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Abstract. For a strongly inacessible cardinal κ, we investigate the relationships be-
tween the following ideals:

(1) the ideal of meager sets in the <κ-box product topology,
(2) the ideal of “null” sets in the sense of [She17],
(3) the ideal of nowhere stationary subsets of a (naturally defined) stationary set Sκpr ⊆ κ.

In particular, we analyze the provable inequalities between the cardinal characteristics
for these ideals, and we give consistency results showing that certain inequalities are
unprovable.

While some results from the classical case (κ = ω) can be easily generalized to our
setting, some key results (such as a Fubini property for the ideal of null sets) do not hold;
this leads to the surprising inequality cov(null) ≤ non(null). Also, concepts that did not
exist in the classical case (in particular, the notion of stationary sets) will turn out to be
relevant.

We construct several models to distinguish the various cardinal characteristics; the
main tools are iterations with <κ-support (and a strong “Knaster” version of κ+-c.c.) and
one iteration with ≤κ-support (and a version of κ-properness).
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242 T. Baumhauer et al.

0. Introduction. Set theory of the reals deals with topological, measure-
theoretic and combinatorial properties of the real line, which set theorists
often do not interpret as the linear continuum R, but (often for technical or
notational convenience) as the Cantor space 2ω or the Baire space ωω.

We will be interested in a natural generalization of such properties to the
spaces 2κ and κκ for uncountable (and in this paper: always inaccessible)
cardinals κ. This area of research has progressed quickly in recent years;
[KL+16] collected many questions inspired by workshops on generalized reals,
and several recent results can be found in [BB+18], [FL17], [She17], [CS19].

Concerning terminology, we suggest to use the adjective “higher” instead
of the less specific “generalized”. In analogy to higher Suslin trees (Suslin
trees on cardinals larger than ω1), higher recursion theory (recursion theory
on ordinals greater than ω), higher descriptive set theory we will speak of
higher reals, the higher Cantor space, higher random reals, the higher Cichoń
diagram, etc.

We will occasionally refer to results or definitions involving 2ω; to empha-
size the distinction between this framework and our setup, we will use the
adjective “classical” to refer to these concepts: the classical Cichoń diagram,
classical random reals, etc.

Higher random reals. There exists a straightforward generalization
of the meager ideal on 2ω (or ωω) to an ideal on 2κ for (regular) κ > ω,
using the <κ-box product topology and defining a set as meager if it can be
covered by ≤κ-many (closed) nowhere dense sets.

In [She17] the third author introduced a generalization (1) Qκ of the
random forcing to 2κ for inaccessible κ. The forcing Qκ is κ-strategically
closed, satisfies the κ+-chain condition and for weakly compact κ is κκ-
bounding. These are of course three properties that are satisfied by classical
random forcing (i.e. on κ = ω). The ideal id(Qκ) generated by all κ-Borel
sets which are forced not to contain the Qκ-generic κ-real turns out to be
orthogonal to the ideal Cohenκ of all κ-meager sets.

In [CS19] it is shown how to replace the requirement of κ being weakly
compact by assuming the existence of a stationary set that reflects only
in inaccessibles and has a diamond sequence. A construction of a κ+-c.c.
κκ-bounding forcing notion using a different diamond is given in [FL17] but
it implies 2κ = κ+, therefore that setup does not allow us to investigate
cardinal characteristics.

A different approach can be found in [BB+18] where the authors use the
well-known characterization of the additivity and cofinality of the null ideal

(1) Unlike [She17], we call our uncountable cardinal κ rather than λ, mainly to help
us resist the temptation of calling the higher random reals “λandom reals”.
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The higher Cichoń diagram 243

by slaloms (in the classical case (κ = ω), see for example [BJ95]) to define
their versions of add(null) and cf(null) on 2κ for inaccessible κ.

In the present paper we continue the work of [She17], and we also compare
our cardinal characteristics to those derived from slaloms.

Overview of the paper

• In Section 1 we repeat some key definitions and results from [She17], in-
troduce some notations and finally define the notion of a strengthened
Galois–Tukey connection.
• In Section 2 we prove preservation theorems for iterations of <κ- and
κ-support.
• In Section 3 we introduce an ideal id−(Qκ) ⊆ id(Qκ) whose definition

is slightly simpler than that of id(Qκ); however, for weakly compact κ
the ideals id and id− coincide. We improve the characterizations of the
additivity and cofinality of id(Qκ) given in [She17] and also give a new
characterization of additivity and cofinality, using the additivity of the
ideal of nowhere stationary sets on κ.
• In Section 4 we generalize a theorem from [She17] by introducing the

notion of an anti-Fubini set.
• In Section 5 we repeat and elaborate some other results from [She17]

and discuss the Bartoszyński–Raisonnier–Stern theorem for id(Qκ). We
can show it for inaccessible κ only under additional assumptions, and we
conjecture that it does not hold in general.
• In Section 6 we provide six models separating characteristics of the gen-

eralized Cichoń diagram using the tools developed in Section 2. Curiously
we do exactly all possible vertical separations.
• In Section 7 we repeat some definitions and results from [BB+18] and

use a model from that paper to show that one of the generalized slalom
characterizations of the additivity of null is not provably equal to the
additivity of id(Qκ).

1. Preliminaries. Some familiarity with the preceding work [She17] is
assumed but for the convenience of the reader we recall a few key definitions
and results. For missing proofs in this section see there.

1.1. The generalized random forcing Qκ. To motivate the main
definition of this section, we first give a characterization of random forcing;
the definition of Qκ can then be seen as a generalization.

Definition 1.1.1. A positive tree on ω is a set T ⊆ 2<ω with the follow-
ing properties:

• T is a tree, i.e. T is non-empty, and for all t ∈ T and all initial segments
s E t we also have s ∈ T .
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244 T. Baumhauer et al.

• There is a family (Nk : k ∈ ω) with Nk ⊆ 2k such that:

– The sets Nk are small, more precisely:
∑

k |Nk|/2k < 1.
– For all k, all s ∈ 2k: s ∈ T ⇔ ((∀n < k) s�n ∈ T and s /∈ Nk).

It is easy to see that a tree T is positive in this sense if and only if the
set [T ] of branches of T has positive Lebesgue measure in 2ω. Thus, the set
of positive trees is isomorphic to (a dense subset of) random forcing.

It is well known and easy to see that the ideal of null sets can be defined
from the random forcing in several ways:

Fact 1.1.2. Let A ⊆ 2ω. Then each of the following properties is equiv-
alent to the statement “A is Lebesgue measurable with measure 0”:

• For all positive trees p there is a positive tree q ⊆ p such that [q] ∩A = ∅.
• There is a predense set C of positive trees such that A ∩

⋃
p∈C [p] = ∅.

• There is a single positive tree p such that not only [p]∩A = ∅, but also for
every s ∈ 2<ω we have (s+ [p]) ∩A = ∅. Here, we write s+X for the set
{s + x : x ∈ X}, where s + x ∈ 2ω is defined by (s + x)(i) = s(i) + x(i)
for i ∈ dom(s), and (s + x)(i) = x(i) otherwise. (s + X is also called a
rational translate of X.)

Definition 1.1.3. Unless stated otherwise, κ denotes a strongly inac-
cessible cardinal throughout this paper. When we write “inaccessible” we
will always mean “strongly inaccessible” and for the set of all inaccessible
cardinals below κ we write

Sκinc = {λ < κ : λ is inaccessible}.
Definition 1.1.4. Let S ⊆ κ. We say that S is nowhere stationary if for

every δ ≤ κ of uncountable cofinality the set S∩ δ is a non-stationary subset
of δ. Typically we will only care about being non-stationary in δ ∈ Sκinc∪{κ}.

We will now inductively define, for every inaccessible cardinal κ,

• a forcing notion Qκ (this definition uses the ideals id(Qδ) for δ < κ),
• two ideals wid(Qκ) ⊆ id(Qκ) on 2κ (the ideals coincide for weakly com-

pact κ, see 3.2.4).

Definition 1.1.5. We recall the inductively defined forcing Qκ from
[She17, 1.3]. We have p ∈ Qκ if there exists (τ, S,

⇀

Λ = 〈Λδ : δ ∈ S〉) (this
tuple is called the witness for p ∈ Qκ) where:

(1) p ⊆ 2<κ is a tree, i.e. it is closed under initial segments.
(2) τ ∈ 2<κ is the trunk of p, i.e. the least node which has two successors.
(3) Above τ the tree p is fully branching, i.e. τ E η ∈ p⇒ η_0, η_1 ∈ p.
(4) S ⊆ Sκinc is nowhere stationary.
(5) For δ ∈ S we have |Λδ| ≤ δ and Λδ is a family of maximal antichains

of Qδ.
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(6) If δ 6∈ S is a limit ordinal and η ∈ 2δ, then η ∈ p iff (∀σ < δ) η�σ ∈ p.
(7) If δ ∈ S is a limit ordinal and η ∈ 2δ, then η ∈ p iff

(a) (∀σ < δ) η�σ ∈ p, and
(b) (∀J ∈ Λδ)(∃q ∈ J ) η ∈ [q]; note that in the notation introduced in

1.1.9 this simply means η ∈ set1(Λδ).

For p, q ∈ Qκ we define q to be stronger than p if q ⊆ p. We write q ≤ p
for “q stronger than p” throughout this paper (and we use this convention
for any forcing, not just Qκ).

If G is a Qκ-generic filter then we call η =
⋃
p∈G tr(p) ∈ 2κ a Qκ-generic

real or a random real, where tr(p) is the trunk of p. Alternatively, η is the
unique element of

⋂
p∈G[p], where [p] is the set of cofinal branches of p.

Remark 1.1.6. If we write Nδ for set0(Λδ) (see 1.1.9) we may also call
a tuple (τ, S, 〈Nδ : δ ∈ S〉) a witness for p ∈ Qκ.

Remark 1.1.7. Note that the set S∩ lg(τ) (where lg(τ) is the order type
of the predecessors of τ) is really irrelevant; if we require min(S) > lg(τ),
then p is uniquely defined by its witness (in the sense of 1.1.6) and vice versa.

Remark 1.1.8. Let p, q ∈ Qκ. Then p and q are compatible in Qκ iff at
least one of the following holds:

tr(p) E tr(q) ∈ p, tr(q) E tr(p) ∈ q.
In particular, two conditions with the same stem are always compatible.

Moreover, if p and q are compatible, then p ∩ q is the weakest condition
in Qκ which is stronger than both.

As a consequence, any set C ⊆ Qκ with the property

(∀η ∈ 2<κ)(∃p ∈ C) tr(p) = η

is predense in Qκ.

For inaccessible κ we now define ideals on 2κ as follows:

Definition 1.1.9. For J ⊆ Qκ we define
set1(J ) =

⋃
p∈J

[p], set0(J ) = 2κ\ set1(J ).

For a collection Λ of subsets of Qκ we define
set1(Λ) =

⋂
J∈Λ

set1(J ), set0(Λ) = 2κ\ set1(Λ).

Definition 1.1.10. For A ⊆ 2κ:

(1) A ∈ wid(Qκ) iff there is a predense set C ⊆ Qκ such that A ⊆ set0(C).
Equivalently, A ∈ wid(Qκ) iff

(∀p ∈ Qκ)(∃q ∈ Qκ) q ≤ p and [q] ∩A = ∅.
(We will discuss the ideal wid(Qκ) in Section 3.)
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(2) id(Qκ) is the ≤κ-closure of wid(Qκ): A ∈ id(Qκ) iff A can be covered
by the union of ≤κ-many sets in wid(Qκ). Equivalently, A ∈ id(Qκ) iff
there is a family Λ of κ-many predense sets such that A ⊆ set0(Λ).

Theorem 1.1.11 ([She17, 3.2]). The ideal id(Qκ) is the ideal of all sets
A such that there exists a κ-Borel set B ⊆ 2κ such that A ⊆ B and

Qκ 
 η̇ 6∈ B

where η̇ is the canonical generic κ-real added by Qκ. [More explicitly, we
should say that there is a κ-Borel code c in V such that the corresponding
Borel set Bc contains A (A ⊆ Bc), and that in the Qκ-extension, η will not
be in the Borel set Bc, computed in the extension: Qκ 
 η̇ 6∈ Bc.]

Theorem 1.1.12 ([She17, 1.8, 1.9]).

(1) Qκ is κ-strategically closed. (See 2.1.4.)
(2) Qκ satisfies the κ+-c.c.
(3) If κ is weakly compact, then Qκ is κκ-bounding.

Definition 1.1.13. For every η ∈ 2<κ we write [η] for the set of x ∈ 2κ

extending η; these are the basic clopen sets of the box product topology (i.e.
the <κ-box product topology).

Let Borelκ be the smallest family containing all clopen sets which is
closed under complements and unions/intersections of at most κ-many sets.
If B ∈ Borelκ then we call B a κ-Borel set.

A Borel code is a well-founded tree (with a unique root) with κ-many
nodes whose leaves are labeled with elements of 2<κ; this assigns basic clopen
sets to every leaf. This assignment can be naturally extended to the whole
tree: if the successors of a node ν are labeled with a set (Bi : i ∈ κ), then ν
is labeled with 2κ\

⋃
i<κBi.

(Equivalently, a Borel code is an infinitary formula in the propositional
language L<κ+ , where the propositional variables are identified with the
basic clopen sets.)

If c is a Borel code, we write Bc for the Borel set associated with it (i.e.
the value of the assignment described above on the root of the tree c).

Fact 1.1.14. Let V,W be two universes. Let η ∈ 2κ ∩V ∩W and let c
be a Borel code in V ∩W. Then it follows from an easy inductive argument
on the rank of c that

V |= η ∈ Bc ⇐⇒ W |= η ∈ Bc.

This fact will allow us to speak about Borel sets when we should officially
speak about Borel codes.

Definition 1.1.15. Let W ⊆ Sκinc be nowhere stationary. We define
Qκ,W similarly to Qκ in Definition 1.1.5 with some restrictions:
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(1) In 1.1.5(4) we additionally require S ⊆W .
(2) In 1.1.5(5) we additionally we require Λδ to be a family of maximal

antichains of Qδ,W∩δ.

Note that this definition is different from 3.3.8.

1.2. Quantifiers and rational translates

Definition 1.2.1. Let µ be a regular cardinal. We use the following
notation:

• Let A,B ⊆ µ. We say A ⊆∗µ B if there exists ζ < µ such that A\ζ ⊆ B. If
µ is clear from the context we write A ⊆∗ B.
• “(∃µε) φ(ε)” is an abbreviation for “{ε < µ : φ(ε)} is cofinal in µ”. Similarly

“(∀µε) φ(ε)” is an abbreviation for “{ε < µ : ¬φ(ε)} is bounded in µ”. If µ
is clear from the context we write ∃∞ and ∀∞. Note that these quantifiers
satisfy the usual equivalence

(∃µε) φ(ε) ⇐⇒ ¬(∀µε) ¬φ(ε).

• For η, ν ∈ 2µ (or µµ) define:

(1) η =∗µ ν ⇔ (∀∞i < µ) η(i) = ν(i).
(2) η ≤∗µ ν ⇔ (∀∞i < µ) η(i) ≤ ν(i).

Again we may just write η =∗ ν and η ≤∗ ν.

Definition 1.2.2. We define

bκ = min{|B| : B ⊆ κκ ∧ (∀η ∈ κκ)(∃ν ∈ B) ¬(ν ≤∗ η)},
dκ = min{|D| : D ⊆ κκ ∧ (∀η ∈ κκ)(∃ν ∈ D) η ≤∗ ν)}.

Definition 1.2.3 (Rational translates).

• For p ∈ Qκ, α < κ, ν ∈ 2α, and η ∈ p ∩ 2α (typically tr(p) E η) we
let p[η,ν] be the condition obtained from p by first removing all nodes not
compatible with η, and then replacing η by ν:

p[η,ν] = {ρ : ρ E ν ∨ ((∃%) η_% ∈ p ∧ ρ = ν_%)}.

• For J ⊆ Qκ, α < κ, and a permutation π of 2α let

J [α,π] = {p[η,ν] : p ∈ J , η ∈ (p ∩ 2α), ν = π(η)}.

• For a collection Λ of subsets of Qκ and α < κ let

Λ[α] = {J [α,π] : J ∈ Λ, π is a permutation of 2α}.

Clearly, |Λ[α]| ≤ κ+ |Λ|. If Λ[α] = Λ for all α < κ, we say that Λ is closed
under rational translates.
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1.3. The property Pr(·) and the nowhere stationary ideal

Definition 1.3.1. Pr(κ) means there exists Λ = {Λi : i < κ} where
Λi ⊆ Qκ is a maximal antichain (or is predense) such that for no p ∈ Qκ do
we have

[p] ⊆ set1(Λ) =
⋂
i<κ

set1(Λi).

We define
Sκpr = {λ ∈ Sκinc : Pr(λ)}.

Lemma 1.3.2 ([She17, 4.6]). The set of p ∈ Qκ witnessed by (ρ, S,
⇀

Λ)
such that S ⊆ Sκpr is dense in Qκ.

Lemma 1.3.3 ([She17, 4.4]).

(1) If κ is inaccessible but not Mahlo then Pr(κ).
(2) If κ is weakly compact then ¬Pr(κ).
(3) If κ = sup(Sκinc) then κ = sup(Sκpr).
(4) If κ is Mahlo then Sκpr is a stationary subset of κ.

Definition 1.3.4. Define ideals

nstκ = {S ⊆ Sκinc : S is nowhere stationary},
nstprκ = {S ⊆ Sκpr : S is nowhere stationary}.

The order on these ideals is ⊆∗, i.e. set-inclusion modulo bounded subsets.
Note that by 1.3.3(4), for every Mahlo cardinal κ the set Sκpr is stationary;
so κ Mahlo is sufficient for nstprκ to be proper (i.e. Sκpr /∈ nstprκ ).

1.4. Ideals and strengthened Galois–Tukey connections

Definition 1.4.1. Let X be a set and let i ⊆ P(X) be an ideal. The
equivalence relation ∼i on P(X) is defined by A ∼i B ⇔ A4B ∈ i. We write
P(X)/∼i for the set of equivalence classes and A/∼i for the equivalence class
of a set A ⊆ X.

If j is an ideal containing i, we write j/i for the naturally induced ideal
on P(X)/∼i defined as

j/i := {A/∼i : A ∈ j}.
Definition 1.4.2. LetX be a set and let i ⊆ P(X) be an ideal containing

all singletons. Then

add(i) := min
{
|A| : A ⊆ i ∧

⋃
A 6∈ i

}
,

cov(i) := min
{
|A| : A ⊆ i ∧

⋃
A = X

}
,

non(i) := min{|A| : A ∈ P(X)\i},
cf(i) := min{|A| : A ⊆ i ∧ (∀B ∈ i)(∃A ∈ A) B ⊆ A}.

Sh:1144



The higher Cichoń diagram 249

For two ideals i, j ⊆ P(X) let

add(i, j) := min
{
|A| : A ⊆ i ∧

⋃
A 6∈ j

}
,

cf(i, j) := min{|A| : A ⊆ j ∧ (∀B ∈ i)(∃A ∈ A) B ⊆ A}.
Fact 1.4.3. Let X be a set and let i ⊆ P(X) be an ideal. Then:

(a) add(i) ≤ cov(i) ≤ cf(i).
(b) add(i) ≤ non(i) ≤ cf(i).

Fact 1.4.4. Let X be a set and let i− ⊆ i ⊆ P(X) be two ideals. Then:

(a) add(i) ≤ add(i−, i).
(b) add(i−) ≤ add(i−, i).
(c) cf(i−, i) ≤ cf(i).
(d) cf(i−, i) ≤ cf(i−).

Fact 1.4.5. Let X be a set and let i− ⊆ i ⊆ P(X) be two ideals. Then:

(a) add(i) ≥ min{add(i−), add(i/i−)}.
(b) cf(i) ≤ cf(i−) + cf(i/i−).

Definition 1.4.6. Consider ideals i− ⊆ i ⊆ P(X), j ⊆ P(U). We call
maps

φ+ : i→ j, φ− : j→ i−

a strengthened Galois–Tukey connection if for all A ∈ i, B ∈ j,

φ−(B) ⊆ A =⇒ B ⊆ φ+(A).

Discussion 1.4.7. Strengthened Galois–Tukey connections are a special
case of what is called a generalized Galois–Tukey connection in [Voj93] and
a morphism in [Bla10].

Lemma 1.4.8. Consider i− ⊆ i ⊆ P(X), j ⊆ P(U) and let φ−, φ+ be a
strengthened Galois–Tukey connection between them. Then:

(a) add(i−, i) ≤ add(j).
(b) cf(i−, i) ≥ cf(j).

Proof. (a) Let 〈Bζ : ζ < µ < add(i−, i)〉 be a family of Bζ ∈ j. Find
A ∈ i such that

⋃
ζ<µ φ

−(Bζ) ⊆ A, so that
⋃
ζ<µBζ ⊆ φ+(A).

(b) Let 〈Aζ : ζ < µ = cf(i−, i)〉 be a family of Aζ ∈ i cofinal for i−. Then
for B ∈ j we can find ζ < µ such that φ−(B) ⊆ Aζ , so B ⊆ φ+(Aζ), i.e.
〈φ+(Aζ) : ζ < µ〉 is a cofinal family of j.

1.5. Miscellaneous

Definition 1.5.1. Let X ⊆ κ. Then
acc(X) := {α < κ : (∃Y ⊆ X) sup(Y ) = α}, nacc(X) := X\ acc(X).
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Definition 1.5.2. Let id(Cohenκ) be the ideal of meager subsets of 2κ.
We call M ⊆ 2κ meager if it is a union of κ-many nowhere dense subsets
of κ, in the <κ-box product topology.

2. Tools. In this section we introduce/recall several concepts and tools
that will be useful later. In particular, we give sufficient conditions for the
following properties to be preserved in forcing iterations:

• 2.1: Closure properties, such as strategic closure.
• 2.2: Stationary Knaster, a property that is intermediate between the κ+-

chain condition and κ-centeredness; this property is preserved in <κ-sup-
port iterations.
• 2.3: a version of κ-centeredness. (Also, similarly to the classical case, suffi-

ciently centered forcing notions will not add random reals, and will neither
decrease non(Qκ) nor increase cov(Qκ).)
• 2.4 and 2.5: A property defined by a game, which allows fusion arguments

in iterations with κ-support, and implies properness and κκ-bounding.

