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Abstract. We show how to force distinct values to m, p and h and the values

in Cichoń’s diagram, using the Boolean Ultrapower method. In our recent
paper Controlling cardinal characteristics without adding reals the same was

done for a newer Cichoń’s Maximum construction which does not require large

cardinals. The present version does need large cardinals, but allows one more
value, in addition to the continuum, to be singular (either cov(M) or d).

We also show the following: Given a forcing notion P that forces certain

values to several classical cardinal characteristics of the reals, we can compose
P with a collapse (of a cardinal λ > κ to κ) such that the composition still

forces the previous values to these characteristics.

Introduction

Cichoń’s diagram (see Figure 1) lists ten cardinal characteristics of the contin-
uum, which we will call Cichoń-characteristics (where we ignore the two “depen-
dent” characteristics add(M) = min(cov(M), b) and cof(M) = max(non(M), d)).

In many constructions that force given values to such characteristics we actually
get something stronger, which we call “strong witnesses” (the objects f̄ and ḡ in
Definition 1.8).

In this paper, we show how to collapse cardinals while preserving the strongly
witnessed values for Cichoń-characteristics (and certain other types of characteris-
tics).

We also continue the investigation of forcing constructions that result in Cichoń’s
Maximum, i.e., in “all Cichoń-characteristics (including ℵ1 and the continuum) are
pairwise different.”

This investigation was started in [GKS19] with a construction using large car-
dinals, and continued in [GKMSb] (without using large cardinals). Based on the
latter construction (and accordingly also avoiding large cardinals), in [GKMSa] we
investigated how to preserve and how to change classical cardinal characteristics of
the continuum in NNR extensions, i.e., extensions that do not add reals; and we
showed how this gives 13 pairwise different ones: ten from Cichoń’s Maximum, plus
m, p and h (see Definition 1.1).

It turns out that it is possible to add m, p and h to the original (large cardinal)
construction of [GKS19] as well (see Figure 2) and this is what we do in Section 3
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cov(N ) // non(M) // // cof(N ) // 2ℵ0

b //

OO

d

OO

ℵ1
// add(N ) //

OO

//

OO

cov(M) //

OO

non(N )

OO

Figure 1. Cichoń’s diagram with the two “dependent” values
removed, which are add(M) = min(b, cov(M)) and cof(M) =
max(non(M), d). An arrow x→ y means that ZFC proves x ≤ y.

of this paper. This result is weaker than the one in [GKMSa] in the sense that we
need large cardinals here; the advantage of the current result is that we can obtain
singular values for cov(M) or d (in addition to the singularity of c, which is easy
to get in all constructions), something which does not seem to be possible with the
elementary submodel method of [GKMSb]. (As remarked in Fact 1.2, most of the
Cichoń characteristics can “individually” be singular; but it seems hard to get them
in Cichoń’s maximum setting, see Subsection 1.3.)

We thank an anonymous referee for helpful comments.

Annotated Contents:

We will briefly review the Boolean ultrapower constructions in Section 1. We
describe how we can start with several “initial forcings” (for the left hand side of
Cichoń’s diagram) and then extend them each to a Cichoń’s Maximum construction
using three (or four) strongly compact cardinals.

Part of the following Sections are parallel to [GKMSa], and we will regularly refer
to that paper; this applies in particular to Section 2 (and parts of Subsection 1.4),
where we describe some classes of cardinal characteristics, and their behaviour
under no-new-reals extensions.

In Section 3 we show how to add m, p and h to the Boolean ultrapower con-
struction.

Section 4: The Boolean ultrapower method produces large gaps between the
Cichoń values of the left hand side: The κi in Figure 3 are strongly compact (in
the ground model; so as cofinalities are preserved they are still weakly inaccessible
in the extension). We can get rid of these gaps using the results of this section: We
show how we can collapse cardinals while keeping values for characteristics that are
either strongly witnessed or small.

1. Preliminaries

1.1. The characteristics. In addition to the Cichoń-characteristics we will con-
sider the following ones, whose definitions are well known.

Definition 1.1. Let P be a class of forcing notions.

(1) m(P) denotes the minimal cardinal where Martin’s axiom for the posets
in P fails. More explicitly, it is the minimal κ such that, for some poset
Q ∈ P, there is a collection D of size κ of dense subsets of Q such that
there is no filter in Q intersecting all the members of D.
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cov(N )

��

non(M)

�� ��

cof(N ) // 2ℵ0

b

OO

d

ℵ1
// m // p // h // add(N )

OO

cov(M)

OO

non(N )

OO

Figure 2. The model we construct in this paper; here x → y
means that x < y. When h is omitted, any number of the < signs
can be replaced by = as desired (and in each such constellation we
can get p = h; see Remark 4.3 for details).
This model corresponds to “Constellation A” (cA*, Fig. 3). We
also realise another ordering of the Cichoń values, called “Constel-
lation B” (cB*, Fig. 4).

(2) m := m(ccc).
(3) Write a ⊆∗ b iff a r b is finite. Say that a ∈ [ω]ℵ0 is a pseudo-intersection

of F ⊆ [ω]ω if a ⊆∗ b for all b ∈ F .
(4) The pseudo-intersection number p is the smallest size of a filter base of a

free filter on ω that has no pseudo-intersection in [ω]ℵ0 .
(5) The tower number t is the smallest order type of a ⊆∗-decreasing sequence

in [ω]ℵ0 without pseudo-intersection.
(6) The distributivity number h is the smallest size of a collection of open dense

subsets of ([ω]ℵ0 ,⊆∗) whose intersection is empty.
(7) A family D ⊆ [ω]ℵ0 is groupwise dense if

(i) a ⊆∗ b and b ∈ D implies a ∈ D, and
(ii) whenever (In : n < ω) is an interval partition of ω, there is some

a ∈ [ω]ℵ0 such that
⋃
n∈a In ∈ D.

The groupwise density number g is the smallest size of a collection of group-
wise dense sets whose intersection is empty.

Fact 1.2. It is well known that ZFC proves (for references see [GKMSa]):

m ≤ p = t ≤ h ≤ g, m ≤ add(N ), t ≤ add(M), h ≤ b,

max(b, g) ≤ cof(d), 2<t = c and cof(c) ≥ g,

and all these cardinals are regular, with the possible exception of m, d and c (which
are consistently singular). In addition, all cardinals in Cichoń’s diagram are con-
sistently singular except ℵ1, b and the additivities.

1.2. The old constructions. In this paper, we will build on two existing con-
structions of posets forcing different values to several (or all) entries of Cichoń’s
diagram. We will call them the “old constructions” and refer to as “Constella-
tion A” (in the variants cA and cA*) and “Constellation B” (cB and cB*). Here, cA
and cB refer to the constructions for the left hand side (which do not require large
cardinals), and cA* and cB* refer to Cichoń’s Maximum.
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λ2
//

κ7

λ4
// // λ8

// λ9

λ3
//

(κ6)

OO

λ6

OO

ℵ1 κ9

// λ1
//

κ8

OO

//

OO

λ5
//

OO

λ7

OO

Figure 3. Constellation A

λ3
κ6 // λ4

// // λ8
// λ9

λ2
//

OO
κ7

λ7

OO

ℵ1 κ9

// λ1
//

OO

κ8

//

OO

λ5
//

OO

λ6

OO

Figure 4. Constellation B

Constellation A was introduced in [GKS19], and [BCM21] gives a improvement
(requiring only 3 compacts and allowing d to be singular instead of cov(M)). Con-
stellation B is from [KST19], and [Mej19b] notes that weaker assumptions on car-
dinal arithmetic in the ground model are sufficient.

We will not describe the old constructions in detail, but only state the results.
Note that in the following, we initially state these theorems about the existence

of certain forcing notions assuming GCH (in the ground model). The only reason is
that the theorems are better readable in this form. But only some very weak con-
sequences of GCH are actually required, and we summarize the sufficient cardinal
arithmetic assumptions in Section 5.

Theorem 1.3. Assume GCH and that ℵ1 ≤ λ1 ≤ λ2 ≤ λ3 ≤ λ4 ≤ λ5 are cardinals,
λi regular for i 6= 5.

Constellation A: Assume additionally

(i) either: λ5 is regular, and µ ≥ λ5 is a cardinal with1 cof(µ) ≥ λ3,
(ii) or: cof(λ5) ≥ λ4, and we set µ := λ5.

Then there is a f.s. iteration P cA of length of size µ with cofinality λ4, using
iterands that are (σ, k)-linked for every k ∈ ω, which forces the values of λ1–λ5 in
Constellation A (Figure 3):

(cA) add(N ) = λ1, cov(N ) = λ2, b = λ3, non(M) = λ4,

cov(M) = λ5, and d = c = µ.

