stacking collapsing mice.” -

Theorem 3.7 gives a partial affirmative answer to [26, Question 5]. It can
be used in a straighforward way to show that if O, fails, where k > 2%
is a singular cardinal, then there is an inner model with a Woodin cardinal
(cf. [23, Theorem 4.2]). One may use Theorems 3.9 and 3.11 below to show
that if O, fails, where x > 2™ is a singular cardinal, then for each n < w there
is an inner model with » Woodin cardinals.

Let Q be an inaccessible cardinal, and let X € V. We say that Vg is (n, X)-
suitable if n < w and Vg is closed under M, but M} (X) does not exist
(cf. [30, p. 81] or [5, p. 1841]). We say that Vg is X -suitable if there is some n
such that Vq is (n, X)-suitable. If Q is measurable and Vg is (n, X)-suitable
then the core model K (X) over X “below n + 1 Woodin cardinals” of height
Q exists (cf. [32]).

We shall say that the coarse premouse P = (P; ¢, U) is (n, X)-suitable if
(P;€) E “VE is (n, X)-suitable,” and P is X -suitable if P is (n, X )-suitable
for some n. If Pis (n, X')-suitable then K (X)7, the core model over X “below
n + 1 Woodin cardinals” inside P exists (cf. [32]).

DEFINITION 3.8. Let « be an infinite cardinal, and let X € H = | J,_,, Hp+.
Suppose that for each x € H there is an X -suitable coarse premouse P with
x € P € H. Leta < k. We say that K(X)||« stabilizes on a cone of elements
of H ifthereissome x € H such that for all suitable coarse premice P, Q € H
with x € P N Q we have that K(X)%|la = K(X)”||a. We say that K(X)
stabilizes in H if for all & < K, K (X)||c stabilizes on a cone of elements of H.

THEOREM 3.9. Let k > R3-(2™)* bea cardinal, andlet X € H = | J,_, Ho+.
Assume that, setting ¢ = Card(TC(X)), £® < k. Suppose that for each x € H

there is an X -suitable coarse premouse P with x € P. Then K(X) stabilizes
inH.

PrROOE. Set a = &1 - N,. By the appropriate version of [23, Lemma
3.1.1] for K(X), K(X)||« stabilizes on a cone of elements of H;, where
A= (EN)* .3 - (2%)*+, Hence K (X)||c stabilizes on a cone of elements H.
But then K (X) stabilizes in H by an appropriate version of Lemma 3.5. 4

We do not know how to remove the assumption that & < & from Theo-
rem 3.9. For our application we shall therefore need a different method for
working ourselves up to a given cardinal.
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LemMA 3.10. Let Xy < k < A < Q be such that k and A are cardinals and
Q is a measurable cardinal. Let n < w be such that for every bounded X C &,
MY, (X) exists. Let X C k be such that Vg is (n, X)-suitable.

Let M > K(X)|| 4 be an iterable X -premouse such that p,(M) < A and M
is sound above A. Then M < K(X).

PrOOE. The proof is by “induction on M.” Let us fix , Q, n, and X. Let
us suppose that A is least such that there is an X-premouse M > K(X)| 4
such that p,(M) < A, M is sound above ‘A, but M is not an initial segment
of K(X). Let M > K(X)||A be such that p,(M) < A, M is sound above
A, M is not an initial segment of K(X), but if K(X)||A < N < M is such
that p, (M) < A and N is sound above A then A is an initial segment of
K(X). In order to derive a contradiction it suffices to prove that the phalanx
((K(X), M), ) is not iterable.

Let us now imitate the proof of Lemma 3.5. Let

7Z2N—>VQ+2

be such that N is transitive, Card(N) = 8y, {K(X), M, &, A} C ran(x), and
T'NAR, e Xy, Let X = 27 1(X), Q = 27 1(Q), KX) = =~ 1(K(X)),
M=r1M), & =nrnYk), A =x1()), and § = 71 (R,) = crit(x). We
may and shall assume that ((K(X), M), 1) is not iterable. Furthermore, by
the method of [18], we may and shall assume that the phalanxes occuring in
the proof to follow are all iterable.

Let A/ < Q be largest such that K (X)|4’ does not move in the coiteration
with M7 ,(X). Let 7 be the canonical normal iteration tree on M}, (X)
of length 6 + 1 such that K(X)|X < M7. Let (k; | i < ¢) be the strictly
monotone enumeration of the set of cardinals of K (X)|4’, including A, which
are > ¢. Foreach i < ¢, let the objects P;, R;, and S; be defined exactly as in
the proof of Lemma 3.5. For i < ¢, let A; = k;41.

