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Abstract. We prove that for regular cardinals θ < ∂ and λ = ∂+ the colour-

ing property Pr1(λ, λ, λ, θ) almost always holds. The only exceptions are when
θ is an uncountable limit regular cardinal and λ carries a uniform θ-complete

filter which is not θ+-complete. The result is nearly optimal
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2 SAHARON SHELAH

§ 0. Introduction

We prove a strong colouring theorem. The connection between purely combina-
torial theorems and topological constructions is known for many years. Several re-
sults in general topology were proved using the property Pr1(λ, µ, σ, θ), see recently
[JS15], [She19], the later by improving the existence result on Pr1. We continue
[She19] but the proof is self contained (except in the conclusion 1.3); see history
and background in [She94]. Note that [She97, §4] states more than it proved.
Recall:

Definition 0.1. 1) Assume λ ≥ µ ≥ σ + θ0 + θ1, θ̄ = (θ0, θ1), see 0.4(1). Assume
further that θ0, θ1 ≥ ℵ0 but σ may be finite

Let Pr1(λ, µ, σ, θ̄) mean that there is c : [λ]2 → σ witnessing it, which means:

(∗)c if (a) then (b), where:

(a) for ι = 0, 1, iι < θι and ζ̄ι = 〈ζια,i : α < µ, i < iι〉 are sequences of

ordinals of λ without repetitions, and Rang(ζ̄0), Rang(ζ̄1) are disjoint
and γ < σ

(b) there are α0 < α1 < µ such that ∀i0 < i0,∀i1 < i1, c{ζ0
α0,i0

, ζ1
α1,i1
} = γ

and ζ0
α0,i0

< ζ1
α1,i1

.

2) Above if θ0 = θ = θ1 then we may write Pr1(λ, µ, σ, θ).

In the previous paper [She19] we proved, e.g. Pr1(ℵ3,ℵ3, 2, (ℵ0,ℵ1)) which means
that the sequences ζ̄ι are finite at the first coordinate and countable, possibly infinite
at the second.

In this paper we prove e.g. that Pr1(ℵ3,ℵ3,ℵ3,ℵ1) holds, which means that
countable infinite sequences can be taken in both coordinates. Actually, the the-
orem says that, in particular, Pr1(λ, λ, λ, θ) holds whenever θ = cf(θ) > ℵ0 and
λ = θ++.

We thank the referee for many good suggestions.

Definition 0.2. 1) A filter D on a set I is uniform when for every subset A of I
of cardinal < |I|, the set I \A ∈ D; all our filters will be uniform
2) A filter D on a set I is weakly θ-saturated when θ ≥ |I| and there is no partition
of I to θ sets from D+,
3) We say the filter D on a set I is θ-saturated when the Boolean algebra P(I)/D
satisfies the θ-c.c.

Fact 0.3. 1) If D is a θ-complete filter on λ and is not θ-saturated then it is not
weakly θ-saturated.
2) If θ = σ+ and D is a θ-complete filter on θ, then D is not weakly θ-saturated.
3) If n ≥ 1 and λ = σn and D is a (uniform) σ+-complete filter on λ then D is not
weakly σ+n-saturated

Proof. 1) Obvious and well known
2) By [Sol71],
3) Let µ be the minimal cardinal such that D is not µ+-complete, so clearly µ ∈
[σ+, λ] hence µ is a successor cardinal. So there is a function f from λ into µ
such that for every subset A of µ of cardinality < µ, f−1(A) = ∅ mod D. Let E
be the family of subsets A of µ such that f−1(A) ∈ D. Clearly E is a (uniform)
µ-complete filter on µ hence by part (2) is not weakly µ-saturated, let 〈Aε : ε < µ〉
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COLOURING OF SUCCESSOR OF REGULAR AGAIN SH1163 3

be a partition of µ to set from E+. Now 〈f−1(Aε) : ε < µ〉 witnesses the desired
conclusion.

