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RAMSEY PARTITIONS OF METRIC SPACES

SAHARON SHELAH AND JONATHAN VERNER

ABSTRACT. We investigate the existence of metric spaces which, for any coloring with a fixed number
of colors, contain monochromatic isomorphic copies of a fixed starting space K. In the main theorem we
construct such a space of size 280 for colorings with X colors and any metric space K of size Xg. We
also give a slightly weaker theorem for countable ultrametric K where, however, the resulting space has
size R1.

1. INTRODUCTION

Recall that the standard Hungarian arrow notation
K — (),

says that whenever we color v-sized subsets of x with py-many colors there is a homogeneous subset of
x of size 1. The question whether, for a given A, v, , there is a « such that the arrow holds has been
well studied in Ramsey theory. If v = 1 the coloring becomes a partition of x and the question reduces
to a simple cardinality argument. However, if we add additional structure into the mix, the question
becomes nontrivial. The following definition makes precise what we mean by "adding additional
structure":

Definition. Let % be a class of structures and «,A,v be cardinals. The arrow
K —x (D},

is shorthand for the statement that for every K € % of size A thereis a Y € & of size « such that for
any partition of Y into y-many pieces one of the pieces contains an isomorphic copy of K.

Note that for a class of structures there are often several natural notions of contains an isomorphic
copy. So the above notation assumes that the choice of % includes choosing the notion of contains an
isomorphic copy. The basic question, given a class £, then becomes whether for every A, u there is a
x such that k — 7 (1)},.

These types of questions have been considered before. For example A. Hajnal and P. Komjath
consider ([1], see also [6]) the class ¢ of well-ordered undirected graphs. The notion of "G contains
an isomorphic copy of H" is "G contains an induced subgraph graph-isomorphic to H via an order-
preserving bijection". For this class they prove

Theorem (Hajnal, Komjath).
25 —g (1);.

dJ. Neetil and V. Rodl consider ([5]) the classes T and J7 of all Ty and T'; topological spaces with
homeomorphic embeddings. They prove

Theorem (Neetil and V. Rodl). If I =Jg or I =T then
K =g (1))
In this paper we will be interested mainly in these questions for metric spaces. There have been some

results for metric spaces (see e.g. [3], [4], [9], [8]). Most notably, W. Weiss shows in [8] that there is a
limit to what one can prove:
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Theorem (Weiss). Assume that there are no measurable cardinals. If X is a topological space then
there is a coloring of X by two colours such that X doesn’t contain a monochromatic homeomorphic
copy of the Cantor set.

In particular in the class of metric spaces, we can’t hope for positive results if x > w (but see [7] for a
positive result from a supercompact cardinal; more history can be found there). The case x = w is not
ruled out and, in fact, the main result of this paper, due to the first author, is a positive arrow for this
case: Let .4 be the class of bounded metric spaces with "X contains an isomorphic copy of Y" being
"X contains a subspace which is a scaled copy of Y". (K is a scaled copy of Y if there is a bijection
f:K—Y ontoY and a scaling factor c € R* such that dg(x,y) = c-dy(f(x), f(y)).

1.1. Theorem.

29 — 4 (w)}.
In fact the theorem we prove is much stronger: for every countable metric space any Xj-saturated
metric space X works.

The original motivation of the second author for considering these arrows comes from a problem of
M. Hruak stated in ([2]):

Question. Does ZFC prove that there is a non g-monotone metric space of size X1?

If one could replace 2“ by X; in the above arrow, this would give a positive answer. In fact, for a
positive answer it would be sufficient to consider the class .# with isomorphic copies being Lipschitz
images, which seems to be much weaker.

The paper is organized as follows. In the second section we prove the main result and in the third
section we discuss what can be proved for the restricted class of ultrametric spaces. We finish the
introduction by recalling some definitions and facts for the benefit of the reader.

Definition. A metric space is a pair (X, p) where p: X x X — R is a metric (on X), i.e. it satisfies, for
all x,y,ze X,

(1) p(x,y)=0and p(x,y) =0 < x=y;
(2) p(x,y)=p(y,x); and
(3) p(x,2) = p(x,y)+ p(y,2).