2.1. Closure

Definition 2.1.1. Let Q be a forcing notion. We say that Q is α-closed
if for every descending sequence 〈pi : i < i∗〉 of length i∗ < α (with all pi
in Q) there is a lower bound in Q, i.e. there exists q ∈ Q such that for every
i < i∗ the condition q is stronger than pi.

To avoid confusion we may write <α-closed.

Definition 2.1.2. Let Q be a forcing notion. We say that Q is α-directed
closed if every directed set D ⊆ Q of cardinality < α has a lower bound.
(A set D is called directed if any two elements of D are compatible and
moreover have a lower bound in D.)

To avoid confusion we may write <α-directed closed.

Remark 2.1.3. It is customary to write κ-closed and κ-c.c. for <κ-closed
and <κ-c.c., respectively.

An iteration in which the domains of the conditions have size ≤ κ
should logically be called “iterations with <κ+-supports”, or abbreviated
“κ+-supports”. Convention, however, dictates that such iterations are called
“iterations with κ-supports”; we will follow this convention.

Most of our forcing iterations will have <κ-support and behave similarly
to finite support iterations in the classical case; some of our iterations will
have κ-support, in analogy to countable support iterations.

Definition 2.1.4. Let Q be a forcing notion and let q ∈ Q. Define the
game Cκ(Q, q) between two players White and Black taking turns playing
conditions of Q stronger than q, i.e. first White plays p0 ≤ q, then Black
plays a condition p′0 ∈ Q, then White plays p1 ∈ Q and so on. The game
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continues for κ-many turns and note that White plays first in limit steps.
The rules of the game are:

(1) For i < κ we require p′i ≤ pi.
(2) For i < j < κ we require pj ≤ p′i.

White wins if he can follow the rules until the end.
We say that Q is κ-strategically closed if White has a winning strategy

for Cκ(Q, q) for every q ∈ Q.

Fact 2.1.5. Let Q be a forcing notion. Consider the following statements:

(a) Q is <κ-directed closed.
(b) Q is <κ-closed.
(c) Q is κ-strategically closed.

Then (a)⇒(b)⇒(c).

Fact 2.1.6. Let P = 〈Pα, Q̇α : α < δ〉 be a forcing iteration with <λ-
support. If for every α < δ we have Pα 
 “Q̇α |= φ” then also P |= φ where
φ ∈ {“<κ-directed closed”, “<κ-closed”, “κ-strategically closed”} whenever
λ ≥ κ. In particular, these properties are preserved in <κ-support iterations
and in κ-support iterations.

2.2. Stationary Knaster, preservation in <κ-support iterations

Discussion 2.2.1. To obtain independence results for the classical case
(κ = ω) we often use finite support iterations of c.c.c. forcing notions. Such
iterations are useful due to the well-known fact that their finite support
limits will again satisfy the c.c.c.

In this section we will quote a parallel for the case of uncountable κ, first
appearing in [She78].

Definition 2.2.2. Let κ be a cardinal. Let Q be a forcing notion. We say
that Q satisfies the stationary κ+-Knaster condition if for every {pi : i < κ+}
⊆ Q there exists a club E ⊆ κ+ and a regressive function f on E ∩Sκ+κ such
that for any i, j ∈ E ∩ Sκ+κ we have

f(i) = f(j) =⇒ pi 6⊥ pj .

Fact 2.2.3. The stationary κ+-Knaster condition implies the κ+-chain
condition.

Proof. By Fodor’s pressing down lemma the stationary κ+-Knaster con-
dition implies that for every {pi : i < κ+} ⊆ Q there exists a stationary set
S ⊆ κ+ such for that any i, j ∈ S the conditions pi, pj are compatible.

Definition 2.2.4. Let κ be a cardinal. Let Q be a forcing notion. We
say that Q satisfies (∗κ) if the following hold:

Sh:1144



252 T. Baumhauer et al.

(a) Q satisfies the stationary κ+-Knaster condition.
(b) Any decreasing sequence 〈pi : i < ω〉 of conditions of Q has a greatest

lower bound.
(c) Any compatible p, q ∈ Q have a greatest lower bound.
(d) Q does not add elements of (κ+)<κ (e.g. Q is κ-strategically closed).

Lemma 2.2.5. Let κ be a cardinal. Let Q be a forcing notion such that:

(1) Q satisfies the stationary κ+-Knaster condition.
(2) Q does not add new subsets of δ for δ < κ (e.g. Q is κ-strategically

closed).

Then Q does not collapse cardinals.

Theorem 2.2.6. Let κ be a cardinal. Let 〈Pα, Q̇α : α < λ〉 be a <κ-
support iteration such that for every α < λ,

Pα 
 Q̇α satisfies (∗κ) from Definition 2.2.4.

Then Pλ satisfies the stationary κ+-Knaster condition.

Proof. The proof appears in [She78, 3.1] for the case κ = ω1 but easily
generalizes to arbitrary regular κ.

Fact 2.2.7. Let κ be a cardinal. Let Q be a κ-linked (see 2.3.1) forcing
notion. Then Q satisfies the stationary κ+-Knaster condition.

2.3. κ-centered<κ, preservation in <κ-support iterations

Definition 2.3.1. Let κ be a cardinal, let P be a forcing notion and let
X ⊆ P.
(1) We say that X is linked if for every p0, p1 ∈ X we have p0 6⊥ p1. We say

that P is κ-linked if there exist 〈Xi : i < κ〉 such that Xi ⊆ P is linked
and P =

⋃
i<κXi.

(2) We say that X is centered<κ if for every Y ∈ [X]<κ there exists q such
that q ≤ p for every p ∈ Y . We say that P is κ-centered<κ if there exist
〈Xi : i < κ〉 such that each Xi ⊆ P is centered<κ and P =

⋃
i<κXi.

Fact 2.3.2. Let κ be a cardinal and let P be a forcing notion. Consider
the following statements:

(a) P is κ-centered<κ.
(b) P is κ-linked.
(c) P satisfies the κ+-c.c.

Then (a)⇒(b)⇒(c).

Definition 2.3.3. Let κ be a cardinal. We say that an iteration 〈Pα, Q̇α :
α < ζ〉 is κ-centered if it has <κ-support and

Pα 
 Q̇α is κ-centered<κ.
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Fact 2.3.4. Let 〈Pα, Q̇α : α < ζ〉 be a κ-centered iteration. Then there
exist sequences 〈Ċα : α < ζ〉, 〈ċα : α < ζ〉 such that for all α < ζ, Ċα and
ċα are Pα-names such that Pα forces:

(a) Ċα is a function κ→ P(Q̇α).
(b)

⋃
ran(Ċα) = Q̇α.

(c) i < κ⇒ Ċα(i) is centered<κ.
(d) ċα is a function Q̇α → κ.
(e) q̇ ∈ Q̇α ⇒ q̇ ∈ Ċα(ċα(q̇)).

Without loss of generality we may also assume that each Ċα(n) is non-empty
and closed under weakening of conditions, in particular 1Q̇α ∈ Ċα(n) for
each n.

We shall use this notation throughout this section.

Definition 2.3.5. Let P = 〈Pα, Q̇α : α < ζ〉 be a κ-centered iteration.
We call a condition p ∈ P fine if for each α ∈ supp(p) the restriction p�α
decides some n < κ such that p�α 
 “p(α) ∈ Ċα(n)”. Note that for α 6∈
supp(p) this is trivially true because 1Q̇α is in every Ċα(n).

Definition 2.3.6. Let P = 〈Pα, Q̇α : α < ζ〉 be a κ-centered iteration.
We say that P is finely <κ-closed if for every α < ζ with cf(α) < κ there
exist L1

α ∈ V and a Pα-name L̇2
α such that:

(a) L1
α is a function κ<κ → κ.

(b) Pα 
 “L̇2
α is a function Q̇<κ

α → Q̇α”.
(c) If ⇀q = 〈q̇i : i < i∗〉 is a descending sequence of length i∗ < κ in Q̇α then

Pα forces:

(1) L̇2
α(

⇀
q ) is a lower bound for ⇀

q.
(2) ċα(L̇2

α(
⇀
q )) = L1

α(〈ċα(q̇i) : i < i∗〉).
The typical situation here is that the coloring of the forcing is some

trunk function, so if we find a lower bound q̇ for some descending sequence
〈q̇i : i < α〉, the union of the trunks of the qi will tell us the color of q̇.

Lemma 2.3.7. Let P = 〈Pα, Q̇α : α < ζ〉 be a κ-centered finely <κ-closed
iteration of length ζ < (2κ)+. Then:

(a) P′ = {p ∈ P : p is fine} is dense in P.
(b) P is κ-centered<κ.

Discussion 2.3.8. The following proof closely follows [Bla11] where the
result is explained for the ω-case. The only adjustment we have to make is
the demand for fine closure (as defined in 2.3.6) to deal with the limit case
that does not appear in the ω-version of the proof.

This lemma also appears in [BB+18].
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Proof of Lemma 2.3.7. (a) Let p ∈ P be arbitrary. We are going to find a
condition p′ stronger than p such that p′ is fine. We prove this by induction
on δ ≤ ζ for Pδ, constructing a decreasing sequence of conditions 〈pi : i ≤ δ〉
with pi ∈ Pδ such that for each i ≤ δ the condition pi�(i+ 1) is fine:

(i) p0 = p.
(ii) i = j + 1: First find q stronger than pi�i such that q decides the color

of pj(i). Then use the induction hypothesis to find q′ ≤ q such that q′
is fine and let pi = q′ ∧ p.

(iii) i a limit ordinal, cf(i) < κ: Consider the condition

q′ =
(
L̇2
j (〈qk(j) : k < i〉) : j < i

)
∈ Pi

and let pi = q′ ∧ p.
(iv) i a limit ordinal, cf(i) ≥ κ: Remember that P has <κ-support so this

case is trivial.

(b) By the Engelking–Karłowicz theorem [EK65] there exists a family
〈fi : ζ → κ : i < κ〉 of functions such that for any A ∈ [ζ]<κ and every
f : A→ κ there exists i < κ such that f ⊆ fi.

For each i < κ let

D(i) = {p ∈ Pζ : (∀α < κ) p�α 
 p(α) ∈ Ċα(fi(α))}.

It is easy to see that each D(i) is centered<κ and that every fine p ∈ P is
contained in some D(i). So by (a) we are done.

Lemma 2.3.9. Let κ be an inaccessible cardinal with sup(κ ∩ Sinc
κ ) = κ.

Let P be a forcing notion that does not add new subsets of δ for δ < κ (e.g.
P is κ-strategically closed). Then P does not add a Qκ-generic real if either

(a) P is κ-centered<κ, or just
(b) P is (2κ, κ)-centered<κ meaning that any set Y ⊆ P of cardinality at most

2κ is included in the union of at most κ-many centered<κ subsets of P,
or just

(c) if pρ ∈ P, ρ ∈ 2κ, is a family of conditions, then for some non-meager
A ⊆ 2κ we have

u ∈ [A]<κ =⇒ {pρ : ρ ∈ u} has a lower bound.

Proof. Clearly (a)⇒(b)⇒(c). The first implication is trivial. The second
implication follows from the κ+-completeness of the meager ideal. So we shall
assume (c).

Let p∗ 
 “ ν̇ is a counterexample and thus ν̇�ε ∈ V for all ε < κ”. (Re-
call that Qκ is κ-strategically closed.) Let 〈λε : ε < κ〉 be an increasing
enumeration of {λ ∈ Sκinc : λ > sup(λ ∩ Sκinc)}. Now for η ∈ 2κ let

Aη = {ρ ∈ 2κ : (∀∞ε < κ)(∃∞α < λε) η(α) 6= ρ(α)}.
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Clearly 2κ\Aη ∈ id−(Qκ) ⊆ id(Qκ) as defined in 3.2.1 but we may argue
2κ\Aη ∈ id(Qκ) as follows: For η ∈ 2κ and ε < κ let Bη,ε = {ρ ∈ 2λε : ρ =∗

η�λε} and note that |Bη,ε| = λε, hence Bη,ε ∈ id(Qλε). Let S = {λε : ε < κ}
and clearly S is nowhere stationary. So for every η ∈ 2κ the set
Jη = {p ∈ Qκ : S ⊆ Sp ∧ (∀ε < κ) [λε > lg(tr(p))⇒ Bη,ε ∈ set0(Λp,λε)]}

is dense in Qκ and p ∈ Jη ⇒ p 
 “ ν̇ ∈ Aη”.
Now because 2κ\Aζ ∈ id(Qκ) we have p∗ 
 “ ν̇ ∈ Aζ”, hence for η ∈ 2κ

there are (pη, ζη) such that pη ≤ p∗, ζη < κ, and

pη 
P “if ε ∈ [ζη, κ) then (∃∞α < λε)η(α) 6= ν̇(α)”.

Therefore there exists a non-meager set Y ⊆ 2κ such that any set {pρ :
ρ ∈ Y } of cardinality < κ has a lower bound. Because the meager ideal
is κ+-complete, there exists ζ∗ < κ such that without loss of generality
η ∈ Y ⇒ ζη = ζ∗. As Y is non-meager, it is somewhere dense. So there
exists %∗ ∈ 2<κ such that

(∀% ∈ 2<κ) %∗ / % ∈ 2<κ =⇒ (∃ρ ∈ Y ) % / ρ.

Without loss of generality lg(%∗) = ζ∗ (we may increase either value to
match the greater one). Choose ε < κ with λε > ζ∗. Let Γ = {% ∈ 2λε : %∗/%}
and for each % ∈ Γ let η% ∈ Y be such that %/η%. Now {η% : % ∈ Γ} ∈ [Y ]<κ,
hence by the choice of Y there exists a lower bound q of {pη% : % ∈ Γ}.

As p∗ 
 “ ν̇�λε ∈ V ”, without loss of generality let q force a value to ν̇�λε,
so call this value ν. Now q is stronger than pη%∗_ν�[ζ∗,λε)

and forces λε =
sup{α < λε : %∗_ν�[ζ∗, λε)(α) 6= ν̇(α)}, which means λε = sup{α < λε :
ν(α) 6= ν̇(α)}. This contradicts the choice of ν.

Remark 2.3.10. Lemma 2.3.9 implies that Qκ is not κ-centered<κ. How-
ever, Qκ has, for every λ < κ, a dense subset which is κ-centered<λ, namely
the set of conditions with trunk of length > λ. This parallels the classical
case of random forcing, which is not σ-centered, but σ-n-linked for all n ∈ ω.

Discussion 2.3.11. The following Lemma 2.3.12 is a straightforward gen-
eralization of [BJ95, 6.5.30]. We formulate it in terms of the ideal id−(Qκ)
⊆ id(Qκ). For the definition see 3.2.1. Note that by 3.2.5 under the assump-
tions of 2.3.12 we have id−(Qκ) = id(Qκ).

Lemma 2.3.12. Let κ be weakly compact. Let P be a forcing notion such
that:

(a) P is κ-centered<κ.
(b) P does not add new subsets of δ for δ < κ (e.g. P is κ-strategically closed).

Let (N,∈) ≺ (H(χ),∈) for some χ large enough with N<κ ⊆ N and P ∈ N.
Then for A ∈ id−(Qκ) we have

N ∩ 2κ ⊆ A =⇒ P 
 “N[G] ∩ 2κ ⊆ A”
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where G is the generic filter of P. (As usual, A is to be read as a definition
of a null set, to be interpreted in V and VP.)

Proof. Let A ∈ id−(Qκ) be witnessed by
⇀

A = 〈Aδ : δ ∈ S〉, i.e. A =

set−0 (
⇀

A), and let P =
⋃
α<κ Pα with each Pα centered<κ.

Assume there exists a P-name of a κ-real η̇ ∈ N and p∗ ∈ P such that

p∗ 
 “ η̇ 6∈ A”
and without loss of generality even

(2.1) p∗ 
 “(∀δ ≥ δ0) η̇�δ 6∈ Aδ”
for some δ0 < κ. For α < κ, δ ∈ S we define

Tα,δ = {ν ∈ 2δ : (∀p ∈ Pα)(∃q ∈ P) q ≤ p and q 
 “ η̇�δ = ν”}.
Note that in general we will have p∗ /∈ N. However, we will have p∗ ∈ Pα

for some α, and the partition (Pα : α < κ) is in N, as is the family (Tα,δ :
α < κ, δ ∈ S).

None of the sets Tα,δ (for all α < κ, δ ∈ S) is empty. We prove this
indirectly: Assume Tα,δ = ∅. Then for every ν ∈ 2δ there exists pν ∈ Pα such
that pν 
 ν 6= η̇�δ. Now because Pα is centered<κ, there exists a lower bound
q for {pν : ν ∈ 2δ}. Thus for all ν ∈ 2δ we have q 
 ν 6= η̇�δ, contradicting
our assumption that P does not add short sequences.

For α < κ consider the tree that is the downward closure of
⋃
δ∈S Tα,δ.

Because κ is weakly compact, κ has the tree property, thus there exists a
branch ηα ∈ 2κ through this tree, i.e. for every δ ∈ S we have ηα�δ ∈ Tα,δ.
Note that ηα can be calculated from η̇, hence ηα ∈ N, so by our assumption
ηα ∈ A, i.e. (∃∞δ ∈ S) ηα ∈ Aδ. Find α∗ < κ such that p∗ ∈ Pα∗ and find
δ∗ ≥ δ0 such that ηα∗�δ∗ ∈ Aδ∗ .

Let ν = ηα∗�δ∗ ∈ Tα∗,δ∗ . Then there exists q ≤ p∗ such that

q 
 η̇�δ∗ = ν = ηα∗�δ
∗ ∈ Aδ∗ ,

a contradiction to (2.1).

Corollary 2.3.13. Let κ be weakly compact. Let P be a forcing notion
such that:

(a) P is κ-centered<κ.
(b) P does not add new subsets of δ for δ < κ (e.g. P is κ-strategically closed).

Then:

(1) P does not decrease non(Qκ), i.e. if non(Qκ)=λ, then P 
 “non(Qκ)≥λ”.
(2) P does not increase cov(Qκ), i.e. if cov(Qκ)=λ, then P 
 “cov(Qκ)≤λ”.

Proof. (1) Let µ < λ and assume P 
 “X = {η̇i : i < µ} is a set of size µ”.
Find N as in 2.3.12 with η̇i ∈ N for each i < µ and |N| = µ. Now because κ
is weakly compact by 3.2.5 we have µ < non(id−(Qκ)), so find A ∈ id−(Qκ)
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such that N∩ 2κ ⊆ A. By 2.3.12 we have P 
 “X ⊆ N[G] ⊆ A”. That is, for
any set X ∈ VP of size µ < λ we have X ∈ id−(Qκ).

(2) We show: P does not add a Qκ-generic real. Assume P 
 “ η̇ is Qκ-
generic”. Find N as in 2.3.12 with η̇ ∈ N and |N| = κ. Find A ∈ id−(Qκ)
such that N ∩ 2κ ⊆ A. Now by 2.3.12 we have P 
 “ η̇ ∈ N[G] ⊆ A ∈
id−(Qκ) ⊆ id(Qκ)”, a contradiction to η̇ being Qκ-generic.

Remark 2.3.14. Corollary 2.3.13(2) duplicates 2.3.9 but there we do not
require κ to be weakly compact.

2.4. The fusion game, preservation in κ-support iterations. The
work in this subsection can be considered a generalization of [Kan80, Sec-
tion 6], where it is shown how to iterate κ-Sacks forcing for inaccessible κ.
The games defined in this subsection and the iteration theorem 2.4.7 first
appeared in [RS06] where F∗κ, Fκ (defined below) are called arcA

⇀
µ

and arca
⇀
µ

re-
spectively. However F∗κ, Fκ are slightly more general in the sense that White
may freely decide the length µζ of the ζth round during the game (i.e. our
games do not require an additional parameter ⇀

µ).

Definition 2.4.1. Let Q be a forcing notion and let q ∈ Q. We define
two (very similar) games Fκ(Q, q),F∗κ(Q, q) between two players White and
Black. A play in either of the games consists of κ-many rounds and for each
ζ < κ the ζth round lasts µζ-many moves. The rules of the ζth round of the
game Fκ(Q, q) are:

(1) First White plays 0 < µζ < κ. So White decides the length of the new
round.

(2) On move i < µζ :

(a) White plays qζ,i ≤ q.
(b) Black responds with q′ζ,i ≤ qζ,i.

The rules of the ζth round of the game F∗κ(Q, q) are:

(3) First White plays 0 < µζ < κ. For ζ a limit ordinal we additionally
require µζ ≤ supε<ζ µε.

(4) On move i < µζ :

(a) White plays qζ,i ≤ q but without looking at any q′ζ,j for j < i.
(Equivalently: White plays all moves of the current round at once at
the start of the round.)

(b) Black responds with q′ζ,i ≤ qζ,i
The winning condition of both games is the same:

White wins ⇐⇒ (∃q∗ ≤ q) q∗ 
 “(∀ζ < κ) {q′ζ,i : i < µζ} ∩ ĠQ 6= ∅”,

where ĠQ is a name for the generic filter of Q.
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Discussion 2.4.2. In point (3) of the definition of F∗κ(Q, q) we could
be slightly more general: instead of sup, any function f : κ<κ → κ that
gives us an upper bound for µζ based on 〈µε : ε < ζ〉 will do, i.e. require
µζ ≤ f(〈µε : ε < ζ〉). (This is simply a technical requirement for the proof
of 2.4.7.) So we may define F∗κ,f (Q, q). Now if we let g : κ<κ → κ be such that
for any σ ∈ κ<κ we have g(σ) = supε<lg(σ) σ(ε) then F∗κ(Q, q) = F∗κ,g(Q, q).

Discussion 2.4.3. The typical forcing for which White has a winning
strategy for the games defined in 2.4.1 is a tree forcing permitting fusion
sequences. See 6.9.6 for an example.

Fact 2.4.4. The game F∗κ is slightly harder for White than the game Fκ,
hence: If White has a winning strategy for F∗κ(Q, q) then White has a winning
strategy for Fκ(Q, q).