�0.3

Notation 0.4. 1) We denote infinite cardinals by λ, µ, κ, θ, ∂ while σ denote a finite
or infinite cardinal. We denote ordinals by α, β, γ, ε, ζ, ξ. Natural numbers are
denoted by k, `,m, n and ι ∈ {0, 1, 2}
1A) Let D denote a filter on an infinite set dom(D)
2) For a set A of ordinals let nacc(A) = {α ∈ A;α > sup(A ∩ α)} and acc(A) =
A \ nacc(A) For regular λ > κ let Sλκ = {δ < λ : cf(δ) = κ}.
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§ 1. A colouring theorem

Our aim is to prove

Theorem 1.1. Pr1(λ, λ, θ, θ) and even Pr1(λ, λ, λ, θ) holds provided that:

(a) λ = ∂+, ∂ = cf(∂) ≥ θ = cf(θ) > ℵ0

(b) there is no θ-complete not θ+-complete uniform weakly θ-saturated filter on
λ.

Remark 1.2. 1) The case of θ colours, i.e. proving only Pr1(λ, λ, θ, θ) is easier so
we prove it first.
2) If λ = ℵ2, θ = ℵ0, then Pr1(ℵ2,ℵ2,ℵ2,ℵ0) holds by [She97], so (by monotonicity
in θ), the restriction θ > ℵ0 is not serious
3) We can omit the ‘‘weakly” in 1.1(b) because the filter is θ-complete by 0.3(1).
4) If θ, λ fail clause (b) of 1.1 then θ is (possibly weakly) inaccessible cardinal and
is a large cardinal in some sense.
5) By monotonicity of Pr1 in θ, if clause (b) of 1.1 holds for some regular θ′ ∈ (θ, ∂)
this suffice

6) We use ∂ > θ rather then ∂ ≥ θ only in proving (∗)2 in Stage C of the proof

Proof. Stage A: We begin exactly as in earlier proofs. We let (κ1, κ2) = (θ, λ). Let

S ⊆ Sλ∂ be stationary and h : λ→ λ be such that α < λ⇒ h(α) < 1 + α, h�(λ\S)
is constantly zero and S∗γ := {δ ∈ S : h(δ) = γ} is a stationary subset of λ for every
γ < λ. Let Fι : λ → κι for ι = 1, 2 be such that for every (ε1, ε2) ∈ (κ1 × κ2) the
set Wε1,ε2(β) = {γ ∈ S∗β : Fι(γ) = ει for ι = 1, 2} is a stationary subset of λ for
every β < λ.

For ι = 1, 2 and ρ ∈ ω>λ let Fι(ρ) = 〈Fι(ρ(`)) : ` < `g(ρ)〉.
Let ē = 〈eα : α < λ〉 be such that

�1 (a) if α = 0 then eα = ∅
(b) if α = β + 1 then eα = {β}
(c) if α is a limit ordinal then eα is a club of α of order type cf(α) disjoint

to Sλ∂ hence to S.

In other cases (not here) instead h we use a sequence 〈hα : α < λ〉 of functions,
hα : eα → θ and use e.g 〈hγ`(β,α)(γ`+1(β, α)) : ` < k(β, α)〉 and ρh, but this is not
necessary here.

Now (using ē) for α < β < λ, let

γ(β, α) := min{γ ∈ eβ : γ ≥ α}.

Let us define γ`(β, α):

γ0(β, α) = β,

γ`+1(β, α) = γ(γ`(β, α), α) (if well defined).

If α < β < λ, let k(β, α) be the maximal k < ω such that γk(β, α) is defined
(equivalently is equal to α) and let ρβ,α = ρ(β, α) be the sequence

〈γ0(β, α), γ1(β, α), . . . , γk(β,α)−1(β, α)〉.
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Let γ`t(β, α) = γk(β,α)−1(β, α) where `t stands for last.
Let

ρh = 〈h(γ`(β, α)) : ` < k(β, α)〉

and we let ρ(α, α) and ρh(α, α) be the empty sequences. Now clearly:

�2 if α < β < λ then α ≤ γ(β, α) < β

hence

�3 if α < β < λ, 0 < ` < ω, and γ`(β, α) is well defined, then

α ≤ γ`(β, α) < β

and

�4 if α < β < λ, then k(β, α) is well defined and letting γ` := γ`(β, α) for
` ≤ k(β, α) we have

α = γk(β,α) < γ`t(β, α) = γk(β,α)−1 < · · · < γ1 < γ0 = β

and α ∈ eγ`t(β,α)

i.e. ρ(β, α) is a (strictly) decreasing finite sequence of ordinals, starting
with β, ending with γ`t(β, α) of length k(β, α).