Constellation B: Alternatively, assume additionally that cof(λ5) ≥ λ4 and either
λ2 = λ3, or λ3 is ℵ1-inaccessible.2 Then there is a f.s. iteration P cB of length of
size λ5 with cofinality λ4, using iterands that are (σ, k)-linked for every k ∈ ω,
which forces the values of λ1–λ5 in Constellation B (Figure 4):

(cB) add(N ) = λ1, b = λ2, cov(N ) = λ3, non(M) = λ4,

and cov(M) = c = λ5.

All these constructions can then be extended with Boolean ultrapowers (more
precisely: compositions of finitely many successive Boolean ultrapowers), to make
all values simultaneously different:

1This part of the assumption is optimal in the sense that ZFC proves cof(d) ≥ b.
2A cardinal λ is κ-inaccessible if µν < λ for any µ < λ and ν < κ. Under GCH, this is

equivalent to “λ ≥ κ and λ is not the (cardinal) successor of a cardinal with cofinality < κ”.
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Theorem 1.4. Assume GCH and ℵ1 < κ9 < λ1 < κ8 < λ2 < κ7 < λ3 ≤ λ4 ≤
λ5 ≤ λ6 ≤ λ7 ≤ λ8 ≤ λ9, λi regular for i 6= 5, 6, and κj is strongly compact for
j = 7, 8, 9.

Constellation A: Assume additionally that

(i) either: λ5 is regular and cof(λ6) ≥ λ3,
(ii) or: λ6 is regular, cof(λ5) ≥ λ4, and there is a strongly compact κ6 such

that λ3 < κ6 < λ4.

Then there is a f.s. ccc iteration P cA∗ (a Boolean ultrapower of P cA) that forces
Constellation A (Figure 3):

(cA*) add(N ) = λ1, cov(N ) = λ2, b = λ3, non(M) = λ4,

cov(M) = λ5, d = λ6, non(N ) = λ7, cof(N ) = λ8, and c = λ9.

Constellation B: Alternatively, assume additionally λ3 is ℵ1-inaccessible and (ii)
(of Constellation A) holds.
Then there is a f.s. ccc iteration P cB∗ (a Boolean ultrapower of P cB) that forces
Constellation B (Figure 4):

(cB*) add(N ) = λ1, b = λ2, cov(N ) = λ3, non(M) = λ4,

cov(M) = λ5, non(N ) = λ6, d = λ7, cof(N ) = λ8, and c = λ9.

Sketch of proof of Theorems 1.3 and 1.4. In all versions, that is A(i), A(ii) and B,
we first construct a forcing for separating the characteristics on the left hand side,
i.e., for Theorems 1.3. This initial forcing will be different for the different versions.
To get to the “full” result of Theorems 1.4, we always do the same: We apply
Boolean ultrapowers to the initial forcing notion, as introduced in [GKS19].

For Constellation A(i) this result can be found explicitly in [BCM21, Thm. 5.3]
(for the left hand side) and in [BCM21, Thm. 5.7] (for the full version); for Con-
stellation B in [Mej19b, Thm. A, B].

Constellation A(ii) is not explicitly described in the literature so far; [GKS19,
Thm. 1.35] gives the result with slightly stronger assumptions [GKS19, Asm. 1.12].
But these assumptions can be relaxed without too much work. This can be found
in [Mej19b], which basically shows that you can relax the stronger assumptions
of [KST19] to weaker ones for Constellation B; and exactly the same modification
works for Constellation A(i) as well.

In particular, it shows:

• We can replace “λ5 regular” with cof(λ5) ≥ λ4. (This is trivial as it requires
no change in the proof whatsoever.)

Alternatively we could first use a regular λ′5 and then use our Lemma 3.6
to get a (singular) λ5 as value for the continuum.

(Note that singular λ5 allows us to get both cov(M) and c singular in
Theorem 3.10.)

• (For the left hand side only:) How each λi < λj can be replaced by ≤.
(This is rather obvious.)

• How to get rid of the assumption that λ3 is successor of a regular, and that
all λi are ℵ1-inaccessible. (This requires some change in the construction
and proof.)

We now give a very superficial overview of the Boolean ultrapower construction:
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We start with the according left hand side forcing P , forcing (cA) or (cB). For
i = 7, 8, 9 (and also i = 6 in all versions apart from A(i)), we let ji be a com-
plete embedding associated with some suitable Boolean ultrapower of the complete
Boolean algebra generated by Fn<κi(λi, κi) (partial functions of cardinality <κi
from λi to κi), which yields cr(ji) = κi and cof(ji(κi)) = |ji(κi)| = λi. Then
P ∗ = j9(j8(j7(P ))) (in Constellation A(i)) is as required, in the other versions we
use P ∗ = j9(j8(j7(j6(P )))): At the end of Subsection 1.4 we give the argument why
the Cichoń characteristics are forced to have the desired values. �

Remark 1.5. Whenever we change in Theorem 1.4 some strict inequalities on the
right side to equalities, we may weaken the assumption by requiring fewer strongly
compact cardinals.

For example: In Constellation A(i), if we want to end up with non(N ) =
λ7 = λ8 = cof(N ), we can omit the compact κ8, and it is enough to assume
ℵ1 < κ9 < λ1 ≤ λ2 < κ7 < λ3 ≤ λ4 ≤ λ5 ≤ λ6 ≤ λ7 = λ8 ≤ λ9 (with the other re-
quirements unchanged). The same construction and proof will work (where we omit
the ultrapower corresponding to κ8): After the first ultrapower, (corresponding to
κ7), we know that the resulting forcing will force λ7 = non(N ) = cof(N ) = 2ℵ0 .
And all following ultrapowers (in this case there is only one, with critical point κ9)
will have critical point below λ1 (the value for add(N )), as we omit κ8. Therefore
these ultrapowers will keep the value forced to both non(N ) and cof(N ) (while
increasing the value forced to the continuum).

See [GKMSa, Subsec. 2.3] for details on the history of the results of this section
(and more).

1.3. Singular values and Cichoń’s Maximum. With the theorems above, we
can make either d (in Constellation A(i) only) or cov(M) singular (in the others).

Note that typically only the value of c can be forced to be singular in forcing
extensions produced by “usual” f.s. iterations of ccc posets, see e.g. [Bre91, Mej13].
Here, we start with such a “usual” left hand forcing P that (potentially) makes the
continuum singular (which is equal to cov(M) = d, or just to d). After applying the
Boolean ultrapowers, the resulting forcing P ∗ will still force the same (potentially
singular) value to cov(M) or d, while increasing the values for the larger entries in
Cichoń’s diagram, including c, to regular values. We will see in Lemma 3.6 that
we can further modify this P ∗ to force a singular value to the continuum as well;
thus we can get two different singular entries in the diagram together with Cichoń
Maximum (see e.g. Theorem 3.10).

The previously known examples of more than one singular value in Cichoń’s
diagram are:

(1) Forcing with a f.s. iteration of Cohen posets, followed by simultaneously
adding κ many random reals for κ singular yields the consistency of ℵ1 =
non(N ) < b < d < cov(N ) = c where d and c can be singular.

(2) With non-ccc techniques, in [FGKS17] it can be forced that ℵ1 = cov(N ) =
d < non(M) < non(N ) < cof(N ) < c where all the values larger than ℵ1

can be singular.
(3) Several examples of Cichoń’s diagram constellations (not maximum though)

with two different singular values are forced in [Mej19a] using matrix iter-
ations with vertical support restrictions.
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1.4. Blass-uniform cardinal characteristics, LCU and COB. A more de-
tailed discussion on the concepts reviewed in the rest of this section can be found
in [GKMSa, Subsec. 2.1].

Definition 1.6 ([GKMSa, Def. 2.1]). A Blass-uniform cardinal characteristic is a
characteristic of the form

dR := min{|D| : D ⊆ ωω and (∀x ∈ ωω) (∃y ∈ D) xRy}
for some Borel3 R.

Its dual cardinal

bR := min{|F | : F ⊆ ωω and (∀y ∈ ωω) (∃x ∈ F ) ¬xRy}
is also Blass-uniform because bR = dR⊥ where xR⊥y iff ¬(yRx).

In practice, Blass-uniform cardinal characteristics are defined from a relation
R ⊆ X × Y where X and Y are Polish spaces, but since we can translate such a
relation to ωω using Borel isomorphisms, it is enough to discuss relations on ωω.

Systematic research on such cardinal characteristics started in the 1980s or pos-
sibly even earlier, see e.g. Fremlin [Fre84], Blass [Bla93, Bla10] and Vojtáš [Voj93].

Example 1.7. The following are pairs of dual Blass-uniform cardinals (bR, dR) for
natural Borel relations R:

(1) A cardinal on the left hand side of Cichoń’s diagram and its dual on the
right hand side: (add(N ), cof(N )), (cov(N ),non(N )), (add(M), cof(M)),
(non(M), cov(M)), and (b, d).