Definition 2.4.5. For technical reasons we define the game F∗κ(Q, q, λ)
for λ < κ. The rules are the same as for F∗κ(Q, q) except the first λ rounds
are skipped and the game starts with the λth round. So this is really just
an index shift. Of course F∗κ(Q, q) = F∗κ(Q, q, 0), and clearly for every λ < κ
White has a winning strategy for F∗κ(Q, q) iff he has a winning strategy for
F∗κ(Q, q, λ).

Theorem 2.4.6. Let Q be a forcing notion. If for every q ∈ Q Black does
not have a winning strategy for the game Fκ(Q, q) then:

(a) If Ȧ is a Q-name such that q 
 “|Ȧ| ≤ κ” then there exist B ∈ V with
|B| ≤ κ and q∗ ≤ q such that q∗ 
 Ȧ ⊆ B. In particular Q does not
collapse κ+.

(b) Q does not increase cf(Cohenκ), and in fact if 〈Ai : i < µ〉 are a cofinal
family of meager sets in V then this family remains cofinal in VQ.

(c) Q is κκ-bounding.

Proof. (a) Like (b), just easier. But let us do it as a warm-up.
Let 〈ȧζ : ζ < κ〉 be such that q 
 {ȧζ : ζ < κ} = Ȧ. Now consider a

run of Fκ(Q, q) where Black’s strategy is to play in such way that for any
ζ < κ and i < µζ there is bζ,i such that q′ζ,i 
 “ ȧζ = bζ,i”. That is, every
move Black makes during the ζth round decides ȧζ .

By our assumption, White can beat this strategy, thus there exists q∗ ≤ q
such that q∗ 
 Ȧ ⊆ {bζ,i : ζ < κ, i < µζ < κ}.

(b) Let us show: if Ṁ is a Q-name and q 
 “Ṁ is nowhere dense” then
there exists a nowhere dense set N ∈ V and q∗ ≤ q such that q∗ 
 Ṁ ⊆ N .
Since meager sets are unions of κ-many nowhere dense sets, we can then use
(a) to conclude the proof.

We are going to find q∗ ≤ q such that for each s ∈ 2<κ there exists ts D s
such that q∗ 
 “Ṁ ∩ [ts] = ∅”, so
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N = 2κ\
⋃

s∈2<κ
[ts]

is as desired.
Let 〈sζ : ζ < κ〉 be an enumeration of 2<κ. We will define a strategy

for player Black. In addition to his moves q′ζ,i, he will construct elements
tζ,i ∈ 2<κ satisfying the following properties:

(1) sζ E tζ,j .
(2) (

⋃
j<i tζ,j) E tζ,i.

(3) q′ζ,i 
 “Ṁ ∩ [tζ,i] = ∅” (and of course q′ζ,i ≤ qζ,i, as required by the rules
of the game).

Why can Black play like that?

(1) Obvious.
(2) Obvious for i successor. For i a limit ordinal just remember that i <

µζ < κ.
(3) Remember that q′ζ,i ≤ q 
 “Ṁ is nowhere dense”.

Let tζ =
⋃
i<µζ

tζ,i. Again White can beat this strategy so there exists q∗ ≤ q
as required.

(c) This follows by (b).

Theorem 2.4.7. Let P = 〈Pα, Q̇α : α < α∗〉 be a κ-support iteration and
let p ∈ P such that for all α < α∗:

(a) p�α 
 “ Q̇α is κ-strategically closed”.
(b) p�α 
 “White has a winning strategy for F∗κ(Q̇α, q) for every q ≤ p(α)”.

Then:

(1) White has a winning strategy for Fκ(P, p).
(2) If White plays according to his strategy from (1) in a run 〈pζ,i, p′ζ,i :

ζ < κ, i < µζ〉 of Fκ(P, p) then there exists p∗ witnessing White’s win
such that for all α < α∗ we have p∗�α 
 “〈pζ,i(α), p′ζ,i(α) : ζ < κ, i < µζ〉
is a run of F∗κ(Q̇α, p(α)) won by White and White’s win is witnessed by
p∗(α)”.

Discussion 2.4.8. Note that the proof of 2.4.7 also works for κ = ω.

Proof of Theorem 2.4.7. Let p ∈ P; we are going to show how White can
win Fκ(P, p) by finding p∗ ≤ p witnessing White’s victory while also being
as required by (2). We are going to construct a sequence 〈pζ : ζ ≤ κ〉 such
that:

• ζ < κ⇒ pζ ∈ P,
• p0 = p,
• ε < ζ ⇒ pε ≥ pζ ,
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of which p∗ is going to be a lower bound (but remember that under our
assumptions the lower bound of a κ-sequence does not exist in general, so
we will have to construct p∗). We are also going to construct a sequence
〈Fζ : ζ < κ〉 such that:

• F0 = ∅,
• ζ < κ⇒ Fζ ⊆ supp(pζ),
• ζ < κ⇒ |Fζ | < κ,
• ε < ζ ⇒ Fε ⊆ Fζ ,
and we are going to use bookkeeping to ensure F =

⋃
ζ<κ Fζ =

⋃
ζ<κ supp(pζ),

which is also going to be the support of p∗.
Furthermore we are implicitly going to construct strategies for Black in

the games F∗κ(Q̇α, p(α)) for α ∈ F . Then we will choose p∗ = 〈q̇∗α : α ∈ F 〉
where q̇∗α witnesses that White can beat Black’s strategy.

What does White play in the ζth round?
Let 〈αζ,ξ : ξ < ξ∗ζ 〉 enumerate Fζ . For ξ < ξ∗ζ we want to play the ζth

round of the game F∗κ(Q̇αζ,ξ , p(αζ,ξ)) where White plays according to the
name of a winning strategy (White sticks to the same strategy throughout
the proof of course). To make notation easier we do not want to keep track of
when αζ,ξ first appeared in Fε for some ε ≤ ζ. Instead let εζ,ξ = min{ε ≤ ζ :

αζ,ξ ∈ Fε} and assume we are playing F∗κ(Q̇αζ,ξ , pεζ,ξ(αζ,ξ), εζ,ξ), that is, we
are playing in the ζth round for each αζ,ξ. See 2.4.5.

By induction (we are going to address this further down) we assume for
each ξ < ξ∗ζ that pζ�αζ,ξ 
 “µ̇αζ,ξ,ζ ≤ µαζ,ξ,ζ” for some µαζ,ξ,ζ < κ where
µ̇αζ,ξ,ζ is the length of ζth round of F∗κ(Q̇αζ,ξ , pεζ,ξ(αζ,ξ), εζ,ξ) as decided by
the name of White’s winning strategy. Then there exist (in V where we are
trying to construct a winning strategy) not necessarily injective enumerations
〈q̇αζ,ξ,ζ,i : i < µαζ,ξ,ζ〉 of the moves that White plays according to the name of
his winning strategy in the ζth round of F∗κ(Q̇αζ,ξ , pεζ,ξ(αζ,ξ), εζ,ξ). To make
notation still easier we only do the proof for the special case where White
always plays an antichain (but the proof works even if White does not).

Let µζ = |
∏
ξ<ξ∗ζ

µαζ,ξ,ζ | and this is what White decides to be the length of
the ζth round of Fκ(P, p). Remember that κ is inaccessible so indeed µζ < κ.
Let 〈λζ,i : i < µζ〉 enumerate

∏
ξ<ξ∗ζ

µαζ,ξ,ζ . Now we construct a sequence
〈pζ,i : i < µζ〉 (of course anything that is not explicitly stated to be done by
Black is part of White’s strategy that we are currently constructing):

(i) First we find pζ,0 ≤ pε for every ε < ζ as follows:

• If there is no ξ < ξ∗ζ such that α = αζ,ξ then let pζ,0(α) be such that
pζ,0�α 
 pζ,0(α) ≤ pε(α) according to a winning strategy for White
in C(Q̇α).
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• If there is ξ < ξ∗ζ such that α = αζ,ξ then let pζ0(α) be such that
pζ0�α 
“pζ0(α) ≤

∨
γ<µα,ζ

q̇α,ζ,γ”.

(ii) For the ith move of the ζth round White plays p′ζ,i where

p′ζ,i(α) =

{
pζ,i(αζ,ξ) ∧ q̇αζ,ξ,ζ,λζ,i(ξ) if α = αζ,ξ for some ξ < ξ∗ζ ,

pζ,i(α) otherwise.

(iii) Black responds with p′′ζ,i ≤ p′ζ,i.
(iv) Let p′′′ζ,i be such that for α < α∗ we have

p′′′ζ,i�α 
 “p′′′ζ,i(α) ≤ p′′ζ,i(α) and p′′′ζ,i(α) is according to

a winning strategy for White in C(Q̇α)”.

(v) Let p′′′′ζ,i be defined by

p′′′′ζ,i(α) =


(pζ,i(αζ,ξ)\q̇αζ,ξ,ζ,λζ,i(ξ)) ∨ p

′′′
ζ,i(αζ,ξ)

if α = αζ,ξ for some ξ < ξ∗ζ ,

p′′′ζ,i(α) otherwise;

we easily check p′′′′ζ,i ≤ p.
(vi) If i = j + 1 then let pζ,i = p′′′′ζ,j . If i is a limit ordinal, then we find

pζ,i ≤ pζ,j for every j < i as follows:

• If there is no ξ < ξ∗ζ such that α = αζ,ξ then let pζ,i(α) be such
that pζ,i�α 
 “pζ,i(α) is according to a winning strategy for White in
C(Q̇α) for the sequence 〈pζ,j(α) : j < i〉”.
• If there is ξ < ξ∗ζ such that α = αζ,ξ then let pζ,i(α) be such that

pζ,i�α 
 “pζ,i(α) =
∨

γ<µα,ζ

ṙζ,i,α,γ”

where pζ,i�α 
 “ ṙζ,i,α,γ is according to a winning strategy for White
in C(Q̇α) for the sequence 〈pζ,j(α) ∧ q̇α,ζ,γ : j < i〉”.

Finally let pζ be a lower bound for 〈pζ,i : i < µζ〉 as in (vi) (but not really,
we have to do some preparation work for the next step first, see below). Now
the strategy for Black in F∗κ(Q̇αζ,ξ , p(αζ,ξ)) is to play pζ(αζ,ξ) ∧ q̇αζ,ξ,ζ,λζ,i(ξ).

Preparation for the (ζ + 1)th round.
We still have to address why the µαζ,ξ,ζ exist; but having understood

the proof to this point this is now easy. Let Fζ+1 = Fζ ∪ {α} for some α ∈
supp(pζ)\Fζ , if such an α exists (and remember to use bookkeeping). Now
for every α ∈ Fζ+1 work as above on pζ�α and Fζ ∩ α but instead of taking
a response from Black in (iii) White responds to himself deciding µα,ζ+1.

So we have prepared for ζ + 1. But what about limit steps? Remember
that the rules of F∗κ state that µ̇α,ζ ≤ supε<ζ µ̇α,ε. So if we let Fζ =

⋃
ε<ζ Fε,
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all is good because having an estimate for successor steps gives us an estimate
for limit steps.

Why does White win?
Because for α ∈ F =

⋃
ζ<κ Fζ there exists a Q̇α-name q̇∗α such that

p�α 
 “ q̇∗α witnesses that White wins if Black plays as described above in
F∗κ(Q̇α, p(α))”.

By construction, p∗ = 〈q̇∗α : α ∈ F 〉 is as required.

2.5. Fusion and properness. In this section we give a sufficient con-
dition for a limit of a ≤κ-support iteration to be κ-proper, namely, the
existence of winning strategies for the games F∗κ(Q̇α) for all iterands Q̇α

encountered in the iteration.
We also show that if all iterands have cardinality ≤ κ+, and the length

δ of the iteration is < κ++, then the resulting forcing Pδ has a dense set of
size κ+ and in particular will still satisfy the κ++-c.c.

Definition 2.5.1. In this section we consider an iteration P = 〈Pα, Q̇α :
α < δ〉 with limit Pδ such that:

(1) δ < κ++.
(2) P has κ-support.
(3) White has a winning strategy for F∗κ(Q̇α, q̇) for every α < δ and q̇ ∈ Q̇α.
(4) Pα 
 “Q̇α has size at most κ+”.

For α < δ let ḃα be a Pα-name of a one-to-one map from κ+ onto Q̇α.

Lemma 2.5.2. Let (N,∈) be a model of size κ, closed under <κ-seq-
uences; let R be an arbitrary forcing notion such that R ∈ N and (N,∈)
≺ (H(χ),∈) for some χ large enough. If White has a winning strategy for
Fκ(R, p) then for every p ∈ R∩N there exists q∗ ∈ R, q∗ ≤ p such that q∗ is
N-R-generic. This means:

(1) For every maximal antichain A of R with A ∈ N we have

q∗ 
 A ∩N ∩ ĠR 6= ∅.

(2) Or equivalently: for every name τ̇ of an ordinal with τ̇ ∈ N we have

q∗ 
 τ̇ ∈ N.

Proof. Note that because |N| = κ there are at most κ-many names of
ordinals in N. By our assumption White has a winning strategy for Fκ(R, p),
and because N is an elementary submodel, White has a winning strategy that
lies in N. Now consider a run of the game where:

• White plays according to his winning strategy in N. By induction all these
moves are in N by our assumption N<κ ⊆ N.
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• Black decides all ordinals of N which lie in N by playing p′ζ,i ∈ N for
ζ < κ, i < µζ .

Now q∗ witnessing White’s win is N-R-generic.

Definition 2.5.3. Let R be a forcing notion. Consider a run of the game
G ∈ {Fκ,F∗κ} where:

(1) White wins.
(2) Black plays ⇀

p′ = 〈p′ζ,i : ζ < κ, i < µζ〉.

Then we call q∗ witnessing White’s win a G-fusion limit of ⇀p ′.

Corollary 2.5.4. Let P be as in 2.5.1. Then:

(a) For every p ∈ Pδ ∩N there exists a generic condition q∗ ≤ p that is a
Fκ(P)-fusion limit of ⇀

p ′ with p′ζ,i ∈ N for all ζ < κ, i < µζ . (However,
in general q∗ 6∈ N.)

(b) For α < δ we have q∗�α 
“q∗(α) is a F∗κ(Q̇α)-fusion limit”.

Proof. (a) By 2.5.1(3) and 2.4.7(1), White has a winning strategy for
Fκ(R, p), so use 2.5.2.

(b) Use 2.4.7(2).

Definition 2.5.5. For α < δ a condition p ∈ Pα is called an Hκ+-condi-
tion if for every β < α the Pβ-name p(β) is an Hκ+-Pβ-name.

For α < δ we inductively define the notion of an Hκ+-Pα-name. On the
one hand we consider Hκ+-names for elements of κ+, on the other hand for
elements of Q̇α.

(1) τ̇ is an Hκ+-name for an element of κ+ iff ḃα(τ̇) is an Hκ+-name of an
element of Q̇α. (ḃα was defined in 2.5.1.)

(2) For every γ ∈ κ+, the standard name γ̌ is an Hκ+-name.
(3) For every sequence 〈(pi, τ̇i) : i < κ〉 where pi are Hκ+-conditions in Pα

and τ̇i are Hκ+-Pα-names, there exists an Hκ+-name τ̇ forced to be equal
to τ̇i where i is the least index such that pi ∈ ĠP if such an i exists, and
0̌ otherwise.

(4) For every F∗κ(Q̇α)-fusion sequence ⇀
p ′ where p′ζ,i are Hκ+-Pα-names for

elements of Q̇α, there exists an Hκ+-name τ̇ that is forced to be equal
to the condition witnessing White’s win (if it exists; 0̌ otherwise).

Remark 2.5.6. If we fix a well-order of H(χ) for some χ large enough
we can witness the existential statements in 2.5.5(3) and (4) by choosing the
least witness according to the well-order. This makes it possible to find a set
satisfying 2.5.5(1)–(4) which has size κ+ only.

Remark 2.5.7. The “Hκ+”-names are an easy generalization of the “here-
ditarily countable” names appearing in [She98, 4.1]; see also [GK16].
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Lemma 2.5.8. For every condition p ∈ Pδ there exists an Hκ+-condition
q∗ ≤ p.

Proof. First let N be a model of size κ, closed under <κ-sequences, with
p,P ∈ N, and let q∗ be a Fκ(P)-fusion limit of ⇀p ′ with p′ζ,i ∈ N as in 2.5.4
(so in particular q∗ is N-generic).

Now we will try to find an Hκ+-name for p′ζ,i(α), for all ζ, α < δ, i < µζ .
For α ∈ supp(q∗) we define p′′ζ,i(α) as follows. We find (in N) a maximal

antichain A = Aζ,i,α that decides ḃ−1α (p′ζ,i(α)), i.e. there exists a function
f = fζ,i,α : A→ κ+ such that for all r ∈ A,

r 
 p′ζ,i(α) = ḃα(f(r)).

Let A′ = A ∩N. Consider the sequence 〈(r, ḃα(f(r))) : r ∈ A′〉. This family
defines an Hκ+-name p′′ζ,i(α).

Now because q∗�α is N-generic,

q∗�α 
 p′ζ,i(α) = p′′ζ,i(α).

Hence q∗�α forces that q∗(α) is equal to a witness of White’s win against
p′′ζ,i(α), i.e. q∗(α) is a F∗κ(Q̇α)-fusion limit. Hence q∗(α) is an Hκ+-name, so
q∗ is an Hκ+-condition.

Corollary 2.5.9. Let Pδ be as in 2.5.1 (so in particular δ < κ++). Then
there exists D ⊆ Pδ such that:

(1) D is dense.
(2) |D| = κ+.
(3) Pδ has the κ++-c.c.

Proof. Follows immediately from 2.5.8.

Corollary 2.5.10. Assume 2κ = κ+, and let P = (Pα,Qα : α < κ++)
be an iteration with limit Pκ++ satisfying the following:

(1) P has κ-support.
(2) For each α < κ++ we have Pα 
 |Qα| = 2κ.
(3) For each α < κ++ and each name q̇ ∈ Q̇α, Pα forces that White has a

winning strategy for the fusion game F∗κ(Q̇α, q̇) (defined in 2.4.1; check
2.4.3 to see for which forcings this may be the case).

Then:

(a) For each α < κ++ the forcing notion Pα has a dense subset of cardinal-
ity κ+.

(b) For each α < κ++, Pα forces 2κ = κ+. (If we assume that each Qα adds
a new κ-real, then Pκ 
 2κ = κ++.)

(c) For each δ ≤ κ++, Pδ has the κ++-c.c.
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Proof. The κ++-c.c. of Pκ++ follows by the Solovay–Tennenbaum theo-
rem from the fact that P uses direct limits on a stationary set, namely, the
set of ordinals of cofinality κ+. (See [ST71].)

The rest just summarizes previous theorems.

3. Smaller ideals. In this section we first describe two ideals wid(Qκ)
and id−(Qκ), both of which are closely related (and often equal) to id(Qκ).
We then give a more “combinatorial” characterization of add(Qκ) and cf(Qκ),
involving the additivity and cofinality of the ideal nstprκ of nowhere station-
ary subsets of Sκpr ⊆ κ.

3.1. The ideal wid(Qκ)

Definition 3.1.1. For id(Qκ) we allow κ-many antichains to define A ∈
id(Qκ). But we may also consider the weak ideal wid(Qκ) of all sets A ⊆ 2κ

such that for some maximal antichain A (or equivalently some predense
set A) we have A ⊆ set0(A), where set0(A) := 2κ\

⋃
p∈A[p].

Lemma 3.1.2.

(a) wid(Qκ) ⊆ id(Qκ).
(b) wid(Qκ) = id(Qκ) iff ¬Pr(κ).
(c) wid(Qκ) is κ-complete.

Proof. (a) Trivial: If A witnesses A ∈ wid(Qκ) then Λ = {A} witnesses
A ∈ id(Qκ).

(b) Assume ¬Pr(κ). Let Λ be a set of at most κ-many maximal antichains
of Qκ and without loss of generality assume that Λ is closed under rational
shifts, i.e. for all η1, η2 ∈ 2κ we have

η1 =∗ η2 =⇒ [η1 ∈ set0(Λ)⇔ η2 ∈ set0(Λ)].

Let A ⊆ set0(Λ). By our assumption about κ there exists p ∈ Qκ such that
[p] ⊆ set1(Λ); let p be witnessed by (τ, S,

⇀

Γ ). Let

A = {q ∈ Qκ : q is witnessed by (ρ, S,
⇀

Γ ) for some ρ ∈ 2<κ}
and check that A is predense. Now clearly q ∈ A ⇒ [q] ⊆ set1(Λ) hence
set1(A) ⊆ set1(Λ) hence A ⊆ set0(A), i.e. A ∈ wid(Qκ).

Conversely assume wid(Qκ) = id(Qκ) and let Λ be a set of no more
than κ-many maximal antichains of Qκ. By our assumption there exists a
maximal antichain A of Qκ such that⋃

p∈A
[p] = set1(A) ⊆ set1(Λ).

Hence for any p ∈ A we have [p] ⊆ set1(Λ); as Λ was arbitrary, we get
¬Pr(κ).

(c) Because Qκ is κ-strategically closed.
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Lemma 3.1.3. Consider the usual forcing ideal

fid(Qκ) = {A ⊆ 2κ : (∀p ∈ Qκ)(∃q ≤ p) [q] ∩A = ∅}.
Then fid(Qκ) = wid(Qκ).

Proof. Let A ∈ wid(Qκ) be witnessed by A. Now for any p ∈ Qκ there
exists p′ ∈ A such that p and p′ are compatible. Let q = p ∩ p′; then clearly
A ∩ [q] = ∅, hence A ∈ fid(Qκ).

Conversely, if A ∈ fid(Qκ) then the set D = {q : [q] ∩ A = ∅} is dense.
Choose any maximal antichain A ⊆ D; then A will witness A ∈ wid(Qκ).

3.2. The ideal id−(Qκ). Recall from 3.1.1 that the ideal wid(Qκ) is
generated by sets set0(A), where A ⊆ Qκ is any predense set. Note also that
the set of all rational translates (see 1.2.3) of any fixed condition is predense
by 1.1.8. This suggests the following definition:

Definition 3.2.1. The ideal id−(Qκ) consists of all sets A ⊆ 2κ for
which there exists a condition p such that A ⊆ set0({s+ [p] : s ∈ 2<κ}).