Note that if α ∈ S, α < β then γ`t(β, α) = α+ 1.
Also

�5 if δ is a limit ordinal and δ < β < λ, then for some α0 < δ we have:
α0 ≤ α < δ implies:

(i) for ` < k(β, δ) we have γ`(β, δ) = γ`(β, α)

(ii) δ ∈ nacc(eγ`t(β,δ))⇔ δ = γk(β,δ)(β, δ) = γk(β,δ)(β, α)⇔ ¬[γk(β,δ)(β, δ) =
δ > γk(β,δ)(β, α)]

(iii) ρ(β, δ) E ρ(β, α); i.e. is an initial segment

(iv) δ ∈ nacc(eγ`t(β,δ)) (here always holds if δ ∈ S) implies:
• ρ(β, δ)ˆ〈δ〉 E ρ(β, α) hence

• ρh(β, δ)ˆ〈h(β, δ)(δ)〉 E ρh(β, α).

(v) if cf(δ) = ∂ then we have γ`t(β, δ) = δ + 1 so δ ∈ nacc(eγlt(β,δ))

(vi) if cf(δ) = ∂ and δ ∈ eγ , then necessarily γ = δ + 1.

Why? Just let

α0 = Max{sup(eγ`(β,δ) ∩ δ) + 1 : ` < k(β, δ) and δ /∈ acc(eγ`(β,δ))}.

Notice that if ` < k(β, δ)− 1 then δ /∈ acc(eγ`(β,δ)) follows.
Note that the outer maximum (in the choice of α0) is well defined as it is over a

finite non-empty set of ordinals. The inner sup is on the empty set (in which case
we get zero) or is the maximum (which is well defined) as eγ`(β,δ) is a closed subset
of γ`(β, δ), δ < γ`(β, δ) and δ /∈ acc(eγ`(β,δ)) - as this is required. For clauses (v),
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6 SAHARON SHELAH

(vi) recall δ ∈ Sλ∂ and eγ ∩Sλ∂ = ∅ when γ is a limit ordinal and eγ = {γ− 1} when
γ is a successor ordinal.

�6 (a) if α < β < λ, ` < k(β, α), γ = γ`(β, α) then ρ(β, α) = ρ(β, γ)ˆρ(γ, α)
and ρh(β, α) = ρh(β, γ)ˆρh(γ, α)

(b) if α0 < . . . < αk and ρ(αk, α0) = ρ(αk, αk−1)ˆ . . . ˆρ(α1, α0) then this
holds for any sub-sequence of 〈α0, . . . , αk〉.

�7 let F ′ι be Fι ◦ h for ι = 1, 2; so F ′1 is a function from λ into θ and F ′2 is a
function from λ into λ.

Stage B:
Let

�2 T = {t̄ : t̄ = 〈tα : α < λ〉 satisfies tα ∈ [λ]<θ and tα ⊆ λ\α}.
�3 for ε < θ and t̄ ∈ T let At̄,ε be the set of γ < λ such that for some (α0, α1)

we have:

(a) α0 < α1 < λ and1 (ζ, ξ) ∈ tα0
× tα1

⇒ ζ < ξ

(b) for every (ζ, ξ) ∈ tα0 × tα1 for some ` we have:

(α) ` < k(ξ, ζ)

(β) γ`(ξ, ζ) = γ

(γ) if k < k(ξ, ζ) then F ′1(γ) ≥ F ′1(γk(ξ, ζ)) and F ′1(γ) ≥ ε
(δ) if k < ` then F ′1(γk(ξ, ζ)) < F ′1(γ).

We define:

�4 D = {A ⊆ λ : A includes At̄,ε for some t̄ ∈ T, ε < θ}.