(2) (s, r) = (bR, dR) where s is the splitting number, r is the reaping number,
and R is the relation on [ω]ℵ0 defined by xRy iff “x does not split y”.

Definition 1.8 ([GKMSa, Def. 2.3]). Fix a Borel relation R, λ a regular cardinal
and µ an arbitrary cardinal. We define two properties:

Linearly cofinally unbounded: LCUR(λ) means: There is a family f̄ = (fα :
α < λ) of reals such that:

(1.9) (∀g ∈ ωω) (∃α ∈ λ) (∀β ∈ λr α) ¬fβRg.
Cone of bounds: COBR(λ, µ) means: There is a <λ-directed partial order E on

µ,4 and a family ḡ = (gs : s ∈ µ) of reals such that

(1.10) (∀f ∈ ωω) (∃s ∈ µ) (∀t D s) fRgt.

Fact 1.11. LCUR(λ) implies bR ≤ λ ≤ dR.
COBR(λ, µ) implies bR ≥ λ and dR ≤ µ.

We often call the objects f̄ in the definition of LCU and (E, ḡ) for COB “strong
witnesses”, and we say that the corresponding cardinal inequalities (or equalities)
are “strongly witnessed”. For example, “(b, d) = (λb, λd) is strongly witnessed”
means: for the natural relation R (namely, the relation ≤∗ of eventual dominance),
we have COBR(λb, λd), LCUR(λb) and there is some regular λ0 ≤ λd such that
LCUR(λ) for all regular λ ∈ [λ0, λd] (this is to allow λd to be singular as in case (i)
of cA and cA* of Theorems 1.3 and 1.4).

3More generally, it is just enough to assume that R is absolute between the extensions we

consider.
4I.e., every subset of µ of cardinality <λ has a E-upper bound
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Remark 1.12. The old constructions ((cA), (cB) in Theorem 1.3) use that we can
first force strong witnesses to the left hand side, and then preserve strong witnesses
in Boolean ultrapowers, so that in the final model all Cichoń-characteristics are
strongly witnessed. In more detail, for each dual pair (x, y) in Cichoń’s diagram,
there is a natural relation Rx such that (x, y) = (bRx

, dRx
). We use these natural

relations (with one exception5) as follows: The initial forcing (without Boolean
ultrapowers) is a f.s. iteration P of length δ and forces LCURx

(µ) for all regular
λx ≤ µ ≤ |δ|, and COBRx

(λx, |δ|), where λx is the suitable λi.
Once we know that the initial forcing P gives strong witnesses for the desired

values λx for all “left-hand” values x in Cichoń’s diagram (and continuum for the
cardinals ≥ d,non(N ) in case (i) of cA or ≥ cov(M) in case (ii) of cA and in cB),
we use the following theorem to separate all the entries.

Theorem 1.13 ([KTT18, GKS19]). Let ν < κ and λ 6= κ be uncountable regular
cardinals, R a Borel relation, and let P be a ν-cc poset forcing that λ is regular.
Assume that j : V → M is an elementary embedding into a transitive class M
satisfying:

(i) The critical point of j is κ.
(ii) M is <κ-closed.6

(iii) For any cardinal θ > κ and any <θ-directed partial order I, j′′I is cofinal
in j(I).

Then:

(a) j(P ) is a ν-cc forcing.
(b) If P  LCUR(λ), then j(P )  LCUR(λ).
(c) If λ < κ and P  COBR(λ, µ), then j(P )  COBR(λ, |j(µ)|).
(d) If λ > κ and P  COBR(λ, µ), then j(P )  COBR(λ, µ).

Proof. We include the proof for completeness. Property (a) is immediate by (ii).
First note that j satisfies the following additional properties.

(iv) Whenever a is a set of size <κ, j(a) = j′′a.
(v) If cof(α) 6= κ then cof(j(α)) = cof(α).

(vi) If θ > κ, L is a set and P “(L, Ė) is <θ-directed” then j(P ) “j′′L is
cofinal in (j(L), j(Ė)), and it is <θ-directed”.

(vii) j(P ) “cof(j(λ)) = λ”.

Item (iv) follows from (i), and (v) follows from (iii). We show (vi). Let L∗ be the
set of nice P -names of members of L, and order it by ẋ ≤ ẏ iff P  ẋĖẏ. It is
clear that ≤ is <θ-directed on L∗. On the other hand, since any nice j(P )-name
of a member of j(L) is already in M by (ii) and (a), j(L∗) is equal to the set of
nice j(P )-names of members of j(L). Therefore, by (iii), j′′L∗ is cofinal in j(L∗).

5The exception is the following: In both cA and cB, for the pair (x, y) = (non(M), cov(M))

it is forced LCU 6=∗ (λ4), LCU 6=∗ (λ5) and COB 6=∗ (λ4, λ5) (here x 6=∗ y iff x(i) 6= y(i) for all but
finitely many i); in cB, for x = cov(N ), we use the natural relation Rcov(N ) (defined as the set

of all pairs (x, y) where the real y is in the Fσ set of full measure coded by x) only for COB.
In this constellation, we do not know whether P forces LCURcov(N)

(λ3) (as we do not have

sufficient preservation results for Rcov(N )). Instead, we use another relation R′ (which defines

different, anti-localization characteristics (bR′ , dR′ )), for which ZFC proves cov(N ) ≤ bR′ and

non(N ) ≥ dR′ . We can then show that P forces LCUR′ (µ) for all regular λ3 ≤ µ ≤ |δ|.
6I.e., M<κ ⊆M .
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Note that j′′L∗ is equal to the set of nice j(P )-names of members of j′′L. Thus,
(vi) follows.

For (vii), the case λ < κ is immediate by (i) and (ii); when λ > κ, apply (vi) to
(L, Ė) = (λ,≤) (the usual order) and θ = λ.

To see (b), note that M �“j(P )  LCUR(j(λ))” and, by (a) and (ii), the same
holds inside V (because any nice name of an ordinal, represented by a maximal
antichain on P , belongs to M , hence any nice name of a real, which in fact means
that j(P )  LCUR(cof(j(λ))). By (vii) we are done.

Now assume P  COBR(λ, µ) witnessed by (Ė, ˙̄g). This implies M |=“j(P ) 
(j(Ė), j( ˙̄g)) witnesses COBR(j(λ), j(µ))”. If λ < κ then j(λ) = λ and it follows
that V |=“j(P )  COBR(λ, |j(µ)|)”. In the case λ > κ apply (vi) to conclude
that j(P ) forces that (j( ˙̄g(β)) : β < µ), with j(Ė) restricted to j′′µ, witnesses
COBR(λ, µ). �

If κ is a strongly compact cardinal and θκ = θ, then there is an elementary
embedding j associated with a Boolean ultrapower of the completion of Fn<κ(θ, κ)
such that j satisfies (i)–(iii) of the preceding theorem and, in addition, for any
cardinal λ ≥ κ such that either λ ≤ θ or λκ = λ holds, we have max{λ, θ} ≤ j(λ) <
max{λ, θ}+ (see details in [KTT18, GKS19]). Therefore, using only Theorem 1.13,
it is easy to see how to get from the old constructions (Theorem 1.3) to the Boolean
ultrapowers (Theorem 1.4), as described in Remark 1.12 (see details in [BCM21,
Thm. 5.7] and [GKS19, Thm. 3.1] for cA* and in [KST19, Thm. 3.1] for cB*). Note
that also a potential singular left-hand value for cov(M) or d is preserved by the
ultrapowers: Theorem 1.13(d) does not require µ to be regular.

2. Cardinal characteristics in extensions without new <κ-sequences

This section summarizes the technical results introduced in [GKMSa, Sect. 3].

Lemma 2.1 ([GKMSa, Lemma 3.1]). Assume that Q is θ-cc and <κ-distributive
for κ regular uncountable, and let λ be a regular cardinal and R a Borel relation.

(1) If LCUR(λ), then Q  LCUR(cof(λ)).
So if additionally λ ≤ κ or θ ≤ λ, then Q  LCUR(λ).

(2) If COBR(λ, µ) and either λ ≤ κ or θ ≤ λ, then Q  COBR(λ, |µ|).
So for any λ, COBR(λ, µ) implies Q  COBR(min(|λ|, κ), |µ|).

Lemma 2.2 ([GKMSa, Lemma 3.2]). Assume that R is a Borel relation, P ′ is
a complete subforcing of P , λ regular and µ is a cardinal, both preserved in the
P -extension.

(a) If P  LCUR(λ) witnessed by some ˙̄f , and ˙̄f is actually a P ′-name, then
P ′  LCUR(λ).

(b) If P  COBR(λ, µ) witnessed by some (Ė, ˙̄g), and (Ė, ˙̄g) is actually a P ′-
name, then P ′  COBR(λ, µ).

We now review three properties of cardinal characteristics.

Definition 2.3 ([GKMSa, Def. 3.3]). Let x be a cardinal characteristic.