Because p, (M7, (X)) < 6, and as K(X) is n-small, whereas M, (X) is
not, we have that for each i < @, P; is a set-sized premouse with p,(P;) < &;
such that P; is sound above k;. Therefore, for each i < ¢, S; is a set-sized
premouse with p,(S;) < n(k;) such that S; is sound above 7(k;).

Let us verify that the phalanx '

P = (P i< @)™ M, (ki | i< )
is coiterable with the phalanx
P=((Pili <o) (ki|i<p).

In fact, by our inductive hypothesis, we shall now have that for each i < ¢,
S; < K(X) and hence S; <t M. Setting A; = sup(n”’J;) for i < ¢, we thus
have that

(Sili<p)™" M, (A;|i< )
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is a special phalanx which is iterable with respect to special iteration trees. As
in the proof of [19], we therefore first get that

(Rili<e)" M, (A |i< o))

is-a very special phalanx which is iterable with respect to special iteration trees,
and then that the phalanx

((Pi i< @)™ M, (A |i< )

is iterable.

We may therefore coiterate 73/\31 with . Standard arguments then show
that this implies that A’ cannot be the index of an extender which is used in
the comparison of M# | (X) with K(X). We may conclude that 2 = Q,
i.e., K(X) doesn’t move in the comparison with M# ,(X). In other words,
K(X)=M].

However, we may now finish the argument exactly as in the proof of
Lemma 3.5. The coiteration of 7 't With P gives that either M is an iter-
ate of M¥ ,(X), or else that M 1> P,,. By our assumptions on M, we cannot
have that P, < M. Therefore, M is an iterate of M;* (X). However, the
proof of Lemma 3.2 implies that the phalanx (M7, M), 1) is iterable. This is
because the existence of M*  (X) means that the K¢ construction, when rel-

- n+l1 ~ el s
ativized to X, is not n-small and reaches M#_ (X). But now ((K(X), M), 4)
is iterable, which is a contradiction! =

THEOREM 3.11. Let k be a cardinal, andlet X € H = | J,,, Hp+. Letn < o.
Assume that, setting ¢ = Card(TC(X)), & > Ry and M, 1(X) exists for all
bounded X C £. Suppose further that for each x € H there is an (n, X )-suitable
coarse premouse P with x € P. Then K(X) stabilizes in H.

Proor. This immediately follows from 3. 10. -

We now have to turn towards the task of majorizing functions in []({~;" |
i € A}) by functions from the core model.

LEmMMA 3.12. Let Q be ameasurable cardinal, and suppose that Vg, is suitable.
Let K denote the core model of height Q. Let k < Q be a limit cardinal with
Ny <8 =cf(k) < k. Let K = (k; | i < &) be a strictly increasing continuous
sequence of singular cardinals below « which is cofinal in k and such that§ < k.
Let M = (Vaqo;. .. ) be a model whose type has cardinality at most 8.

There is then a pair (Y, f) such that (Y;...) <M, (k; | i< ) C Y, f:
k — &, [ € K, andfor all but nonstationarily many i < 9, f (k;) = char? (x}").

PrOOF. Once more we shall make heavy use of the covering argument. Let

n:N2Y < Vo
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be such that (¥;...) < M, (k; | i < ) € Y, and that all the objects
occuring in the proof of [18] are iterable. Let K = n~!(K), & = n~(x), and
K, = 7'[_1(11',,') fori<d.

We define P/, R}, and S/ in exactly the same way as P;, R;, and S; were
defined in the proof of Lemma 3.5. Let 7 be the normal iteration tree on K
arising from the coiteration with K. Set § + 1 = 1h(7). Let (k! | i < ¢) be
the strictly monotone enumeration of Card® N(& + 1), and set 4, = (x])*¥
fori < . Let, fori < ¢, a; < 6 be the least « such that x] < v(EaT), if there
is some such «; otherwise let o; = 6. Let, for i < ¢, P} be the longest initial
segment of M2 such that P(k;) NP} C K. Let

R =ult(P, E; | n(x})),

where i < ¢. We recursively define (S} | i < ¢) asfollows. If R} is a premouse
then we set S; = R;. If R} is not a premouse then we set

Si = ult (S}, F™),

where &/ = crit(FP/) (we have j < ). Set A} = sup(z” ;) for i < ¢.

