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ON LONG EF-EQUIVALENCE
IN NON-ISOMORPHIC MODELS

SAHARON SHELAH

Abstract. There has been a great- deal of interest in constructing models which are non-
isomorphic, of cardinality A, but are equivalent under the Ehrefeuch-Fraissé game of length a,
even for every @ < A. So under G.C.H. particularly for A regular we know a lot. We deal here with
constructions of such pairs of models proven in ZFC, and get their existence under mild conditions.

§1. Introduction. There has been much work on constructing pairs of
EF, ,-equivalent non-isomorphic models of the same cardinality.

In the summer of 2003, Vadninen asked me whether we can provably in
ZFC construct a pair of non-isomorphic models of cardinality 8; which are
EF,-equivalent even for a like w?. We try to shed light on the problem
for general cardinals. We construct such models for A = cf(1) = A* for
every a < A simultaneously and then for singular 1 = A®. In subsequent
work Havlin and Shelah [HvSh:866] we shall investigate further: weaken the
assumption “4 = A%” (e.g., A = cf(1) > J,) and generalize the results for
trees with no A-branches and investigate the case of models of a first order
complete 7' (mainly strongly dependent). We thank Chanoch Havlin and the
referee for detecting some inaccuracies.

DEFINITION 1.1.

(1) Wesay that M, M, are EF,-equivalent if M, M, are models (with same
vocabulary) such that the isomorphism player has a winning strategy in
the game O¢ (M, M,) defined below.

(1A) Replacing a by < o means: for every f < a; similarly below.

(2) Wesay that M;, M, are EF,, «-equivalent when M>, M; are models with
the same vocabulary such that the isomorphism player has a winning
strategy in the game 0% (M), M) defined below.

(3) For My, M>, a, u as above and partial isomorphism f from M, into
M, we define the game 0% (f, M1, M>) between the player ISO and AIS
as follows:
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(a) the play lasts o moves

(b) after f moves a partial isomorphism f s from M; into M, is chosen
increasing continuous with

(c) inthe f+ 1-th move, the player AIS chooses Ag; C My, Ag> C M,
such that |4g1| + |4p2| < 1+ p and then the player ISO chooses
Jfp+1 2 fp such that

Ap1 C Dom(fp1) and 4p, C Rang(fp41)

(d) if B = 0, ISO chooses fo = f; if f is a limit ordinal ISO chooses
fp=U{fy 7 <B).
The ISO player loses if he had no legal move.

(4) If f = 0 we may write 0% (My, My). If x4 is 1 we may omit it. We
may write < u instead of u*. The player ISO may be restricted to
choose f 11 such that(Va)(a € Dom(fp41) Aa ¢ Dom(fp) — a €
Ap1V fpr1(a) € Apa).

§2. The case of regular 1 = A%,

DEFINITION 2.1.

(1) We say that ¢ is a A-parameter if ¢ consists of
(a) acardinal A and ordinal a* < 4
(b) aset I, and aset S C I x I (where we shall have compatibility
demand)
(c) afunctionu:l — P(A); weletu; = u(s) fors € 1
(d) asetJ and a functions:J — I, welets, = s(¢) for ¢ € J and for
selweletJ;={teJ:s =s}
(e) aset T CJ x J suchthat (z1,5,) € T = (s,,8,,) € S.
(1A) We say ¢ is a full A-parameter if in addition it consists of:
(f) a function g with domain J such that g, = g(¢) is a non-decreasing
function from ug(,) to some o < a*
(g) afunction h with domain J such that h, = h(¢) is a non-decreasing
function from uy(,) to 4 such that
(h) ifty,tp € Jands, =s =s,,,8, =g =g, andh, = h = hy,
o't = a = a” then #; = t, hence we write t = 13, , = 1*(s, g h).
(2) We may write a* = of, A=A, I = L, J = Jy, Jy = J§, (s, g, h) =
t*¥(s, g, h), etc. Many times we omit ¢ when clear from the context.

DEFINITION 2.2. Let ¢ be a A-parameter.