(1) x is t-like, if it has the following form: There is a formula ψ(x) (possibly
with, e.g., real parameters) absolute between universe extensions that do
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not add reals,7 such that x is the smallest cardinality λ of a set A of reals
such that ψ(A).

All Blass-uniform characteristics are t-like; other examples are p, t, u, a
and i.

(2) x is called h-like, if it satisfies the same, but with A being a family of sets
of reals (instead of just a set of reals).

Note that t-like implies h-like, as we can include “the family of sets of
reals is a family of singletons” in ψ. Other examples are h and g.

(3) x is called m-like, if it has the following form: There is a sentence ϕ (possibly
with, e.g., real parameters) such that x is the smallest cardinality λ such
that H(≤λ) � ϕ.

Any infinite t-like characteristic is m-like: If ψ witnesses t-like, then we
can use ϕ = (∃A) [ψ(A)&(∀a ∈ A) a is a real] to get m-like (since H(≤λ)
contains all reals). Other examples are8 m, m(Knaster), etc.

Lemma 2.4 ([GKMSa, Lemma 3.4]). Let V1 ⊆ V2 be models (possibly classes)
of set theory (or a sufficient fragment), V2 transitive and V1 is either transitive
or an elementary submodel of HV2(χ) for some large enough regular χ, such that
V1 ∩ ωω = V2 ∩ ωω.

(a) If x is h-like, then V1 � x = λ implies V2 � x ≤ |λ|.
In addition, whenever κ is uncountable regular in V1 and V <κ1 ∩ V2 ⊆ V1:

(b) If x is m-like, then V1 � x ≥ κ iff V2 � x ≥ κ.
(c) If x is m-like and λ < κ, then V1 � x = λ iff V2 � x = λ.
(d) If x is t-like and λ = κ, then V1 � x = λ implies V2 � x = λ.

We apply this to three situations: Boolean ultrapowers, extensions by distribu-
tive forcings, and complete subforcings:

Corollary 2.5 ([GKMSa, Cor. 3.5]). Assume that κ is uncountable regular, P 
x = λ, and

(i) either Q is a P -name for a <κ-distributive forcing, and we set P+ := P ∗Q
and j(λ) := λ;

(ii) or P is ν-cc for some ν < κ, j : V → M is a complete embedding into a
transitive <κ-closed model M , cr(j) ≥ κ, and we set P+ := j(P ),

(iii) or P is κ-cc, M � H(χ) is <κ-closed, and we set P+ := P ∩ M and
j(λ) := |λ ∩M |. (So P+ is a complete subposet of P ; and if λ ≤ κ then
j(λ) = λ.)

Then we get:

(a) If x is m-like and λ ≥ κ, then P+  x ≥ κ.
(b) If x is m-like and λ < κ, then P+  x = λ.
(c) If x is h-like then P+  x ≤ |j(λ)|. Concretely,

for (i): P+  x ≤ |λ|;
for (ii): P+  x ≤ |j(λ)|;
for (iii): P+  x ≤ |λ ∩M |.

(d) So if x is t-like and λ = κ, then for (i) and (iii) we get P+  x = κ.

7Concretely, if M1 ⊆ M2 are transitive (possibly class) models of a fixed, large fragment of

ZFC, with the same reals, then ψ is absolute between M1 and M2.
8m can be characterized as the smallest λ such that there is in H(≤λ) a ccc forcing Q and a

family D̄ of dense subsets of Q such that “there is no filter F ⊆ Q meeting all Di” holds.
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2.1. On the role of large cardinals in our constructions. It is known that
NNR (no-new-reals) extensions of proper classes (such as forcing extensions) will
preserve Blass-uniform characteristics in the absence of at least some large cardinals.
More specifically:

Lemma 2.6. Assume that 0# does not exist. Let V1 ⊆ V2 be transitive class
models with the same reals, and assume V1 |= x = λ for some Blass-uniform x.
Then V2 |= x = |λ|.

(This is inspired by the deeper observation of Mildenberger [Mil98, Prop. 2.1],
who uses the Covering Lemma [DJ82] for the Dodd-Jensen core model to show
that in cardinality preserving NNR extensions, a measurable in an inner model is
required to change the value of a Blass-uniform characteristic.)

Proof. Fix a bijection in V1 between the reals and some ordinal α. Assume that in
V2, X ⊆ ωω witnesses that ℵ1 ≤ x ≤ µ < |λ|. Using the bijection, we can interpret
X as a subset of α. According to Jensen’s covering lemma in V2, there is in L (and
thus in V1) some X ′ ⊇ X such that |X ′| = |X| in V2, in particular |X ′|V2 < λ.
Therefore, |X ′|V1 < λ as well; and, by absoluteness, V1 thinks that X ′ witnesses
x < λ, a contradiction. �

Recall the “old” Boolean ultrapower construction cA* case (i): Assume that we
start with a forcing notion P forcing d = 2ℵ0 = λ6. We now use the elementary
embedding j = j7 : V →M with critical point κ7, and set P ′ := j(P ). As we have
seen, P ′ still forces d = λ6, but 2ℵ0 = λ7 = |j(κ7)|.

So let G be a P ′-generic filter over V (which is also M -generic). Set V1 := M [G]
and V2 := V [G]. Then V1 is a <κ7-complete submodel of V2. By elementaricity,
M |= j(P )  d = j(λ6). So V1 |= d = j(λ6), whereas V2 |= d = λ6 < |j(λ6)|.

Hence, for this specific constellation of models, some large cardinals (at least 0#)
are required (for our construction we actually use strongly compact cardinals).

3. Applications

Notation 3.1. (1) Whenever we are investigating a characteristic x, we write
λx for the specific value we plan to force to it. For example, in Constella-
tion A of any “old construction”, λcov(N ) would be λ2, whereas in Constel-
lation B it would be λ3. We remark that we do not implicitly assume that
P  x = λx for the P under investigation; it is just an (implicit) declaration
of intent.

(2) Whenever we base an argument on one of the old constructions, and say
“we can modify the construction to additionally force. . . ”, we implicitly
assume that the desired values λx for the “old” characteristics satisfy the
assumptions we made in the “old” constructions (such as “λx is regular”).

Recall the following properties of posets.

Definition 3.2. Let 2 ≤ k < ω and let Q be a poset.

(1) The poset Q is k-Knaster if for any uncountable B ⊆ Q there is some
uncountable k-linked A ⊆ B, i.e. any subset of A of size ≤k has a lower
bound in Q.

(2) The poset Q has precaliber ℵ1 if for any uncountable B ⊆ Q there is some
uncountable centered A ⊆ B, i.e. any finite subset of A has a lower bound
in Q.
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For notational convenience, we declare that “1-Knaster” means “ccc”, and “ω-
Knaster” means “precaliber ℵ1”.

Corollary 2.5 gives us 11 characteristics:

Lemma 3.3. Given ℵ1 ≤ λm < κ9 regular and 1 ≤ k0 ≤ ω, we can modify P cA∗

(and also P cB∗) so that we additionally force:

(1) m(k-Knaster) = ℵ1 for 1 ≤ k < k0,
(2) m(k-Knaster) = λm for k ≥ k0,
(3) p ≥ κ9.

Proof. Start with an appropriate left hand side forcing P . We can modify it to
construct a ccc poset P ′ as in [GKMSa, Lem. 4.7] when k0 < ω, or as in [GKMSa,
Lem. 5.5] when k0 = ω, forcing the same as P and, in addition, p = b, and both
(1) and (2).9 Apply Boolean ultrapowers to P ′ just as in the “old” construction,
resulting in P ∗. We can apply Corollary 2.5(ii), more specifically the consequences
(a) and (b): (b) implies that P ∗ forces (1) and (2), while (a) implies that P ∗ forces
p ≥ κ9. And just as in the “old” construction, we can use Theorem 1.13 to show
that P ∗ forces the desired values to the Cichoń-characteristics. �

If we use λm = κ9, we already lose control of the Knaster number and only get
the following (with the same construction):

Lemma 3.4. For 1 ≤ k0 ≤ ω, we can modify P cA∗ (and also P cB∗) so that we
additionally force:

(1) m(k-Knaster) = ℵ1 for 1 ≤ k < k0,
(2) m(k-Knaster) ≥ κ9.

The following will be used to control g in our construction:

Lemma 3.5 (Blass [Bla89, Thm. 2]). Let ν be an uncountable regular cardinal and
let (Vα)α≤ν be an increasing sequence of transitive models of ZFC such that

(i) ωω ∩ (Vα+1 r Vα) 6= ∅,
(ii) (ωω ∩ Vα)α<ν ∈ Vν , and

(iii) ωω ∩ Vν =
⋃
α<ν ω

ω ∩ Vα.

Then, in Vν , g ≤ ν.

