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ABSTRACT. This was non-essentially revised in late 2020. First point is not-
ing that the proof of [She04b, Th.4.3] which says that the proof giving the
consistently b = 0 = u < a gives that also s = 0. The proof use a measurable
cardinal and a c.c.c. forcing so it give large 0 and assume a large cardinal.

Second point is adding to the results of §2,§3 which say that (in §3 with
no large cardinals) we can force Ry < b =0 < a. We like to have R; < 5 <
b = 0 < a. For this we allow in §2,3 the sets K to be uncountable; this
require non-essential changes. In particular, we replace usually Rg,X; by o, 9.
Naturally we can deal with i and similar invariants.

Third we proof read the work again. To get s we could have retain the
countability of the member of the I¢-s but the parameters would change with
A € I, well for a cofinal set of them; but the present seem simpler.

We intend to continue in [STa].

Original abstract We show that consistently, every MAD family has cardi-
nality strictly bigger than the dominating number, that is a > 9, thus solv-
ing one of the oldest problems on cardinal invariants of the continuum. The
method is a contribution to the theory of iterated forcing for making the con-
tinuum large.
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Annotated Content

[Was not changed in 2020]

§1 CON(a>0?)

[We prove the consistency of the inequality a < 9, relying on the theory of
CS iteration of nep forcing (from [She04a], this proof is a concise version).
(2020) Was not changed]

§2  On CON(a > 0) revisited with FS, ideal memory of non-well ordered length

[We use itaration of c.c.c. forcing along a non-well orderd linear order with
non-transitive memory. Does not depend on §1 but use a measurable k.
We define “FSI-template”, a depth on the subsets on which we shall do
induction; we are interested just in the cases where the depth is < co. Now
the iteration is defined and its properties are proved simultaneously by in-
duction on the depth. After we have understood such iterations sufficiently
well, we proceed to prove the consistency in details.

(2020) The change is that we do not require K; (and the members of
I;) to be countable, this require non-essential changes. We also add the
promised result].

63  Eliminating the measurable

[In §2, for checking the criterion which appears there for having “a large”,
we have used ultra-power by some k-complete ultrafilter. Here we construct
templates of cardinality, e.g. N3 which satisfy the criterion; by constructing
them such that any sequence of w-tuples of appropriate length has a (big)
sub-sequence which is “convergent” so some complete k-complete filter be-
have for appropriate k-sequence of names of reals as if it is an ultrafilter
and as if the sequence has appropriate limit.

(2020) We add the elimination of the measurable also from the result

with s.]

84 On related cardinal invariants

[We prove e.g. the consistency of u < a, starting with a measurable cardinal.
Here the forcing notions are not so definable, so this gives a third proof of
the main theorem (but the points which repeat §3 are not repeated).

(2020) The addition is noting that the proof give also s = ? in the
consistency, again not relying on §2.]
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§ 0. INTRODUCTION

We deal with the theory of iteration of of c.c.c. forcing notions for the continuum
and prove CON(a > ) and related results. We present it in several perspectives;
so §2 + §3 does not depend on §1; and §4 does not depend on §1, §2, §3. In §2 we
introduce and investigate iterations which are of finite support but with so called
ideal, weakly transitive memory and linear, non well ordered length and prove
CON(a > ?) using a measurable. In §4 we answer also related questions (u < a);
in §3, relying on §2 we eliminate the use of a measurable, and in §1 we rely heavily
on [She04a].

Very basically, the difference between a on the one hand and b,0 on the other
hand which we use is that a speaks on a set, whereas b is witnessed by a sequence and
0 by a quite directed family; it essentially deals with cofinality; so every unbounded
subsequence is a witness as well, i.e. the relevant relation is transitive; when b =9
things are smooth, otherwise the situation is still similar. This manifests itself by
using ultrapowers for some k-complete ultrafilter (in model theoretic outlook), and
by using “convergent sequence” (see [She87] and later [Shed, §2], [Shee]), or the
existence of Av, the average, from [She90]) in §2, §3, respectively. The meaning
of “model theoretic outlook”, is that by experience set theorists starting to hear
an explanation of the forcing tend to think of an elementary embedding j : V —
M and then the limit practically does not make sense (though of course we can
translate). Note that ultrapowers by e.g. an ultrafilter on &, preserve any witness
for a cofinality of a linear order being > kT (or the cofinality of a xT-directed
partial order), as the set of old elements is cofinal and a cofinal subset of a cofinal
subset is a cofinal subset. On the other hand, the ultrapower always “increase” any
set of cardinality at least x, the completeness of the ultrafilter.

* * *

This (is a < 07) is one of the oldest problems and well known on cardinal
invariants of the continuum (see [vD] and Roitman [Mil]). It was mostly thought
(certainly by me) that consistently a > 0 and that the natural way to proceed is
by CS iteration (P;,Q; : i < wsy) of proper “w-bounding forcing notions, starting
with V ffffGCH, and |P;| = Ny for i < wp and Q; “deal” with one MAD
family o7 € V¥ o7, C [w]™, adding an infinite subset of w almost disjoint to every
A € ;. The needed iteration theorem holds by [She98, Ch.V §4], saying that in
VPe2 9 = b = Ny and no cardinal is collapsed, but the single step forcing is not
known to exist. This has been explained in details in [She00b].