Now note:

�5 (a) if s̄, t̄ ∈ T, ε ≤ ζ < θ and (∀α < λ)(sα ⊆ tα), then At̄,ζ ⊆ As̄,ε
(b) if s̄ ∈ T, ε < θ, g is an increasing function from λ to λ and t̄ = 〈tα :

α < λ〉 is defined by tα = sg(α) then At̄,ε ⊆ As̄,ε.

[Why? Read the definitions.]

�6 (a) the intersection of any < θ members of D is a member of D, equiva-
lently includes the set At̄,ζ for some t̄ ∈ T, ζ < θ

(b) for every β < λ for some t̄ ∈ T, At̄,0 ⊆ [β, λ)

(c) if t̄ ∈ T and α < λ⇒ tα 6= ∅ then ∩{At̄,ε : ε < θ} = ∅
(d) D is upward closed.

(e) λ belongs to D

[Why? For clause (a) assume Aε ∈ D for ε < ε(∗) < θ then for some ζε < θ
and t̄ε ∈ T we have Aε ⊇ At̄ε,ζε . Define tα =

⋃
{tεα : ε < ε(∗)} for α < λ and

ζ = sup{ζε : ε < ε(∗)}; as the cardinal θ is regular, clearly |tα| ≤
∑

ε<ε(∗)
|tεα| < θ

and obviously tα ⊆ [α, λ) hence t̄ = 〈tα : α < λ〉 ∈ T and similarly ζ < θ. Easily
At̄,ζ ⊆ At̄ε,ζε for every ε < ε(∗), see �5(a) so we are done proving clause (a).
For clause (b) define tα = {β + α + 1} and recalling �3(b)(β) and �4 check that

1If we choose to add here “tα0 ⊆ α1”, then we would a problem in proving clause �5(b).
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At̄,0 ⊆ [β, λ). Also clause (c) obviously holds because γ ∈ At̄,ε ⇒ F ′1(γ) ≥ ε by
�3(b)(γ) and F ′1is a function from λ to θ and clauses (d),(e) hold trivially by the
definition.]

�7 (a) ∅ /∈ D
(b) D is a filter on λ, equivalently At̄,ε 6= ∅ for every t̄, ε; also D is uniform

θ-complete, not θ+-complete.

[Why? Clause (a) is a major point, proved in Stage C below. That is, by �6(a), (d)
the only missing point is to show At̄,ζ 6= ∅, (in fact, |At̄,ζ | = λ). For clause (b) by
(a) and �6(a), (d), (e), D is a θ-complete filter and the statement that D is uniform
holds by �6(b) and not θ+-complete holds by �6(c).]

Note also

�8 D is not weakly θ-saturated.

[Why? By �7 and clause (b) in the assumptions of the theorem.]

Stage C:
In this stage we accomplish the proof of the missing point in �7(a) from above,

so we shall prove “At̄,ε is non-empty (in fact, has cardinality λ)” when :

� (a) tα ⊆ λ\α for α < λ

(b) |tα| < θ

(c) ε < θ.

To start we note that:

(∗)1 without loss of generality tα 6= ∅ and α < min(tα).

[Why? First, recalling �5(a) we can replace t̄ by t̄ = 〈tα ∪{α} : α < λ}, so we may
assume that each tα is not empty. Second, let t̄′ = 〈t′α : α < λ〉, t′α = tα+1, so easily
t̄′ satisfies (∗)1 and At̄′,ε ⊆ At̄,ε by clause �5(b).]

Now

(∗)2 we can find U dn
1 , εdn such that:

(a) U dn
1 ⊆ S∗0 is stationary in λ, see stage A on S∗0

(b) α < δ ∈ U dn
1 ⇒ tα ⊆ δ

(c) εdn < θ

(d) if δ ∈ U dn
1 then for arbitrarily large α < δ we have ζ ∈ tα ⇒

Rang(F1(ρh(δ, ζ))) ⊆ εdn < κ1 = θ.