(1) For s € I, let G be the group' generated freely by {x, : ¢ € J;}. .
(2) For (s1,5) € S; let Gy 5, = G5, by the subgroup of G, x Gs

'We also could use abelian groups satisfying Vx(x + x = 0), in this case Gs is the family of
finite subsets of J, with the symmetric difference operation also we could use the free abelial
group.
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generated by

{(x4,x,): (t1,12) € Tyand 1y € JE, n e JE}.
(3) Wesay ris (4, 0)-parameter if s € I, = |ug| < 6.
REMARK 2.3. (1) We may use S a set of n-tuples from I (or (< w)-tuples)
then we have to change Definitions 2.2(2) accordingly.
DErNITION 2.4. For a A-parameter ¢ we define a model M = M, as follows
(where below I = I, etc.).
(A) its vocabulary 7 consist of
(a) Py, aunary predicate, for s € I,
(B) Qs,.s,, a binary predicate for (s1,52) € S,
() Fsaq, a unary function for s € I;, a € G}
(B) the universe of M is {(s,x) : s € I, x € G§}
(C) fors € I let PM = {(s,x) : x € G}}
(D) oM = {((s1,x1), (52, x2)) : (x1,x2) € G}, ,)} for (s1,52) € S
(E) if s € I and a € G§ then F} is the unary function from P¥ to PM
defined by FM(y) = ay, multiplication in G} (for y € M \ P we can
let FM(y) be y or undefined).
DEFINITION 2.5.
(1) Forra A-parameter and for I’ C I let M}, = M, U {PSM’ ;s € I'}and
let I, = It = {s € I : sup(u,) < }.
(2) Assume ¢ is a full A-parameter and § < 4; for & < o we let G, s be the
set of g : f — a which are non-decreasing; then for g € g};, ]
(a) we define h = hy : p — A as follows: A(y) = Min{f’ < B: if B/ <
B then g(B') > g(y)}
(b) welet I, =I; ={s €I :u; C fand 1, 4, is well defined}
(c) we define Cg = (cgs:s€ I}) by cgs = xp, wheretg, = t:;ru,,hg e
(3) Let G =U{Gs 5 : f<A}and G, = U{GL :a < a*}.
DEFINITION 2.6. Let ¢ be a A-parameter.

(1) Let C; = U{C}, : I' C I} where for I’ C I, welet C}, = {¢: ¢ =
(cs : s € I') satisfies ¢; € G§ when s € I’ and (¢, ¢5,) € Gy, 5, When
(Sl,Sz) € S; and 51,5, € I'}.

(2) For ¢ € Cy,, I' C I, let f% be the partial function from M, into itself
defined by fZ((s,»)) = (s, yey) for (s, y) € P scr.

(3) M, is P,-rigid when for every automorphism f of M,, f rPfl‘ is the
identity.

OBSERVATION 2.7. (1) Let ¢ be a full A-parameter. If g : y, — o« where
a <¢of, y2 < A and the function g is non-decreasing, y1 < y2 and (Vy < y1)
(g(y) < g(y1)) then Ly, C I and Ay, C g and Cotn = Cg [ gy

(2) If g € G¢ in Definition 2.5(3), then &g € CZ,.
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Cram 2.8. Assume ¢ is a full A-parameter.

(1) For I' C I; and ¢ € Cj,, f} is an automorphism of M}, which is the
identity iff s € I' = ¢ = eg, . v

(2) In(l)forsel’, ] PM: isnot the identity iff ¢; # eg,.

(3) If f is an automorphism of M} then f | M] is an automorphism of
Mj forevery, C L C I.

(4) If I' C I, and f is an automorphism of M},, then f = f*% for some
(s :s €l) €Cp.

(5) Ifc, € CZ for{ =1,2andI; C Land ¢ =& | [ then f; C f5.

(6) The cardinality of M, is | J;| + No.