Equivalently, A ∈ id−(Qκ) iff there are

• a nowhere stationary set S ⊆ Sκinc , and
• a sequence

⇀

N = 〈Nδ : δ ∈ S〉 such that each Nδ is a “rather small” subset
of 2δ (in the sense that Nδ is in id(Qδ))

such that

A ⊆ set−0 (
⇀

N) := {η ∈ 2κ : (∃∞δ ∈ S) η�δ ∈ Nδ}.

Note that we are often lazy and use the notation add(Qκ). This al-
ways means add(id(Qκ)), never add(id−(Qκ)). The same applies for cov,
non and cf.

Lemma 3.2.2. id−(Qκ) ⊆ wid(Qκ).

Proof. Given S ⊆ Sκinc and
⇀

Λ = 〈Λδ : δ ∈ S〉 let pρ ∈ Qκ be the condition
witnessed by (ρ, S,

⇀

Λ) and let D = {pρ : ρ ∈ 2<κ}. It is easy to check that
set−0 (

⇀

Λ) ⊆ set0(D).

Lemma 3.2.3. id−(Qκ) is <κ+-complete.

Proof. For i < κ let (Si,
⇀

Λi) represent Ai = set−0 (
⇀

Λi) ∈ id−(Qκ). Let
S∗ = {δ < κ : (∃i < δ) δ ∈ Si}

be the diagonal union of Si and for δ ∈ S∗ let Λ∗δ =
⋃
{Λi,δ : i < δ}. Then

clearly
⋃
i<κAi ⊆ set−0 (

⇀

Λ∗).

Theorem 3.2.4. Let κ be a weakly compact cardinal. Then id−(Qκ) =
wid(Qκ).
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Proof. Let D = {pε : ε < κ} ⊆ Qκ be a maximal antichain witnessing
A ⊆ set0(D) ∈ wid(Qκ). For ε < κ let pε be witnessed by (τε, Sε,

⇀

Λε). Using
weak compactness we find a sequence 〈δα : α < κ〉 such that:

• δα ∈ Sκinc.
• δα > supβ<α δβ .
• Dα = {pε ∩ 2<δα : ε < δα} is a maximal antichain in Qδα .

Let
S∗α =

( ⋃
ε<δα

Sε

)
\δα and S∗ =

⋃
α<κ

S∗α ∪ {δα : α < κ}.

It is easy to check that S∗ is nowhere stationary. For δ ∈ S∗ we define

Λ∗δ =
⋃
ε<δ

Λε,δ ∪

{
{Dα} if δ = δα for some α < κ,

∅ otherwise.

We claim that set0(D) ⊆ set−0 (
⇀

Λ∗), witnessing A ∈ id−(Qκ). Let η ∈ set0(D).

Case 1: (∃∞α < κ) η�δα ∈ set0(Dα). Thus clearly η ∈ set−0 (
⇀

Λ∗).

Case 2: (∀∞α < κ) η�δα ∈ set1(Dα). So η�δα ∈ [pεα ∩ 2<δα ] for some
εα < δα for almost all (or just infinitely many) α < κ. However η ∈ set0(D)
implies that η 6∈ [pεα ]. Hence there exists δ ∈ Sεα\δα such that η�δ ∈
set−0 (Λεα,δ). Recall that Λεα,δ ⊆ Λ∗δ and thus η ∈ set−0 (

⇀

Λ∗).

Corollary 3.2.5. Let κ be a weakly compact cardinal. Then id−(Qκ) =
id(Qκ).

Proof. By 3.2.4 we have id−(Qκ) = wid(Qκ), and by 3.2.3, id−(Qκ) is
<κ+-complete. Of course id(Qκ) is the <κ+-closure of wid(Qκ) so the result
follows.

Lemma 3.2.6. Let S ⊆ κ be nowhere stationary. Then we can find:

(1) a regressive function f on S,
(2) a family {Eα : α ≤ κ, cf(α) > ω} where Eα ⊆ α is a club

such that:

(a) (∀δ ∈ κ\ω) |{λ ∈ S\δ : f(λ) ≤ δ}| < δ.
(b) (∀α ∈ κ)(∀λ < α) cf(α) > ω ⇒ (f(λ), λ) ∩ Eα = ∅.

Proof. We prove by induction on β ≤ κ that we can find a regressive
function fβ on S∩β and a family {Eα : α ≤ β, cf(α) > ω} with the required
properties. (Note that for any β we will reuse the Eα from previous steps so
we do not bother writing Eβ,α.) For β = κ the result follows.

Case 1: β successor. Easy.
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Case 2: β limit, cf(β) > ω. Let Eβ = 〈αζ : ζ < cf(β)〉 be an increasing
continuous cofinal sequence in β, disjoint from S. Let

Sζ = S ∩ [αζ , αζ+1)

and let fζ be a function on Sζ from the induction hypothesis. Without loss
of generality λ ∈ Sζ ⇒ fζ(λ) ≥ αζ . [Why? Just round up, i.e. replace fζ(λ)
by max(αη, fζ(λ)).] So

fβ =
⋃

ζ<cf(β)

fζ

is as required. In particular, because S is disjoint from Eβ , the function fβ
is regressive. By construction, the sets Eβ have the property (b).

Case 3: β limit, cf(β) = ω. Like Case 2, but easier (no rounding up
required).

Theorem 3.2.7. Let A ∈ id−(Qκ) be represented by
⇀

Λ = 〈Λδ : δ ∈ S〉.
Then there exists A′ ∈ id−(Qκ) represented by

⇀

Λ′ = 〈Λ′δ : δ ∈ S′〉 such that:

(1) A ⊆ A′.
(2) S′ ∈ nstprκ .
(3) S ∩ Sκpr ⊆ S′.
(4) δ ∈ S ∩ S′ ⇒ Λδ ⊆ Λ′δ.

Proof. First without loss of generality we assume A is closed under ra-
tional translates (see 1.2.3) and in particular Λδ are closed under rational
translates. For δ ∈ S\Sκpr find pδ ∈ Qδ witnessed by (〈〉,

⇀

Γδ, Sδ) such that
[pδ] ⊆ set1(Λδ). By 1.3.2 we may assume Sδ ⊆ Sδpr.

Now let f be a regressive function on S as in 3.2.6 and let

S′ = (S ∩ Sκpr) ∪
⋃

δ∈S\Sκpr

Sδ\(f(δ) + 1)

and for δ ∈ S′ let

Λ′δ =
⋃
{Γδ∗,δ : δ∗ > δ > f(δ∗)} ∪

{
Λδ, δ ∈ S ∩ Sκpr,
∅, otherwise.

Why is S′ nowhere stationary? Let α < κ, cf(α) > ω. Why is S′ ∩ α not
stationary in α? Consider two cases:

• α > sup(S ∩ α). Use 3.2.6(a).
• α = sup(S ∩ α). For the part of S′ ∩ α that comes from Sδ with δ < α

use 3.2.6(b) to show that the club set Eα is disjoint from Sδ\(f(δ) + 1)
for all δ < α. For the part that comes from Sδ with δ > α use 3.2.6(a) as
above.
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See 3.3.16 for the same argument carried out in more detail. Similarly argue
that |Λ′δ| ≤ δ.

Now check that S′,
⇀

Λ′ define a set A′ ∈ id−(Qκ) covering A. Indeed, if
η ∈ A, there exists W ⊆ S with sup(W ) = κ such that η�δ ∈ set0(Λδ) for all
δ ∈W . If δ ∈W ∩ Sκpr we have Λ′δ ⊇ Λδ hence η�δ ∈ set0(Λ

′
δ). If δ ∈W\Sκpr

we have η�σ ∈ set0(Γ )δ,σ for all σ ∈ (f(δ), δ). Hence (W ∩Sκpr)∪
⋃
δ∈W\Sκpr Sδ

is a cofinal subset of κ witnessing η ∈ A′.

3.3. Characterizing additivity and cofinality

Lemma 3.3.1 (Null set normal form theorem). Let κ = sup(Sinc∩κ) and
let A ∈ id(Qκ). For ε < κ let Wε ⊆ κ = sup(Wε) and otherwise arbitrary
(e.g. disjoint). Then there exist S,

⇀

Λ = 〈Λδ : δ ∈ S〉, ⇀
p,

⇀

J = 〈Jε : ε < κ〉
such that:

(1) S ⊆ κ is nowhere stationary.
(2) S ⊆ Sκpr.
(3) ⇀

p = {pρ : ρ ∈ 2<κ} where pρ ∈ Qκ is witnessed by (ρ, S,
⇀

Λ).
(4) Jε ⊆ {pρ : ρ ∈ 2<κ ∧ lg(ρ) ∈Wε} is predense in Qκ (or even a maximal

antichain).
(5) A ⊆ set0(

⇀

J ).

Discussion 3.3.2. So the idea is as follows: A general null set A is repre-
sented by κ-many antichains each consisting of κ-many conditions that are
all witnessed by different nowhere stationary sets S and sequences

⇀

Λ. But
using a diagonalization argument we find a representation of the null set
using only a single S and

⇀

Λ.
Lemma 3.3.1 first appears in [She17, 3.16] but we repeat a sketch of the

proof here for the convenience of the reader.

Proof of Lemma 3.3.1. Let A ∈ id(Qκ) be witnessed by 〈Iε : ε < κ〉
maximal antichains of Qκ. Let Iε = {pε,i : i < κ} and let pε,i be witnessed by
(τε,i, Sε,i,

⇀

Λε,i). By 1.3.2 we may assume without loss of generality Sε,i ⊆ Sκpr.
Let

S = {δ ∈ κ : (∃ε, i < δ) δ ∈ Sε,i};
it is easy to see that S is nowhere stationary. For δ ∈ S let

Λδ =
⋃
{Λε,i,δ : ε < δ, i < δ, δ ∈ Sε,i};

it is easy to see that |Λδ| ≤ δ. For ρ ∈ 2<κ let pρ be the condition witnessed
by (ρ, S,

⇀

Λ). Finally, let

Jε = {pρ : (∃i < κ) i, ε < lg(ρ) ∈Wε ∧ τε,i E ρ}.
Now check.
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Corollary 3.3.3 (Baire’s theorem for id(Qκ)). The ideal id(Qκ) is not
trivial.

Proof. If κ > sup(Sinc ∩ κ) then id(Qκ) = id(Cohenκ) so the corollary
follows from Baire’s theorem for the meager ideal on 2κ.

If κ = sup(Sinc ∩ κ) let S, ⇀p, 〈Jε : ε < κ〉 be as in 3.3.1. Let E ⊆ κ be a
club disjoint from S. We construct a sequence 〈ρε : ε < κ〉 of ρε ∈ 2<κ such
that:

• pρε ∈ Jε.
• ζ < ε⇒ ρζ E ρε.
• (As a consequence:) ζ < ε⇒ pρε ≤ pρζ , and in particular ρε ∈ pρζ .
We work inductively: If ε = ζ + 1 find ρε ∈ Jε such that:

pρε 6⊥ pρζ , (lg(ρε), lg(ρζ)) ∩ E 6= ∅.
If ε is a limit, then let ρ′ε =

⋃
ζ<ε ρζ and find ρε D ρ′ε as above. (Letting

δ := lg(ρ′ε) we have δ ∈ E, so no branches die out in level δ, thus ρ′ε ∈ pρζ
for all ζ < ε.)

Finally let η =
⋃
ε<κ ρε; then clearly η ∈ set1(J ), i.e. set0(J ) 6= 2κ.

Lemma 3.3.4. Let κ be Mahlo (hence Sκpr is stationary by 1.3.3(4)). Then
there exist maps

(1) φ+ : id(Qκ)→ nstprκ ,
(2) φ− : nstprκ → id−(Qκ)

such that for all S ∈ nstprκ , A ∈ id(Qκ),

φ−(S) ⊆ A =⇒ S ⊆∗ φ+(A).

Discussion 3.3.5. Lemma 3.3.4 first appears implicitly in [She17] but
proving it in terms of the id−(Qκ) ideal and strengthened Galois–Tukey
connections may be more transparent.

Proof of Lemma 3.3.4. For λ ∈ Spr
κ let Λ∗λ witness λ ∈ Spr

κ . For S ∈ nstprκ
define

φ−(S) = {η ∈ 2κ : (∃∞δ ∈ S) η�δ ∈ set0(Λ
∗
δ)}

and for A ∈ id(Qκ) define φ+(A) = S where S is as in 3.3.1.
Now let A ∈ id(Qκ) and S∗ ∈ nstprκ be such that S∗ 6⊆∗ φ+(A); we are

going to show φ−(S∗) 6⊆ A. So let (S,
⇀

Λ,
⇀
p,

⇀

J ) be as in 3.3.1 for A (hence
φ+(A) = S). By our assumption S′ = S∗\S is unbounded. We can easily
find an unbounded set S′′ ⊆ S′ with its closure E disjoint from S. (Simply
take a club C disjoint from S and working inductively for ε ∈ C take λ ∈ S′
such that ε ≤ λ.)

We are going to inductively construct a /-increasing sequence 〈ηi : i < κ〉
of ηi ∈ 2<κ and an increasing sequence 〈δi : i < κ〉 of δi ∈ κ such that for
i < κ:
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(a) |ηi| = δi.
(b) δi ∈ E (thus in particular δi 6∈ S).
(c) i = j + 1⇒ δi ∈ S′′ (thus in particular δi ∈ S∗).
(d) [pηi ] ⊆

⋂
j<i set1(Jj).

(e) i = j + 1⇒ ηi ∈ set0(Λ
∗
δi

).

Now let η =
⋃
i<κ ηi and note that η ∈ φ−(S∗) by clause (e), and η 6∈ A by

clause (d).
It remains to prove that we can indeed carry out this induction. The case

i = 0 is trivial. For i limit let ηi =
⋃
j<i ηj (remember (b)).

For i = j + 1 consider pηj . Because Jj is predense, we find ρ ∈ 2<κ such
that pρ ∈ Jj and pηj , pρ are compatible with lower bound pν , ν = ρ ∪ ηj .
Choose δi ∈ S′′ such that δi > |ν|. Now we see that [pν ∩ 2<δi ] 6⊆ set1(Λ

∗
δi

)

so choose ηi ∈ [pν ∩ 2<δi ]\ set1(Λ
∗
δi

) and note that because δi 6∈ S we have
ηi ∈ pηj hence pηi ⊆ pηj .

Theorem 3.3.6. Let κ be Mahlo. Then:

(1) add(id−(Qκ), id(Qκ)) ≤ add(nstprκ ).
(2) cf(id−(Qκ), id(Qκ)) ≥ cf(nstprκ ).

Proof. By 3.3.4 and 1.4.8.

Corollary 3.3.7. Let κ be Mahlo. Then:

(1) add(id(Qκ)) ≤ add(nstprκ ).
(2) add(id−(Qκ)) ≤ add(nstprκ ).
(3) cf(id(Qκ)) ≥ cf(nstprκ ).
(4) cf(id−(Qκ)) ≥ cf(nstprκ ).

Definition 3.3.8. We define

Q∗κ,S = {p ∈ Qκ : Sp ⊆ S}.
Remember Definition 1.1.15 and note that Qκ,S ⊆ Q∗κ,S but in general equal-
ity does not hold.

Theorem 3.3.9. Let κ be Mahlo. Then

add(id(Qκ)) = min{µ1, µ2}
where

µ1 = add(nstprκ ), µ2 = min{add(id(Q∗κ,S), id(Qκ)) : S ∈ nstprκ }.
Proof. Let µ = add(Qκ). Then µ ≤ µ1 follows from Theorem 3.3.6

(remember 1.4.4) and µ ≤ µ2 is trivial. So it remains to show that µ ≥
min{µ1, µ2}.

Let Ai ∈ id(Qκ) for i < i∗ < min{µ1, µ2} and let (Si,
⇀

Λi,
⇀

Ji,
⇀
pi) be as

in 3.3.1. By 1.3.2 we may assume that Si ∈ nstprκ , and because i∗ < µ1, there
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is S ∈ nstprκ such that i < i∗ ⇒ Si ⊆∗ S. Thus clearly Ai ∈ id(Q∗κ,S), and
because i∗ < µ2 we have

⋃
i<i∗ Ai ∈ id(Qκ).

Theorem 3.3.10. Let κ be Mahlo. Then

cf(id(Qκ)) = µ1 + µ2

where

µ1 = cf(nstprκ ), µ2 = sup{cf(id(Q∗κ,S), id(Qκ)) : S ∈ nstprκ }.
Proof. Let µ = cf(Qκ). Then µ ≥ µ1 follows from Theorem 3.3.6 (re-

member 1.4.4) and µ ≥ µ2 is trivial. So it remains to show that µ ≤ µ1 +µ2.
Let 〈Sζ : ζ < µ1〉 witness µ1 and for ζ < µ1 let 〈Aζ,ε : ε < µ2〉 witness

cf(id(Q∗κ,Sζ ), id(Qκ)) ≤ µ2. We claim that

{Aζ,ε : ζ < µ1, ε < µ2}

is a cofinal family of id(Qκ). Thus let A ∈ id(Qκ) and let (S,
⇀

Λ,
⇀

J ,⇀p) be as
in 3.3.1. By 1.3.2 we may assume that S ∈ nstprκ and find ζ < µ1, α∗ < κ
such that S\α∗ ⊆ Sζ\α∗. For δ ∈ Sζ define

Λ′δ =

{
Λδ if δ ∈ S\α∗,
∅ if δ 6∈ S or δ < α∗.

Now for each i < κ correct Ji to J ′i that uses only trunks of length greater
than α∗. Thus we have found A′ ⊇ A and A′ ∈ id(Q∗κ,Sζ ). Hence there exists
ε < µ2 such that A′ ⊆ Aζ,ε.

Definition 3.3.11. Let S ⊆ κ and define

ΠS =
(∏
δ∈S

(id(Qδ)/id
−(Qδ)),≤∗

)
where the intended meaning of ≤∗ is pointwise set-inclusion for almost all
places of the product. Writing [Λδ] for the id−-equivalence class of Λδ, for
⇀

Λ = 〈[Λδ] : δ ∈ S〉,
⇀

Γ = 〈[Γδ] : δ ∈ S〉 ∈ ΠS we define
⇀

Λ ≤∗
⇀

Γ ⇐⇒ (∀∞δ ∈ S) Λδ\Γδ ∈ id−(Qδ).

Lemma 3.3.12. Let S ∈ nstκ, sup(S) = κ. Then there exist maps

φ+ : id(Qκ)→ ΠS , φ− : ΠS → id−(Qκ)

such that for all
⇀

Λ ∈ ΠS and A ∈ id(Qκ),

φ−(
⇀

Λ) ⊆ A =⇒
⇀

Λ ≤∗ φ+(A).

Proof. For
⇀

Λ = 〈[Λδ] : δ ∈ S〉 ∈ ΠS define φ−(
⇀

Λ) = set−0 (〈Λδ : δ ∈ S〉).
Given A ∈ id(Qκ), find any

⇀

Λ as in 3.3.1 and define φ+(A) =
⇀

Λ�S.
Now assume A ∈ id(Qκ) and

⇀

Λ∗ ∈ ΠS are such that
⇀

Λ∗ 6≤∗ φ+(A); we
are going to show φ−(

⇀

Λ∗) 6⊆ A. Let
⇀

Λ∗ = 〈[Λ∗δ ] : δ ∈ S〉; then for A there are
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(as in 3.3.1) SA,
⇀

J ,
⇀

Λ = 〈Λδ : δ ∈ SA〉, 〈Λδ : δ ∈ S〉 = φ+(A) (without loss
of generality (because SA ⊇ S)) such that

(∃∞δ ∈ S) ¬(set0(Λδ) ⊇ set0(Λ
∗
δ)) mod id−(Qδ).

Let Bδ = set1(Λδ) ∩ set0(Λ
∗
δ). Hence by the above we have

(∃∞δ ∈ S) Bδ 6∈ id−(Qδ).

We are going to show

(∗) there exists η ∈ (2κ\A) ∩ set−0 (
⇀

Λ∗) witnessing set−0 (
⇀

Λ∗) 6⊆ A.
Without loss of generality we assume closure under rational translates, i.e.
set0(Λδ)

[β] = set0(Λδ) for β < δ ∈ S, and clearly we may assume the same
for

⇀

Λ∗.

Claim. Let pρ ∈ Qκ be the condition witnessed by (ρ, SA,
⇀

Λ). Then for
all ρ ∈ 2<κ, there exists δ ∈ S\(lg(ρ) + 1) such that

(pρ ∩ 2δ) ∩ set0(Λ
∗
δ) 6= ∅.

To see this choose δ > lg(ρ) such that Bδ 6∈ id−(Qδ) and let

Cδ = {η ∈ 2δ : (∀∞σ ∈ SA ∩ δ) η�σ ∈ set1(Λσ)}.
The idea is that Cδ is a set of candidates for elements of pρ ∩ 2δ. Towards a
contradiction assume that

Cδ ⊆ set0(Λδ) ∪ set1(Λ
∗
δ) = ¬Bδ

i.e. every candidate either dies out at level δ by definition of pρ or is not
in set0(Λ

∗
δ). But clearly Cδ = set−1 (

⇀

Λ�δ) i.e. is a co-id−(Qδ)-set, contradicting
Bδ 6∈ id−(Qδ). Hence there exists η ∈ Cδ ∩ Bδ. Now use the closure under
rational translates and choose β ∈ (lg(ρ), δ) large enough such that for ν ∈
2β ∩ pρ we have

ν�β_η�(β, δ) ∈ (pρ ∩ 2δ) ∩ set0(Λ
∗
δ).

This concludes the proof of the Claim.

Now fix a club E disjoint from S and work as in 3.3.4 constructing a
/-increasing sequence 〈ηi : i < κ〉 of ηi ∈ 2<κ and an increasing sequence
〈δi : i < κ〉 of δi ∈ κ such that for i < κ:

(a) |ηi| = δi.
(b) i = j + 1⇒ δi ∈ S.
(c) i limes ⇒ δi ∈ E.
(d) [pηi ] ⊆

⋂
j<i set1(Jj).

(e) i = j + 1⇒ ηi ∈ set0(Λ
∗
δi

).

Finally, let η =
⋃
i<κ ηi and note that η ∈ set−0 (

⇀

Λ∗) = φ−(
⇀

Λ∗) by clause (e),
and η 6∈ A by clause (d). So we have shown (∗).
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It remains to check that we can carry out the induction. For i = j + 1
we find pρ ∈ Ji such that pρ and pηj are compatible. Now we let ν = ρ ∪ ηj
and find δi > |ν| such that δi ∈ S with Bδi 6∈ id−(Qδi) and (δj , δi) ∩ E 6= ∅.
Using the claim we find ηi ∈ pν ∩ 2δi ∩ set0(Λ

∗
δi

).