We now slightly expand10 [GKMSa, Lemma 6.3]. This Lemma will be used to
change the values forced to g and c, while preserving the values for Blass-uniform
characteristics.

Lemma 3.6. Assume the following:

(1) ℵ1 ≤ κ ≤ ν ≤ µ, where κ and ν are regular and µ = µ<κ,
(2) P is a κ-cc poset forcing c > µ.
(3) For some Borel relations R1

i (i ∈ I1) on ωω and some regular cardinals λ1
i :

P forces LCUR1
i
(λ1
i )

9For Constellation A(i), P = P cA is constructed by a matrix iteration, so the small posets in
the modification P ′ should be inserted in a different way, specifically, as in the proof of [BCM21,

Thm. 5.4].
10Compared to [GKMSa, Lemma 6.3], we just added consequences (b) and (c). These are

actually not used explicitly in the rest of the paper; but (c) is used implicitly in the sketch of
proof of Theorem 1.3, where we claim that in Constellation A(ii) we can get c = λ5 singular by

applying Lemma 3.6.
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(4) For some Borel relations R2
i (i ∈ I2) on ωω, λ2

i regular and cardinals ϑ2
i :

P forces COBR2
i
(λ2
i , ϑ

2
i ).

(5) For some m-like characteristics yj (j ∈ J) and λj < κ: P  yj = λj.
(6) For some m-like characteristics y′k (k ∈ K): P  y′k ≥ κ.
(7) |I1 ∪ I2 ∪ J ∪K| ≤ µ.

Then there is a complete subforcing P ′ of P of size µ forcing

(a) LCUR1
i
(λ1
i ) and COBR2

i′
(λ2
i′ , ϑ

2
i′) for all i ∈ I1 and i′ ∈ I2 such that

λ1
i , λ

2
i′ , ϑ

2
i′ ≤ µ;

(b) LCUR1
i
(ν) and COBR2

i′
(ν, ν) for all i ∈ I1 and i′ ∈ I2 such that λ1

i , λ
2
i′ > µ;

(c) COBR2
i′

(λ2
i′ , µ) for all i′ ∈ I2 such that λ2

i′ ≤ ν, µ<λ
2
i′ = µ and ϑ2

i > µ;

(d) yj = λj and y′k ≥ κ for all j ∈ J and k ∈ K,
(e) c = µ and g ≤ ν.

Proof. As in the proof of [GKMSa, Lemma 6.3], construct an increasing sequence
(Mα : α < ν) of <κ-closed elementary submodels of H(χ) (for χ regular large
enough) of size µ such that

(i) µ ∪ {µ} ⊆ M0 and M0 contains (as elements) all the objects mentioned in
the hypothesis of the lemma (i.e., in case of an m-like characteristic, M0

contains the parameters of the definition);
(ii) (Mξ : ξ ≤ α) ∈Mα+1;

(iii) when λ1
i > µ (i ∈ I1), λ1

i ∩Mα+1 contains an upper bound of λ1
i ∩Mα;

(iv) when λ2
i > µ (i ∈ I2), Mα+1 contains a P -name ζ̇iα of a member of ϑ2

1 that

is forced to be a Ė
i
-upper bound of ϑ2

i ∩Mα, where (Ė
i
, ˙̄gi) ∈ M0 is a

witness of COBR2
i
(λ2
i , ϑ

2
i );

(v) when λ2
i ≤ ν, µ<λ

2
i′ = µ and ϑ2

i > µ (i ∈ I2): for any C ⊆ ϑ2
i ∩Mα of

size <λ2
i there is some P -name of a member of ϑ2

1 that is forced to be a

Ė
i
-upper bound of C.

(vi) Mα+1 contains a P -name of a real that forced not to be in the P ∩Mα-
extension. (This is possible as P forces c > µ.)

Set M := Mν =
⋃
α<νMα, which is also a <κ-closed elementary submodel of H(χ)

of size µ. As P is κ-cc, Pα := P ∩Mα is a complete subposet of P for any α ≤ ν,
and it is clear that P ′ := Pν is the direct limit of (Pα : α < ν).

We show that P ′ is as required.
Item (a) follows from Lemma 2.2. and (d) follows from Corollary 2.5 (case (iii)).

For (b), note that by (iv), P ′ forces that (ḣiα : α < ν) is a witness of COBR2
i′

(ν, ν)

where ν has its usual order and ḣiα := ġi
ζ̇iα

; and by (iii) LCUR1
i
(ν) is obtained

“dually”.11

For (c), by (v) P ′ forces that ϑi2 ∩M (of size µ) with the partial order Ė
i ∩

M (which is a P ′-name) is <λi2-directed and (ġiξ : ξ ∈ ϑi2 ∩M) is a witness of

COBR2
i′

(λ2
i′ , µ).

For (e), let Vν be a P ′-generic extension and, for each α < ν, let Vα be its inter-
mediate Pα-extension. By (iv) the sequence (Vα : α ≤ ν) satisfies the hypothesis
of Lemma 3.5, so Vν |= g ≤ ν. On the other hand, it is clear that Vν |= c = µ. �

11This argument comes from [GKMSb, Lemma 1.6].
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Remark 3.7. We cannot preserve COBR(λ, θ) when λ > µ. E.g., if λ > µ, then
COBR(λ, θ) will fail in the P ′-extension as it would imply bR ≥ λ > µ = c.

The following two results deal with p.

Lemma 3.8 ([GKMSa, Lemma 7.2]). Assume ξ<ξ = ξ, P is ξ-cc, and set Q :=
ξ<ξ (ordered by extension). Then P forces that QV preserves all cardinals and
cofinalities. Assume P  x = λ (in particular that λ is a cardinal), and let R be a
Borel relation.

(a) If x is m-like: λ < ξ implies P ×Q  x = λ; λ ≥ ξ implies P ×Q  x ≥ ξ.
(b) If x is h-like: P ×Q  x ≤ λ.
(c) P  LCUR(λ) implies P ×Q  LCUR(λ).
(d) P  COBR(λ, µ) implies P ×Q  COBR(λ, µ).

Lemma 3.9 ([DS], [GKMSa, Lemma 7.3]). Assume that ξ = ξ<ξ and P is a ξ-cc
poset that forces ξ ≤ p. In the P -extension V ′, let Q = (ξ<ξ)V . Then,

(a) P ×Q = P ∗Q forces p = ξ
(b) If in addition P forces ξ ≤ p = h = κ then P ×Q forces h = κ.

We are now ready to prove the consistency of 13 pairwise different classical
characteristics. Note that the following result allows both c and either cov(M) or
d to be singular.

Theorem 3.10. Assume GCH and ℵ1 ≤ λm ≤ λp ≤ λh ≤ κ9 < λ1 < κ8 < λ2 <
κ7 < λ3 ≤ λ4 ≤ λ5 ≤ λ6 ≤ λ7 ≤ λ8 ≤ λ9 such that the assumptions of Theorem 1.4
(Constellation A or B) are met, except for the regularity requirement on λ9, and
additionally λm, λp and λh are regular and12 cof(λ9) ≥ λh.

Then there is a λ+
p -cc poset P (if λp = λh we even get ccc) which preserves

cofinalities and forces (1) and (2) of Lemma 3.3, and

p = λp, h = g = λh,

as well as the old values for the Cichoń characteristics, that is, (cA*) or (cB*).

For the convenience of the reader, we repeat here “the assumptions of Theo-
rem 1.4 without λ9 regular”: λi regular for i 6= 5, 6, 9, and κj is strongly compact
for j = 7, 8, 9, and additionally

Constellation A:

(i) Either: λ5 is regular and cof(λ6) ≥ λ3,
(ii) or: λ6 is regular, cof(λ5) ≥ λ4, and there is a strongly compact κ6 such

that λ3 < κ6 < λ4.

Constellation B: λ3 is ℵ1-inaccessible and (ii) holds.

Proof. Let P ∗ be the suitable ccc poset obtained in the proof of Lemma 3.3 (or
Lemma 3.4 if λm = κ9), but not for the given λ9 as value for the continuum, but
ξ := (λκ9

9 )+ instead.
This is a ccc poset of size ξ that forces strong witnesses for the desired values

of the Cichoń-characteristics (but c = ξ), and gives the results of Lemma 3.3 (or
Lemma 3.4) on the Knaster numbers (and p).

We now apply Lemma 3.6 with κ = ν = λh and µ = λ9. This gives us a complete
subposet P ′ of P ∗.

12The cof(λ9) ≥ λh is optimal in our situation g = λh, as cof(c) ≥ g.

Paper Sh:E87, version 2021-01-28 2. See https://shelah.logic.at/papers/E87/ for possible updates.



CONTROLLING CHARACTERISTICS UNDER COLLAPSES 15

If λm < λh (and so in particular λm < κ9), we still get (1) and (2) of Lemma 3.3,
and p (which was forced by P ∗ to be ≥κ9) is forced to be ≥κ = λh; also g is forced
to be ≤ν = λh, and so it is forced that p = h = g = λh.