PROOF. Straight, e.g. (4) For s € I' clearly f((s,eg,)) € P so it has
the form (s,¢s),cs € Gy andlet ¢ = (¢s : s € I'). To check that ¢ € CF,
assume (s1,52) € S;; and we have to check that (cy,c5,) € Gy, 5. This

holds as ((s1, e, ), (52, €g,,)) € Qf,{ %, by the choice of QSA{, t, hence we have

((Sl,Csl), (SZ’Csz)) = (f(sl,eGsl)’ f(Sz,eGsz)) € le,iz hence (cswcsz) € Gsl,sz-
..|

Cramm 2.9. Let ¢ be a full A-parameter s € I, and c;,c; € P, ¢* € Gq
and F(¢;) = ¢,. A sufficient condition for “(Mg,c1), (M, c;) are EFq

s,c*
-equivalent” where a < o, is the existence of R, I, ¢ such that:
® (a) Ris a partial order,

(b) I = (I, :reR)suchthat, CLandr, <gro =1, C I,

(c) R is the disjoint union of (Rg : f < ), Ry # 0

(d) e=(¢":r € R)ywhere¢" € C,andry <r,=¢" =¢"” | I, and
ci=c*sose({,:r € R}

(e) if (rg : B < B*) is <g-increasing, f < p* = rp € Rgand f* < «
then it has an <g-ub from Rg-

(f) ifri e Rg, f+1<aand I’ C I, |I'| < pthen (3r)(r <12 €
Rp i NI C LL).

Proor. Easy. Using Claim 2.8(1), (5). -

Cram 2.10.

(1) Letgbea A-parameter and I’ C I,. A necessary and sufficient condition
for “ M7, is Py-rigid” is:
®; thereisno ¢ € Cj, with ¢; # eg, .

(2) Let ¢ be a full A-parameter and assume that s(x) € I, a < o, @ 2 @
for notational simplicity and t* € J S’(*). The models M; = (M, (s, e, )
M, = (M, (s, x,+)) are EF, ;-equivalent when:

®2q (i) Aisregular,s € I, = |uf| < 1
(ii) if s € I, and g € G, and u} C Dom (g) then t:;ru,,hg ta, 18 well
defined
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(iii) if (s1,52) € Sy and 1, = 13 gms 12 = 1o o p, are well defined
then (#1,%,) € T, when for some g € G, wehave g, Ug;,, C g
and hi Uhy C kg

(iv) t* = t;’(’i)’g,hg where g : uy(,) — {0} and A, is constantly y* =

U{y +1:y €ugyylt.

Proor. (1) Toward contradiction assume that f is an automorphism of
M7, such that f | P+ is not the identity. By Claim 2.8(4) for some ¢ € Cy
we have f = fz. So fz | P = 7 | P +id hence by Claim 2.8(1) we
have ¢; # eg,, contradicting the assumption ®.

(2) We apply Claim 2.9. For every i < a and non-decreasing function
g € Gi from some ordinal y = y, into i we define g = (cg; : s € Ly, },
cgs = (8,x02,), 18 = 1510, oo~ L€t Ri = {g : g a non-decreasing function
from some y < A to 1 + i such that y* < y, g [ p* is constantly zero,
y* <y = g(y*) =1} and let R = U{R; : i < a} ordered by inclusion. Let
I=(l;:g€R)ande = (¢g : g € R). Itis easy to check that (R,1,¢)is as
required. 4

CrLam 2.11.

(1) Assume a* < 1 = cf(1) = A®o. Then for some full (4, X;)-parameter
r we have |I| = 4 = |J|, of = o* and condition ®; of Claim 2.10(1)
holds and for every s(x) € I, \ {0} condition ®, , of Claim 2.10(2) holds
whenever a < a*.

(2) Moreover, if s € I, \ {0} then for some ¢; # c; € PY and (M, 1),
(M, c;) are EF, ;-equivalent for every a < a; but not EF,; ;-equivalent.

Claim 2.11(1) clearly implies
CONCLUSION 2.12.

(1) If 2 = cf(A) = A%, a* < A then for some model M of cardinality A we
have:
(a) M has no non-trivial automorphism
(b) for every a < A for some ¢; # ¢, € M, the model (M, c,), (M, c,)
are EF,-equivalent and even EF,, ;-equivalent.
(2) We can strengthen clause (b) to: for some ¢; # ¢, for every a < A the
models (M, c), (M, c,) are EF, ;-equivalent.