We do not go in this way but in a totally different direction involving making
the continuum large, so we still do not know

Problem 0.1. Is ZFC + 2% = X, + a > 0 consistent?
To clarify our idea, let D be a normal ultrafilter on k, a measurable cardinal and
consider a c.c.c. forcing notion P and assume we have

(a) asequence f = (fq : @ < kT) of P-names such that lkp “(fo : @@ < £7) is
<*-increasing cofinal in “w” (so fexempliﬁes IFp “b=0=r"")

(b) asequence (A, : @ < o*) of P-names such that
IFp “{4q : @ < a*} is MAD that is a # § = A, N Ap is finite and
,,Aoz c [W]N(’”,
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Now P; = P*/D also is a c.c.c. forcing notion by Lo theorem for L,; ,;; let j : P — Py
be the canonical embedding; moreover, under the canonical identification we have
P <p.. P1. So also IFp, “fs € “w”, recalling that f, actually consists of w
maximal antichains of P (or think of (J#(x),€)"/D,x large enough). Similarly
lFp, “fa <* fpifa<pf <kt

Now, if IFp, “g € “w”, then g = (g : € < k)/D,IFp “ge € “w” so for some
o < kT we have IFp “ge <* fa for € < k7 hence by Lo$ theorem I-p, fg <r fa” (so
before the identification this means IFp, “g <* j(fa)”), 80 (fo : @ < k™) exemplifies
also lFp, “b=0=r"".

On the other hand (4, : a < a*) cannot exemplify that a < x* in V1 because
a* > kT (as ZFC = b < a) so (A4 : a < k)/D exemplifies that IFp, “{A, : o < a*}
is not MAD”.

Our original idea here is to start with a FS iteration Q" = (P?,Q? : i < k™) of
nep c.c.c. forcing notions, QY adding a dominating real, (e.g. by dominating real
= Hechler forcing), for k a measurable cardinal and let D be a k-complete uniform
ultrafilter on x and x > k. Then let Ly = x+,Q! = (P}, Q! :i € Ly) be QO as
interpreted in ((x), €, <})*/D, it looks like Q° replacing x* by (x)"/D. We
look at Lim(Q°) = [J{ PYi < xT} as a subforcing of Lim(Q") identifying Q; with
Qj, (i), Jo the canonical elementary embedding of £ into (x*)"/D (no Mostowski
collapse!). We continue to define Q" and then Q“ as the following limit: for the
original® i € k*, we use the definition, otherwise we use direct limit (“founding
fathers privilege” you may say). So P = Lim(Q?) is <-increasing, continuous when
cf (i) > Ro; so now we have a kind of iteration with so called ideal, weakly transitive

memory and a not well founded base. We continue x*+ times. Now in VLim(@N++),
the original k™ generic reals exemplify b = 0 = k™, so we know that a > k*. To
finish assume p IF “{A4, : v < kT} C [w]* is a MAD family”. Each name A, is a
“countable object” and so depends on countably many conditions, so all of them
are in Lim(Q?) for some i < x**. In the next stage, Q*1, (4, : v < K)/D is a
name of an infinite subset of w almost disjoint to Az for each 8 < k™, contradiction.

All this is a reasonable scheme. This is done in §1 but rely on “nep forcing” from
[She04a]. But a self contained another approach is in §2,§3, where the meaning of
the iteration is more on the surface (and also, in §3, help to eliminate the use of
large cardinals). In §4 we deal with the case of an additional cardinal invariant, u.

Note that just using FS iteration on a non well-ordered linear order L (instead of
an ordinal) is impossible by a theorem of Hjorth. On nonlinear orders for iterations
(history and background) see [RS]. On iteration with non-transitive memory see
[She00al, [She03] and in particular [She03, §3].

Continuing this work J. Brendle has proved the consistency of cf(a) = Ry, (note
that in 3.6 we have assumed A = A®° in V hence cf()\) > R even in VF).

I thank Heike Mildenberger and Juris Steprans for their helpful comments. After
publication this was revised simplifying §2.

Notation 0.2. 1) P,Q denote forcing notions

2) Let P C Q means that for p,q € P we have p <p ¢ iff p <g ¢

3) let P C;. Qiff P C Q and for every p,q € P we have p, g are compatible in P iff
they are compatible in Q

1 Wwhich mean not the ones added by taking ultrapowers
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4) Let P<Q iff P C;. Q and every maximal anti-chain of P is a maximal anti-chain

of Q

Convention 0.3. 1) When using t, (t, K) we mean as in Def 2.1.

2) When using (t, K, %, Lim(Q)) we mean as in 2.6

3) We may write I instead I} or I;' when t,q is clear from the contecxt.
4) Dealing with e.g. t* we may write t[C] in subscript and superscripts.
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§ 1. ON ConN(a > )

In this section, we look at it in the context of [She04a] and we use a measurable
cardinal.

Definition 1.1. 1) Given sets Ay of ordinals for £ < n, we say .7 isan (Ag, ..., Ap_1)-

tree if 7 = |J Ji where T C {(N0s- -0y -+ Mn_1) : M € ¥(Ay) for £ < n} and
k<w
T isordered by 1 <g v < A ne Qv and welet 71 ky = (e [ k1 : £ < n)
<n

and demand 7 € L ANk < k=71 ki € J,. We call .7 locally countable if
kel,w)AT € T = |{P € Tpy1: 7 <z U} <RVo. Let im(F) = {(ne : £ <) :
n €Ay forl<nandm<w= (n [m:£<n)e T}

Lastly, for n; < n we let prj lim,, (7) = {(n¢ : £ < ny) : for some 7, ..., Mp-1
we have (e : £ < n) € im(7)}; and if n; is omitted we mean n; =n — 1.
2)

R={7: for some sets A, B of ordinals we have

(i) T =(N, %),

(it) 2 is alocally countable (A, B)-tree,

(#7) s is a locally countable (A, A, B)-tree, and

(iv) Qg =: (prj lim(Z1), prj lim(%)) is a c.c.c. forcing notion
absolute under c.c.c. forcing notions (see below)}

2A) We say that Q 5 is c.c.c. absolute for c.c.c. forcing if: for c.c.c. forcing notions
P <R we have P Q7 < R * Q4 (though not necessarily Q\; < Q;R in V&) so
membership, order, non-order, compatibility, noncompatibility and being predense
over p in the universe VT, are preserved in passing to VE, note that predense sets
belong to V¥ (the Q ’s are snep, from [She04a] with slight restriction). Similarly
we define “Q4 < Qg, absolute under c.c.c. forcing” (compare with 2.6, clause
(A)(a)(iil) in the definition).
3) For a set or class A of ordinals, &% is the family of € & which are a pair
of objects, the first an (A, B)-tree and the second an (A, A, B)-tree for some B
such that | 71| < k,|%| < k. For a cardinal x and a pairing function pr with
inverses pry, pry, let &, | = ﬁ’fa:prl(a) 41 and Ry, ., = ﬁ'fa:prl(a)<,y}. Let |.7| =
EARAEZ1 ) )
4) Let J,9' € R, we say f is an isomorphism from 7 onto .’ when f = (f1, f2)
and for m = 1,2 we have: f,, is a one-to-one function from .7, onto .7, preserving
the level (in the respective trees), preserving the relations © = y 1 k,x # y 1 k
and if fo((m1,m2,m3)) = (01,72, 7m5), f1((v1,v2)) = (v1,v) then [ =11 < 7} =
vl e =v1 & mp =vil].