Theorem 3.3.13. Let S ∈ nstκ with sup(S) = κ. Then:

(1) add(id−(Qκ), id(Qκ)) ≤ add(ΠS).
(2) cf(id−(Qκ), id(Qκ)) ≥ cf(ΠS).

Proof. By 3.3.12 and 1.4.8.

We will use the following definition and the revised GCH theorem from
[She00].

Definition 3.3.14. Let µ, θ be cardinals with θ < µ and θ regular. We
define

µ[θ] = min{|U | : U ⊆ P(µ) ∧ ϕ(U)}
where ϕ(U) iff:

(1) All u ∈ U have size θ.
(2) Every v ⊆ µ of size θ is contained in the union of fewer than θ members

of U .

Theorem 3.3.15 (The revised GCH theorem). Let α be an uncountable
strong limit cardinal, i.e. β < α⇒ 2β < α. For example, α = |Vω+ω| = iω,
the first strong limit cardinal. Then for every µ ≥ α for some ε < α we have

θ ∈ [ε, α] ∧ θ is regular =⇒ µ[θ] = µ.

Theorem 3.3.16. Let κ be Mahlo. Then:

(i) cf(id−(Qκ)) = µ1 + µ2,
(ii) cf(id(Qκ)) = µ1 + µ2 + µ3,

where

µ1 = cf(nstprκ ), µ2 = sup(cf(ΠS) : S ∈ nstprκ ), µ3 = cf(id(Qκ)/id−(Qκ)).

Proof. The inequality ≥: (i) Let µ∗ = cf(id−(Qκ), id(Qκ)). Then remem-
bering 1.4.4 we have µ∗ ≥ µ1 by 3.3.6, and µ∗ ≥ µ2 by 3.3.13.

(ii) Use the same theorems. Finally, cf(id(Qκ)) ≥ µ3 is trivial.

The inequality ≤: We only show (i), which using 1.4.5 easily implies (ii).

(1) Let 〈Sζ : ζ < µ1〉 witness µ1 = cf(nstprκ ), that is:

(a) ζ < µ1 ⇒ Sζ ∈ nstprκ .
(b) (∀S ∈ nstprκ )(∃ζ < µ1) S ⊆∗ Sζ .
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(2) For every ζ < µ1 let 〈
⇀

Aζ,i : i < µ2〉 witness µ2,Sζ ≤ µ2, that is:

(a)
⇀

Aζ,i = 〈Aζ,i,δ : δ ∈ Sζ〉.
(b) Aζ,i,δ ∈ id(Qδ), representing the equivalence class [Aζ,i,δ] ∈ id(Qδ)/

id−(Qδ).
(c) For all

⇀

A ∈
∏
δ∈Sζ id(Qδ), there is some i < µ2 such that for every δ

large enough we have Aδ ⊆ Aζ,i,δ mod id−(Qδ).
(d) Changing the representative of [Aζ,i,δ] (if necessary), we may assume

{η ∈ 2δ : (∃∞σ ∈ Sζ ∩ δ) η�σ ∈ Aζ,i,σ} ⊆ Aζ,i,δ.
(3) Let

θ = min{θ : θ = cf(θ) < |Vω+ω| ∧ (µ1 + µ2)
[θ] = µ1 + µ2};

see 3.3.14 and 3.3.15 for definition of notation and existence of θ. Then
for u ∈ [µ1 × µ2]θ:
(a) Su =

⋃
{Sζ : {ζ} × µ2 ∩ u 6= ∅}.

(b) For δ ∈ Su we inductively define Au,δ =
⋃
{Aζ,i,δ : (ζ, i) ∈ u} ∪

{η ∈ 2δ : (∃∞σ ∈ Su ∩ δ) η�σ ∈ Au,σ}.
(c) Au = {η ∈ 2κ : (∃∞δ ∈ S) η�δ ∈ Au,δ}.

(4) Note that in (3) (because for any δ ∈ Sinc we have δ > |Vω+ω| > θ):

(a) Su ∈ nstprκ .
(b) Au,δ ∈ id(Qδ).
(c) Au ∈ id−(Qκ).

(5) Remembering 3.3.14, 3.3.15 we find ⇀
u such that:

(a) ⇀
u = 〈uα : α < µ1 + µ2〉.

(b) uα ∈ [µ1 × µ2]θ.
(c) If u ∈ [µ1 × µ2]θ then it is the union of fewer than θ members of
{uα : α < µ1 + µ2}.

We claim that 〈Auα : α < µ1 + µ2〉 is a cofinal family in id−(Qκ). So let
A ∈ id−(Qκ), and for ε < θ inductively define Aε, ζε, iε, etc. such that:

(A) A ⊆ A0.
(B) ε′ < ε⇒ Aε′ ⊆ Aε.
(C) Aε = set−0 (

⇀

Λ1
ε ) ∈ id−(Qκ) where:

(1)
⇀

Λ1
ε = 〈Λ1

ε,δ : δ ∈ S1
ε 〉.

(2) S1
ε ∈ nstprκ (remember 3.2.7).

(3) Λ1
ε,δ is a set of at most δ-many maximal antichains of Qδ.

(D) ζε < µ1 is minimal such that S1
ε ⊆∗ Sζε .

(E)
⇀

Λ2
ε = 〈Λ2

ε,δ : δ ∈ Sζε〉 is such that δ ∈ S1
ε ∩ Sζε ⇒ Λ1

ε,δ = Λ2
ε,δ. (For

instance, choose Λ2
ε,δ = ∅ for δ ∈ Sζε\S1

ε .)
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(F) iε < µ2 is minimal such that for some S3
ε ⊆ Sζε , S3

ε =∗ Sζε ,

(∀δ ∈ S3
ε ) (set0(Λ

2
ε,δ) ⊆ Aζε,iε,δ) mod id−(Qδ).

(G)
⇀

Λ4
ε = 〈Λ4

ε,δ : δ ∈ S4
ε 〉 is such that:

(1) S3
ε ⊆ S4

ε ∈ nstprκ .
(2) If δ ∈ S3

ε then Aζε,iε,δ ⊆ set0(Λ
4
ε,δ).

(3) If δ ∈ S3
ε then set0(Λ

2
ε,δ) ⊆ set0(Λ

4
ε,δ)∪ set−0 (

⇀

Λ4
ε�δ). This point is the

only non-explicit step; see below for why we can do this.

(H) If ε = ε′ + 1 then S1
ε = S4

ε′ ,
⇀

Λ1
ε =

⇀

Λ4
ε′ .

(I) If ε is a limit then S1
ε =

⋃
ε′<ε S

1
ε′ , Λ

1
ε,δ =

⋃
ε′<ε Λ

1
ε′,δ.

Why is carrying out the induction enough?
Note {(ζε, iε) : ε < θ} ∈ [µ1 × µ2]θ so we use (5)(c) to find α < µ1 + µ2

such that

(3.1) (∃∞ε < θ) (ζε, iε) ∈ uα.
Remember θ < |Vω+ω| < cf(κ) and find ψ∗ < κ such that

(∀ε < θ) S1
ε \ψ∗ ⊆ Sζε\ψ∗ ⊆ S3

ε \ψ∗ ⊆ S4
ε \ψ∗ ⊆ S1

ε+1\ψ∗.
We plan to show A ⊆ Auα . So let η ∈ A0; we will show η ∈ Auα .
Let W ⊆ S1

0\ψ∗ with sup(W ) = κ be such that

(∀δ ∈W ) η�δ ∈ set0(Λ
1
0,δ).

Let S1
θ =

⋃
ε<θ S

1
ε ; we claim

(3.2) (∀δ ∈ S1
ε )(∀∞ε < θ) η�δ ∈ Aζε,iε,δ.

We prove this by induction on δ:

• δ > sup(δ ∩Sinc). Then id−(Qδ) trivial so in (F) we always really (i.e. not
just modulo id−(Qδ)) cover set0(Λ

2
ε,δ).

• δ = sup(δ ∩ Sinc) and δ = sup(δ ∩ S1
θ ). By induction hypothesis we have

(∀σ ∈ S1
θ ∩ δ)(∃εσ < θ)(∀ε ≥ εσ) η�σ ∈ Aζε,iε,σ.

Now, δ is inaccessible so in particular regular, hence there exists ε′ such
that

(∃∞σ ∈ S1
θ ∩ δ) εσ = ε′

and for such σ we have

ε ≥ ε′ ⇒ η�σ ∈ Aζε,iε,σ,
which by (2)(d) implies η�δ ∈ Aζε,iε,δ.
• δ = sup(δ ∩ Sinc) but δ > sup(δ ∩ S1

θ ). In this case always really Aζε,iε,δ ⊇
set0(Λ

2
ε,δ) because otherwise δ would become a limit in S4

ε by (G)(3), see
below.
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Note that (3.2) holds in particular for all δ ∈W ⊆ S1
θ . So combine (3.1) and

(3.2) to see

(∀δ ∈W )(∃∞ε < θ) η�δ ∈ Aζε,iε,δ ∧ (ζε, iε) ∈ uα.
Thus η ∈ Auα and we are done.

How can we carry out the induction?
The only non-explicit part is how to get (G). The idea here is that in (F)

we make some mistake because we only cover set0(Λ
2
ε,δ) modulo id−(Qδ), i.e.

set0(Λ
2
ε,δ)\Aζε,iε,δ = Xε,δ ∈ id−(Qδ).

Let Xε,δ = set−0 (
⇀

Γε,δ) where
⇀

Γε,δ = 〈Γε,δ,σ : σ ∈ Sε,δ ⊆ δ〉. So in (G)(3) we
want to fix this mistake by choosing some S4

ε containing both Sε,δ and S3
ε

and then choosing
⇀

Λ4
ε with all Γε,δ,σ added. The problem here of course is

that we have to do this for all δ ∈ S3
ε but |S3

ε | = κ, so fixing the mistake
in such a naive way will in general yield a somewhere stationary set and
more than δ-many antichains at level δ. Hence we work as follows: Choose a
regressive function f on S3

ε as in 3.2.6, i.e. such that

(∀δ < κ) |{λ ∈ S3
ε \δ : f(λ) ≤ δ}| < δ,

i.e. f is regressive but in a very “lazy” way. The problem with fixing our
mistakes earlier was that we tried to do it all at once so let us instead do it
lazily as dictated by f . Thus let

S4
ε = S3

ε ∪
⋃
δ∈S3

ε

Sε,δ\(f(δ) + 1)

and for δ ∈ S4
ε let

Λ4
ε,δ = Λ3

ε,δ ∪ {Γε,δ∗,δ : δ∗ > δ > f(δ∗)}.

Now check that S4
ε is nowhere stationary:

• δ > sup(S3
ε ∩ δ). Then S3

ε ∩ δ is disjoint from Sε,δ′\(f(δ′) + 1) for every
δ′ ∈ S3

ε with f(δ′) > δ, so by 3.2.6(a) the set S4
ε ∩ δ is the union of fewer

than δ-many non-stationary sets.
• δ = sup(S3

ε ∩ δ). Let

S4∗
ε,δ =

⋃
δ′∈S3

ε∩δ

Sε,δ′\(f(δ′) + 1), S4∗∗
ε,δ =

⋃
δ′∈S3

ε∩(κ\δ)

Sε,δ′\(f(δ′) + 1) ∩ δ.

Then clearly
S4
ε ∩ δ = (S3

ε ∩ δ) ∪ S4∗
ε,δ ∪ S4∗∗

ε,δ .

Let Eδ be as in 3.2.6; it is easy to check using 3.2.6(b) that S4∗
ε,δ is dis-

joint from Eδ, i.e. non-stationary. Finally, S4∗∗
ε,δ is non-stationary by the

argument from the previous point.

Similarly check |Λ4
ε,δ| ≤ δ.
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Theorem 3.3.17. Let κ be Mahlo. Then:

(a) add(id−(Qκ)) = min{µ1, µ2},
(b) add(id(Qκ)) = min{µ1, µ2, µ3},
where

µ1 = add(nstprκ ),

µ2 = min(add(ΠS) : S ∈ nstprκ ),

µ3 = add(id(Qκ)/id−(Qκ)).

Proof. The inequality ≤: Same as “≥” in 3.3.16.
The inequality ≥: We only show (a) which using 1.4.5 easily implies (b).
Let µ < µ1 + µ2. We are going to show µ < add(id−(Qκ)). So let 〈Aζ :

ζ < µ〉 be a family of Aζ ∈ id−(Qκ); we are going to find A ∈ id−(Qκ) such
that

⋃
ζ<µAζ ⊆ A. Let Aζ be represented by 〈A0

ζ,δ : δ ∈ S0
ζ 〉; by 3.2.7 we

may assume S0
ζ ∈ nstprκ . Now work inductively for i < ω:

(1) Let Si ∈ nstprκ be such that ζ < µ⇒ Siζ ⊆∗ Si. (Remember µ < µ1.)
(2) Let

⇀

Ai ∈ ΠSi be such that

(∀ζ < µ)(∀∞δ ∈ Si) (Aiζ,δ ⊆ Aiδ) mod id−(Qδ).

(Remember µ < µ2.)
(3) For each ζ < µ work as in 3.3.16 using a regressive function to fix the

error
Xi
ζ,δ = (Aiζ,δ\Aiδ) ∈ id−(Qδ)

for δ ∈ Siζ . That is, we find Si+1
ζ , 〈Ai+1

ζ,δ : δ ∈ Si+1
ζ 〉 such that:

(a) Si ⊆ Si+1
ζ ∈ nstprκ .

(b) δ ∈ Si+1
ζ ⇒ Ai+1

ζ,δ ∈ id(Qδ).
(c) δ ∈ Siζ ⇒ Aiζ,δ ⊆ Aiδ ∪ set−0 (〈Ai+1

ζ,ε : ε ∈ Si+1
ζ ∩ δ〉).

Let
Sω =

⋃
i<ω

Si.

For δ ∈ Sω, ζ < µ let

Aωζ,δ =
⋃
i<ω

Aiζ,δ, Aωδ =
⋃
i<ω

Aiδ.

Finally, let

Aωζ = set−0 (〈Aωζ,δ : δ ∈ Sω〉), Aω = set−0 (〈Aωδ : δ ∈ Sω〉).
For ζ < µ we claim Aωζ ⊆ Aω. Let W = Sω\α∗ with α∗ < κ large enough
that in all ω-many steps of the construction in (1) and (2) the “almost all”
quantifiers become “for all”.
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We now claim that

(3.3) (∀δ ∈W )(∀i < ω)
(
η ∈ Aiζ,δ ⇒ (η ∈ Aωδ ∨ (∃∞ε ∈W ∩ δ) η�ε ∈ Aωε )

)
,

clearly this suffices to show Aζ ⊆ Aω. So towards a contradiction assume
there exists δ∗ ∈W such that there exists i < ω, η∗ ∈ 2δ

∗ with

(3.4) η∗ ∈ Aiζ,δ∗ ∧ η∗ 6∈ Aωδ∗ ∧ (∀∞ε ∈W ∩ δ∗) η∗�ε 6∈ Aωε
and let δ∗ be minimal with this property and without loss of generality

i = min{i : δ∗ ∈ Siζ}.

Now because η∗ ∈ Aiζ,δ∗ and η∗ 6∈ Aωδ∗ (thus in particular η∗ 6∈ Aiδ∗), we have

η∗ ∈ Xi
ζ,δ∗ , sup(W ∩ δ∗) = δ∗.

By (3)(c) there exists W ∗ ⊆W ∩ δ∗ unbounded such that

(∀ε ∈W ∗) η∗�ε ∈ Ai+1
ζ,ε ,

and because W ∗ ⊆ δ∗ and we assumed δ∗ to be minimal contradicting for-
mula (3.3), we have

(∀ε ∈W ∗)
(
η∗�ε ∈ Aωε ∨ (∃∞σ ∈W ∩ ε) η∗�σ ∈ Aωσ

)
,

contradicting the last part of the conjunction of formula (3.4) so we are done.
Intuitively the proof showed: Because κ is well ordered, we cannot keep

pushing our mistakes in (2) down for ω-many steps.

Corollary 3.3.18. Let κ be Mahlo. We get a strengthening of the general
fact about ideals from 1.4.5:

(a) cf(id(Qκ)) = cf(id−(Qκ)) + cf(id(Qκ)/id−(Qκ)).
(b) add(id(Qκ)) = min{add(id−(Qκ)), add(id(Qκ)/id−(Qκ))}.

Proof. (a) follows by 3.3.16, and (b) by 3.3.17.

4. id(Qκ) in the Qκ-extension. In this section we consider the relation
between V and VQκ , and also more generally between V and any extension
via a strategically closed forcing.

In 4.1 we show that (in contrast to the classical case), the ideal id(Qκ)
does not satisfy the Fubini theorem, and in fact violates it in a strong sense.

This allows us to to show cov(Qκ) ≤ non(Qκ); the proof is similar to a
proof of the classical inequality cov(null) ≤ non(meager), in the sense that
both follow from Lemma 4.1.3. It also follows that the old reals become a
measure zero set in the Qκ-extension.

In 4.2, we show that QV
κ is V-completely embedded into QVQκ

κ . This
parallels the classical case, but the proof is necessarily different, as we do
not have a measure.
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4.1. Asymmetry. In this section we elaborate on the asymmetry of
id(Qκ) as promised in [She17]. Anti-Fubini sets (defined below) are called
0-1-counterexamples to the Fubini property in [RZ99].

Definition 4.1.1. Let X , Y be sets and let i ⊆ P(X ), j ⊆ P(Y) be
ideals. We call a set F ⊆ X × Y an anti-Fubini set for (i, j) if

(a) for all η ∈ Y we have X\Fη ∈ i,
(b) for all ν ∈ X we have Fν ∈ j,

where

Fη = {ν ∈ X : (ν, η) ∈ F}, Fν = {η ∈ Y : (ν, η) ∈ F}.
If i = j then we simply call F an anti-Fubini set for i.

Lemma 4.1.2. Let X , Y be sets and let i ⊆ P(X ), j ⊆ P(Y) be ideals.
Let F ⊆ X × Y be such that:

(a) There exists E1 ∈ j such that for all η ∈ Y\E1 we have X\Fη ∈ i.
(b) There exists E0 ∈ i such that for all ν ∈ X\E0 we have Fν ∈ j.

Then there exists an anti-Fubini set F′ for (i, j).

Proof. Let
F′ = (F ∪ (X ×E1)))\(E0 × Y)

and check that F′ is as required.

Lemma 4.1.3 (Folklore). Let i, j ⊆ P(X ) be ideals. If there exists an
anti-Fubini set F for (i, j) then cov(i) ≤ non(j).

Proof. Suppose Y ⊆ Y, Y 6∈ j. We claim that⋃
{X\Fη : η ∈ Y } = X .

Let ν ∈ X . Because Fν ∈ j and Y /∈ j, we have Y \Fν 6= ∅, so choose
η0 ∈ Y \Fν . We conclude η0 /∈ Fν ⇒ (ν, η0) /∈ F ⇒ ν /∈ Fη0 , so ν ∈⋃
{X\Fη : η ∈ Y }.
Lemma 4.1.4 (Folklore). Let X be a set, let i, j ⊆ P(X ) be ideals and let

⊗ : X × X → X be a group operation satisfying for all k ∈ {i, j} and for all
X ∈ k the conditions

η ⊗X := {η ⊗ x : x ∈ X} ∈ k, X−1 := {x−1 : x ∈ X} ∈ k

where x−1 denotes the group inverse for ⊗. If there exist sets A0, A1 ⊆ X
such that

A0 ∈ i, A1 ∈ j, A0 ∩A1 = ∅, A0 ∪A1 = X ,
then:

(1) There exists an anti-Fubini set for (i, j).
(2) There exists an anti-Fubini set for (j, i).
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Proof. (1) Let
F = {(ν, η) : ν ∈ η ⊗A1}.

Clearly for any η ∈ X we have Fη = η ⊗ A1 hence X\Fη = η ⊗ A0 ∈ i. For
ν ∈ X we have Fν = {η : ν ∈ η ⊗ A1} = {η : η ∈ ν ⊗ A−11 } = ν ⊗ A−11 ∈ j.
So F is an anti-Fubini set for (i, j).

(2) Same proof, interchanging A0 and A1.

Theorem 4.1.5. Suppose that:

(a) i = (Q, η̇) is an ideal case, that is:

• Q is a κ-strategically closed forcing notion (or at least does not add
bounded subsets of κ).
• η̇ is a Q-name for a κ-real.
• The name η̇ determines i in the following sense: A ∈ i iff there exists
a (definition of a) κ-Borel set B ⊇ A such that Q 
 “ η̇ 6∈ B”.

(b) There exists a Borel set F ⊆ 2κ × 2κ that is anti-Fubini for i both in V
and in VQ.

Then:

(1) Q 
 “(2κ)V ∈ i”.
(2) Q is asymmetric, i.e. if η1 is Q-generic over V and η2 is QV[η1]-generic

over V[η1], then η1 is not Q-generic over V[η2].
(3) cov(i) ≤ non(i).

Proof. (1) We want to show Q 
 V∩Fη̇ = ∅. So let ν ∈ 2κ∩V. Consider
Fν = {η : ν ∈ Fη}. Now because Fν ∈ i, we see that η̇ 6∈ Fν thus ν 6∈ Fη̇.

(2) By (1) we have V[η1, η2] |= η1 ∈ 2κ\Fη2 .

(3) By 4.1.3.

Lemma 4.1.6. Assume κ = sup(Sκinc). Then there exists an anti-Fubini
set for (id−(Qκ), id(Qκ)).

Discussion 4.1.7. This is implicitly shown in [She17] but we repeat it
here for the convenience of the reader.

Proof of Lemma 4.1.6. Let 〈δε : ε < κ〉 enumerate Sκinc and let S =
{δε+1 : ε < κ}. For η ∈ 2κ, δ ∈ S define

Fη,δ = {ρ ∈ 2δ : (∀∞ζ < δ) ρ(ζ) = η(δ + ζ)}.
Then clearly Fη,δ ∈ id(Qδ). Let

Fη = set−1 (〈Fη,δ : δ ∈ S〉)
so 2κ\Fη ∈ id−(Qκ) by definition. Let

F = {(ν, η) ∈ 2κ × 2κ : ν ∈ Fη}.