If λm = λh, then we only get m(k0-Knaster) ≥ κ = λh = λm, so we get λm ≤
m(k0-Knaster) ≤ p ≤ g = ν = λh = λm.

In any case c = λ9 and the values forced by P ′ of the other cardinals in Cichoń’s
diagram are the same values forced by P ∗, again with strong witnesses.

If λp = λh then we are done. So assume that λp < λh. Hence, by Lemmas 3.8

and 3.9, P := P ′ × (λ
<λp
p ) is as required. It is clear that P forces m(k0-Knaster) =

m(precaliber) = λm when λm < λp, but the same happens when λm = λp because
P would force λm ≤ m(k0-Knaster) ≤ m(precaliber) ≤ p ≤ λm. �

4. Reducing gaps (or getting rid of them)

As mentioned in Remark 1.5, we can choose right side Cichoń-characteristics
rather arbitrarily or even choose them to be equal (equality allows a construction
from fewer compact cardinals). However, large gaps were required between some
left side cardinals. We deal with this problem now, and show that we can assign
reasonably arbitrary regular values to all characteristics (such as λi = ℵi+1), and
in particular set any “reasonable selection” of them equal.

Let us introduce notation to describe this effect:

Definition 4.1. Let x̄ = (xi : i < n) be a finite sequence of cardinal characteristics
(i.e., of definitions). Say that x̄ is a <-consistent sequence if the statement x0 <
. . . < xn−1 is consistent with ZFC (perhaps modulo large cardinals).

A consistent sequence x̄ is ≤-consistent if, in the previous chain of inequalities,
it is consistent to replace any desired instance or instances of < with =. More
formally, for any interval partition (Ik : k < m) of {0, . . . , n − 1}, it is consistent
that xi = xj for any i, j ∈ Ik, and xi < xj whenever i ∈ Ik, j ∈ Ik′ and k < k′ < m.

For example, the sequence

(ℵ1, add(N ), cov(M), b,non(M), cov(M), d)

is ≤-consistent, as well as

(ℵ1, add(N ), b, cov(N ),non(M), cov(M)),

see Theorem 1.3. Previously, it had not been known whether the sequences of ten
Cichoń-characteristics from [GKS19, BCM21, KST19] are ≤-consistent: It is not
immediate that cardinals on the left side can be equal while separating everything on
the right side. As described in Remark 1.5 the reason is that, to separate cardinals
on the right side, it is necessary to have a strongly compact cardinal between the
dual pair of cardinals on the left, thus the left side gets separated as well. But
thanks to the collapsing method of this section, we can equalize cardinals on the
left as well. As a result, we obtain the following:13

Lemma 4.2. The sequences

(ℵ1,m, p, add(N ), cov(M), b,non(M), cov(M), d,non(N ), cof(N ), c) and

(ℵ1,m, p, add(N ), b, cov(N ),non(M), cov(M),non(N ), d, cof(N ), c)

13Each sequence yields 211 many consistency results (not all of them new, obviously; CH is
one of them).
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are ≤-consistent (modulo large cardinals).

Remark 4.3. Note that we do not claim (nor conjecture) that the collapse forcings
we use for this result will preserve the value of h (which is neither m-like nor t-like).
We only know, by Lemma 2.4(a), that the collapse will not increase h. Accordingly,
if we start out with p = h, then the resulting model will satisfy this as well (as
p ≤ h in ZFC). So to any constellation of the characteristics in Lemma 4.2 we can
additionally get p = h.
In contrast, using the methods of this paper we do not know how to get p < h
(and in particular p < h = add(N )) in these constellations (apart of course from
the constellations we already dealt with in the preceding section). Note that we
cannot just apply Lemma 3.9 after collapsing to get the desired Cichoń values, as
the collapses are not ξ-cc (where ξ is the desired value for p).

We start with the following well-known result.

Lemma 4.4 (Easton’s lemma). Let κ be an uncountable cardinal, P a κ-cc poset
and let Q be a <κ-closed poset. Then P forces that Q is <κ-distributive.

Proof. For successor cardinals, this is proved in [Jec03, Lemma 15.19], but the same
argument is valid for any regular cardinal. Singular cardinals are also fine because,
for κ singular, <κ-closed implies <κ+-closed. �

To prove Lemma 4.2, we use the following:

Assumption 4.5. (1) κ is regular uncountable.
(2) θ ≥ κ, θ = θ<κ.
(3) P is κ-cc and forces that x = λ for some characteristic x (so in particular λ

is a cardinal in the P -extension).
(4) Q is <κ-closed.
(5) P  Q is θ+-cc.14

(6) We set P+ := P × Q = P ∗ Q. We call the P+-extension V ′′ and the
intermediate P -extension V ′.

(We will actually have |Q| = θ, which implies (5)).
Let us list a few simple facts:

(P1) In V ′, all V -cardinals ≥κ are still cardinals, and Q is a <κ-distributive
forcing (due to Easton’s lemma). So we can apply Lemma 2.1 and Corol-
lary 2.5.

(P2) Let µ be the successor (in V or equivalently in V ′) of θ. So in V ′, Q is µ-cc
and preserves all cardinals ≤ κ as well as all cardinals ≥ µ.

(P3) So if V |=“κ ≤ ν ≤ θ”, then in V ′′, κ ≤ |ν| < µ. The V ′′ successor of κ is
≤ µ.

We now apply it to a collapse:

Lemma 4.6. Let R be a Borel relation, κ be regular, θ > κ, θ<κ = θ, P κ-cc, and
set Q := Coll(κ, θ), i.e., the set of partial functions f : κ→ θ of size <κ. Then:

(a) P ×Q forces |θ| = κ.
(b) If P forces that λ is a cardinal then

P ×Q  |λ| =

{
κ if (in V ) κ ≤ λ ≤ θ
λ otherwise.

14I.e., P forces that all antichains of Q have size ≤θ.
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(c) If x is m-like, λ < κ and P  x = λ, then P ×Q  x = λ.
(d) If x is m-like and P  x ≥ κ, then P ×Q  x ≥ κ.
(e) If R is a Borel relation then

(i) P “λ regular and LCUR(λ)” implies P ×Q  LCUR(|λ|).
(ii) P “λ is regular and COBR(λ, µ)” implies P ×Q  COBR(|λ|, |µ|).

Proof. As mentioned, Assumption 4.5 is met; in particular, P forces that Q̌ is <κ-
distributive (by 4.5(P1)), so we can use Lemma 2.1 and Corollary 2.5. Also note
that, whenever κ < λ ≤ θ and P “λ is regular”, P×Q forces cof(λ) = κ = |λ|. �

So we can start, e.g., with a forcing P0 as in Theorem 3.10: As we can just set
h := p, we can assume P0 is ccc, and P0 forces strictly increasing values to the
characteristics in the first, say, sequence of Lemma 4.2.

We now pick some κ0 < θ0, satisfying λp < κ0 and the assumptions of the
previous Lemma, i.e., κ0 is regular and θ<κ0

0 = θ0. Let Q0 be the collapse of θ0 to
κ0, a forcing of size θ0. So P1 := P0 × Q0 is θ+

0 -cc and, according to the previous
Lemma, still forces the “same” values (and in fact strong witnesses) to the Cichoń-
characteristics (including the case that any value λi with κ0 < λi ≤ θ0 is collapsed
to |λi| = κ0). The m-like characteristics below κ0, that is p and, e.g., m, are also
unchanged,

We now pick another pair θ0 < κ1 < θ1 (with the same requirements) and take
the product of P1 with the collapse Q1 of θ1 to κ1, etc.

In the end, we get P0×Q0×· · ·×Qn. Each characteristic which by P was forced
to have value λ now is forced to have value |λ|, which is κm if κm ≤ λ ≤ θm for
some m, and λ otherwise. This immediately gives the

Proof of Lemma 4.2. We start with GCH, and construct an initial ccc forcing P0 ,
according to Theorem 3.10, to already result in the desired (in)equalities between
ℵ1,m, p = h, such that we get pairwise different regular Cichoń values λi, and
p < add(N ).

Let (Im)m∈M be the interval partition of the sequence (p, add(N ), . . . , c) indi-
cating which characteristics we want to identify. For each non-singleton Im, let κm
be the value of the smallest characteristic in Im, and θm the largest. Note that
θm < κm+1 < θm+1. Then P0 ×Q0 × · · · ×QM−1 forces that all characteristics in
Im have value κm, as desired.

The only case that might require some elaboration is that one of the intervals
contains p; i.e., we desire p = add(N ) = · · · = x, where x is the largest Cichoń
characteristic in the interval, which gets assigned some value λi by the initial forcing;
whereas p is assigned some value λp. So we use the collapse from θ = λi to κ = λp.
This collapse results in p ≥ λp by Lemma 4.6(d), and together with p ≤ add(N ) ≤ x
(in the P0×Coll(λp, λi)-extension, and the fact that x now has value p as well) results
in p = x as desired. �

We can use the same method to assign specific values to the characteristics. We
start with a simple example, and then give a more general theorem.