In this case let f be the isomorphism induced by f from Q4 onto Q..

Definition 1.2. For 7/, 7" € Rlet J' <z 7" mean:

(a) T/ C T (as trees) for £ =1,2

(b) if £ € {1,2} and 7€ F/\./ and 771 k € .7/ then k <1

(¢) Qs <Qg. (absolute under c.c.c. forcing); note that by (a) + (b) we have:
2€Qs =2€Qs and Qs Fr <y= Qs EFz<y.
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Remark 1.3. The definition is tailored such that the union of an increasing chain
will give a forcing notion which is the union.

Claim/Definition 1.4. 0) <g is a partial order of K. - -
1) Assume (T[i] : i < 6) is <g-increasing and 7 is defined by 7 =) T[i] that is
I = U Tli] form = 1,2 then
<8
(a) i<d= T[] <a T
() Qz = U Qzy-
<4

2) Assume T',T € R. Then there is 7" € & such that 7' <q 7" and Q5. is
isomorphic to Q5 * Q5 and this is absolute by c.c.c. forcing. Moreover, there is
such an isomorphismNemtendmg the identity map from Q4 into Q5.

3) There is 7 € &Y such that Q is the trivial forcing.

4) There is 7 € &Y such that Q 5 is the dominating real forcing.

Proof. See [She04a]. Uig

Claim 1.5. 1) Assume T[y] € Rpr, 4 for v < v(x). Then for each o < ~(x)
there is 7 {a) such that Q(ay s Po where (P, Qp : v < (%), 8 < ¥(x)) is an
FS-iteration and Qg = (Qg[ﬁ])vﬂpﬁ] and T{a) € Rpr, <o and T (1) <z T {as)

forar < ag < v(x), Ty] <q T(a) fory < a < (). Wewrite T{a) = . T[y].
y<a

2) In part (1), for each v < ~y(x) there is ' € Rpy, o such that T', T are isomor-

phic over T [y] hence Qz,,Q4 are isomorphic over Qzpy-

3) If in addition T [y] <g T'[V] € fpr, 5 for v <(x) and (P, Qf : v < (%), 8 <

~v(x)) is an FS iteration as above with IE”’W(*) = Qg, then we can find such I with

T <g 7.

Proof. Straightforward. Uis
Claim 1.6. Assume

(a) k is a measurable cardinal
(b) k< p=cf(p) <X=cf(N) =A% and (Vo < p)(Ja|¥ < p) for simplicity.

Then for some c.c.c. forcing notion P of cardinality X\, in VF we have: 2% =
A0O=b=panda=\.

Proof. We choose by induction on ¢ < A the following objects satisfying the follow-
ing conditions:

)
(b> j[’%d € ﬁgrl,'\/
(€) €<= Tr.€ <a T[r.(]
) if ¢ limit then Fy, (] = U Tl €]
£<¢
(e) if v < pu,¢ = 1 then Q4[y,(] is the Qgom, dominating real forcing =
Hechler forcing
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(f)ify < ¢ =E&+1>1and § is even, then T[v,¢] is isomorphic to

Ty +1,€) over F],€] say by jye where T(y+1,€) = ¥ F(3,€] and
B<y
let 3%5 be the isomorphism induced from Qg1 ¢ onto Qz[y,(] over

Qrp.e

(9) ify < p,¢ = €+1,€ odd, then Ty, (] is almost isomorphic to (7 [, £])*/D
over 7, ¢] which means that we say j, ¢ is an isomorphism from (.7 [,£])*/D
onto J[v,(] such that by j, ¢, (z : ¢ < k)/D is mapped onto z.

There is no problem to carry the definition. Let Pe = Qz, .y where T, ¢) =:
>, Tl for (< AP=Pyand Py = Qg ¢)-

y<p
Now

R, |P| < A
[Why? As we prove by induction on ¢ < X that: each Z[y,(] and Y. Z[y, Al

Y<p
has cardinality < A. Hence for v < p we have: the forcing notion Qz/, ) in the

universe V7.0 has cardinality < A\¥o = )]
X, in VF we have b=0=p

[Why? Let 7, be the Qz, jj-name of the dominating real (see clause (e)). As
T, 1] <g Ty, A, clearly 1y is also a Qg y-name of a dominating real, but
this is preserved by (forcing by) P, hence Ip, , “n, dominates (“w)VIPval? - But
(Py,x 1y < p) is <-increasing with union P and cf(u) = p > Ng so lkp “(n, 1y < p)
is <*-increasing and dominating”, so the conclusion follows.] )

We shall prove below that a > A, together this finishes the proof (note that it
implies 2% > X hence as A = AY by K; we get 250 = )\)

K3 IFp “a > N\,
So assume p IF “o/ = {4, : i < 0} is a MAD family, i.e. (0 > Xy and)

(1) Ai € [w]™,
(ZZ) 7,75] = |Azm£4]| < Np and

(#i1) &7 is maximal under (i) + (4)”.

Without loss of generality IFp “A; € [w]R0”.