ProOF OF CLaM 2.11. (1) Assume a, > w for notational simplicity. We
define ¢ by (4, = 4 and):
X (a) (o) I ={u:uc[iAs%}
(B) the function u is the identity on I
(») S ={(ur,u2) 1y Cup € I'}
©) af =a*
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(b) () J is the set of quadruple (u, a, g, h) satisfying
) uelLa<a*
(ii) 4 is a non-decreasing function from u to 1
(ili) g is a non-decreasing function from u to «

(iv) if B1, B2 € u and g(B1) = g(f2) then h(B1) = h(p2)

(v) h(B) > B
(B) lett = (u',a',g",h') fort € J so naturally s, = u,
g = gt’ hl =h'
(y) T={(t1,1r) €J xJ : a" = a”?,u"* Cu,h" C h” andg" C
g"}.

Now

(*)o risa full (4, R;)-parameter
[Why? Just read Definitions 2.1 and 2.2(3).]
(%); for any s(x) € I'\{0},r satisfies the demands for ®, (i), (ii), (iii), (iv)
from Claim 2.10(2) for every a < a*
[Why? Just check.]
(%)2 if uy C uy € I, we define the function 7y, 4, : Ju, — Juy bY 7y 0, () =
(u1,a',g" Tup, h' [uy)fore € J,,,
[Why is =, 4, a function from J,, into J,,? Just check.]
(%)3 for u; C u, we have
(@) TN (Jy x Ju) = {(fu,4,(22),12) : t2 € Jo, } hence
(B) Gupy = {(Ruyy(c2), €2) : 2 € Gy, } where #,, 4, € Hom(GE,, GE,)
is the unique homomorphism from G}, into G}, mapping x;, to X,
whenever 7, ,,(f2) = )
[Why? Check.]
(#)g fuy Uup Cuz €1, 13 € Jy, and 1, = my, 4,(13) for £ = 1,2 then gy,
g;, are compatible functions as well as h,,, h,, and a"* = a” moreover
g, U g, is non-decreasing, h,, U h,, is non-decreasing
[Why? Just check.]
(¥)s clause ®; of Claim 2.10(1) holds for I' = I,s(x) € I \ {0}.

[Why? Assume ¢ € C} is such that c,(,) # eg,,. Foreachu € I, ¢, is a word
in the generators {x; : ¢ € J,} of G, and let n(x) be the length of this word
and m(u) the number of generators appearing in it.

Now by (x)3 we have u; C u = n(u;) < n(u2) Am(u) < m(up). As (I,S)
is N;-directed, for some u, € I wehaveu, C u € I = n(u) = n, Am(u) = M«
and let ¢, = (-~.,x,i((ﬁ,)g),---)z<n, where i(£) € {1,—1} and #(u,£) € J§ and
tu, ) =t(u,0+1)=i(l) =i +1). Clearlyu, Cu Cup eI &£ <
Mo = Ty 0y (1 (12, £)) = t(u1, £) Aot (2) = o'@8), By our assumption toward
contradiction necessarily n, > 0.

As{u: u, C u € I}isdirected, by (x); above, foreach £ < n, any two of the

functions {g*®# : u, C u € I'} are compatible so g, =: U{g'®*) : u € I} is
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a non-decreasing function from 4 = U{u : u € I'} to o* and hy =: U{h'®®) :
u. C u € I} is similarly a non-decreasing function from 4 to 4. It also
follows that for some o we have aj =: a'**) whenever u, C u € I in fact
a; = o' is O.K. For each i € Rang(g;) C o} choose f;; < A such that
ge(Be;) =i andlet E = {6 < A : J alimit ordinal > sup(u.) such that i <
a; &L <n, &i € Rang(gy) = fri <dand < &L <n = h(f) <}, it
is a club of 1. Choose u such that u, C u and Min(u\u.) =6* € E.

Now what can g,(Min(u\u.)) be? It has to be i for some i < o} < a*
hence i € Rang(g,) so forsome u;,u, C u; C 6* and fy; € uy so hy(Be;) < 6*
hence considering « U u; and recalling clause (a)(vi) of (b) from definition
of t in the beginning of the proof we have h,(B;) < he(5*) hence by (clause
(b)(a)(v)) we have i = go(Be;) < ge(6*), contradiction.]