We also want to define P;, R;, and S;. For i < d, we simply pick i’ < ¢
such that k; = &/,, and then set P; = P/,, R; = R},, and S; = S/,; we also set
0; = a;. Notice that we’ll have that

ki tR = k7S = sup (NN m?’V),

because &7 = &% = &V (the latter equality holds by [18]).

Let (A) denote the assertion (which might be true or false) that

(ED) |a+1<0)nk
is unbounded in £. Let us define some C C 4.

If (A) fails then M7 = M7 for all but boundedly many i < &, which readily
implies that there is some # < ¢ such that P; = P; whenever i, j €6 \ #. In
this case, we simply set C =4 \ 7.

Suppose now that (A) holds. Then cf(f) = cf(8) = § > Vo, and both

[0,6)7 as well as {6; | i < 6} are closed unbounded subsets of §. Moreover,
the set of all i < J such that

Va+1 € (0,0]r (crit (ET) < & = v(E]) < &)

is club in §. There is hence some club C C § such that whenever i € C then
6; €0, H)T, Va+1¢€ (0, Ol (crit(E;;r) < Ri = V(Eg) < ﬁi), and [6;, 017
does not contain drops of any kind. By (A), & is a cardinal in M7 , and it is
thus easy to see that in fact fori € C, P; = Mg. Moreover, if i < j € C
then ”eTiej : P; — P; is such that noTio,- I & =id.

Let us now continue or discussion regardless of whether (A) holds true
or not.
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If i < j € C then we may define a map ¢;; : R; — R; by setting
P Pj
[a’ f]E" Iki L [a’ ngi—ej (f)] E,i [K;’

where a € [£;]<°, and f ranges over those functions f : [%;]* — M7, some
k < w, which are used for defining the long ultrapower of P;.

We now have to split the remaining argument into cases. We may and shall
without loss of generality assume that C was chosen such that exactly one of
the four following clauses holds true.

Crausk 1. Foralli € C, P; is a set premouse, and S; = R;.
Crause 2. Foralli € C, P; is a weasel, and hence S; = R;.

Crause 3. For all i € C, R; is a protomouse, S; # R;, and S; is a set
premouse.

Crause 4. Foralli € C, R; is a protomouse, S; # R;, and S; is a weasel.
Case 1. Clause 1, 3, or 4 holds true.

In this case we’ll have that for alli € C, P; is a premouse with p,(P;) < &;.
In fact, if i is least in C then we shall have that p,,(P;) < &, for alli € C.
Moreover, P; is sound above «;.

Let n < w be such that p,,1(P;) < &y < pa(P;) for i € C. Notice that for
i <j e C,P;is the transitive collapse of

Pi (=
HyH{] (K’i U {p’P,-,n+1 })’

where the inverse of the collapsing map is either ng,,j (if (A) holds) or else
is the identity (if (A) fails). Moreover, R; is easily seen to be the transitive

collapse of
R .
Hn+]1 (K'i U {pRj,n+1 })7
where the inverse of the collapsing map is exactly ¢;;. -

Case 1.1. Clause 1 holds true.

In this case, R; € K foralli € C, by [19, Lemma 3.10]. Let us define
f : k — K as follows. We set f(&) = &% in the sense of the transitive
collapse of

H (EU{prons1}),

where i € C is large enough so that £ < k;. Due to the existence of the
maps ¢;;, f (&) is independent from the particular choice of i, and thus f is
well-defined. Obviously, f | y € K forall y < k. Moreover, f(k;) = ni*R" =
sup(Y Nx) foralli € C, as desired.
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It is easy to verify that in fact £ € K. Let R be the premouse given by the
direct limit of the system
(Ri,pij | i < j€C).
As d > Ny this system does indeed have a well-founded direct limit which we
can then take to be transitive; for the same reason, R will be iterable. We may

then use Lemma 3.5 to deduce that actually R € K. However, we shall have
that, for &£ < , f(£) = £ in the sense of the transitive collapse of

Hﬁ](é U {P7~2,n+1 })

CasEt 1.2. Clause 3 or 4 holds.

In this case, [19, Lemma 2.5.2] gives information on how P,: has to look
like, for i € C. In particular, P; will have a top extender, ¥ Pi. By [19,
Corollary 3.4], we’ll have that 7(F7) < &;. '

Let u = crit(F7) = crit(F*s) for i, j € C. Of course, n(u) = crit(F?) =
crit(FRi) for i, j € C. Let u = &}, where k < . Setting S = S;, we
have that

Si = ult (S, FR‘)
foralli € C.