As always a > b, by Xy we know that 6 > p, and toward contradiction assume
6 < A. For each i < § and m < w there is a maximal anti-chain (p; mn : 7 < w)
of P and a sequence (t; ., : 7 < w) of truth values such that p; . IFp “n € 4;
iff £, is truth”. We can find a countable w; C g such that: [ |J Dom(p;m.n) C

m,n<w
i), Pimn € Qsf 7y, \yew, }» mOTeover, ¥ € Dom(p; m,n) = pim,n(7) 18 a Qs 718, 7):8e70w, 1
name.
Note that QZ{?[ﬂ,/\]tﬂE’Yﬂwi,i<9} < QZ{§ﬁ2ﬂ<7}7 see [SheOﬁla]
Clearly for some even ¢ < A, we have {pimn i < §,m < wand n < w} C
Qs 1718,¢:8<p}- Now for some stationary S C {0 < p : cf(§) = £} and w* we
have: 6 € S = wsNéd =w  anda <6 € S = wy € 4. Let (6. : € < K)

be an increasing sequence of members of S, and §* = |J d.. The definition of
e<k
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717, C4+1] : vy < ), (T, ¢+ 2] - v < p) was made to get a name of an infinite

(
A C w almost disjoint to every Ag for B < 0 (in fact (3 Qg )"/D can be
y<pu

<-embedded into 3 Qg c49)- Ui
Y<K

Remark 1.7. In later proofs in §2 we give more details.
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§ 2. ON CoN(a > D) REVISITED WITH F'S, WITH IDEAL MEMORY, NON-WELL
ORDERED LENGTH

(Pre 2020 introduction to this section) We first define the FSI-templates, telling
us how do we iterate along a linear order L; we think of having for each t € L, a
forcing notion Qy, say adding a generic vy, and Q; will really be U{QV[(rs:s€A)] .
A € I} where I is an ideal of subsets of {s : s <p t}; so Q; in the nice case
is a definition, e.g. as in 1.1(2A). In our application this definition is constant,
but we treat a more general case, so Q; may be defined using parameters from
V[{vs : s € Ki)], K a subset of {s : s <p t} so the reader may consider only
the case t € L = Ky = . In part (3) of Definition 2.1 instead distinguishing “C
successor, ¢ limit” we can consider the two cases for each {. The depth of L is the
ordinal on which our induction rests (as otp(L) is inadequate).

Now (2020) we allow uncountable K;-s (and similarly 7,v), a non-essential
change. )

Definition 2.1. 1) An FSI-template (= finite support iteration template) t is a
sequence (I, : t € Ly = (I} : t € L) = (I[t] : t € L[t]) such that:

(a) L is a linear order (or partial, it does not really matter); but we may write

z € tinstead of x € L and x < y instead of z <, y
(b) I is an ideal of subsets of Ly = {s: L = s < t}, (but see 2.3(4)(b)).
2) Let t be an FSI-template.
(¢) Wesay K = (K, : t € L') is a tmemory choice (or (t, K) is an FSI-template)
if
(i) Ky € If
(ZZ) s € Kt = Ks - Kt~
(d) Wesay L C L'is K-closed ift € L = K; C L
(e) for K a t-memory choice and L C L' which is K-closed we say K’ = K | L
if Dom(K') = L and K] is K for t € L, (it is a (t | L)-memory choice, see
part (5)).
(f) We say that A is K-countable (or, pedantically (t, K)-countable) when
(A =0 or) there are t,, € L' and K-closed, A, € I} for n < w such that
A=U{A,U{t,} :n < w}. We define similarly K-finite or (K, < 9)-finite
) for any (infinite) O
(g) Let K] be K, U {t}
(h) We let d(t) = sup{|A|" +Ro : A € I, for some ¢ € L} and 9(t, K) = 9(t).
Let (K) = sup{| K| : t € L'}.
3) For an FSI-template t and t-memory choice K and K-closed L C L' we define
Dp(L, K), the t-depth (or (t, K')-depth) of L by defining by induction on the ordinal
¢ when Dp,(L, K) < (.

For ¢ = 0: Dp((L,K) < ¢ when L = {).
For ( a successor ordinal: Dp(L, K) < ¢ iff:
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(a) there is L* such that: L* C L,|L*| < 1,(Vt € L)(VA € I})(ANL* = 0)

hence L\L* is K-closed and Dp,(L\L*, K) < ¢ and for every t € L* we
have:

X L\L* € I} and ? it is K-closed.
For ¢ > 0 a limit ordinal: Dp(L, K) < ¢ iff:

(b) there is a directed partial order M and a sequence (L, : a € M) with union
L such that the sequence is increasing, i.e., M = “a < b= L, C L", each
Ly is K-closed, (Yb € M)(¢ > Dp,(Ls, )) andte LAAe LNACL =
(Ja € M)AC L,
So Dp(L, K) = ¢ iff Dp((L, K) < (A (V€ < ()Dp(L, K) £ ¢
3A) Dp((L, K) = oc iff (V ordinal ¢) [Dp,(L, K) £ ].
4) We say K is a smooth t-memory choice or (t, K) is smooth if Dp,(L!, K) <
and K a t-memory choice (and t is an FSI-template).
5) If K is omitted we mean it is the trivial K, that is K; = @) for t € L'. We
say t is smooth if the trivial K is a smooth t-memory choice. For L C L' let
t|L=(I;NnP(L):tel).
6) Let Ly <¢Lymean L; C Lo C L'andte L1 NA€lf= ANLyC L.

Definition 2.2. Let t = (I, : t € L') be a FSI-template and K a t-memory choice.
1) We say L is a (t, K)-representation of L (or (t, K) — O-representation of L) if:

(a) L C L'is K-closed

(0) L= (Lo :ae M)

(c) M is a directed partial order

(d) L is increasing, that is a <p; b= L, C Ly
() L= U L

aceM
(f) each L, is K-closed
(9) ifte L,A€ I}, AC L then (Ja € M)(AC L,)

2) We say L* is a (t, K)—*representation or a (t, K) — l-representation + of L if:

(a) L C L'is K-closed
(b) L* C L, L* a singleton
(c) ift € Land A € If then ANL* =0 (so (L\L*) < L, see Definition 2.1(6))

(d) if t € L* then L\L* € I

Claim 2.3. Let t be an FSI-template and K a t-memory choice.