The third condition is called the triangle inequality. If it is strengthened to
p(x,z) =max{p(x,y),0(y,2)}, x#z,y€X,
we say that the space is ultrametric.

1.2. Definition. A metric space (X, p) is R;-saturated if for any at most countable Y € X and any
function f :Y — R" satisfying the triangle inequality

(%) f@)+f() = plx,y) & fx)+px,y) = f(y)
for all x,y € Y there is p € X such that p(x,p)=f(x) forallxeY.

1.3. Note. There is a standard way to see X as a structure for a language with countably many
binary predicates {R, : ¢ € Q}: namely the predicate R,(x,y) is interpreted as p(x,y) < q. Then the
space X is Rj-saturated if (1) it contains a copy of every finite metric space, (2) given any finite partial
isometry and a point not in its domain, the isometry can be extended to that point, and (3) every
1-type over a countable subset of X is realized.

The following is standard and is included here for the convenience of the reader.

1.4. Observation. There is an Ri-saturated metric space of size 2%.

Proof. Let {(Yy,fa): @ <2} be an enumeration of all pairs such that Y, € [2°]%% and f, : Y, — R
with each pair appearing cofinally often. By induction define a sequence (d, : @ <2“) such that

(1) decdgforall @ < f<2%
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(2) dg is a metric on a; and
3) if Yy S a and (Y, fo) satisfies () and there is no § < a such that d,(y,B)=f(y) forall yeY,
then dy+1(y,a)=f(y) for all ye Y,.

The only nontrivial part is guaranteeing (3) for successors. So assume Y, € a and that (*) is satisfied
and for each < a there is y € Y, such that d(B,y) # f(y). Extend d, to dq+1 by defining

da+1(B,a) =inf {d(B,y)+ f(y) : y € Yo }.

Then clearly both (1) and (3) are satisfied. To show that (2) is satisfied it is enough to show that
da+1(B,a) >0 for all B < a. Assume this is not the case for some § < a. By assumption there is y € Y,
such that 0 < |f(y)—dq(B,y)| = €. Since dy+1(B, @) =0 we can find z € Y, such that d,(B,2) + f(2) < &/2.
There are two cases, both leading to a contradiction: if f(y) > dy(B,y) then dy(z,y) < do(B,y) +€/2
80 dg(z,y) + f(2) <do(B,y) + € = f(y) contradicting (x). On the other hand if f(y) < d4(B,y) then
do(z,y)=do(B,y)—da(B,2) = fF(y)+e—do(B,2) > f(y)+€/2 = f(y)+ f(z) again contradicting (). This
completes the inductive definition. Finally we show that (2%,d9») is RXi-saturated. Fix an at most
countable Y =2” and an f:Y — R*. Find a < 2% such that Y € a and (Y ,F) = (Y, fo). But then the
existence of p in Definition 1.2 is guaranteed by (3) above. O

2. THE METRIC CASE

2.1. Proposition. Assume (K,d) is a countable bounded metric space of diameter b and (X,p) =
Un<wXn is a countable partition of an Ri-saturated metric space. Then there is an n < w such that X,
contains a scaled copy of (K,d).

Proof. First fix an enumeration {z; : £ < w} of K. We shall use the following notation: given an (at
most) countable Y € X and a function f : Y — R" as in Definition 1.2 let

R(f)={peX :(Vy e dom()Nd(p,y) = f(»)}.

By our assumption R(f) # @. We shall inductively construct an increasing sequence {Y,, : n < w} of
finite subsets of X and functions {f, : n < w} such that

(1) fn < fn+1;and
(2) fn:Y, — R" satisfies (x); and
(3) R(f,)nX; =@ for each i <n.

Let Yo = fo = @. Assume now that we have constructed Y,,f, and choose an arbitrary positive
¢ <minf[Y,1/b. Inductively try to build a c-scaled embedding of K into R(f,) N X,,. If we succeed,
then we are done. Otherwise there is a £ <w and a c-scaled embedding of {z; : i < 2} € K onto some
K, =1z} :i <k} < R(f,)n X, which cannot be extended to z;. Let Y, +1 =Y, UK. Finally extend f, to
Y, +1 by defining

fn+1(22) =c-d(zj,zp).