By [19, Corollary 3.4], P,-. is. also Dogld-solid above k;, fori € C. By
[19, Lemma 2.1.4], ngej(s(FPf)) = s(FPi) fori < j € C. Due to the
existence of the maps ¢;;, it is then straightforward to verify that

FR [ (5 Us(F™)) = FRs
wheneveri < j € C.
Let us now define f : & — & as follows. We set f (&) = &7 in the sense of
ult (S, FRi (¢u S(FR"))),
where i € C is large enough so that ¢ < k;. f(&) is then independent
from the particular choice of i, and therefore f is well-defined. Moreover,
(k) =S =sup(Y n&}).
Case 1.2.1. Clause 3 holds.

By [19, Lemma 3.10], S; € K foralli € C. Also, S € K. )

Inorder tosee that f | y € K forally < & it suffices to verify that F® € K
foralli € C. Fixi € C. Let m <  be such that p,,1(S) < n(u) < pn(S),
and let

0:8 —pr, S = K|,
some f3;. It is then straightforward to verify that
ran(o) = Hp ¥ (n(u) Uo(psma) Us ().

This implies that ¢ € K. But then F* € K as well.
But now letting R be as in Case 1.1 we may actually conclude that f € K.
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Case 1.2.2. Clause 4 holds.

We know that S # K, asz is discontinuous at ,u*K . We also know that for all
i €C,S; # K, asnis discontinuous at 7! (k;"). We now have Claim 2 from
the proof of Lemma 3.5 at our disposal, which gives the following. There is
some v such that S = ult(K, EX), where crit(EX) < crit(n), v > sup(s; NY),
and 7(EX) < n(u). Also, for every i € C, there is some v; such that S; =
ult(K, EX), where crit(EX) = crit(EX) < crit(n), v; > sup(s; N Y), and
T(EX) <&

In order to see that f [ y € K for all y < k it now again suffices to verify
that F® ¢ K foralli € C. Fixi € C. Let

0:8 —pr; S
Let us also write
: K —gx S,
and
g, K — EX Si.
Standard arguments, using hull- and definability properties, show that in fact
6, =000.
Therefore,
a(&(f)(a)) =G:(f)(o(a))
for the appropriate a, f. Ask(S) < m(u) = crit(F¢), we may hence compute
FRiinside K.
By letting R be as in Case 1.1 we may again conclude that actually f € K.
CAéE 2. Clause 2 holds.

Let i € C. Then R; is a weasel with x(R;) = k; and ¢(R;) = 0. This,
combined with the proof of [19, Lemma 3.11], readily implies that

R; = ult (K, Ef),

where r(Eff'_ ) < k; and s(E,’fi ) = 0. Moreover, by the proof of [19, Lemma
3.11, Claim 2], crit(Ef ) = crit(ngy, ) < crit(z). Let us write

K — EX R;:,
and let us write
g P — Ry
for the canonical long ultrapower map. Notice that we must have

T
T; = 0O; °”00,~-
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Furthermore, if i < j € C, then we’ll have that
gj OﬂoTe,- = (ij ©0; © Ty,
Let us define f : kK — & as follows. We set £ (&) = £ in the sense of
ult (K, Ef 1¢),

where i € C is large enough so that £ < k;. If f(&) is independent from
the choice of i then f is well-defined, f | y € K for all y < k, and f(k;) =
sup(Y Nk;) foralli € C.

Nowleti < j € C. We aim to verify that

‘K _ K
EA[ _EA] rl{:i,

which will prove that (&) is independent from the choice of .

Well, we know that crit(E f\“ ) = crit(moq,) = crit(ngg,) = crit(E 11\{, ); call it .
Fix a € [k;]<? and X € P([u]?4@) N K. We aim to prove that

X e (Ef), &= Xe(EX),

But we have that X € (Ef ), if and only if @ € 0; o ngy (X) if and only if
acgpjooonly(X)=0;0 ng;j(X) ifand only if a € (Ef )., as desired.

We may now finally let R be the weasel given by the direct limit of the system

(Riygij | i< jeC).

The above arguments can then easily be adopted to show that /' € K. -

We have separated the arguments that f [ y € K for all y < & from the
arguments that ' € K, as the former ones also work for-a “stable K up to ,”
for which the latter ones don’t make much sense.

The following is a version of Lemma 3.12 for the stable K (X) up to &.