0) The family of K -closed sets is closed under (arbitrary) unions and intersections.
Also if L C L* then LUJ{K; : t € L} is K-closed.

1) If Ly C L' is K -closed and Ly is an initial segment of Lo, then Ly is K-closed.
2) If Ly C Ly C L' are K-closed then

2 we can use less, it seems not needed at the moment. We can go deeper to names of depth

< ¢ inductively on € < w1, as in [She03, §3], or in a more particular way to make the point that
is used here true, and/or make I} only closed under unions (but not subsets), etc. Note that e.g.
Lim¢(Q) is well defined when L' is well ordered.
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(o) Dp((L1, K) < Dp (L2, K), moreover
(B) (3t € Ly)[Ly € If] implies that Dp(Ly1, K) < Dp(La, K) or both are oo.

3)If Ly C Ly C L* are K -closed then t | Lo is an FSl-template, Ly is (t | L2)-

closed and Dpyp, (L1, K | Lz) = Dp(L1, K).
4) If (t, K) is smooth and A € I;,t € L' then:

(a) there is a K-closed B € I, such that A C B
(b) if s€ Ly € I and Ly € I, then Ly U Ly € I;.

Proof. 0), 1) Trivial - read the definitions.
2) We prove by induction on the ordinal ¢ that

(¥)¢(a) if Dpy(L2, K) = ¢ (and Ly C Ly are K-closed subsets of L') then Dp (L1, K) <
¢
(B) if in addition (3t € Lg)(Ly € I}) then Dp,(Ly, K) < C.

So assume Dp (L2, K) = ¢, so Dpy(L2, K) # ¢ + 1 hence one of the following cases
occurs.

First Case: ¢ = 0.
Trivial; note that clause (8) is empty.

Second Case: ( is a successor, hence Lo has a (t, K )-*representation L* such that
Dp,(L2\L*, K) < (; see Definition 2.2(2).

Let Ly =: Ly\L*; if L1 C L then by the induction hypothesis Dp,(Ly, K) <
Dp,(Ly, K) < (, so assume Ly € L, and so only clause («) is relevant. Now letting
L7 = L1\L* we have [L7, Ly are K-closed] AL] C Ly and Dp,(L;, K) < ¢ hence
Dpi(L7, K) < ¢ by the induction hypothesis. Let L} = L; N L*, so L} C Ly, L;
is K-closed, L1\L} = (L2\L3) N Ly is K-closed, Dp,(Li\L}, K) = Dp,(L;,K) < ¢
and necessarily L} has exactly one element. Also easily: ¢ € L} implies L] € I} so
L% is a (t, K)—*representation of Li. So clearly Dp, (L, K) < Dp(Ly,K)+1<¢.

Third Case: ¢ is limit and (L, : a € M) is a (t, K)-representation of Ly such that
a €M = Dp(Ls, K) <.
Let L2 =: L, and L. =: L, N Ly, so (L}

a

:a € M) is increasing, |J L. = L,
acM

and each L. is K-closed (as L2,L; are K-closed, see part (0)) and easily t €
Iy NAEIINACL = (Jae M)(AC L2N Ly = LL). Also by the definition of
Dp at limit ordinals b € M = Dp,(L?, K) < ¢. Hence by the induction hypothesis
Dp(L}, K) < ¢. By the last two sentences (and Definition 2.1) we get Dp(L1, K) <
¢, as required in clause («). For clause () we know that there is t € Ly such that
L, € I}, hence by clause (g) of Definition 2.2(1)) for some b € M we have Ly C L,
and we can use the induction hypothesis on ¢ for L1, Ly.

3) Easy.

4) By induction on the depth ¢. The case ¢ = 0 is trivial; and the case ( is a limit
ordinal is easy. Lastly for the successor case of 2.1(3) recall H, ;, there. Oas
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Claim 2.4. 1) If for £ = 1,2 we have L' is a (t, K)-representation of L and
LY = (L' :a € My) and M = My x My then L = (L, N Ly : (a,b) € M) is a
(t, K)-representation of L.
2) If L} is a (t, K)—*representation of L for { = 1,2 then L} = Lj.
3) If A is (K, < 9)-countable then it is K-closed.
4) If L C L' is K-closed and Ly C L has cardinality < O then some (K ,Q)-finite
set Ly C L includes L.
5) If (t, K) is an FSI-template then so are t',t" where t', " are FSI-templates sat-
isfying

(a) LV =LY = L!

(b) forte Lt let I = {A € It : A is K-countable}

(c) fort € L let I" = {A C L' : the set {B C A : B € I} is K-closed} is

cofinal in [A]<9M)}

Proof. 1) Straightforward, e.g. if t € L', A € I; and A C L then for £ = 1,2 we can

choose ag € My such that A C LY, and t € L,,. Clearly AU{t} C L NLZ .
2)-5) Easy, too. U2.q

"

Discussion 2.5. This discussion is from the old version, so some “we may” are
actually done in the new version.

1) Our next aim is to define iteration for any K-smooth FSI-template t; for this we
define and prove the relevant things; of course, by induction on the depth. In the
following Definition 2.6, in clause (A)(a), we avoid relying on [She04a]; moreover
the reader may consider only the case K; = (), omit n: and have Q5 be the
dominating real forcing = Hechler forcing.

2) We may more generally than here allow 7; to be e.g. a sequence of ordinals, and
members of Q. ,, be C Hy, (Ord), and even K; large but increasing L, we need

more “information” from 7; | Lim{(Q | L). We may require more by changing to:
Q; is a definition of nep c.c.c. forcing ([She04a]) or just “Souslin c.c.c. forcing (=
s~nep)” or just absolute enough c.c.c. forcing notion. All those cases do not make
real problems (but when the parameter 7, have length > k (or just has no bound
< k) it is changed in the ultra-power! i.c. j(n;) has length > length of 7).