Sh:1144



282 T. Baumhauer et al.

It remains to check that Fν ∈ id(Qκ). Thus let ν ∈ 2κ and consider Fν =
{η ∈ 2κ : ν ∈ Fη}; we want to show Qκ 
 “ν 6∈ Fη̇”. Clearly for every ζ < κ
the set

{p ∈ Qκ : (∃δ ∈ S\ζ)(∀η ∈ [p]) ν�δ ∈ Fη,δ}

is a dense subset of Qκ so we are done.

4.2. Absoluteness of id(Qκ)

Lemma 4.2.1. If P is a κ-strategically closed forcing notion, then:

(1) Π1
1-formulas are absolute between V and VP.

(2) If c is a Borel code such that Bc = ∅, then also P 
 Bc = ∅.
(3) If c, d are Borel codes such that Bc ⊆ Bd, then also P 
 Bc ⊆ Bd.

Proof. (1) This was proved in [FKK16, 2.7] for <κ-closed forcings, but
essentially the same proof works for κ-strategically closed forcing notions.

Now (2) and (3) easily follow.

Lemma 4.2.2. Let J = {qi : i < κ} ⊆ Qκ be a maximal antichain and
let P be a κ-strategically closed forcing notion. Then

P 
 “J̌ is a maximal antichain of Qκ”.

Proof. We easily check that “J is a maximal antichain” is a Π1
1-property.

So the lemma follows from 4.2.1(1).

Corollary 4.2.3. As a consequence, if c is a Borel code such that Bc ∈
id(Qκ), then also P 
 Bc ∈ id(Qκ) for any <κ-strategically closed forcing P.

Proof. Let Bc ⊆ set0(Λ) where Λ is a family of κ-many maximal an-
tichains of Qκ. Now work in VP: Any J ∈ Λ is still maximal by 4.2.2, hence
the Borel set set0(Λ) is still in id(Qκ), and contains Bc by Lemma 4.2.1(3).

Remark 4.2.4. It is easy to see that a similar fact is true for id−(Qκ):
If set−0 (〈Aδ : δ ∈ S〉) is a definition of an id−-set in V, and P does not
add bounded subsets of κ, then in VP the set S is still nowhere stationary,
and the sequence 〈Aδ : δ ∈ S〉 still defines an id−(Qκ)-set, i.e. id−(Qκ)-sets
remain id−(Qκ)-sets.

Fact 4.2.5 ([Bau19]). For κ weakly compact every positive Borel set con-
tains a random condition.

Corollary 4.2.6. For weakly compact κ, also the converse of 4.2.3 is
true: If c is a Borel code with Bc /∈ id(Qκ), then P 
 Bc /∈ id(Qκ) for P
<κ-strategically closed.

Proof. By 4.2.5 and 4.2.1(3).
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5. ZFC-results

5.1. Cichoń’s diagram

Discussion 5.1.1. In this subsection we establish some results about the
relation between id(Qκ) and the ideal of meager sets id(Cohenκ). These the-
orems are either quotes of or promised elaborations on results first appearing
in [She17].

κ+

add(Qκ)

cov(Qκ)

add(Cohenκ)

non(Cohenκ)

cov(Cohenκ)

cf(Cohenκ)

non(Qκ)

cf(Qκ)

2κ

bκ dκ

add(nstprκ )

cf(nstprκ )

Fig. 1. The general diagram including nstprκ , showing results established in this section.
Dashed or dotted arrows have the same meaning as the solid ones but are intended to
make the crossing arrows visually less confusing. To prove the implications represented by
the dashed arrows (those involving add(nstprκ ) and cf(nstprκ )) we need to assume that κ
is Mahlo.

Fact 5.1.2 (Folklore?).
(1) add(Cohenκ) = min(bκ, cov(Cohenκ)).
(2) cf(Cohenκ) = max(dκ,non(Cohenκ)).

Proof. See for example [She17].
The following theorem first appears in [She17, 3.8], but we repeat it here

for the convenience of the reader.
Theorem 5.1.3. Let κ = sup(Sκinc). Then there exist sets A0, A1 ⊆ 2κ

such that A0 ∈ id(Qκ), A1 ∈ id(Cohenκ), A0 ∩A1 = ∅ and A0 ∪A1 = 2κ.

Proof. Let 〈λi : i < κ〉 be an increasing enumeration of Sκinc. For i < λ
let
Jλi+1

= {p ∈ Qλi+1
: lg(tr(p)) > λi ∧ tr(p)�[λi, lg(tr(p))) is not constantly 0}.
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For η ∈ 2<κ let pη ∈ Qκ be the condition witnessed by

(η, {λi+1 : i < κ, λi+1 > lg(η)}, 〈{Dλi+1
} : i < κ, λi+1 > lg(η)〉).

It is easy to see that [pη] is a nowhere dense subset of 2κ. Hence for

A1 =
⋃

η∈2<κ
[pη]

we have A1 ∈ id(Cohenκ).
Let A0 = 2κ\A1. It remains to check that A0 ∈ id(Qκ). Indeed, for any

p ∈ Qκ let η = tr(p) and let q be a lower bound for p, pη. Now q 
 “ η̇ ∈ [q] ⊆
[pη] ⊆ A1”, i.e. q 
 “ η̇ 6∈ A0”.

Corollary 5.1.4. Let κ = sup(Sκinc). Then:

(1) cov(Cohenκ) ≤ non(Qκ).
(2) cov(Qκ) ≤ non(Cohenκ).

Proof. Let ⊕ be pointwise addition modulo 2. In 5.1.3 it is shown there
exist sets A0 ∈ id(Qκ), A1 ∈ id(Cohenκ) satisfying 4.1.4(a)–(d) for κ =
sup(Sκinc), so the conclusion follows by 4.1.3.

Corollary 5.1.5. Let κ = sup(Sκinc). Then:

(1) cov(id−(Qκ)) ≤ non(id(Qκ)).
(2) In particular cov(Qκ) ≤ non(Qκ).

Proof. By 4.1.5 and 4.1.6.

κ+ add(Qκ) cov(Qκ) add(Cohenκ)

non(Cohenκ)

cov(Cohenκ)

cf(Cohenκ)

non(Qκ)

cf(Qκ) 2κ

bκ dκ

6=

Fig. 2. The diagram for add(Cohenκ) < bκ

κ+ add(Qκ)

cov(Qκ)

add(Cohenκ)

non(Cohenκ)

cov(Cohenκ)

cf(Cohenκ) non(Qκ) cf(Qκ) 2κ

bκ dκ

6=

Fig. 3. The diagram for dκ < cf(Cohen)κ
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Theorem 5.1.6.

(1) If bκ > add(Cohenκ) then cov(Qκ) ≤ add(Cohenκ).
(2) If dκ < cf(Cohenκ) then cf(Cohenκ) ≤ non(Qκ).

Proof. See [She17, 5.5 and 5.7].

5.2. On add(Qκ) ≤ add(Cohenκ)

Discussion 5.2.1. For the classical case (κ = ω) the Bartoszyński–Rai-
sonnier–Stern theorem states that add(null) ≤ add(meager). By 5.1.6 we
know that add(Qκ) ≤ add(Cohenκ) for large bκ and dually cf(Cohenκ) ≤
add(Qκ) for small dκ. But what about small bκ, i.e. add(Cohenκ) = bκ and
large dκ, i.e. dκ = cf(Cohenκ)?

The original plan for this case was to first prove add(Qκ) ≤ add(nstprκ )
(see 3.3.6) and show that add(nstprκ ) ≤ bκ. We conjecture that this second
inequality does not hold (see 5.2.12). In [She17] it was shown that it does at
least for sufficiently weak κ (there exists a stationary non-reflecting subset
of κ) and here we elaborate on this result as promised.

Furthermore we offer a consolation prize: we show that at least add(Qκ)
≤ dκ for κ Mahlo and dually bκ ≤ cf(Qκ).

We begin by establishing a characterization of bκ and dκ via character-
istics of the club filter of κ.

Lemma 5.2.2.

(1) Let 〈Eα : α < µ < bκ〉 be a sequence of clubs of κ. Then there exists a
club E of κ such that α < µ⇒ E ⊆∗ Eα.

(2) There exists a sequence 〈Eα : α < bκ〉 of clubs of κ such that for no club
E of κ do we have α < bκ ⇒ E ⊆∗ Eα.

(3) bκ = add(NSκ), where NSκ is the ideal of non-stationary subsets of κ,
ordered by eventual containment ⊆∗.

Proof. (1) Let 〈Eα : α < µ < bκ〉 be a sequence of clubs of κ. We define

fα(i) = di+ 1eEα = min(Eα\(i+ 2)).

and find f such that α < µ ⇒ fα ≤∗ f . Now let E = {δ : f [δ] ⊆ δ} and
check that indeed α < µ⇒ E ⊆∗ Eα.

(2) Let 〈fα : α < bκ〉 witness bκ and let

Eα = {δ : fα[δ] ⊆ δ}.
Assume there exists a club E of κ such that α < bκ ⇒ E ⊆∗ Eα. Let

f(i) = di+ 1eE

and check that α < bκ ⇒ fα ≤∗ f , a contradiction.
(3) By (1) and (2).
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Lemma 5.2.3.

(1) Let 〈Eα : α < µ < dκ〉 be a sequence of clubs of κ. Then there exists a
club E of κ such that Eα ⊆∗ E for no α < dκ.

(2) There exists a sequence 〈Eα : α < dκ〉 of clubs of κ such that for all clubs
E of κ there exists α < dκ such that Eα ⊆∗ E.

(3) dκ = cf(NSκ).

Proof. Dual of that of 5.2.2.

Theorem 5.2.4. Let κ be Mahlo (hence Sκpr is stationary by 1.3.3(4)).
Then

bκ ≤ cf(nstprκ ).

Proof. Towards a contradiction assume µ = cf(nstprκ ) < bκ and let 〈Wα :
α < µ〉 be a sequence of nowhere stationary subsets of Spr

κ witnessing µ =
cf(nstprκ ). For α < µ let Eα ⊆ κ be a club disjoint from Wα. Now we
use 5.2.2 to find a club E such that E ⊆∗ Eα for every α. Because Sκpr is
stationary, the closure of E ∩ Sκpr is a club too, so without loss of generality
W = nacc(E) ⊆ Sκpr. Clearly W is nowhere stationary so there exists α < µ
such that W ⊆∗ Wα.

Now because E ⊆∗ Eα andWα∩Eα = ∅, we see thatWα∩E is bounded.
On the other hand, because W is an unbounded subset of E and W ⊆∗ Wα,
we see that Wα ∩ E is unbounded, a contradiction.

Corollary 5.2.5. bκ ≤ cf(Qκ).

Proof. Combine 5.2.4 and 3.3.7.

Theorem 5.2.6. Let κ be Mahlo. Then

add(nstprκ ) ≤ dκ.

Proof. Let 〈Eα : α < µ〉 witness dκ = µ in the sense of 5.2.3, i.e. for every
club E of κ there is α < µ such that Eα ⊆∗ E. If we restrict ourselves to clubs
E such that nacc(E) ⊆ Sκpr then we may also assume Wα = nacc(Eα) ⊆ Sκpr.
Towards a contradiction assume add(nstprκ ) > µ and let W ∈ nstprκ be such
that α < µ ⇒ Wα ⊆∗ W . Choose a club E disjoint from W such that
nacc(E) ⊆ Sκpr. Now there exists α < µ such that Eα ⊆∗ E hence

sup(Eα\E) + sup(Wα\W ) < δ ∈Wα ⊆ Eα =⇒ δ ∈ E =⇒ δ 6∈Wα,

a contradiction.

Corollary 5.2.7. add(Qκ) ≤ dκ.

Proof. Combine 5.2.6 and 3.3.7.
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Theorem 5.2.8. Let κ be inaccessible and let S ⊆ Sκpr be stationary
non-reflecting. Then:

(1) add(nstprκ ) ≤ bκ.
(2) add(nstprκ,S) = bκ.

Remark 5.2.9. Note that under these assumptions, by [She17, Claim 6.9]
the forcing Qκ adds a κ-Cohen real.

Proof of Theorem 5.2.8. First note that because S is not reflecting, it
follows that W ⊆ S is nowhere stationary iff W is not stationary.

Recall 5.2.2 and let 〈Eα : α < bκ〉 be a set of clubs of κ such that for
every club E of κ there exists α < bκ such that ¬(E ⊆∗ Eα). So the family
〈S\Eα : α < bκ〉 is a set of nowhere stationary subsets of Sκpr with no upper
bound in nstprκ,S (and in particular not in nstprκ ).

Conversely, let 〈Wα : α < µ〉 witness add(nstprκ,S) = µ and let Eα be club
disjoint from Wα. Then 〈Eα : α < µ〉 is an unbounded family in the sense
of 5.2.2.

Theorem 5.2.10. Let κ be inaccessible and let S ⊆ Sκpr be stationary
non-reflecting. Then:

(1) dκ ≤ cf(nstprκ ).
(2) dκ = cf(nstprκ,S).

Proof. Dual to that of 5.2.8.

We summarize the results of this section in the following corollary.

Corollary 5.2.11. If at least one of the following conditions is satisfied:

(1) κ > sup(Sκinc), or
(2) there exists a stationary non-reflecting S ⊆ Sκpr, or
(3) bκ > add(Cohenκ),

then the Bartoszyński–Raisonnier–Stern theorem holds, i.e.

add(Qκ) ≤ add(Cohenκ).

Likewise, if we let

(3′) dκ < cf(Cohenκ),

then (1) ∨ (2) ∨ (3′) implies

cf(Cohenκ) ≤ cf(Qκ).

Finally, if (1) ∨ (2) ∨ ((3) ∧ (3′)), then the Cichoń diagram for id(Qκ) and
id(Cohenκ) looks like the classical diagram.

Conjecture 5.2.12. There exists a model V such that

V |= add(Qκ) > add(Cohenκ)
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for some sufficiently strong cardinal κ. Note that by 5.1.6 we necessarily have

V |= bκ = add(Cohenκ)

so we really conjecture

CON(add(Qκ) > bκ).

6. Models. We follow the notation of [BJ95]: Let � = κ+, � = κ++.
This will allow us to graphically represent the values of the cardinal charac-
teristics in Figure 1. For instance, � in the top left corner means cov(Qκ)
= �. Note that in all diagrams of this section we have 2κ = � = κ++.

For visual clarity we omit the diagonal arrow from cov(Qκ) to non(Qκ);
see 5.1.4. Note again that the dashed arrows representing add(Qκ) ≤ dκ and
bκ ≤ cf(Qκ) require κ to be Mahlo.

If we would like Qκ to be κκ-bounding, i.e. want κ weakly compact,
we may use Laver preparation to preserve supercompactness (so in particu-
lar weak compactness) in the forcing extension (see [Lav78]). Note that all
forcing notions in this section, with the exception of Amoeba forcing, are
<κ-directed closed, and Amoeba forcing may be included in the preparation
as well by 6.6.4.

6.1. The Cohen model. The Cohen forcing Cκ and model VCκ,µ are
well known (see e.g. [Eas70]). As a warm-up for subsequent constructions we
show how to apply the tools developed in Section 2 for analyzing this model.

Definition 6.1.1. Let
Cκ = 2<κ

and for p, q ∈ Cκ define q to be stronger than p if p E q. We call Cκ the
κ-Cohen forcing . If G is a Cκ-generic filter then we call η =

⋃
s∈G s the

generic κ-Cohen real (of V[G]). Conversely, we say ν ∈ 2κ is a κ-Cohen real
(over V) if G = {s ∈ 2<κ : s / ν} is a Cκ-generic filter.

Fact 6.1.2. Let ν ∈ 2κ. Then ν is a κ-Cohen real over V iff it is not
contained in any meager set of V.

Lemma 6.1.3.

(1) Cκ is <κ-directed closed.
(2) Cκ is κ-centered<κ.
(3) Cκ satisfies (∗)κ.

Proof. (1) and (2) are trivial; (3) easily follows from 2.1.5, 2.3.2, 2.2.7.

Definition 6.1.4. Let µ be an ordinal. Let Cκ,µ be the limit of the
<κ-support iteration 〈Cκ,α, Ṙα : α < µ〉 where Cκ,α 
 “Ṙα = Cκ” for every
α < µ.
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It is easy to check that the <κ-support product
∏
i<µCκ can be canoni-

cally embedded as a dense subset into Cκ,µ.
Lemma 6.1.5. Let µ be an ordinal. Then Cκ,µ satisfies the stationary

κ+-Knaster condition and in particular Cκ,µ satisfies the κ+-c.c.

Proof. By 6.1.3, 2.2.6, 2.2.3.

Theorem 6.1.6. Let V |= 2κ = κ+. Then VCκ,κ++ satisfies:

(1) non(Cohenκ) = κ+.
(2) cov(Cohenκ) = κ++.
(3) 2κ = κ++.

We call VCκ,κ++ the κ-Cohen model.

Fig. 4. The Cohen model

Proof. (1) This is a standard argument from the classical case but we
give the details.

Let Ṁ = {η̇α : α < κ+} where η̇α is a name for the κ-Cohen real added
by Ṙα. We claim Cκ,κ++ 
 “Ṁ is a non-meager set”. Towards a contradiction
assume that there are 〈Ȧi : i < κ〉 where Ȧi is a Cκ,κ++-name for a closed,
nowhere dense set and there exists p ∈ Cκ,κ++ such that p 
 “Ṁ ⊆

⋃
i<κ Ȧi”.

It is easy to see that any closed nowhere dense set Ȧi ∈ VCκ,κ++ is decided
by |2<κ| = κ-many antichains 〈Ji,s : s ∈ 2<κ〉 where Ji,s decides the whole
of Ȧi above s, i.e. decides ṫi,s D s such that [ṫi,s] ∩ Ȧi = ∅. Remember 6.1.5
and let

α ∈ κ+\
⋃
i<κ

⋃
s∈2<κ

⋃
p∈Ji,s

supp(p).

Remember 6.1.4 and letΠ be the range of the dense embedding of
∏
i<κ++ Cκ

into Cκ,κ++ . Without loss of generality Ji,s ⊆ Π for all i < κ and all s ∈ 2<κ.
Find p′ ≤ p such that p′ ∈ Π and let s = p(α). Now for arbitrary i < κ we
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can find r ∈ Ji,s, r 6⊥ p′ and let p′′ = r ∧ p′. Because p′, r ∈ Π, we have
p′′(α) = s and p′′ decides ts D s to be missing from Ȧi. Thus define p′′′ ≤ p′′
such that p′′′(α) = ts and p′′′(β) = p′′(β) for β ∈ κ++\{α}. Clearly η̇α D ts
thus p′′′ 
 “ η̇α 6∈ Ȧi”. Clearly p′′′ ≤ p, contradicting p 
 “Ṁ ⊆

⋃
i<κ Ȧi”.

(2) Same argument as in 6.2.7 below.
(3) Should be clear using nice names.

6.2. The Hechler model. The Hechler forcing Hκ and model VHκ,µ

are well known (see e.g. [BB+18] where 6.2.7(2)–(5) are also shown).

Definition 6.2.1. Let

Hκ = κ<κ × [κκ]<κ

and for p1 = (ρ1, X1), p2 = (ρ2, X2) ∈ Hκ define p2 to be stronger than p1
if:

(1) ρ2 D ρ1.
(2) X2 ⊇ X1.
(3) For all i ∈ dom(ρ2)\ dom(ρ1) and all f ∈ X1 we have ρ2(i) > f(i).

We call Hκ the κ-Hechler forcing. If G is a Hκ-generic filter then we call
η =

⋃
(ρ,X)∈G ρ the generic κ-Hechler real .

The intended meaning of a condition (ρ,X) is the promise that the κ-
Hechler real will start with ρ and from now on (i.e. past the length of ρ)
dominate all functions in X.

Fact 6.2.2. Let η be a κ-Hechler real over V. Then for every ν ∈ κκ∩V
we have ν ≤∗ η.

Fact 6.2.3. Let η be a κ-Hechler real over V. Let ν ∈ 2κ be such that
for all i < κ,

ν(i) ≡ η(i) mod 2.

Then ν is a κ-Cohen real over V.

Lemma 6.2.4.

(1) Hκ is <κ-directed closed.
(2) Hκ is κ-centered<κ.
(3) Hκ satisfies (∗)κ.

Proof. (1) Let D ⊆ Hκ, |D| < κ, p, q ∈ D ⇒ p 6⊥ q. If p = (ρ1, X1),
q = (ρ2, X2) ∈ D then because p, q are compatible we have ρ1 E ρ2 ∨
ρ2 E ρ1. Hence (ρ∗, X∗) is a lower bound for D where ρ∗ =

⋃
(ρ,X)∈D ρ,

X∗ =
⋃

(ρ,X)∈DX.
(2) Hκ =

⋃
ρ∈κ<κ({ρ} × [κκ]<κ).

(3) By (1), (2), 2.1.5, 2.3.2, 2.2.7.
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Definition 6.2.5. Let µ be an ordinal. Let Hκ,µ be the limit of the
<κ-support iteration 〈Hκ,α, Ṙα : α < µ〉 where Hκ,α 
 “Ṙα = Hκ” for every
α < µ.

Lemma 6.2.6. Let µ be an ordinal. Then:

(1) Hκ,µ satisfies the stationary κ+-Knaster condition and in particular Hκ,µ

satisfies the κ+-c.c.
(2) If µ < (2κ)+ then Hκ,µ is κ-centered<κ.

Proof. (1) By 6.2.4, 2.2.6, 2.2.3.
(2) Remember 6.2.4(2). We easily check that Hκ,µ is finely <κ-closed so

we can use 2.3.7.

Theorem 6.2.7. Let V |= 2κ = κ+. Then VHκ,κ++ satisfies:

(1) cov(Qκ) = κ+.
(2) bκ = κ++.
(3) cov(Cohenκ) = κ++.
(4) add(Cohenκ) = κ++.
(5) 2κ = κ++.

We call VHκ,κ++ the κ-Hechler model.

Fig. 5. The Hechler model

Proof. We use the iteration theorems from Section 2 so the following
proofs become standard arguments from the classical case.