[Why? Clearly E0 = {δ < λ : δ is a limit ordinal such that α < δ ⇒ tα ⊆ δ} is a
club of λ. For every δ ∈ S∗0 ∩E0 and α < δ we can find εdn

δ,α as in clauses (c),(d) of

(∗)2 and so recalling that cf(δ) = ∂ > θ > |tδ| it follows that there is εdn
δ such that

δ = sup{α < δ : εdn
δ,α = εdn

δ }. Then recalling λ = cf(λ) > θ we can choose εdn such

that the set U dn
1 = {δ ∈ S∗0 ∩E0 : εdn

δ = εdn} is stationary. So (∗)2 holds indeed.]

(∗)3 We can find U up
1 , α∗1, ε

up such that:

(a) U up
1 ⊆ S∗0 is stationary

(b) h�U up
1 is constantly 0, actually follows by (a), see Stage A

(c) α∗1 < λ satisfies α∗1 < min(U up
1 ) and εup < θ

Paper Sh:1163, version 2020-11-24 2. See https://shelah.logic.at/papers/1163/ for possible updates.



8 SAHARON SHELAH

(d) if δ ∈ U up
1 and α ∈ [α∗1, δ) and β ∈ tδ then :

• ρβ,δˆ〈δ〉 E ρβ,α
• Rang(F1(ρh(β, δ))) ⊆ εup.

[Why? For every δ ∈ S∗0 ⊆ S and ζ ∈ tδ let α1,δ,ζ < δ be such that (∀α)(α ∈
[α1,δ,ζ , δ)⇒ ρζ,δˆ〈δ〉 E ρζ,α), it exists by �5 of Stage A.

Let

• α1,δ = sup{α1,δ,ζ : ζ ∈ tδ}
• εup

δ = sup{F ′1(γρ(ζ, δ))(`)+1 : ζ ∈ tδ and ` < k(ζ, δ)} = ∪{sup Rang(F1(ρh(ζ, δ)))+
1 : ζ ∈ tδ}; as cf(δ) = ∂ = cf(∂) > θ and θ = cf(θ) > |tδ|, necessarily
α1,δ < δ and εup

δ < θ.

Lastly, there are α∗1 < λ and εup < κ1 = θ and U up
1 ⊆ S∗0 as required by using

Fodor lemma. So (∗)3 holds indeed.]
Now let E = {δ < λ : δ is a limit ordinal > α∗1 such that δ = sup(U dn

1 ∩ δ)
and α < δ ⇒ tα ⊆ δ}, it is a club of λ because α∗1 < λ by (∗)3(c) and U dn

1 is an
unbounded subset of λ by (∗)2(a), and tα is a subset of λ of cardinality < θ hence
is bounded.

Choose ε(∗) = max{εup + 1, εdn + 1, ε+ 1} where ε is from �(c), so ε(∗) < θ and
choose δ2 ∈ E ∩S such that F ′1(δ2) = ε(∗). Next choose α2 ∈ U up

1 \(δ2 + 1) and let
α∗ ∈ (α∗1, δ2) be large enough such that ζ ∈ (α∗, δ2)∧ξ ∈ tα2

⇒ ρ(ξ, δ2)ˆ〈δ2〉/ρ(ξ, ζ).
Now choose δ1 ∈ U dn

1 ∩ (α∗, δ2) and α∗∗ ∈ (α∗, δ1) be such that α ∈ (α∗∗, δ1)∧ ξ ∈
tα2 ⇒ ρ(ξ, δ1)ˆ〈δ1〉 / ρ(ξ, α).

Next let `∗ < `g(ρ(α2, δ1) be such that:

• F1(ρh(α2, δ1))(`∗) = max RangF1(ρh(α2, δ1))

• under this restriction `∗ is minimal.

Now let γ∗ = ρ(α2, δ1)(`∗).
Lastly, choose α1 ∈ (α∗∗, δ1) which is as in (∗)2(d) with respect to δ1, i.e. such

that:

(∗)5 if ζ ∈ tα1 then RangF1(ρh(δ1, ζ)) ⊆ εdn.