3) If we restrict ourselves to o-centered forcing notions (which is quite feasonable)
probably we can in Definition 2.1(3)(a) omit X, j, if in Definition 2.6 below in
(A)(b) second case we add that t € L* = p | (L\L*) forces a value to f(p(t))
where f; : Q; — w witnesses o-centerness and is absolute enough (or just ‘assume
Q: C w x Q), fi(p(t)) is the first coordinate). More carefully probably we can do
this with o-linked instead o-centered.

Definition/Claim 2.6. Let t be an FSI-template and K = (K; : t € L') be a
smooth t-memory choice.
By induction on the ordinal ( we shall define and prove:

(A) [Def]  for L C L' which is K-closed of (t, K)-depth < ¢ we define
(a) when Q = (Qu,5,n, : t € L) is a (t, K)-iteration of def-c.c.c. forcing
notions, but we can let 7, code ¢, say as ¢ = y(O) € A (Ny); so we
may omit @;; note that “def. - c.c.c.” is defined below

(b) Lim¢(Q) for Q as in (A)(a), pedantically we should write Lim (Q)
(c) 7 is the sequence of generics of Q
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(d) @ = u[Q] is the parameters domain sequence of Q
(e) the class Q = Qg of fsi-templates as well as some related classes
(f) 9(q),0™(q) for q € Q.
(¢) qislim(q, : a € M) where M is a directed partial order and q, € Q

is increasing with a.
(B) [Claim]  for Ly C Ly C L' which are K-closed of (t, K)-depth < ¢ and
(t, K)-iteration of def-c.c.c. forcing notions Q = (Qtp,,, : t € L) we

prove:
(@) QI Lyisa (t, K [ Ll) iteration of def-c.c.c. forcing notions
(b) Lim¢(Q | Ly) C Lim(Q) as quasi orders

(c) if Ly <4 L2 (see Deﬁn1t£0n 2.1(6)) and p € Lim((Q), then p | Ly €
Lim((Q | Ly) and Lim((Q) = “p | L1 < p”

(d) if Ly <¢ Ly and p € Lim{(Q) and Lim(Q L) F“(p I L) <¢q
then qU (p [ (L2\L1)) is a lub of {p, ¢} in let((@) hence Lim(Q |
L) < Lim(Q), (used in the proof of clause (B)(j))

(e) Lim{(Q | L;) < Lim(Q), that 3 is

(i) peLim(Q] L) = p € Lim(Q)

(1) Lim(Q L) Fp<q¢=Lim(Q) Fp<q

(iii) if & C Lim(Q | Ly) is predense in Lim¢(Q [ Ly), then
7 is predense in Lim(Q)

(iv)  ifp,q € Lim(Q) are incompatible in Lim¢(Q[L;) then they
are incompatible in Lim(Q))

(f) assume Lo C Ly is K-closed, L = Lo N Ly; if p € Lim(Q | Lo)

and ¢ € Lim((Q | L) satisfies (Vr € Lim(Q | L))[g < r — p,r are
compatible in Lim(Q [ Lo)] then (Vr € Lim((Q[L1))[g <7 — p,r are
compatible in Lim¢(Q | Lg)]
[explanation: this means that if ¢ forces for Ik, (@1, that p € Lim(Q |
Lo)/Lim(Q | L) then g forces for Iy, (gz,) that p € Lim(Q)/Lim((Q |
L))

(9) if (Lq : a € My) is a (t, K)—representation of Ly then Lim((Q | L1) =

U Lim(Q [ L)

a€M;
(h) if L* is a (t, K)-*representation of Ly and L* = LU{t}, then Lim(Q |
Ly) = Lim(Q [ (L1 \ L7) % Qt.,)
(i) () if p1,pe € Lim¢(Q) and ¢t € Dom(py) N Dom(ps) = p1(t) =
p2(t), then ¢ = p; Ups (i.e. p1 U (p2\(Dom(py))) belongs to
Lim¢(Q) and is a L.u.b. of p1,ps in it

(B) p € Lim(Q) iff pis a function with domain a finite subset of
Ly such that for every ¢ € Dom(p) for some A € I}, A is
K-closed and K; C A and FLime@ra) “P(t) € Quy,”

[So if p € Lim(Q) then for some K-countable (even K-finite,
see 2.1)(2)(f)), L C Ly we have p € Lim{(Q | L)]

Shere we do not assume Ly <¢ Lo,
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(v) Lim(Q) p < qiff p,q € Lim,(Q) and for every ¢ € Dom(p)
we have t € Dom(q) and for some K-closed A € I} we have

g A€Lim(QA)andq H‘L_iml(@r,q) “p(t) < q(t)
in Q¢ (as interpreted in VHm(QI4) of course)”

@) (
(
(k) (
(

@) Lim(Q) is a c.c.c. forcing notion

B) Lim(Q) = U{Lim{(Q | L) : L C Ly is K-finite}

a) Lim¢(Q) has cardinality < |Ly|¥ + 97 (q)

B3) for every Lim((Q)-name p of a real there is a K-countable set L
such that p is a Lim(Q | L)-name

Let us carry the induction.
Part (A): [Definition]

So assume Dp(L, K) < ¢. If Dp((L) < ¢ we have already defined being (t, K)-
iteration and Lim(Q | L), so assume Dp (L) = (.
Clause (A)(a) For every t € L' we have:

(i) n; is a Lim(Q | K;)-name of a real (i.e. from “2, used as a parameter)
and u; = w or (see (A)(d)) a function from a set of ordinals u; (u; an
object, not a name) into {0,1} or into J#(Xy), (legal as K; is a K-closed
subset of L and K; € I and ¢t € L hence by 2.3(2), clause () we have
Dp(K;, K) < Dp(K; U {t}, K) < Dp(L,K) < ¢ so Lim((Q[L;) is a well
defined forcing notion by the induction hypothesis and 2.3(2), clause (3))