(1) We claim that Hκ,κ++ does not add Qκ-generic reals. Remember-
ing 6.2.6(1), if we have a nice Hκ,κ++-name η̇ for a κ-real, then the antichains
deciding η̇ are already antichains of Hκ,α for some α < κ++. Note that if we
show that Hκ,α does not add Qκ-generic reals for any α < κ++ we are done:

If η ∈ VHκ,α is not Qκ-generic over V then there is a Borel code c ∈ V
of an id(Qκ)-set Bc such that η ∈ Bc. The same is still true in VHκ,κ++ (see
1.1.14).
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By 6.2.6(2), Hκ,α is a κ-centered<κ forcing notion for each α < κ++ and
thus by 2.3.9 does not add a Qκ-generic real. In V there exists a covering of
id(Qκ) of size κ+, and because Hκ,κ++ does not add Qκ-generic reals, this
covering remains a covering in VHκ,κ++ .

(2) Assume there exists an unbounded family of size κ+ in VHκ,κ++ .
Argue as above to see that this family already appears in some VHκ,α . But
by 6.2.2, Rα adds a bound, a contradiction.

(3) Assume there exists an covering of id(Cohenκ) of size κ+ in VHκ,κ++ .
Again this family already appears in some VHκ,α . But by 6.2.3, Ṙα adds a
κ-Cohen real, hence the covering is destroyed, a contradiction.

(4) Remember 5.1.2 so this follows from (2) and (3).
(5) Should be clear.

6.3. The short Hechler model

Theorem 6.3.1. Let V |= κ is weakly compact. Let V |= non(Qκ) = κ++

(e.g. V = V
Hκ,κ++

0 ). Let Hκ,κ+ be the <κ-support iteration of length κ+ of
Hechler reals (see 6.2.5). Then VHκ,κ+ satisfies:

(1) non(Qκ) = κ++.
(2) dκ = κ+.
(3) non(Cohenκ) = κ+.
(4) cf(Cohenκ) = κ+.
(5) 2κ = κ++.

Fig. 6. The short Hechler model

Proof. (1) Follows by 2.3.7 and 2.3.13. (Note that 2.3.13 requires κ to be
weakly compact.)

(2) Remember 6.2.2 so {ηε : ε < κ+} is a dominating family where ηε is
the κ-Hechler real added by Rε.
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(3) We claim {νε : ε < κ+} 6∈ id(Cohenκ) where νε ∈ 2κ is the canonical
κ-Cohen real added by Rε (see 6.2.3). Argue as in 6.1.6 but instead of using
the product we find α greater than the support of all antichains.

(4) Remember 5.1.2 so this follows from (2) and (3).
(5) Should be clear.

6.4. Amoeba forcing, part 1

Definition 6.4.1. Let Qam,1
κ be the forcing consisting of tuples (ε, S,E)

where:

• ε ∈ Sκinc.
• S ⊆ Sκinc is nowhere stationary.
• E ⊆ κ is a club disjoint from S.

For p ∈ Qam,1
κ we will write εp, Sp, Ep for the respective components of p.

For p = (εp, Sp, Ep), q = (εq, Sq, Eq) we define q ≤ p (q stronger than p)
iff either q = p, or:

• εp < εq, and moreover the set Eq meets the interval (εp, εq).
• Sp ∩ εp = Sq ∩ εp.
• Sp\εp ⊆ Sq\εp.
• Ep ∩ εp = Eq ∩ εp.
• Ep ⊇ Eq.

The intended meaning of a condition (ε, S,E) is the promise to cover S
from now on above ε but not tamper with it below ε (to preserve the fact
that S ∩ ε is nowhere stationary in ε). The purpose of E is to ensure that
the generic set will not be stationary in κ.

Lemma 6.4.2. Let G be a Qam,1
κ -generic filter and let

S∗ =
⋃
{S : (∃p ∈ G) S = Sp}, E∗ =

⋂
{E : (∃p ∈ G) E = Ep}.

Then:

(1) E∗ is a club of κ disjoint from S∗.
(2) S∗ is a nowhere stationary subset of κ.
(3) For any nowhere stationary set S ⊆ κ with S ∈ V we have VQam1

κ |=
S ⊆∗ S∗ (i.e. the set S\S∗ is bounded).

We call S∗ the generic nowhere stationary set.

Proof. (1) Assume that (ε, S,E) 
 “E∗ ⊆ α < κ”. Find β ∈ E, γ ∈ Sκinc
with α < β < γ. Then (γ, S,E) ≤ (α, S,E) and (γ, S,E) 
 β ∈ E∗,
contradicting what (ε, S,E) forced. So E∗ is unbounded.

As an intersection of closed sets, E∗ must be closed; and it is disjoint
from S∗ by definition.
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(2) To see S∗∩α is non-stationary for α ∈ Sκinc argue as in (1). To see S∗
is non-stationary in κ, remember that E∗ is a club disjoint from S∗ by (1).

(3) Let p = (ε, S,E) ∈ Qam,1
κ and let S′ ∈ V be nowhere stationary and

let E′ be a club disjoint from S′. Then (ε, S ∪ (S′\ε), E ∩ (E′ ∪ ε)) ≤ p forces
S′ ⊆ S∗ ∪ ε, hence also S′ ⊆∗ S∗. As p was arbitrary, we are done.

Lemma 6.4.3.

(1) Qam,1
κ is <κ-closed.

(2) Qam,1
κ is κ-linked.

(3) Qam,1
κ satisfies (∗)κ.

Proof. (1) Let 〈pi : i < δ〉 be a strictly decreasing sequence, δ < κ a limit
ordinal, and let pi = (εi, Si, Ei). Hence the sequence 〈εi : i < δ〉 is strictly
increasing, so in particular εi ≥ i.

We define a condition p∗ = (ε∗, S∗, E∗) as follows:

ε∗ = sup
j<δ

εj (so ε∗ ≥ δ), S∗ =
⋃
j<δ

Sj , E∗ =
⋂
j<δ

Ej .

Clearly, E∗ is a club in κ and is disjoint from S∗, so S∗ is non-stationary.
For δ′ < δ the sequence 〈Si ∩ δ′ : i < δ〉 is eventually constant with value

Sδ′ ∩ δ′, so S∗ ∩ δ′ is non-stationary in δ′.
For δ′ > δ the set S∗∩δ′ is the union of a small number of non-stationary

sets, hence is non-stationary.
We have to check that S∗ ∩ δ is non-stationary in δ (if δ is inaccessible).

Case 1: ε∗ = δ. Then E∗ ∩ (εi, εi+1) = Ei+1 ∩ (εi, εi+1) is non-empty for
all i < δ, so E∗ is unbounded (hence club) in ε∗. Hence S∗ is non-stationary
in ε∗.

Case 2: ε∗ > δ. Then we can find i < δ with εi > δ, and we see that
S∗ ∩ εi = Si ∩ εi, so also S∗ ∩ δ = Si ∩ δ is non-stationary.

Finally, we show that p∗ ≤ pi: the main point is that (∀j ≥ i) Sj ∩ εi =
Si ∩ εi, so also S∗ ∩ εi = Si ∩ εi.

(2) Consider f : Qam,1
κ → κ×2<κ×2<κ where f(ε, S,E) = (ε, S∩ε, E∩ε).

Now check that for p, q ∈ Qam,1
κ we have f(p) = f(q)⇒ p 6⊥ q.

(3) By (1), (2) and 2.2.7.

We want to iterate Amoeba forcing (together with the forcing in the next
subsection, and possibly other forcings) and not lose the weak compactness
of κ. So we will start in a model where κ is supercompact, and this supercom-
pactness is not destroyed by <κ-directed closed forcing, nor by our Amoeba
forcings.

As Amoeba forcing is not <κ-directed closed, we cannot use Laver’s
theorem directly. However, it is well known that a slightly weaker property
is also sufficient.
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The following definition is copied from [Kön06].

Definition 6.4.4. If P is a partial ordering, then we always let θ = θP be
the least regular cardinal such that P ∈ Hθ. We say that a set X ∈ Pκ(Hθ)
is P -complete if every (X,P )-generic filter has a lower bound in P .

Define H(P ) := {X ∈ Pκ(Hθ) : X is P -complete}. Then a partial or-
dering P is called almost κ-directed closed if P is κ-strategically closed and
H(P ) is in every supercompact ultrafilter on Pκ(Hθ).

We will show that for the forcings P we consider, the set H(P ) contains
all small elementary submodels of Hθ, is therefore closed unbounded, hence
an element of every (fine) normal ultrafilter on Pκ(Hθ). (See [Kan94, Sect. 22
and 25.4].)

Definition 6.4.5. Let G1 ⊆ Qam,1
κ . We call a triple (δ1, S1, E1) a pivot

for G1 if the following hold (where δ2 denotes the first inaccessible above δ1):

• δ1 < κ (usually a limit ordinal).
• S1, E1 are disjoint subsets of δ1, E1 is a club in δ1, S1 is nowhere stationary

in δ1.
• G1 ⊆ Qam,1

κ , |G1| < δ2, G1 is a filter.
• For all p = (ε, S,E) ∈ G1, (S1, E1) is “stronger” than p in the following

sense:

– ε < δ1.
– S ∩ ε = S1 ∩ ε, E ∩ ε = E1 ∩ ε.
– S ∩ δ1 ⊆ S1.
– E ∩ δ1 ⊇ E1.

Note. When we say that G1 has a pivot, it is implied that G1 is a filter
of small cardinality.

Lemma 6.4.6 (Master conditions in Qam,1
κ ). Assume that G1 ⊆ Qam,1

κ has
a pivot. Then G1 has a lower bound in Qam,1

κ , i.e. (∃p∗ ∈ Qam,1
κ )(∀p ∈ G1)

p∗ ≤ p.

Proof. Let (δ1, S1, E1) be a pivot for G1. We let p∗ := (δ1, S
∗, E∗), where:

• S∗ ∩ δ1 := S1 ∩ δ1.
• E∗ ∩ δ1 := E1 ∩ δ1.
• S∗\δ1 :=

⋃
(ε,S,E)∈G1

S\δ1.
• E∗\δ1 :=

⋂
(ε,S,E)∈G1

E\δ1.

Note that the ideal of nowhere stationary subsets of [δ1, κ) is δ2-closed,
so S∗ is indeed nowhere stationary above δ1 (also nowhere stationary below
and up to δ1, because S1 had this property). Hence p∗ is indeed a condition.
It is clear that p∗ is stronger than all p ∈ G1.
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Corollary 6.4.7. Let N ≺ Hθ, N ∈ Pκ(Hθ), Qam,1
κ ∈ N , N ∩ κ ∈ κ.

Then N ∈ H(Qam,1
κ ) (see Definition 6.4.4).

Proof. Let G ⊆ Qam,1
κ ∩N be (N,Qam,1

κ )-generic. Let δ1 := N ∩κ, and let
(S1, E1) be the generic object determined by G as in 6.4.2. Then (δ1, S1, E1)

is a pivot for G, so by 6.4.6 we can find a lower bound for G in Qam,1
κ .

6.5. Amoeba forcing, part 2

Definition 6.5.1. Let S ⊆ Sκinc. Let Qam,2
κ,S be the forcing consisting of

pairs (ε, ~A) where

ε < κ, ~A = (Aδ : δ ∈ S) ∈
∏
δ∈S

id(Qδ).

For p = (εp, ~Ap), q = (εq, ~Aq) we define q ≤ p iff either q = p, or

εp < εq, ~Ap�(S ∩ εp) = ~Aq�(S ∩ εp).
For all δ ∈ S, Ap(δ) ⊆ Aq(δ).

Lemma 6.5.2. Let G be a Qam,2
κ,S -generic filter, and let

~A∗ = (A∗δ : δ ∈ S) =
⋃

(ε, ~A)∈G

~A�ε ∈
∏
δ∈S

id(Qδ).

Then:

(1) For all (Bδ : δ ∈ S), where each Bδ ⊆ 2δ is in id(Qδ), we have

 (∀∞δ) Bδ ⊆ A∗δ.

(2) For all B ∈ id−0 (Qκ,S) we have B ⊆ set−0 ( ~A∗).

Proof. (1) Let p = (ε, ~A) ∈ Qam,2
κ,S . Find (ε, ~A′) ∈ Qam,2

κ,S such that:

(a) ~A�(S ∩ ε) = ~A′�(S ∩ ε).
(b) For all δ ∈ S with δ ≥ ε we have A′δ = Aδ ∪Bδ.
Because p was arbitrary, we are done.

(2) Let B ⊆ set−0 (〈Bδ : δ ∈ S〉). By (1) we have B ⊆ set−0 ( ~A′) ⊆
set−0 ( ~A∗).

Lemma 6.5.3. Let S ⊆ Sκinc. Then:

(1) Qam,2
κ is <κ-closed.

(2) Qam,2
κ is κ-linked.

(3) Qam,2
κ satisfies (∗)κ.

Proof. Similar to 6.4.3.

Definition 6.5.4. Let Qam
κ := Qam,1

κ ∗ Qam,2
κ,S∗ where S∗ is the generic

object from Qam,1
κ as in 6.4.2.
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Discussion 6.5.5. Note that Qam
κ here is not the same as the Amoeba

forcing Qam
κ defined in [She17]. But as we see in 6.5.6, it is a modularized

variant.

Lemma 6.5.6. There exists A∗ ∈ id−(Q) ∩VQam
κ such that:

(1) For every A ∈ V ∩ id−(Qκ) we have A ⊆ A∗.
(2) If κ is weakly compact then A ⊆ A∗ for every A ∈ V ∩ id(Qκ).

Proof. (1) Combine 6.4.2 and 6.5.2 and check that A∗ = set−0 (〈A∗δ :
δ ∈ S∗〉) is as required.

(2) By (1) and 3.2.5.

The generic null set added by Amoeba forcing will cover all ground model
sets in id−(Qκ). If κ is weakly compact, then we also cover all id-sets. So we
are interested in keeping κ weakly compact after our Amoeba iteration.

Definition 6.5.7. Let S ⊆ Sκinc be nowhere stationary, and let G1 ⊆
Qam,2
κ,S . We call a pair (δ1, ~A1) a pivot for G1 if the following hold:

• δ1 ∈ Sκinc\S.
• ~A1 = (A1,δ : δ ∈ S ∩ δ1) ∈

∏
δ∈S∩δ1 id(Qδ).

• G1 ⊆ Qam,2
κ,S , |G1| < δ2, G1 is a filter (where again δ2 is the smallest

inaccessible > δ1).
• For all p := (ε, ~B) ∈ G1, we have ε < δ1, and (δ1, ~A1) is “stronger” than p

in the sense that
(∀δ < δ1) Bδ ⊆ A1,δ, (∀δ < ε) Bδ = A1,δ.

Lemma 6.5.8 (Master conditions in Qam,2
κ,S ). Assume that S is nowhere

stationary, and G1 ⊆ Qam,2
κ,S has a pivot. Then the set G1 has a lower bound

in Qam,2
κ,S , i.e. (∃p∗ ∈ Qam,2

κ,S )(∀p ∈ G1) p
∗ ≤ p.

Proof. The reasoning is similar to the proof of Lemma 6.4.6.
Let (δ1, ~A1) be a pivot. We define a condition p∗ = (δ1, ~A

∗) as follows:

• (∀δ ∈ S ∩ δ1) A∗δ := A1,δ.
• (∀δ ∈ S\δ1) A∗δ :=

⋃
(ε, ~A)∈G1

Aδ.

Why is p a condition? Because for all δ ∈ κ\δ1, the ideal id(Qδ) is δ1-
complete, so the set

⋃
(ε,ν)∈G1

Aδ is in the ideal.
It is clear that p∗ ≤ p for all p ∈ G1.

Corollary 6.5.9. For S nowhere stationary let N ≺ Hθ, N ∈ Pκ(Hθ),
Qam,2
κ,S ∈ N , N ∩ κ ∈ κ. Then N ∈ H(Qam,2

κ,S ) (see Definition 6.4.4).

Proof. Like 6.4.7.
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6.6. Iterated Amoeba forcing

Notation 6.6.1. For every forcing notion P we write ΓP for the canonical
name of the generic filter on P.

Definition 6.6.2.

(1) Let µ be an ordinal and let P be the limit of a <κ-support iteration
~P = 〈Pα, Ṙα : α < µ〉. We call the iteration ~P and its limit P relevant if
for every α < µ we have either

(a) Pα 
 “Ṙα = Qam,1
κ ”, or

(b) Pα 
 “Ṙα = Qam,2
κ,S for some nowhere stationary S ⊆ Sκinc”, or

(c) Pα 
 “Ṙα is <κ-directed closed”.

(In particular, any <κ-directed closed forcing is an example of a relevant
iteration.)

(2) Let G0 ⊆ P be a filter. For α < µ we will write G0�α for the set {p�α :
p ∈ G0}, and G0(α) will be a Pα-name for the set {p(α) : p ∈ G0}. We
remark that G0�(α + 1) is a subset of Pα ∗ Ṙα, so the empty condition
of Pα forces “if G0�α ⊆ ΓPα , then G0(α) ⊆ Ṙα”.

(3) Let G0 ⊆ P be a filter. A sequence 〈ηα : α < µ〉 (where each ηα is a
Pα-name) is called a pivot for G0 if for all α < µ the following statement
is forced:

If G0�Pα ⊆ ΓPα , then either
• Ṙα is <κ-directed closed, ηα = 0, or
• ηα is a pivot (in the sense of Definition 6.4.5 or 6.5.7,

respectively) for G0(α) ⊆ Ṙα.
Lemma 6.6.3 (Existence of master conditions in iterations). Assume that

P is the limit of a relevant iteration. Let G0 ⊆ P be a filter, and assume that
there is a pivot for G0. Then there exists p∗ ∈ P such that

(∀p ∈ G0) p
∗ ≤ p.

Proof. We define p∗ by induction, in each coordinate appealing to Lem-
ma 6.4.6 or 6.5.8, as appropriate. (Note that fewer than κ coordinates ap-
pear in the conditions in G0, so the resulting condition will have support of
size < κ.)

Corollary 6.6.4. Let N ≺ Hθ, N ∈ Pκ(Hθ), N ∩ κ ∈ κ. Let P ∈ N be
a relevant iteration. Then N ∈ H(P ) (see Definition 6.4.4).

Hence by [Kön06, Theorem 9]: If κ is supercompact, then after forcing
with a modified Laver preparation we obtain a model in which κ is not only
supercompact, but moreover this supercompactness cannot be destroyed by
almost κ-directed closed forcing, so in particular not by relevant iterations.
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Definition 6.6.5. Let µ be an ordinal. Let Aκ,µ be the limit of the
<κ-support iteration 〈Aκ,α, Ṙα : α < µ〉 where for every α < µ we have

Aκ,α 
 Ṙα =

{
Qam
κ , α even,

Hκ, α odd.

Fact 6.6.6. Aκ,µ is an iteration satisfying the requirements of 6.6.3.
Lemma 6.6.7. Let µ be an ordinal. Then Aκ,µ satisfies the stationary

κ+-Knaster condition and in particular Aκ,µ satisfies the κ+-c.c.
Proof. By 6.4.3, 6.5.3, 2.2.6, 2.2.3.
Theorem 6.6.8. Let V |= 2κ = κ+ and let κ be supercompact, indestruc-

tible in the sense of 6.6.4. Then VAκ,κ++ satisfies:
(1) 2κ = κ++.
(2) add(Qκ) = κ++.
(3) add(Cohenκ) = κ++.

Fig. 7. The Amoeba model

Proof. (1) Should be clear.
(2) By (1) it suffices to show add(Qκ) ≥ κ++. So towards a contradiction

assume add(Qκ) = κ+ and let 〈Bi : i < κ+〉 witness it. Remember Aκ,κ++

satisfies the κ+-c.c. by 6.6.7. So there exists α < κ++ such that Bi ∈ VPα for
every i < κ+. But by 6.5.6 there exists A ∈ V Pα+2∩ id(Qκ) such that Bi ⊆ A
for every i < κ+. By 4.2.2 also VAκ,κ++ |= A ∈ id(Qκ), a contradiction.

(3) Argue as in 6.2.7.

6.7. The short Amoeba model

Theorem 6.7.1. Let V |= 2κ = κ+ and let κ be supercompact, indestruc-
tible in the sense of 6.4.4. Let µ = κ++ · κ+. Then VAκ,µ satisfies:
(1) 2κ = κ++.
(2) cf(Qκ) = κ+.
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Fig. 8. The short Amoeba model

(3) dκ = κ+.
(4) cf(Cohenκ) = κ+.

Proof. (1) Should be clear.
(2) Let 〈µi : i < κ+〉 be a cofinal sequence in µ such that each µi is

even. Let Ai be the null set added by Ṙµi . Clearly by 6.5.6 the sequence
〈Ai : i < κ+〉 is cofinal in id(Qκ).

(3) Let ηi be the Hechler real added by Ṙµi+1. Clearly by 6.2.2 the se-
quence 〈ηi : i < κ+〉 is dominating.

(4) Assume cf(Cohenκ) > κ+. Then by (3) and 5.1.6 and (2), cf(Cohenκ)
≤ non(Qκ) ≤ cf(Qκ) = κ+, a contradiction.

6.8. Cohen-Amoeba forcing

Definition 6.8.1. Let Cam
κ be the set of all pairs (α,A) such that:

• α < κ.
• A ⊆ 2<κ is a tree.
• [A] ⊆ 2κ is non-empty nowhere dense.

For p = (αp, Ap), q = (αq, Aq), p, q ∈ Cam
κ we define q to be stronger than p

if:

• αq ≥ αp.
• Aq ⊇ Ap.
• Aq�αp = Ap�αp.

We call Cam
κ the Cohen-Amoeba forcing.

Note that Cam
κ is a straightforward generalization of the universal meager

forcing defined in [BJ95, 3.1.9].

Lemma 6.8.2. Let 〈Ai : i < i∗ < κ〉 be a family of nowhere dense subsets
of 2κ. Then A =

⋃
i<i∗ Ai is nowhere dense.
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Proof. For i < i∗, s ∈ 2<κ let t(i, s) ∈ 2<κ be such that:

s E t(i, s), Ai ∩ [t(i, s)] = ∅.