(2) A minor change is needed in the choice of T*

TE={(11,12) : (11, 1) € J xJ and u" Cu", h" C h", g" C g,
p" < y” and if Rang(g") ¢ {0} then a" = a”}. -

§3. The singular case. We deal here with singular A = A® and our aim
is the parallel of Conclusion 2.12 constructing a pair of EF,-equivalent for
every a < A non-isomorphic models of cardinality A. But it is natural to try
to construct a stronger example: This is done here:

® foreach y < k = cf(4), in the following game the ISO player wins.
DEeFINITION 3.1.

(1) For models M;, M, A and partial isomorphism f from M, to M, and
y < cf(1) we define a game o}, J(f, My, M>). A play lasts y moves, in
the # < y move a partial isomorphism fs was formed increasing with f,
extending f, satisfying | Dom(f )| < . In the f-th move if § = 0, the
player ISO choose f¢ = f, if § is a limit ordinal the ISO player chooses
f8=U{f::e <P} Inthe f +1 < y move the player AIS chooses
ap < A and then they play a sub-game 07” (f 5, My, M>) from Definition

1.1(3) producing an increasing sequence of partial isomorphisms (f ,'8 :
i < ap) and let their union be fg,i. ISO wins if he always has a legal
move.

(2) IfISO wins the game (i.e. has a winning strategy) then we say M1, M,
are EF} ;-equivalent, we omit 4 if clear from the context. If f = () we
may write D;A(M 1, M>)

ReMARk. For (M, c1), (M, c;) to be EFZ,, ;-equivalent not EF, ;-equivalent

*

not just EF}-equivalent not EF}, , |-equivalent we may need a minor change.

HyrotHEsis 3.2. j. <k =cf(1) < A,k > No, i = (u; : i < k) isincreasing
continuous with limit A, o = 0, u1 = (= cf(4)), p;41 is regular > u} and
let u, = Aand fora < Aleti(a) = Min{i : g; < o < 41}
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DEFINITION 3.3. Under the Hypothesis 3.2 we define a A-parameterz =;, i
as follows:

(a) (@) [Iisthesetofu €[\ k]SN
(B) wu:I— P(A\k)is the identity,

() S={(u,u):u Cu €1\ K]S}
©0) o =Js

(b) J is the set of tuples ¢ = (u, j, g, h) = (', j',g", h") such that
(@) uel
(B) Jj <«

(y) (i) g is a non-decreasing function from u, = u U v, to A where
ve ={i(a) : @ €uand g(a) = /‘Ia)}
(i) o € u = g(a) € (i), 1]
(iil) if i € vy theng(i) < j' (< Kk = p1)
(iv) v, is an initial segment of {i(a) : @ € u}
(6) (i) A isa non-decreasing function with domain u, U v,
(i) a € u = h(a) € [Ui(a) Hia)+1] and if i € vg then h(i) < &
(iif) if B; < p, are from u; U vy and i(B1) = i(B:) then g(f1) =
g(B2) & h(p1) = h(B2)
(iv) o < h(e) fora € ug Uvg and g(a) = uj,) & h(a) = py,, for
acu
(c) T isthe set of pairs (¢1,7,) € J x J satisfying
(i) u" Cu” €I and
(i) g" C g A" C A", jh = j"
OBSERVATION 3.4. 1; = gj, 7 is a full A-parameter.
ProoOF. Read the Definition 2.1(1) + 2.1(1A). =
CramM 3.5. Assume s € L, ¢; = (s,eg,), 2 = (s,x,), t € J5, and for
simplicity Rang(g" I [ 414, #1+i+1)) € {#14:}, Rang(g’[x) = {0} and w <
J' < jx. Then (My, ¢1), (My, ¢2) are EF] ;i-equivalent.
PRrOOF. Sot, j! arefixed. Fori, < k, j < j let

(a) B;, ={,§:/}=(/3,-:i</~:)and,ui < B 5yi+1and/}0:i*and
(Br+i = pryiv1 = 1+ < i)} )

(b) for B € By, let A5 = U{[w;, B;) : i < s} which by our conventions 13
equal to iy UU{[pj, pj+1) 1 1 < j <t} Ui Bi) 1 i € [in, 6)}