(i1) @y is a pair of formulas which from the parameters 7; define in Vim«(QIK:)
a forcing notion denoted by Q;g,,, Whose set of elements is C J(R;) or
- %1 (ut)

(iii) in Vy = VUm(QIK) f ]P”<IP’” are c.c.c. forcing notions* then Q = Qt.50,m
as interpreted in Vy = (V1) is a c.c.c. forcing notion there, and P'%Qt, 5, 7
is a <-sub-forcing of P * Q; 5, ,, where Q; g, ,, mean as interpreted in
(VL‘m‘( K*)P' or in (VLim‘(QfK”)P” respectively (i.e. “p < ¢”,“p,q are
incompatible”, “(p, : n < w) is predense” (so the sequence is from the
smaller universe) are preserved)

(iv) assume that Lim(Q | K;) < Py < P, < P3 are c.c.c. forcing notions for
¢=1,2 and P; NPy = Py. Let Q; be the Pp-name of Qy ,, as interpreted
in VFe,

If (pe, qo) € Pex Qg for £ =0,1,2 and (p07 q0) IF “(pe; qe) € (PexQe)/(Po
Qo)” for £ =1,2 and p3 € P is above p1, D5 then there are (pe, g¢) € Pr*Qy
above (p¢, q¢) for ¢ =0,1,2 satistying (ph, ¢5) I+ “(p}, q}) € (P¢ * @g)/(]P’O *
Qo)” for £ = 1,2 such that:

o p3lp, “gl,gg are compatible in @3”.
Clause (A)(b):
First Case: ¢ = 0.

4 S0 the definition @t still defines a forcing notion; We may restrict ourselves to forcing notions
which occur in our proof; but does not seem to matter for now.
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Trivial.

Second Case: ( is a successor.

So let L* be a (t, K)-*representation of L.

Define p € Lim(Q) iff p is a finite function, Dom(p) C L,p | (L\L*) € Lim(Q |
(L\L*)) and if t € L* N Dom(p), then p(t) is a Lim{(Q | (L\L*)-name of a member

of Q¢,,,, and the order is Lim(Q) = p < ¢ iff
(i) Lim¢(Q [ (L\L*)) = “(p [ (L\L*) < (¢ [ (L\L*))” and
(ii) ift € L*NDom(p) then for some K-closed A € I} we have q | A IFLim, @12\ L")
“p(t) < q(t)”

Clearly Lim(Q) is a quasi order. But we should prove that Lim(Q) is well defined,
which means that the definition does not depend on the representation.
So we prove

X; if Dpy(L, K) = ¢ and for £ = 1,2 we have L} is a (t, K)-*representation of
L with Dp(L\L}, K) < ¢ and Q is Lim{(Q | L) as defined by L} above,
then Q! = Q2.

This is immediate by Claim 2.4(2) and the induction hypothesis clause (B)(h).

Third Case: ¢ limit. - -
So there are a directed partial order M and L = (L, : a € M) a (t,K)-
representation of L such that a € M = Dp(L,, K) < {. By the induction hy-

pothesis, a <p; b= L, C L, and Lim¢(Q | L,) C Lim¢(Q [ Lp).

We let Lim((Q | L) = |J Lim¢(Q | L,), so we have to prove
a€M

s the choice of L is immaterial.

So we just assume that for £ = 1,2 we have: M, is a directed partial order, L¢ =
(LY a€e M), LY CL,MyEa<b= L. CLjand (Vt € L) (VA€ I,)JAC L —
(3a € My)(A C LY) and Dp, (LY, K) < C.

We should prove that |J Lim¢(Q[LL), |J Lim¢(Q[L2) are equal, as quasi

ac€ My a€ M-
orders of course.

Now let M =: My x My with (al,ag) < (bl,bg) < a1 SMl b1 N as §M2 bg,
clearly it is a directed partial order. We let L(,, o,) = L¢111 N LL212, so clearly
L(al,ag) - Lt»Dpt(L(al,ag)aK) < C al’lfi (al,a2) <m (bl»bQ) = L(al,az) c L(b],bQ)
and (L4, a,) * (a1,a2) € M) is a (t, K)-representation of L by Claim 2.4(1). So

by transitivity of equality, it is enough to prove for £ = 1,2 that J Lim(Q |
aeMy
LY, U Lim(Q | Layp)) are equal as quasi orders. By the symmetry in the
(a,b)eM
situation without loss of generality £ = 1. B
Now for every a € My, L = (Lap) : b € Ma) satisfies: Ly C L,Dp(L;, K) <
G,Li= U L(ap),b1 <ty b2 = Liap) S Liapy)-
be Mo B B

Fix a € M; and notice that Lim¢(Q | L), U Lim(Q | Layp)) are equal as
bEL>

quasi orders. Next we have to verify that for every ¢t € L! and A € I} for some
be Ly we havet € Lyp and A C L, ;. By the assumption on <L12) : b € Ms) for
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some b € My we havet € LyAA C L? hencet € LNL2 and A C LLNLZ = L, s0
this b is as required. Hence by the induction hypothesis for clause (B)(g) we have
Lim¢(Q I LL), U Lim¢(Q | L(ap)) are equal as quasi orders

beLo
As this holds for every a € M; and M, is directed we get |J Lim(Q |
ae M,
L)), U U Lim¢(QIL,p)) are equal as quasi orders. But the second is equal to
a€ M, bEJ\{Q
U Lim(Q [ L(a,)) so we are done.

(a,b)eM

Clause (A)(c)
v is the sequence of generics of Q means
() D= (ry:t €LY,
(8) for each t € L', vy is a Lim(Q | K])-name of a function from a set of
ordinals to {0,1} or to J#(Xy); for simplicity with domain u; recalling
K| = K, u{t}
(7) if L € L' is K-closed then © | L is a generic for Lim(Q | L)

Clause (A)(d)

u = u[Q] = (uy : t € L') is the parameters domain sequence of Q means that
each uy = u(t) is a set of ordinals, for simplicity, recalling that Iy, (@rx,) “7¢ 1 a
function from u; to 2 (Rg)”

Clause (A)(e)

The class Q = Qg of fsi-templates is the class of objects q of the form (t, K, @, Q)
which are as above with dom(Q) = L' and Py = Lim(Q). We may write q instead
t, (9, K) or Q.