LemMa 3.13. Let k > 2% be a limit cardinal with cf(k) = 6 > R, and
let & = (k; | i < &) be a strictly increasing continuous sequence of singular
cardinals below k which is cofinal in k withd < ko. Let X € H = g, Ho+.
Suppose that for each x € H there is an X -suitable coarse premouse P with
x € P. Let us further assume that K (X) stabilizes in H, and let K(X) denote
the stable K(X) up to k. Let A = & - Card(TC(X)). Let M = (H;...) bea
model whose type has cardinality at most A.

There is then a pair (Y, f) such that (Y;...) <9, Card(Y) = A, (k; | i <
) CY,TCHX}) C Y, f:x—k, f|yeK(X)forally< &, and for all
but nonstationarily many i < 8, f (r;) = chark (k;).

Moreover, whenever (Y;...) < O is such that °Y C Y, Card(Y) = A,
(ki | i<6) CY,and TC({X}) C Y, then thereisan f : k — k such that
f Iy € K(X) for all y < &, and for all but nonstationarily many i < 6,

(ki) = char,g (Ki).
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PrOOE. The proof runs in much the same way as before. For each i < J,
there is some x = x; € H such that for all X -suitable coarse premice P with
x € P we have that K (X )7 ||x; = K(X)| ;. Fori < J,let P; be an X -suitable
coarse premouse with x; € P.

We may pick

n:N=2Y < H,

where N is transitive, such that (Y;...) <9, (k; | i<J) C Y, TC{X}) C
Y, and such that simultaneously for all i < J, if one runs the proof of [18] with
respect to K (X)” then all the objects occuring in this proof are iterable. Let
K (X) be defined over N in exactly the same way as K (X) is defined over H.
There is a normal iteration tree 7 on K (X) such that for all i < & there is
some o; < 1h(7) with K (X )|z~ (x;) < MZ . (For all we know 7 might have
limit length and no cofinal branch, though.)

We may then construct f in much the same way as in the proof of Lemma
3.12. If some y < k is given with y < k;, some i < §, then may argue inside
the coarse premouse P; and deduce that £ [y € K(X)P||s; = K(X)||x:.

This proves the first part of Lemma 3.13. The “moreover” part of Lemma
3.13 follows from the method by which [19, Lemma 3.13] is proven. n

84. The proofs of the main results.
ProoF oF THEOREM 1.1. Let o be as in the statement of Theorem 1.1. Set

a={keReg||a|t <K <N}

As 2lel < R, [2, Theorem 5.1] yields that max(pcf(a)) = |J]al. However,

ITTal = Nl (cf [14, Lemma 6.4]). Because Rl2! > Njq+, we therefore
have that

max(pcf(a)) > g+
This in turn implies that
{Rgq1 | a < p <la|t} C pefla)
by [2, Corollary 2.2]. Set

H= | Hp.
0<N|a|+

We aim to proveL that for each n < w, H is closed under X — M*(X).
To commence, let X € H, and suppose that X*# = M#(X) does not exist.
By [2, Theorem 6.10] there is some

dc {Npyla<p<lalt}
with min(d) > TC(X), |d| < |a|, and Rjq+41 € pef(d). By [3], however, we
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have that
{feHd|f=f[d, some f € L[X]}

is cofinal in [[d. As GCH holds in L[X] above X, this yields max(pcf(d)) <
sup(d)*. Contradiction!

Hence H is closed under X — X# = M#(X).

Now letn < w and assume inductively that H is closed under X — MF(X).
Fix X, a bounded subset of ®|,+. Let us assume towards a contradiction that
MY, (X) does not exist. '

Without loss of generality, x = sup(X) is a cardinal of V. We may and shall
assume inductively that if £ > X, andif X C & is bounded then M7, (X)
exists.

We may use the above argument which gave that H is closed under ¥ +— Y#
together with [24, Theorem 5.3] (rather than [3]) and deduce that for every
x € H there is some (n, X )-suitable coarse premouse containing x. We claim
that K (X) stabilizesin H. Well, if & < N; then this follows from Theorem 3.9.
Ontheother hand, if k > N, then this follows from Theorem 3.11 together with
our inductive hypothesis according to which M , (X) exists for all bounded
X C k. Let K(X) denote the stable K (X) up to Rjg +.

Set 1 = |a|* - K < Njq+. We aim to define a function

@ : [H]' — NSjo+

Let us first denote by S the set of all ¥ € [H]* such that ¥ < H, N, |7 <
la|™) C Y,k +1C Y, and there is a pair (C, f) such that C C |a|" is club,
f i Ngp = g, f 17 € K(X)forally < Rigp+, and £ (X,) = sup(Y NR,41)
as well as ¥, = (R,)*XX) for all y € C. By Lemma 3.13, S is stationary
in [H]*. Nowif Y € S then we let (Cy, fy) be some pair (C, ) witnessing
Y € S, and we set ®(Y) = |a|" \ Cy. On the other hand, if Y € [H]*\ S
then we let (Cy, fy) be undefined, and we set ®(Y) = 0.