Now we shall prove that the pair (α1, α2) is as required. So let (ζ, ξ) ∈ tα1 × tα2 ;
now by our choices

(∗)6 ρ(ξ, ζ) = ρ(ξ, α2)ˆρ(α2, δ2)ˆρ(δ2, δ1)ˆρ(δ1, ζ) and ρ(α2, δ1) = ρ(α2, δ2)ˆρ(δ2, δ1)

So

(∗)7 Rang(F1(ρh(ξ, α2)) ⊆ εup ≤ ε(∗)
(∗)8 Rang(F1(ρh(δ1, ζ)) ⊆ εdn ≤ ε(∗)
(∗)9 ε(∗) = F1 ◦ h(δ2) ∈ Rang(F1(ρh(α2, δ1))), see (∗)6 and (before and after)

�1 .

[Why? Recall that δ2 was chosen in E ∩ S such that F ′1(δ2) = ε(∗).]
Hence
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(∗)10 in �3(b) for our t̄ and the pair (α1, α2), our γ∗ (chosen before (∗)5) is gotten,
witnessing γ∗ ∈ At̄,ε(∗) ⊆ At̄,ε as first ε < ε(∗), by the choice of ε(∗), and
second if (ζ, ξ) ∈ tα1

× tα2
then ` = `g(ρ(ξ, α2)) + `∗ is as required in �3(b)

for t̄ by (∗)6 − (∗)9

So we are done proving �7(a).

Stage D: By �8

~1 there is F∗ : λ→ θ such that ε < θ ⇒ F−1
∗ ({ε}) 6= ∅ mod D.

We first deal with the easier version with θ colours, i.e. proving Pr1(λ, λ, θ, θ).
We now define the colouring c1 : [λ]2 → θ by:

~2 if α < β < λ then c1{α, β} is F∗(γ`(β,α)(β, α)) where `(β, α) = min{` <
k(β, α) : F ′1(γ`(β, α)) = max Rang(F ′1(ρ(β, α)))}.

To prove that the colouring c1 really witnesses Pr1(λ, λ, θ, θ), our task is to prove:

~3 given t̄ ∈ T and ι < θ there are α < β such that:

• ζ ∈ tα ∧ ξ ∈ tβ ⇒ c1{ζ, ξ} = ι.

[Why does ~3 holds? Let Bι = {γ < λ : F∗(γ) = ι}. By the choice of F∗ we know
that Bε 6= ∅ mod D. Focus on At̄,ε for the specific t̄ ∈ T and any ε < θ. Since
At̄,ε ∈ D we conclude that Bε ∩At̄,ε 6= ∅.

Fix an ordinal γ ∈ Bι ∩ At̄,ε. By the very definition of At̄,ε in �3 we choose
α < β < λ and γ ∈ Bι such that for every (ζ, ξ) ∈ tα× tβ there exists ` < k(ξ, ζ) for
which γ`(ξ, ζ) = γ and F ′1(γ) ≥ F ′1(γk(ξ, ζ)) whenever k < k(ξ, ζ) and F1(γ) ≥ ε
and F ′1(γ) > F ′1(γk(ξ, ζ)) whenever k < `. Let `(ξ, ζ) be this `, in fact, this ` is
unique (for the pair (ζ, ξ)).

Now c1{ζ, ξ} = F∗(γ`(ξ,ζ)(ξ, ζ)) (by ~2) which equals F∗(γ) (by the choice of
`(ξ, ζ)) which equals ι (since γ ∈ Bι). Hence ~3 holds and we finish Stage D.]

Stage E: The full theorem: the case of λ colors
Let h′, h′′ be functions from θ into θ, ω respectively such that the mapping ζ 7→

(h′(ζ), h′′(ζ)) is onto θ × ω and moreover each such pair is gotten θ times.
We have to define a colouring c2 : [λ]2 → λ exemplifying Pr1(λ, λ, λ, θ).
This is done as follows using h′, h′′ and F∗ from ~1:

⊕1 for α < β < λ we let

•1 ζ = ζ(β, α) := h′(c1{β, α}), necessarily < θ

•2 n = n(β, α) := h′′(c1{β, α}), necessarily < ω

•3 m = m(β, α) is the n-th member of {k < k(β, α) : F ′1(γk(β, α)) = ζ}
when there is such m and is zero otherwise

•4 we define c2 as follows: for α < β, c2{α, β} is F ′2(γm(β,α)(β, α)) recall-
ing that F ′2, a function from λtoλ is from �2 from the end of stage
A.