Example 4.7. We can assign the values ℵ1,ℵ2, . . . ,ℵ12 to the first sequence of
Lemma 4.2 (as in Figure 5).

We can do the same for the second sequence.

Proof. Again, start with GCH and P0 forcing the desired values for m and p (now
ℵ2 and ℵ3) and pairwise distinct regular Cichoń values λi. Then pick κ0 = λ+

p = ℵ4
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ℵ5

��

ℵ7

�� ��

ℵ11
// ℵ12

ℵ6

OO

ℵ9

ℵ1
// ℵ2

// ℵ3 ℵ3
// ℵ4

OO

ℵ8

OO

ℵ10

OO

Figure 5. A possible assignment for Figure 2: m = ℵ2, p = h =
ℵ3, λi = ℵ3+i for i = 1, . . . , 9. (Note that with the method of this
section we cannot get p < h.)

and θ0 = λ1 (which then becomes ℵ4 after the collapse). Then set κ1 = λ+
1 (which

would be ℵ5 after the first collapse), and θ1 = λ2, etc. �

We can of course just as well assign the values (ℵω·m+1)1≤m≤12 instead of
(ℵm)1≤m≤12, and also get certain singular values for d and c. It is a bit awkward to
make precise the (not entirely correct) claim “we can assign whatever reasonable
value we want”; nevertheless we will try to do just that in the following (at first
for the case α1 < α2 < α3; as explained in Remark 4.10, there are variants of the
theorem which allow α1 = α2 and/or α2 = α3).

We first give the result for Constellation A(i). See below (Theorems 4.14, 4.15)
for the other constellations.

Theorem 4.8. Assume GCH and 1 ≤ k0 ≤ ω. Let 1 ≤ αm ≤ αp ≤ α1 < α2 <
α3 ≤ α4 ≤ . . . ≤ α9 be ordinals and assume that there are strongly compact cardinals
κ9 < κ8 < κ7 such that

(i) ℵαp
≤ κ9, ℵα1

< κ8 and ℵα2
< κ7;

(ii) for i = 1, 2, 3: ℵβi−1+(αi−αi−1) is regular,15 where βi := max{αi, κ10−i + 1}
and α0 = β0 = 0;

(iii) for i ≥ 4, i 6= 6, 9: ℵβ3+(αi−α3) is regular;
(iv) cof(ℵβ3+(α6−α3)) ≥ ℵβ3

;
(v) ℵαm

and ℵαp
are regular; and

(vi) cof(ℵβ3+(α9−α3)) ≥ ℵαp
.

Then we get a poset P , which forces (1) and (2) of Lemma 3.3 for λm = ℵαm
, and

p = g = ℵαp
, add(N ) = ℵα1

, cov(N ) = ℵα2
, b = ℵα3

, non(M) = ℵα4
,

cov(M) = ℵα5
, d = ℵα6

, non(N ) = ℵα7
, cof(N ) = ℵα8

, and c = ℵα9
,

as well as

ℵξ =


(ℵξ)V if ξ ≤ α1,
(ℵβ1+(ξ−α1))

V if α1 < ξ ≤ α2,
(ℵβ2+(ξ−α2))

V if α2 < ξ ≤ α3,
(ℵβ3+(ξ−α3))

V if α3 < ξ.

Before giving the proof, we more verbosely describe some aspects of the hypothe-
ses:

15See Discussion 4.9 for an analysis of this assumption
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Discussion 4.9. (1) In (ii), for i = 1, 2, 3, “ℵβi−1+(αi−αi−1) is regular” is
equivalent to saying that αi is either a successor ordinal or a weakly in-
accessible larger than βi−1. In this case βi is either a successor ordinal or
weakly inaccessible, so ℵβi is regular.

(2) In (iii), “ℵβ3+(αi−α3) is regular” is equivalent to say that one of the following
cases holds:
• αi > α3 and αi is either a successor ordinal or a weakly inaccessible

larger than β3; or
• αi = α3 (since then ℵβ3

is regular due to (1)).
(3) In relation with (iv) and (vi), whenever ℵβ3

≥ κ, cof(ℵβ3+(αi−α3)) ≥ κ is
equivalent to say that one of the following cases holds:
• αi > α3 and αi is either a successor ordinal or a limit ordinal with

cofinality ≥κ; or
• αi = α3.

Proof of Theorem 4.8. For 4 ≤ i ≤ 9 put βi := β3 + (αi−α3). Also set λm := ℵαm
,

λp := ℵαp
and λi := ℵβi for 1 ≤ i ≤ 9. Note that λi is regular for i 6= 6, 9 (see (1)

and (2) above), cof(λ6) ≥ λ3, cof(λ9) ≥ λp and λm ≤ λp ≤ κ9 < λ1 < κ8 < λ2 <
κ7 < λ3 ≤ λ4 ≤ . . . ≤ λ9. Let P be the ccc poset corresponding to Theorem 3.10
(the modification of P cA∗ with λh = λp).

Step 1. In the case κ9 < α1 we have β1 = α1, so let P1 := P ; in the case α1 ≤ κ9,
we have β1 = κ9 + 1 and λ1 = κ+

9 . Put κ1 := ℵα1
and P1 := P × Coll(κ1, λ1). It

is clear that κ1 is regular and κ1 < λ1 so, by Lemma 4.6, P1 forces add(N ) = ℵα1

and that the values of the other cardinal characteristics are the same as in the P -
extension (also note that P1 forces g ≤ |λp| = λp by Corollary 2.5(i)(c), so equality
holds since p ≤ g in ZFC). Moreover, P1 forces

ℵξ =

{
(ℵξ)V if ξ ≤ α1,
(ℵβ1+(ξ−α1))

V if α1 < ξ.

Note that this is also valid in the case κ9 < α1 (where β1 = α1). In particular, for
any ξ ≥ κ8, P1 forces ℵξ = ℵVξ because, in the ground model, κ8 is an ℵ-fixed point
larger than β1.

Step 2. In the case κ8 < α2 put P2 := P1; otherwise, we have β2 = κ8 + 1
and λ2 = κ+

8 . Set κ2 := ℵβ1+(α2−α1) and P2 := P1 × Coll(κ2, λ2). It is clear that
κ2 < λ2, so Lemma 4.6 applies, i.e., P2 forces cov(N ) = κ2 and that the values of
the other characteristics are the same as in the P1-extension. Also note that P1

forces κ2 = ℵα2
, and this value remains unaltered in the P2-extension. Furthermore

P2 forces

ℵξ =

{
(ℵξ)V

P1
if ξ ≤ α2,

(ℵβ2+(ξ−α2))
V P1

if α2 < ξ,

hence it forces

ℵξ =

 (ℵξ)V if ξ ≤ α1,
(ℵβ1+(ξ−α1))

V if α1 < ξ ≤ α2,
(ℵβ1+((β2+(ξ−α2))−α1))

V if α2 < ξ.

This is also valid in the case κ8 < α2. In fact, since α1 < κ8 we have in V that
β2 − α1 = β2 and β1 + β2 = β2, so β1 + ((β2 + (ξ − α2)) − α1 = β2 + (ξ − α2).
Hence, in the case ξ > ℵ2, P2 forces ℵξ = (ℵβ2+(ξ−α2))

V . In particular, P2 forces

ℵξ = ℵVξ for any ξ ≥ κ7.
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Step 3. In the case κ7 < α3 put P3 := P2; otherwise, set κ3 := ℵβ2+(α3−α2)

and P3 := P2 × Coll(κ3, λ3). Note that P3 forces b = κ3 = ℵα3
and that the

other values are the same as the ones forced by P2. Hence, P3 is as desired, e.g.,
non(M) = λ4 = ℵVβ4

= ℵα4
. Moreover, P3 forces

ℵξ =

{
(ℵξ)V

P2
if ξ ≤ α3,

(ℵβ3+(ξ−α3))
V P2

if α3 < ξ,

and therefore

ℵξ =


(ℵξ)V if ξ ≤ α1,
(ℵβ1+(ξ−α1))

V if α1 < ξ ≤ α2,
(ℵβ2+(ξ−α2))

V if α2 < ξ ≤ α3,
(ℵ(β2+((β3+(ξ−α3))−α2))

V if α3 < ξ.

Note that this is also valid in the case κ7 < α3. Since α2 < κ7 we have in V that β3−
α2 = β3 and β2 + β3 = β3, so whenever ξ > ℵ3, P3 forces ℵξ = (ℵβ3+(ξ−α3))

V . �

Remark 4.10. Theorem 4.8 also holds when α1 ≤ α2 ≤ α3, but depending on the
equalities the proof changes a bit. For example, in the case α1 = α2 < α3, the idea
is first to collapse λ2 := ℵβ2

to κ1 := ℵα1
(as in step 1) and then (possibly) collapse

λ3 := ℵβ3
to κ3 (as in step 3).