By Lemma 2.2, there is then some club D C ||t such that for all g €
[1,ep Ry+1 there is some ¥ € S such that D N ®(Y) = @ and g(R,41) <
sup(Y NN,41) forally € D. Set

d={®,1 | a<neD}Cpcf(a).

There is trivially some regular u > Njq+ such that z € pcf(d). (In fact,
Njqj+41 € pef(d).) By [2, Theorem 6.10] there is then some d’ C d with |d'| <
|a| and u € pef(d’). Set o = sup(d’). In particular (cf. [2, Corollary 7.10]),

cf(Hd’) >ot.
However, we claim that
F={f1d|f:0-0nf€K(X)}

is cofinal in []d’. As GCH holds in K (X) above &, |F| < |o|*, which gives a
contradiction!
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To show that Fiscofinal, letg € []d’. Let Y € S besuchthat DN®(Y) = 0
and for all n € d’, g(R,11) < sup(Y N R,41). As DN D(Y) = 0, we have
that D C Cy. Therefore, fy(R,41) = sup(Y N R,q) for all 4 € d’, and
hence g(R,41) < fy(Ry41) forally € d’. Thus, if we define /' : ¢ — o by

FIEEX) = fy(&) foré <othen f/ € Fandg < f' | d'. .
ProoF oF THEOREM 1.3. Fix & as in the statement of Theorem 1.3. Set
H = | Hp-.
6<k

We aim to prove that for each n < w, H is closed under X — M¥(X).

Let C C & beclub. As « is a strong limit cardinal, there is some club C c C
such that every element of C is a strong limit cardinal. As {a < & | 2% = o™}
is co-stationary, there is some A € C with 24 > J++. In particular, JLIOIS
At .27 'We have shown that

{/1 <K l lcf(l) > At 2cf(l)}

is stationary in &, i.e., SCH fails stationarily often below A.

This fact immediately implies by [3] that H is closed under X — Mg’ (X).

Now let n < w, and let us assume that H is closed under X +— M?(X). Let
us suppose that there is some X € H such that M ", 1(X) does not exist. We
are left with having to derive a contradiction.

As SCH fails stationarily often below A, we may use [24, Theorem 5.3] and
deduce that for every x € H there is some (n, X )-suitable coarse premouse
containing x. By Theorem 3.9, K(X) stabilizes in H. Let K(X) denote the
stable K(X) up to .

Let us fix a strictly increasing and continuous sequence £ = (k; | i < J) of
ordinals below x which is cofinal in k. Let us define a function

®:[HFY — NS;.
Let Y € [H besuchthat Y < H, (k; | i <8) C Y, ®Y C Y, and
TC({X}) C Y. By Lemma 3.13, there is a pair (C, f) such that C C & is
club, f : & — K, f |y € K(X) forall y < k, and f (k;) = char? (k;) as well
as k= kX foralli € C. Welet (Cy, fy) be some such pair (C, f), and
we set ®(Y) =\ Cy. If Y is not as just described then we let (Cy, fy) be
undefined, and we set ®(X) = 0.

By Lemma 2.3, there is then some club D C ¢ and some limit ordinal i <
of D such that

of ([[{s} |/ €inD}) > &7,
and for all f € [[;cp ;- there is some ¥ < H such that Card(Y) = 2%,
@Yy cY,DN®(Y)=0,and f < charl. Let us write
d={kj|jeinD}.



Sh:805

204 MOTI GITIK, RALF SCHINDLER, AND SAHARON SHELAH

We now claim that
F={f1d|f ki —orNAfeKX)}

is cofinal in [Jd. As GCH holds in K (X) above TC(X), |F| < |&;|*, which
gives a contradiction!

To show that F is cofinal, let g € []d. There is some ¥ < H such that
Card(Y) =2°,°Y C Y, DN®(Y) = 0, and g(x}) < sup(¥Y N &) for all
jeDNi. AsDN®(X) =0, we have that D C Cy. Butnowifffc;r € d then
g(k}) < sup(Y N&}) = fy(k;) < 7. Thus, if we define 1 : x; — &; by
f(EHEX)) = fy(&) for & < k;then f € Fandg < f | d. .
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