To prove that c2 indeed exemplifies Pr1(λ, λ, λ, θ) it suffice to prove (this is the task
of the rest of the proof)

⊕2 assume t̄ ∈ T and j∗ < λ and we shall find α < β such that tα ⊆ β and
(ζ, ξ) ∈ tα × tβ ⇒ c2{ζ, ξ} = j∗.
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Toward this:

⊕3 (a) we apply (∗)3 to our t̄, getting εup,U up
1 , α∗1 as there

(b) we apply (∗)2 to our t̄ getting U dn
1 , εdn

(c) let εmd = max{εup + 1, εdn + 1}.

We can find g2,U
up

2 , γ∗, α
∗
2,m

∗
2 such that:

⊕4 (a) γ∗ < λ satisfies F2(γ∗) = j∗ and F1(γ∗) = εmd

(b) U up
2 ⊆ S∗γ∗ is stationary such that δ ∈ U up

2 ⇒ F ′2(δ) = F2(h(δ)) =

F2(γ∗) = j∗ ∧ F ′1(δ) = F1(h(δ)) = F1(γ∗) = εmd

(c) g2 is a function with domain U up
2 such that δ ∈ U up

2 ⇒ δ < g2(δ) ∈
U up

1

(d) α∗2 satisfies α∗1 < α∗2 < min(U up
2 )

(e) if δ ∈ U up
2 and α ∈ [α∗2, δ) and β ∈ tg2(δ) then

• ρ(g2(δ), δ)ˆ〈δ〉 E ρ(g2(δ), α) hence

• ρβ,δˆ〈δ〉 E ρβ,α
(f) m∗2 satisfies: for every δ ∈ U up

2 , the cardinality of the set {` <
k(g2(δ), δ) : F ′1(γ`(g2(δ), δ)) = εmd} which may be zero.

[Why? First choose γ∗ as in clause (a) of ⊕4 (possible by the choice of F0, F1, F2

in the beginning of Stage A; hence δ ∈ Sγ∗ ⇒ F ′2(δ) = F2(h(δ))F2(γ∗) = j∗ and
F ′1(δ) = F1(h(δ)) = F1(γ∗) = εmd (by the choice of F ′1 in �7 recalling the definitions
of h, F ′1). Second, define g′ : S∗γ∗ → U up

1 such that δ ∈ S∗γ∗ ⇒ δ < g′(δ) ∈ U up
1 .

Third, for each δ ∈ S∗γ∗\(α
∗
1 + 1), find α′2,δ < δ above α∗1 and m2,δ such that the

parallel of clauses (e),(f) (with g′ here instead of g2 there) of ⊕4 holds. Fourth, use
Fodor lemma to get a stationary U up

2 ⊆ S∗γ∗ such that 〈(α′2,δ,m2,δ) : δ ∈ U up
2 〉 is

constantly (α∗2,m
∗
2) and lastly let g2 = g′�U up

2 \(α∗2 + 1). Now it is easy to check
that ⊕4 holds indeed.]

Next

⊕5 if δ ∈ U up
2 then :

(a) F ′1(δ) = εmd

(b) if α ∈ [α∗2, δ), ξ ∈ tg2(δ) then u = {` < k(ξ, α) : F ′1(γ`(ξ, α)) = εmd}
has > m∗2 members and if ` is the m∗2-th member of u then γ`(ξ, α) = δ.