(c) forp € B;, letg iinj = 18 + g isafunction from A3 to 4, non-decreasing
and the function gl is into j and the function g[[u14;, #14:41) is int0
(i pfland 1 <i<iv & Ga)(u < a < pin Agla) = p)}

(d) for g € G,i.p» B € Bi, we define hy : Az — A as follows: if y € A
then 4(y) = Min{f’ < Bi,): i(y) > 0ng(y) = /‘:Ey) then ' = pip)+1>
otherwise §' € (i) i) and B # fiyy = £(7) < £(B)

(e) gj,," = U{gj’i*ﬁ : ﬁ/E B,‘,‘} and gj = U{gj’,‘* T < K,}.
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Let R = G;: and for g € R let i,(g) be the unique i, < « such that g € G;:
and Bg the unique § € B;, such thatg € Giinie) and § = (Bi(g) :i < k)
On R we define a partial order g1 < g, < g1 C 82 A hg, C hg,.
For g € R we define I, ¢z as follows
® (@) I;={u€l:uCDom(g)\«x}
(b) o= (cgs:s€EL)
(€)  cgs = x,(s) Where t,(s) = (s, j,glugs, hglugs) Where ugs =
uU{i(a) :a €uandg(a) = ”?Za)}'
Let g. € G; be chosen such that for i > 0, B;(g.) = sup({g'(a) : @ € u' N
(i, piv1)}U{u:}) and fo(gs) = Ufi(a) +1: @ € ' and g'(a) = 57, }U{1}.
Let ¢, = G, and f, = f}_is the partial automorphism of M, with domain
U{P,iu * 1 u € I, } from Definition 2.6. We prove that the player ISO wins in
the game O} ; (., M1, M1), as f.(c1) = c2(€ P,f,l‘) this is enough. Recall that
a play last j moves; now the player ISO commit himself to choose in the f < j
move on the side a function gz € G, increasing with f, go = g« and his
actual move fgis f gﬂ where ¢y = ¢;,. For the f-th move if f = 0 or f limit
let gg = U{g, : ¢ < B} U g« € Gi4p. Inthe (B + 1)-th move let the AIS player
choose ag < A. Now the player ISO, on the side, first choose i < « such that
i.(gp) < ip, and u;, > ap, second he chooses g/}* € Gis14p+1, Ip satisfying:

Jix

® (a) g; extends gg,
(b) Dom(g/}*) Nk =ig
(c) g; I(ig \ Dom(gg)) is constantly 1 +
(d) if0<i € Dom(gp) N« then gj [[u:, piv1) = gp i, pi+1)
(e) if i ¢ Dom(gg) N k and iDom(g/}*) N & then Dom(g; s is1))
= [ui, piv1) and e € [us, piv1) \ Dom(gp) = g5 (e) = pf
(f) if i < k,i ¢ Dom(gy) then g5 i, piv1) = gplltis #tiv1)
Now ISO and AIS has to play the sub-game E)'IJ“i (fp, My, M;). The player
ISO has to play f, in the a-th move for a < ag and on the side he chooses
gpa € Gi4+p+1 With large enough domain and range, to make it a legal move,
increasing \ivith o, and ggo = g/}* and gpolui, = gl}F lui;. Now obviously
{g : 8 € Giyps1, g; C g} is closed under increasing union of length < u;,,
it is enough to show that he can make the (o + 1)-th move which is trivial so
we are done. —i
CLAmM 3.6. M, is Ps-rigid for s € I*.

PROOF. We imitate the proof of Claim 2.11.
(%)o risa full (4, R;)-parameter
(#)1 if uy C up € I, we define the function my, ,, : Ju, — Jy, by Fyy 0, (2) =
(w1, j', 8" Tw, h' [ wy)fort € J,,,
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(%)2 if uy C uy C u3 are from I then 7y, 4, = 7y, 4, © Ty uy that is my, 4, (¢) =
TCuyuy (nuz,ug (t))

(*)s for u; C uy we have
(@) TN (Ju1 X Juz) = {(nul,uz(tZ)s h):t € Juz}

(B) Guiay = {(Ruuy(c2), c2) : 2 € Gy} where #,, , € Hom(Gi,, G})
is the unique homomorphism from G, into G, mapping x,, to x,,
whenever ,, ,, (1) = 11
[Why? Check.] ,

(*)g fuy Vup Cuz € I, 13 € Jy, and t; = my, 4,(t3) for £ = 1,2 then,
recalling Definition 2.1 (1A)(h), g", g’ are compatible functions as well
as A", h"2 and j" = j” moreover g'' U g” is non-decreasing, A" U A" is
non-decreasing

[Why? Just check.]
(%)s clause ®; of Claim 2.10(1) holds for I’ = I(= I;).