Let s ∈ A and define an increasing sequence 〈ηi : i < i∗〉 such that:

• η0 = s.
• i = j + 1⇒ ηi = t(j, ηj).
• If i is a limit ordinal then ηi =

⋃
j<i ηj .

Let η =
⋃
i<i∗ ηi and check that

s E η, A ∩ [η] = ∅.

Because s was arbitrary, we are done.

Lemma 6.8.3.

(1) Cam
κ is <κ-directed closed.

(2) Cam
κ is κ-centered<κ.

(3) Cam
κ satisfies (∗)κ.

Proof. (1) Easy using 6.8.2.
(2) By 6.8.2.
(3) By (1), (2), and 2.2.7.

Lemma 6.8.4. Let G be generic for Cam
κ and let N =

⋃
(α,A)∈GA. Then

for the set
M = {η ∈ 2κ : (∃ν ∈ N) ν =∗ η}

we have:

(1) M is meager.
(2) M covers every meager set X ∈ V. More precisely: For every family

(Xi : i < κ) ∈ V of nowhere dense trees it is forced that (∀i < κ) [Xi]
⊆M .

Proof. (1) It suffices to show that M is nowhere dense. We check that
for each s ∈ 2<κ the set

Ds = {q ∈ Cam
κ : (∃t D s) q 
 “N ∩ [t] = ∅”}

is dense in Cam
κ . Indeed for any (α,A) ∈ Cam

κ there exists t D s such that
A ∩ [t] = ∅. Now clearly (max(α, |t|), A) ∈ Ds.

(2) Let X ⊆ 2<κ be such that [X] is nowhere dense and let (α,A) ∈ Cam
κ .

Without loss of generality we may assume |X ∩ 2α| = 1 (otherwise we just
split up X). Now find ρ ∈ A ∩ 2α and let

X ′ = {η ∈ 2κ : (∃ν ∈ X) η�[α, κ) = ν�[α, κ), η�α = ρ}.

Clearly, q = (α,A ∪X ′) ∈ Cam
κ and q forces X to be covered by M .
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Theorem 6.8.5. Let V |= 2κ = κ+. Let P = 〈Pi, Ṙi : i < µ〉 be the
limit of a <κ-support iteration such that Pi 
 “ Ṙi = Cam

κ ” for each i < µ.
Then VP satisfies:

(1) If µ = κ++ then add(Cohenκ) = κ++.
(2) If cf(µ) = κ+ then cf(Cohenκ) = κ+.

Proof. (1) Use 6.8.4 and argue as in 6.6.8(2).
(2) Use 6.8.4 and argue as in 6.7.1(2).

Corollary 6.8.6. We could use Cam
κ instead of Hκ for odd iterands in

the definition of Aκ,µ in 6.6.5 to achieve the same results in 6.6.8 and 6.7.1
in regard to the characteristics of the diagram.

Theorem 6.8.7. Let V |= 2κ = κ+. Then V
Cam
κ,κ++ satisfies:

(1) cov(Qκ) = κ+.
(2) add(Cohenκ) = κ++.
(3) 2κ = κ++.

Proof. (1) Remember 6.8.3(2) and argue as in 6.2.7(1).
(2) Use 6.8.5(1).
(3) Should be clear.

Corollary 6.8.8. Cam
κ,κ++ could be used as an alternative for Hκ,κ++

in 6.2.7, in the sense that the effect on the characteristics of the diagram is
the same.

Theorem 6.8.9. Let V |= κ is weakly compact. Let V |= non(Qκ) = κ++

(e.g. V = VCamκ,κ++

0 ). Then V
Cam
κ,κ+ satisfies:

(1) non(Qκ) = κ++.
(2) cf(Cohenκ) = κ+.
(3) 2κ = κ++.

Proof. (1) Remember 6.8.3(2) and argue as in 6.3.1(1).
(2) Use 6.8.5(2).
(3) Should be clear.

Corollary 6.8.10. Cam
κ,κ+ could be used as an alternative for Hκ,κ+

in 6.3.1, in the sense that the effect on the characteristics of the diagram
is the same.

6.9. Bounded perfect tree forcing. We give a κ-support alternative
to the short Hechler model.

Definition 6.9.1. Let:

(1) S ⊆ κ ∩ Sinc, sup(S) = κ, ∂ ∈ S ⇒ ∂ > sup(∂ ∩ Sinc).
(2) 〈∂ε : ε < κ〉 enumerate S in increasing order.
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(3) θε = 2∂ε for ε < κ.
(4) T =

⋃
ζ<κ Tζ where Tζ =

∏
ε<ζ θε.

We define TSκ to be the set of all p ⊆ T such that:

(a) For all η ∈ p we have ν E η ⇒ ν ∈ p.
(b) There exists a club E ⊆ κ such that for all η ∈ p,

sucp(η) = {i < θlg(η) : η_i ∈ p}

=

{
θlg(η) if lg(η) ∈ E,
{i∗} if lg(η) 6∈ E for some i∗ < θlg(η).

(c) No branches die out in p, that is, if ζ is a limit ordinal and η ∈ Tζ then

η ∈ p ⇐⇒ (∀ε < ζ) η�ε ∈ p.
So TSκ is the forcing of all subtrees of T that split fully on a club E ⊆ κ
of levels and otherwise do not split. The order is defined the usual way, i.e.
for p, q ∈ TSκ we have q stronger than p iff q ⊆ p. Because for our purposes
every S works we will simply write Tκ instead of TSκ .

We call Tκ bounded perfect tree forcing in analogy with [BJ95, 7.3.3,
7.3.43]. Note that Tκ is not the natural analogue of Sacks forcing Sκ from
[Kan80] but Sκ and Tκ both have a natural notion of fusion and are κκ-
bounding.

Fig. 9. The bounded perfect tree model

Definition 6.9.2. Let Tκ,µ be the limit of the κ-support iteration
〈Tκ,α, Ṙα : α < µ〉 where Tκ,α 
 “Ṙα = Tκ” for every α < µ.

Lemma 6.9.3.

(1) Tκ is <κ-directed closed.
(2) Tκ,κ++ is <κ-directed closed.

Proof. (1) Let D be a directed subset of Tκ of size < κ. Intersecting the
club sets associated with each p ∈ D will give us a club set E. Letting q be
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the intersection of all p ∈ D, we claim that q is a condition. It is then clear
that q is a lower bound for D.

Clearly q is non-empty and satisfies conditions (a), (c) of 6.9.1. It remains
to verify (b). Let η ∈ q.

Case 1: lg(η) ∈ E. So lg(η) ∈ Ep for all p ∈ D, hence sucq(η) =⋂
p∈D sucp(η) = θlg(η).

Case 2: lg(η) /∈ E. So there is some p∗ ∈ D and some i∗ such that
sucp∗(η) = {i∗}. As D is directed, and η ∈ p for all p ∈ D, we also have
η_i∗ ∈ p for all p ∈ D. Hence sucq(η) =

⋂
p∈D sucp(η) = {i∗}, as required.

(2) By 2.1.6.

Definition 6.9.4. Let α < κ, p, q ∈ Tκ and let 〈ei : i < κ〉 be an
enumeration of the club of splitting levels of p. We define

q ≤α p iff q ≤ p ∧ q ∩
∏
ζ<eα

θζ = p ∩
∏
ζ<eα

θζ .

Lemma 6.9.5. Let ⇀p = 〈pi : i < κ〉 be a sequence of conditions in Tκ such
that i < j < κ⇒ pj ≤i pi. Then

⇀
p has a lower bound q ∈ Tκ.

Proof. It is easy to check that q =
⋂
i<κ pi is a condition in Tκ and a

lower bound for ⇀
p.

Definition 6.9.6. We refer to sequences as in 6.9.5 as fusion sequences.

Lemma 6.9.7.

(a) White has a winning strategy for F∗κ(Tκ, p) for every p ∈ Tκ.
(b) White has a winning strategy for Fκ(Tκ,κ++ , p) for every p ∈ Tκ,κ++.

Proof. (a) We are going to construct a fusion sequence 〈pζ : ζ < κ〉 and
a winning strategy for White such that:

(1) p0 = p.
(2) In the ζ-round White plays µζ = |pζ ∩ Tβ| and pζ,i = p[ηζ,i], where

pζ ∩ Tβ = {ηζ,i : i < µζ} and β is the ζth splitting level of pζ .
(3) pζ+1 =

⋃
i<µζ

p′ζ,i where p
′
ζ,i are the moves played by Black.

(4) For δ a limit ordinal pδ =
⋂
ζ<δ pζ .

Now use 6.9.5 and check that q =
⋂
ζ<κ pζ witnesses that White wins.

(b) By 2.4.7.

Lemma 6.9.8.

(a) Tκ,κ++ does not collapse κ+.
(b) Let N be a κ-meager set in VTκ,κ++ . Then there exists a κ-meager set

M ∈ V such that N ⊆M .
(c) In particular: If V |= 2κ = κ+ then VTκ,κ++ |= cf(Cohenκ) = κ+.

Proof. By 6.9.7, 2.4.6.
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Lemma 6.9.9. If V |= 2κ = κ+ then:

(a) Tκ satisfies the κ++-c.c.
(b) Tκ,κ++ satisfies the κ++-c.c.

Proof. (a) By our assumption, |Tκ| = κ+.
(b) By 6.9.7, player White has a winning strategy in the game F∗κ(Tκ, p).

As each iterand Ṙα is forced to be equal to Tκ, the assumptions of 2.5.9 are
satisfied, so the limit of this iteration satisfies the κ++-c.c.

Lemma 6.9.10.

(a) Tκ 
 (2κ)V ∈ id−(Qκ).
(b) VTκ,κ++ |= non(id−(Qκ)) ≥ κ++.
(c) VTκ,κ++ |= non(id(Qκ)) ≥ κ++.

Proof. (a) Let 〈Aε,i : i < θε〉 be a covering sequence in id(Q∂ε). Let ν̇ be
a name for the generic κ-real added by Tκ and define

⇀

Λ = 〈Λ∂ : ∂ ∈ S〉 such
that set0(Λ∂ε) = Aε,ν̇(ε). Now Λ witnesses (2κ)V ∈ id−(Qκ) in VTκ .

(b) Remember that by 6.9.9 all Borel sets appear in VTκ,α for some
α < κ++. So (b) follows from (a), remembering 6.9.3, 2.1.5, 4.2.2.

(c) Remember id−(Qκ) ⊆ id(Qκ) hence non(id−(Qκ)) ≤ non(id(Qκ)). So
this follows from (b).

Discussion 6.9.11. The coverings in 6.9.10 could just be sequences of
singletons. So we could say that the lemma speaks about some ideal id−−

that is defined similar to id− just with singletons (or maybe sets of size at
most κ) instead of id(Qδ)-sets on each level. So we really show non(id−−(Qκ))
≥ κ++.

Theorem 6.9.12. If V |= 2κ = κ+ then VTκ,κ++ |= 2κ = κ++.

6.10. On Qκ-models

Question 6.10.1. Finding the “right” way to iterate Qκ is an open prob-
lem. Ideally we wish for a κκ-bounding forcing adding many κ-random reals.

It is not clear how to iterate Qκ with κ-support because we lack a fu-
sion/properness argument. In particular it is not clear how to preserve κκ-
boundedness.

Starting with 2κ = κ+ and iterating Qκ with <κ-support for κ++-many
steps, we get cov(Qκ) = cov(Cohenκ) = κ++ (2). It is not clear what happens
to bκ in this model but there may be some hope to control it by a so-called
corrected iteration developed in [Shea] (which is a tool used in [Sheb]). It
seems reasonable to conjecture that add(Qκ) remains κ+ in this model.

(2) Note that cov(Qκ) = κ++ needs 4.2.6.
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? ?

?

Fig. 10. The <κ-support random model

Starting with cov(Cohenκ) = 2κ = κ++ and iterating Qκ with <κ-sup-
port for κ+-many steps we get cov(Qκ) = cov(Cohenκ) = κ+. Again it is
not clear what happens to dκ.

? ?

?

Fig. 11. The short <κ-support random model

7. Slaloms. It is well known that slaloms can be used to characterize
the additivity and cofinality of measure in the classical case (see for example
[BJ95, Section 2.3.A]). In [BB+18] this result motivates a definition: the
cardinals add(null) and cof(null) are replaced by the appropriate additivity
and covering numbers for slaloms.

This raises the question how the characteristics introduced there related
to the characteristics of id(Qκ) discussed here. In particular one might won-
der if the generalized characterization of the additivity of null by slaloms is
equal to the additivity of id(Qκ). It turns out that for partial slaloms the an-
swer is negative. We conjecture that for total slaloms the answer is negative
too, see 7.2.5 and 7.3.1 respectively.

7.1. Recapitulation. Let us start with some results and definitions
from [BB+18] (for more details and proofs see there). Since also successor
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cardinals κ are considered there, let us remind the reader that in this paper
the cardinal κ is always (at least) inaccessible.

Definition 7.1.1. Let h ∈ κκ be an unbounded function. We define

Ch = {φ ∈ ([κ]<κ)κ : (∀i < κ) φ(i) ∈ [κ]|h(i)|}.

For φ ∈ Ch, f ∈ κκ we define

f ∈∗ φ ⇐⇒ (∀∞i < κ) f(i) ∈ φ(i).

Finally we let

add(h-slalom) = min{|F| : F ⊆ κκ, (∀φ ∈ Ch)(∃f ∈ F) f 6∈∗ φ},
cf(h-slalom) = min{|Φ| : Φ ⊆ Ch, (∀f ∈ κκ)(∃φ ∈ Φ) f ∈∗ φ}.

Definition 7.1.2. We may also consider partial slaloms. Let h ∈ κκ be
unbounded and define

pCh = {φ : (∃ψ ∈ Ch) φ ⊆ ψ, |dom(φ)| = κ}.

Again for φ ∈ pCh, f ∈ κκ we define

f p∈* φ ⇐⇒ (∀∞i ∈ dom(φ)) f(i) ∈ φ(i).

Finally, we let

addpartial(h-slalom) = min{|F| : F ⊆ κκ, (∀φ ∈ pCh)(∃f ∈ F) f p6∈∗ φ},
cfpartial(h-slalom) = min{|Φ| : Φ ⊆ pCh, (∀f ∈ κκ)(∃φ ∈ Φ) f p∈* φ}.

Discussion 7.1.3. Note that in [BB+18] the notation

add(h-slalom) = bh(∈*), cf(h-slalom) = dh(∈*)

and similarly

addpartial(h-slalom) = bh(p∈*), cfpartial(h-slalom) = dh(p∈*)

is used.

Lemma 7.1.4. Let h ∈ κκ be unbounded. Then

add(h-slalom) ≤ addpartial(h-slalom) ≤ add(Cohenκ),

cf(h-slalom) ≥ cfpartial(h-slalom) ≥ cf(Cohenκ).

Proof. Use [BB+18, Observation 36, Corollary 41].

Lemma 7.1.5. Let h, g ∈ κκ be unbounded. Then

addpartial(h-slalom) = addpartial(g-slalom),

cfpartial(h-slalom) = cfpartial(g-slalom).

Proof. Use [BB+18, Corollary 38].
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κ+

add(Qκ)

cov(Qκ)

add(Cohenκ)

non(Cohenκ)

cov(Cohenκ)

cf(Cohenκ)

non(Qκ)

cf(Qκ)

2κ

bκ dκ

addpartial(κ)

add(h-slalom)

cfpartial(κ)

cf(h-slalom)

Fig. 12. The combined diagram: characteristics related to slaloms and id(Qκ). Remember
that the dashed lines connected to bκ, dκ require κ to be Mahlo.

Discussion 7.1.6. As a consequence, for partial slaloms we may ig-
nore h and write addpartial(κ) instead of addpartial(h-slalom) and similarly
cfpartial(κ) instead of cfpartial(h-slalom).

7.2. Separating partial slaloms from id(Qκ). The following forcing
is used in [BB+18] to show CON(add(h-slalom) < addpartial(κ)). We are
going to investigate its effect on id(Qκ).

Definition 7.2.1. Consider the forcing pLκ consisting of all pairs (φ,A)
such that:

• φ is an initial segment of an element of pCκid, i.e. |dom(φ)| < κ.
• A ⊆ κκ, |A| < κ.
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For p = (φp, Ap), q = (φq, Aq), p, q ∈ pLκ we define q to be stronger than p
if:

• φq ⊇ φp.
• (dom(φq)\ dom(φp)) ∩ sup(dom(φp)) = ∅.
• Aq ⊇ Ap.
• i ∈ (dom(φq)\ dom(φp)), f ∈ Ap ⇒ f(i) ∈ φq(i).
If G is a pLκ generic filter then

φ∗ =
⋃

(φ,A)∈G

φ

is a partial slalom and we call φ∗ a generic partial slalom. So the intended
meaning of (φ,A) ∈ pLκ is the promise that the generic partial slalom φ∗

will satisfy
φ E φ∗, f p∈* φ∗ for every f ∈ A.

Definition 7.2.2. Let µ be an ordinal. Let pLκ,µ be the limit of the
<κ-support iteration 〈pLκ,α, Ṙα : α < µ〉 where pLκ,α 
 “Ṙα = pLκ” for
every α < µ.

Note that 7.2.3(2), 7.2.4(2)–(5), and 7.2.6(2)–(4) were already shown in
[BB+18].

Lemma 7.2.3.

(1) pLκ,µ satisfies (∗)κ.
(2) If µ < (2κ)+ then pLκ,µ is κ-centered<κ.

Proof. (1) Check that pLκ satisfies (∗)κ and use 2.2.6.
(2) Check that

pLκ =
⋃

φ∈pCκ
{(φ,A) : A ∈ [κ]<κ}

and use 2.3.7.

Theorem 7.2.4 (Partial slalom model). LetV |= 2κ = κ+. ThenVpLκ,κ++

satisfies:

(1) cov(Qκ) = κ+.
(2) addpartial(κ) = κ++.
(3) add(h-slalom) = κ+.
(4) add(Cohenκ) = κ++.
(5) 2κ = κ++.

Proof. (1) Argue as in 6.2.7.
(2) Assume |F| witnesses addpartial(κ) = κ+. Then by the κ+-c.c., F al-

ready appears in some Vα and the generic partial slalom added by Ṙα covers
every f ∈ F , a contradiction.
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Fig. 13. The partial slalom model

(3) This is shown in [BB+18, Theorem 60(i)]. The argument there is
similar to (1) in the sense that it is shown that κ-centered<κ forcings do not
increase add(h-slalom) = κ+.

(4) By (3) and 7.1.4.
(5) Should be clear.

Corollary 7.2.5.

(1) CON(add(Qκ) < addpartial(κ)).
(2) add(Qκ) = addpartial(κ) is not a ZFC-theorem.

Theorem 7.2.6 (Short partial slalom model). Let V |= 2κ = cf(h-slalom)

= non(Qκ) = κ++ (e.g. V = V
Cκ,κ++

0 ) and V |= κ be weakly compact. Then
VpLκ,κ+ satisfies:

(1) non(Qκ) = κ++.
(2) cfpartial(κ) = κ+.
(3) cf(h-slalom) = κ++.
(4) 2κ = κ++.

Proof. (1) By 7.2.3(2) and 2.3.13.
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(2) Let φα be the generic partial slalom added by Ṙα. It is easily seen
that 〈φα : α < κ+〉 is a cofinal family.

(3) This is shown in [BB+18, Theorem 60(ii)].
(4) Should be clear.

Corollary 7.2.7.

(1) CON(cf(Qκ) > cfpartial(κ)).
(2) cf(Qκ) = cfpartial(κ) is not a ZFC-theorem.

Fig. 14. The short partial slalom model

7.3. On total slaloms and id(Qκ). The next conjecture follows from
Conjecture 5.2.12 (and may be easier to prove):

Conjecture 7.3.1.

(1) CON(add(Qκ) > addpartial(κ)).
(2) In particular also CON((∀h ∈ κκ) add(Qκ) > add(h-slalom)).
(3) (∃h ∈ κκ) add(Qκ) = add(h-slalom) is not a ZFC-theorem.

Question 7.3.2. Is add(Qκ) < add(h-slalom) consistent? For a very
partial answer see 7.3.4.
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Lemma 7.3.3. Let S ⊆ Sκinc be nowhere stationary. Then add(h-slalom)
≤ add(id−(Q∗κ,S)) if:

(1) ε < κ⇒ h(ε) ≤ min(S\(ε+ 1)), or
(2) at least the above holds on club E ⊆ κ\S.

Proof. Let
A ⊆ {〈Aδ : δ ∈ S〉 : Aδ ∈ id(Qδ)}

be such that |A| < add(h-slalom). We are going to find an upper bound
for A. Let 〈εi : i < κ〉, ε0 = 0, increasingly enumerate a club disjoint from S.

For A ∈ A we define fA : κ → κ such that f(εi) codes A�(εi, εi+1). Now
by our assumption there exists an h-slalom φ which covers all fA, i.e.

(∀∞i < κ) fA(εi) ∈ φ(εi).

For δ ∈ (εi, εi+1) with δ ∈ S define

A∗δ =
⋃
{X : there is a code of a sequence 〈Aσ : σ ∈ S ∩ (εi, εi+1)〉

appearing in φ(εi) such that X = Aδ}.
By our assumption on h we have εi < min(S\(εi+1)) ≤ δ, so A∗δ is the union
of at most δ-many elements of id(Qδ), hence A∗δ ∈ id(Qδ) and 〈A∗δ : δ ∈ S〉
is an upper bound for A.

Corollary 7.3.4. Let κ be weakly compact and let h be the identity
function on κ. Let

µ1 = add(nstprκ ), µ2 = min{add(id−(Q∗κ,S)) : S ∈ nstprκ }.
If either

(1) add(Qκ) < µ1, or just
(2) µ2 ≤ add(Qκ),

then add(Qκ) ≥ add(h-slalom).

Proof. First we show (1) implies (2) by proving

add(Qκ) ≥ min{µ1, µ2}.
This is done almost the same way as for the similar result in 3.3.9. The key
point is that by weak compactness and 3.2.5 we get Ai ∈ id−(Q∗κ,S′i) for
some S′i. Then find some S∗ ⊇∗ S′i for all i < i∗ and clearly Ai ∈ id−(Q∗κ,S∗).

Now assume (2). Clearly h = id satisfies the requirements of 7.3.3 for any
S ∈ nstprκ . Hence clearly add(h-slalom) ≤ µ2.
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