For successor cardinals, the assumptions of this theorem are trivially met, so we
get the following simpler form:

Corollary 4.11. Assume GCH. Let 1 ≤ k0 ≤ ω, let 1 ≤ αm ≤ αp ≤ α1 ≤ · · · ≤ α9

be a sequence of successor ordinals, and κ9 < κ8 < κ7 compact cardinals with
κ9 ≥ α3. Then there is a poset P forcing values to the various characteristics as in
the previous theorem.

(Note that in this case, βi = κ10−i + 1 for i = 1, 2, 3.)
Let us give some concrete examples, where we give concrete values for the dia-

gram of Figure 2. The simple corollary shows that, e.g., the following is consistent:

ℵ53

��

ℵ77

�� ��

ℵω+1
// ℵω·2+17

ℵ63

OO

ℵ198

ℵ1
// ℵ12

// ℵ31 ℵ31
// ℵ45

OO

ℵ87

OO

ℵ2021

OO

Using the more general theorem, we also get examples with singular d and c:

Example 4.12. The following is consistent:

ℵ5

��

ℵ7

�� ��

ℵω7+2
// ℵω7+ω3

ℵ6

OO

ℵω7

ℵ1
// ℵ2

// ℵ3 ℵ3
// ℵ4

OO

ℵ8

OO

ℵω7+1

OO

Instead of ω7, we could also use, e.g., any ωn for n ≥ 7, n ∈ ω, and ωn +ωk instead
of ω7 + ω3 for k ≥ 3.

Proof. We use the following parameters for the theorem:

• αm := 2, αp := 3, αj := 3 + j for 1 ≤ j ≤ 5.
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• From these values we already know that in the extension we will get (ac-
cording to the last part of the theorem, and as α3 = 6 and β3 = κ7 + 1)

ℵn = ℵVκ7+1+(n−6) = (ℵκ7+(n−5))
V =: α6,

note that therefore

ℵω7
= ℵ(ℵκ7+(n−5))V = (ℵκ7+1+(ℵ(κ7+(n−5))−6))

V = (ℵα6
)V .

Note that this satisfies the condition cof(α6) = α6 ≥ ℵβ3
= κ+

7 (in the
ground model); and in the extension we get d = ℵα6

= ℵω7
.

• α7 := α6 + 1 and α8 := α7 + 1.
• Calculate the ordinal ℵk of the extension and call it β (which has cofinality
≥ℵ3 in V , as the cofinality in the extension is ≥ℵ3), and set α9 := α6 + β,
which is equal to ωn + ωk in the final extension. �

Remark 4.13. In this example, ℵωn for n < 6 is impossible as value for d, as
cof(d) ≥ b in ZFC
This leaves the case d = ℵω6

, which is probably consistent but which we cannot get
with the theorem: Using calculations as above we get that the ℵω6 in the extension
is (ℵγ)V for γ = (κ++

8 )V , which does not satisfy cof(γ) > κ7 (in the ground model).
We could set α6 := ℵγ for γ = κ+

7 (this has sufficient cofinality), but note that this
γ is collapsed in the extension, so in the extension d will have the form ℵγ with γ
of cofinality and cardinality ω6, but γ 6= ω6 = (κ++

8 )V .

We now add the variants of the Theorem for Constellations cA* (ii) and cB* (the
same remarks about ≤-consistency apply).

Theorem 4.14. Assume GCH and 1 ≤ k0 ≤ ω. Let 1 ≤ αm ≤ αp ≤ α1 <
α2 < α3 ≤ α4 ≤ . . . ≤ α9 be ordinals and assume that there are strongly compact
cardinals κ9 < κ8 < κ7 < κ6 such that

(i) αp ≤ κ9, α1 < κ8, α2 < κ7 and α3 < κ6;
(ii) for i = 1, 2, 3, 4, ℵβi−1+(αi−αi−1) is regular, where βi := max{αi, κ10−i + 1}

and α0 = β0 = 0;
(iii) for i = 6, 7, 8, ℵβ4+(αi−α4) is regular;
(iv) cof(ℵβ4+(α5−α4)) ≥ ℵβ4 ;
(v) ℵαm

and ℵαp
are regular; and

(vi) cof(ℵβ4+(α9−α4)) ≥ ℵαp
.

Then we get a poset P as in the previous theorem, which also forces

ℵξ =


(ℵξ)V if ξ ≤ α1,
(ℵβ1+(ξ−α1))

V if α1 < ξ ≤ α2,
(ℵβ2+(ξ−α2))

V if α2 < ξ ≤ α3,
(ℵβ3+(ξ−α3))

V if α3 < ξ ≤ α4.
(ℵβ4+(ξ−α4))

V if α4 < ξ.

Theorem 4.15. With the same assumptions as in Theorem 4.14, if in addition β3

is not the successor of an ordinal with countable cofinality then there is a poset that
forces (1) and (2) of Lemma 3.3 for λm = ℵαm

and

p = g = ℵαp
, add(N ) = ℵα1 , b = ℵα2 , cov(N ) = ℵα3 , non(M) = ℵα4 ,

cov(M) = ℵα5
, non(N ) = ℵα6

, d = ℵα7
, cof(N ) = ℵα8

, and c = ℵα9
.
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Moreover, this poset forces that ℵξ (for any ordinal ξ) is evaluated as in the con-
clusion of Theorem 4.14.

5. Relaxing the GCH requirement

So far, we often assumed GCH in the ground model to make the theorems easier
to read. But the full power of this assumption is not required. In fact, finitely
many assumptions about the cardinals at hand are enough; without requiring any
changes in the proof.

In the following, we list the according theorems with the weaker assumptions.
While this does not immediately give any new independence results, we still think
that it can be useful, as it allows us to, e.g., construct and use forcings such as
in Theorem 1.4 after a preparatory forcing that does something useful, e.g., on
cardinals much smaller than λ1, and by doing so destroys GCH below λ1. (It is
easy to see that cardinal arithmetic below λ1 is irrelevant for Theorem 1.4.)

Theorem 1.3+. The conclusion of Theorem 1.3 holds under the following assump-
tions: ℵ1 ≤ λ1 ≤ λ2 ≤ λ3 ≤ λ4 ≤ λ5 are cardinals, λi regular for i 6= λ5, and

Constellation A:

(i) Either λ5 is regular and there is some µ ≥ λ5 with µ<λ3 = µ;

(ii) or λ5 = λ<λ4
5 , λ3 = λ<λ3

3 , λℵ04 = λ4, and we set µ := λ5.

Constellation B: λ5 = λ<λ4
5 and either λ2 = λ3; or λ3 is ℵ1-inaccessible, λ2 = λ<λ2

2

and λℵ04 = λ4.

Proof. For Constellation B, note that [Mej19b, Thm. A] does not assume on GCH,
and the same holds for Constellation A(i) for [BCM21, Thm. 5.3]. For Constella-
tion A(ii), the assumptions can be weakened in the same way as in [Mej19b] for
Constellation B. �

Theorem 1.4+. The conclusion of Theorem 1.4 holds under the following assump-
tions: ℵ1 < κ9 < λ1 < κ8 < λ2 < κ7 < λ3 ≤ λ4 ≤ λ5 ≤ λ6 ≤ λ7 ≤ λ8 ≤ λ9, λi
regular for i 6= 5, 6, κj strongly compact for j = 7, 8, 9, λ

κj
j = λj for all 7 ≤ j ≤ 9,

and

Constellation A:

(i) Either: λ5 is regular and λ<λ3
6 = λ6;

(ii) or: λ3 = λ<λ3
3 , λℵ04 = λ4 and

(∗) λ6 is regular, there is a strongly compact κ6 with λ3 < κ6 < λ4, λκ6
6 = λ6

and λ5 = λ<λ4
5 ,

Constellation B: (∗) holds, and λ3 is ℵ1-inaccessible, λ2 = λ<λ2
2 and λℵ04 = λ4.

Proof. Again, for Constellation A(i) this can be found in [BCM21, Thm. 5.7], for
Constellation B in [Mej19b, Thm. B]; and again apply the modifications of [Mej19b]
to [GKS19]. �

The constructions in this paper then also give Theorem 3.10 under these weaker
conditions (with the same proofs):

Theorem 3.10+. The conclusion of Theorem 3.10 holds under the same assump-
tions as in the previous Theorem 1.4+ with the exception that λ9 may not be regular,

and additionally ℵ1 ≤ λm ≤ λp ≤ λh ≤ κ9, λ
<λp
p = λp, λm and λh are regular, and

λ
<λh

9 = λ9.
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