Why? Assume ¢ € Cj is such that Cs(x) # €G,,, for some s(x) € I. For each
u € I,c, is a word in the generators {x, : ¢ € J,} of G, and let n(u) be the
length of this word and m(u) the number of generators appearing in it.

Now by clause (f) of ()3 we have u; C uy = n(u;) < n(uy) Am(yy) <
m(uy). As (I, C) is N;-directed, for some u, € I, n, < @ and m, < @ we
haveu, Cu €I = n(u) = n, Am(u) = m, andletc, = (.. x:((:f)) o )i<n.
where k(u,£) € {1,—1} and ¢(u,£) € J§ and t(u,£) = t(u, £ + 1) = k(£) =
k(up +1). Clearly u, Cuy Cup € I &£ < 1y = 7y, (t(un,£)) = t(u1,£) A
k(u,£) = k(up,£) = k(u,,£) hence jia8) = jid) o jimt) — jilut),
By our assumption toward contradiction necessarily 7, > 0 and let k(¢) =
k(uy,2).

As {u : u, C u € I} is directed, by ()4 above, for each £ < n, any two of
the functions {g'®? : u, C u € I} are compatible so g, =: U{g"®*) : u € I'}
is a non-decreasing function from Y;,(,) to A where Y,y = (A\ k) U ig(x) for
some ig(*) < k and by =: U{h*®®) : 4, C u € I} is similarly a non-decreasing
function from Y;,(,) to A. Also g¢ maps [u;, uiy1) into [u;, uf]fori < s and
maps K to k.

Case 1. ip(x) = k.

It also follows that for some j; we have j; =: j**% whenever u, C u € [
in fact j; = j'®* is OK. and j; < j, < k. For each i € Rang(g¢I#)
choose B;; < k such that go(B8;;) = i and let E = {6 < & : 6 a limit ordinal
> sup(u. N k) such that i < j; & £ < n, & i € Rang(gy) = fr;i <9 and
B<S8&E<n= hy(B) <5}, itisaclub of k. Choose u such that u, C u and
Min(u Nk\u.) =0* € E.

Now what can g*®#) (Min(u\u.)) be?

It has to be i for some i < j; < j* hence i € Rang(g,) so for some
ur, uy C up C6*and Bo; € ug so hy(Be;) < 6* hence considering u U u1 and
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recalling clause (6)(iv) of (b) from Definition 3.3 of r we have i, (B,;) < he(5*)
hence by (clause (b)(a)(iii)) we have i = go(Be;) < g¢(6*), contradiction.

CaSE 2. ip(¥) # K s0ip(*) < K.

Clearly if i € (iy(x),x) and @ € [u;, ui+1) then go(a) # uf (see clause
(b)(y)(iii) of Definition 3.3) hence g, [[u;, ui+1) is @ non-decreasing function
from [u;, ui+1) to uf, but p;y is regular > u (see Hypothesis 3.2) hence
gellpi, wi+1) is eventually constant say y; € [, ui+1) and gel[ys, piv1) is
constantly & € [u;, uf). So also hel[y;, uf,) is constant and its value is
< ui+1, and we get contradiction as in Case 1. -

CoNcLUSION 3.7. If A = A% > ¢f (1) > N, then forevery a < cf(4) there are
non-isomorphic models M, M; of cardinality A which are EF, ;-equivalent.

Proor. By Claim 3.5 + 3.6 as the cardinality of M, is A. =

REMARK 3§ By minor changes, for some ¢ € P,f” , u = (letting ¢; = eg,,
¢z = x; wehave: (M, c1), (M, c2) are non-isomorphism but EF; ;-equivalent
forevery j < k = cf(A). This is similar to the parallel remark in the end of §1.
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