We need to check that f,+1 satisfies (x). The condition is easily seen to be satisfied separately on
Y, (by the inductive hypothesis) and on K, (because it is defined from a metric). So let y €Y, and
z € K}, Since K|, = R(f»,), by definition d(y,z) = f,(y). But then (x) is clearly satisfied (the triangle is
isocelses and the two equal length sides are longer than the third by the choice of ¢).

Finally we show that the inductive construction had to stop at some point (thus there had to be a scaled
copy of K in some X,). Let Y =U,<, Y, and f = U, <o fn. Then R(f) is nonempty and R(f) € B(Yy, f»)
for each n < w (since Y, €Y). But then R(f)nX,, = @ for each n < w—a contradiction. O

It is not hard to see that the assumption of K being bounded is necessary (we can always partition
X into countably many bounded pieces and none of these pieces can contain an scaled copy of an
unbounded metric space). Also, since the space X works for all countable K it is clear it has to have
size 2“.
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3. THE ULTRAMETRIC CASE

As noted in the introduction, the second author’s original motivation for studying these questions
was the special case

R1—p.u (No)§0
for the class of bounded metric spaces. Unfortunately, this arrow probably does not hold in ZFC.
However a modified version of this arrow holds for the class of rational ultrametric spaces.

3.1. Theorem. There is a rational ultrametric space (M,d) of size X1 such that for every coloring
of M by countably many colors M contains isometric monochromatic copies of every finite rational
ultrametric space.

This theorem is both a strengthening and a weakening of the above arrow. On the one hand we get
a universal space for all copies. The price we have to pay is to restrict the copies to size <Xg. The
proof of the theorem is split into two parts. We first prove that each finite ultrametric space can be
represented as a special kind of a tree. Then we use a standard rank-type argument to show that
whenever the tree <“w1 is colored by countably many colors it contains monochromatic copies of all
finite trees.

Before continuing with the proof of the first part we recall the following basic observation about
ultrametric spaces.

3.2. Fact. Let (X, p) be an ultrametric space. Then every triangle is isocelses. Moreover the base is
never longer than the sides. Formally:
(VT e [X1P)3Ha,b} e [T, c € T\ B)(p(a,b) < pla,c) = p(b,c))

Definition. A metric space (X, p) is a rational tree space if there is an ordering < which makes X a
tree and a nonincreasing function A : X — @ such that, for distinct x Zy € X,

o(x,y) =inf {h(z):z <x&z Sy}.

We will also call the triple (X, <,h) a rational tree space. The metric space (X, p) is a rational branch
space if it is a subspace of a rational tree space with all nodes of X being branches (leaf nodes) of
(T, p). It is a regular rational branch space if, moreover, each node of X has the same height and the
function A7 is constant on the levels of T'.

Proposition. Each finite rational ultrametric space is a regular rational branch space.

Proof of Claim. Let (X, p) be a finite rational ultrametric space. Define a relation <y on X as follows:
x<py <= (Vz#x)(p(x,2) = p(y,2))

Claim. The relation <( is transitive.

Proof of Claim. Let a <9 b & b <9 c. We need to show that a <y c. We may assume a, b, ¢ are distinct,
otherwise there is nothing to prove. So consider some z # a. We need to show that p(a,z) = p(c,2). If
z = b, then the inequality follows directly from b <¢ c¢. So assume z # b. Then p(a,z) = p(b,2) = p(c, 2).
The first inequality follows from a <(¢ b and the second from b <( c¢. This finishes the proof of the
claim. [ ]

Claim. For each y € X the set {a : a <¢ y} is linearly (quasi)-ordered by <.

Proof of Claim. Assume ag,a; <¢ x and, aiming towards a contradiction, assume that a9 £¢ @1 and
a1 o ag. So there must be zp,z; such that ¢; = p(a;,z;) < p(z;,a1-;) for i =0, 1. Repeatedly applying
Fact 3.2 we get p(ap,2z1) = pla1,20) = p(29,21) =6 >¢€;. Since a; <y, § > p(a;,z;) = p(y,z;). But, again
by 3.2, this is impossible. ]

Consider now the equivalence relation a ~b < a = b & b = a and refine the <( order on each
equivalence class to an arbitrary linear order. Call the resulting order <. Since X is finite, it is clear
that (X, <) is a tree. For s € X put

h(s) =max{p(s,?): ¢t = si(= max{p(s,?): £ o s})
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(the second equality follows from the fact that if e ~b and s # a,s # b then p(s,a) = p(s,b)) and let d
be the metric of the tree space (X, <,h).