Why? Clause (a) holds by ⊕4(a), (b). For clause (b) use clause (a) and the demands
on m∗2. That is

(a) ρ(ξ, α) = ρ(ξ, g2(δ))ˆρ(g2(δ), δ)ˆρ(δ, α)
[Why? by (∗)3,⊕4(e)]

(b) Rang(ρh(α, g2(δ))) ⊆ εup ⊆ εmd

[Why? by (∗)2]
(c) the set {` < k(g2(δ), δ) : F ′1(γ`(g2(δ), δ)) = εmd} has m∗2 members

[why? by ⊕4(f)]
(d) F ′1(γ0(δ, α)) = F ′1(δ) = εmd

[Why? by ⊕4(a), (b)]]
(e) if `∗ is the m∗2-th member of {` : F1(γ`(ξ, α)) = εmd} then γ`∗(ξ, α) = δ

[Why? putting the above together]
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So ⊕5 holds indeed.
Now choose ε(∗) < θ such that h′(ε(∗)) = εmd and h′′(ε(∗)) = m∗2.
Next, let E = {δ < λ : δ limit ordinal > α∗2 such that δ = sup(U dn

1 ∩ δ) and
α < δ ⇒ g2(α) < δ}.

Lastly,

⊕6 choose δ1 < δ2 such that
(a) δ1 ∈ U dn

1 ∩ E
(b) δ2 ∈ U up

2 ∩ E\(δ1 + 1)
(c) c1{δ2, δ1} = ε(∗),

[Why does such a pair (δ1, δ2) exist? By Stage D applied to s̄ = 〈sα : α < λ〉
where sα = {min(U dn

s ∩ E\α),min(U up
2 ∩ E\α)}.

That is, we can find ordinals α < β < λ such that: for every (ζ, ξ) ∈ (sα × sβ)
we have c1{ξ, ζ} = εmd.

Let δ1 = min(U dn
1 ∩ E \ α and let δ2 = min(U up

1 ∩ E \ β.
So (δ1, δ2) ∈ (sα × sβ) hence clearly δ1 < δ2, c1{δ1, δ2} = ε(∗), δ1 ∈ U dn

1 ∩ E
and δ2 ∈ U up

1 ∩ E. So the pair (δ1, δ2) is as promised in in ⊕6]
Now let β = g2(δ2) and choose α ∈ U dn

2 ∩ δ1\(α∗2 + 1). Easy to check that α, β
are as required.

So we have finished proving Theorem 1.1. �1.1

Conclusion 1.3. If λ = ∂+, ∂ > θ are regular, then Pr1(λ, λ, λ, θ) except possibly
when the statement � holds where:

� (a) there is a θ-complete not θ+-complete uniform filter on λ and

(b) ∂ = θ+

(c) θ is a regular limit uncountable cardinal.

Proof. Case 1: ∂ = χ++ so > ℵ1

By monotonicity of Pr1 in θ, without loss of generality θ = χ+, hence θ ≥ ℵ1

and there is no θ-complete weakly θ-saturated filter on θ+2 = χ+3 = ∂+ = λ by
0.3(3) so we can use Theorem 1.1 noting θ = cf(θ) > ℵ0.

Case 2: ∂ = ℵ1

In this case necessarily θ = ℵ0, ∂ = ℵ1, λ = ℵ2 and the result hold by [She97].

Case 3: ∂ = χ+, χ singular
As θ is regular, necessarily θ < χ and we can apply Theorem [She19, 2.5=Le16]

with (λ, θ+, θ) here standing for (λ, θ1, θ0) there, (λ is indeed a successor of reg-
ular because ∂ is regular, and θ is regular; if we like to allow θ singular we
should have used (λ, θ++, θ+) here standing for (λ, θ1, θ0) there). So we get that
Pr1(λ, λ, λ, (θ+, θ)) holds. Hence by monotonicity Pr1(λ, λ, λ, (θ, θ)) holds which
means that also Pr1(λ, λ, λ, θ) holds as promised.

Case 4: ∂ = χ+ > ℵ1, χ a regular limit cardinal.
If χ > θ we can repeat the proof of case 3 relying on [She19], so without loss of

generality we have θ = χ. Now in �, clauses (b) and (c) hold but it should fail
hence by �(a) fail, which give clause (b) in Theorem 1.1 hence we can apply 1.1 as
in Case 1.

Case 5: ∂ is a limit cardinal
Still ∂ is regular > θ and we continue as in Case 3. �1.3
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