Claim. d(x,y)= p(x,y) and, if x <¢ y, then d(x, y) = p(x, ).

Proof of Claim. Assume first that x <9 y. Then d(x,y) = h(x) = p(x,y) by definition. Moreover if
z 2o x then p(z,y) < p(x, y), p(x,z) (since x <¢ z and x <¢ ¥) and, since X is ultrametric, it follows that
p(x,y) = p(x,2). In particular, since the choice of z was arbitrary, h(x) = p(x, y), proving the second
part of the claim. To finish the proof assume now that x,y are incomparable in <y and let s = A(x, y).
Then A(s) = p(s,y) = p(x, y) since s <q x. [ ]

Unfortunately, the inequality in the above claim can be strict (e.g. if we consider the subspace of a
tree space which results from deleting a level the resulting subspace cannot be a tree space). We need
to add a point to the tree for each pair x,y with p(x,y) < d(x,y). We will use the following claim

Claim. Suppose (Y,<,h) is a tree space extending (X, <,h) such that dy(x,y) = p(x,y) for each
x,y € X. Suppose that there are a,b € X, incompatible in < with p(a,b) <dy(a,b). Then there is a
tree space Y’ extending Y such that dy(x,y) = p(x, ) for each x,y € X and p(a,b) = dy(a,b).

Proof of Claim. Let Y’ =Y u{p} and extend the order so that A(a,b) < p <a,b. Moreover let A(p) =
p(a,b). Notice that if x,y € X and either x Za & xZboryZa & yZb or x <y or y < x then
dy/(x,y) = dy(x,y) and there is nothing to prove. So, without loss of generality, assume x = a and y = b.
But then p(a,d) = p(x,b) (since a < x) and p(b,x) = p(x, y) (since b < y). Since A(x,y) = Ala,b) =p we
have dy/(x,y) = h(p) = p(a,b) and this finishes the proof of the claim. [ ]

Using the above claim to iteratively add points we finally arrive at a tree space (Y, <,k) such that
dy [ X = p which, moreover, has the same distance set as the original X. It is not hard to further
enlarge Y to make it a regular rational branch space O

Proposition. Assume T is an wi-branching tree of height n <w and y: T — w is a coloring of the tree
by countably many colors. Then there is an w1-branching subtree of T whose branches (i.e. leaf nodes)
have the same color.

Proof. Given a color ¢ <w and s € T define
G(s,c,0) = Ha:y(s"a)=cll=w

and, inductively,
G(s,e,n+1) <= Ha:G(s" a,c,n)}| = w1.
To prove the proposition it is clearly enough to show that there is some ¢ < w such that G(@,c,ht(T)-1).
Suppose otherwise. Then we can build by induction a sequence {(a,, : n < ht(T')) such that for n < ht(T)
we have
(Ve <w)"G(a;:i<n),c,ht(T)—n).
In particular
(Ve <w)"G(a; i < ht(T)),c,0)

which is impossible since if we let s = {(a@; : i < ht(T)) then, since T is w;-branching, s must have
uncountably many successors of the same color. O

Proof of Theorem 3.1. Let M = <“w; and define A : M — Q such that for each o € M and each
q €[0,hp(0)) the set {a: hp (0™ a) = q} has size Xy. Let djs be the corresponding metric making M a
tree space. Let X be a finite rational metric space, i a decreasing enumeration of its distance set and
let (Y, <,hy) be a tree space witnessing that X is a regular rational branch space. Let y : T'— w be an
arbitrary coloring of M. Consider the subtree M' ={s:h [ s =d [ |s|}. Then M’ is w;-branching. By
the previous proposition there is a color ¢ and an w1 branching subtree M" of M’ with all branches of
color c¢. We can now build an order-isomorphism of Y into M” which, by choice of M’, preserves h. It
follows that M" contains a monochromatic isometric copy of X. O
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