For O regular uncountable let Q%i be the class of q € Qg satisfying 9(q) < 9,
similarly in other cases.

Let Qqom be the class of q € Q such that K = 0,Q is dominating real=
Hechler forcing and 7, the generic.

On Qqn see 2.18(2), EB}I.

Clause (A)(f)

Let 9(q) for q € Q be the minimal infinite cardinal @ which is strictly bigger
then |A|,|u¢| for t € L', A € I}.

We define 07 (q) similarly but requiring only ”bigger or equal”.

Part (B):

First Case: ( = 0.
Trivial.

Second Case: ( successor.

Similar to usual iterations, so easy using the definition and the induction hy-
pothesis except clause (f) which we prove in details.
Clause (f):

Let p,q, L, Lo be as in the assumption of clause (f). Let 7 € Lim((Q | L) be
above ¢ there and we should prove the p,r are compatible in Lim¢(Q [ Ls). Let
t. be the maximal member of Ly, L, := L, \ {t.} hence Ly = Ly\{t,} € I, and
dp(Ly) < ¢, L™ := L\ {t.}. If (t. ¢ LoV t. ¢ L) or just t, ¢ Dom(p) N Dom(r)
then by the induction hypothesis applied to Ly, L5, L™, Ly,p [ Ly,q [ L™,r | Ly
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we can find a common upper bound r* of p | Ly,r | L7 in Lim{(Q | Ly ) and
r*Up | {t«+} Ur [ {t.} is a common upper bound of p,r as required.

So assume that ¢, € Dom(p) N Dom(r) C Ly N Ly and let Py := Lim(Q [ L™)
and Py := Lim((Q [ L, ) for £ =0,1,2.

Now we get p’,r’ by applying the definition in clause (A)(a)(iv) for . with (p |
L0_7p(t*))5 (T [ Ll_rr(t*))a (qu77Q(t*)) here Sta‘nding for (p17g1)7 (anQQ)v (pOaQO)
there getting (pj, ¢y) for £ < 3 as there.

By the induction hypothesis in P5 for the conditions pj,p},p5 we can find a
common upper bound p*, so by (A)(a)(iv) conclusion we are done.

Third Case: ( limit. B -
Solet (L% : a € M) be a (t, K)-representation of Ly witha € M = Dp, (L2, K) <
¢andlet L =Ly N L2

Clause (B)(a):
Trivial.

Clause (B)(b):
Clearly Dp(L1, K) < ¢ by Claim 2.3(2) («) hence Limf(@_[ Ly) is well defined
by (A)(b) which we have already proved above, that is Lim(Q) = Lim(Q [ L) =
U Lim(Q | L?) as quasi orders.
a€Ms
Clearly (L1 = Ly N L2 : a € M) is a (t, K)-representation of L; hence by the

induction hypothesis (if Dp((L1, K') < () or by the uniqueness proved in (A)(b) (if
Dp(L1,K) = ¢) we know that Lim((Q | L;) = |J Lim((QJL}) as quasi orders
aeM

and by the induction hypothesis for (B)(b) we know Lim((Q | L}) C Lim((Q | L2)
as quasi orders (for a € M), and we can easily finish.

Clause (B)(c),(d):

Use the proof of clause (B)(b) noting that L! <, L? and so we can use the
induction hypothesis, but we elaborate. For clause (c), let p € Lim{(Q | L) so
there is an element a € M such that p € Lim((Q | L2). Now p | L; = p | L} and
as Ll <¢ L? by the induction hypothesis we have p | L. <Lim(@/L,) P as promised.

For clause (d) we assume in addition that p [ L; < ¢ in Lim((Q[L1). Let
71 =qU(p | (L2 \ Ly). Easily r; is an upper bound of p, g in Lim{(Q | Ls). Assume
further that r9 is another common upper bound of p,q. As M is directed we can
choose a € M such that p,q,71,72 € Lim((Q | L?) but ¢,p | L' € Lim{(Q | L}).
Hence by the induction hypothesis r; < o in Lim¢(Q | L2) so we can finish .
Clause (B)(e):

The statements (i) + (ii) hold by clause (b).

The statement (iii) holds: let .# be a predense subset of Lim¢(Q | L;), let
p € Lim(Q), so for some a € M we have p € Lim(Q | L2).

By the induction hypothesis applying clause (B)(e) to L}, L? we have Lim(Q |
L) < Lim¢(Q | L2), hence as p € Lim(Q | L?) clearly there is ¢ € Lim((Q | L)
such that p is compatible with r in Lim(Q | L?) whenever Lim(Q | L}) | “¢ <.

Now by the assumption on “# C Lim(Q | L;) is predense”, as q€ Lim((Q [ Ly)
(by clause (B)(b)) we can find ¢o € .# and ¢ such that Lim(Q | L;) E ¢ <
@1 N g < qi, so for some b € M we have ¢,q0,q1 € L} and a <p b (as M is

directed). Now we consider p, ¢, L}, L2, L}, L? and apply clause (B)(f).
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Clause (B)(f):
Easy to check using clause (f) for the L2’s, which holds by the induction hypoth-
esis.

Clause (B)(g):

Let My =: M (and recall M; that is from clause (B)(g)). For each a; € M,
clearly Dp((La,, K) < ¢ as Lo, € Lo and (Lg, N L2 : ag € My) is a (t,K)-
representation of L,, and Dp,(L,, N L2,,K) < Dp(L% , K) < ¢ hence by (A)(b)
we know Lim((Q | Lq,) = U Lim((Q | (La, N L%))). The rest should be clear.

az€M>

Clause (B)(h):
Easy. If t € L* then L; \ L* € I} hence for some a € M we have Ly \ L* C L,
and the rest should be clear; and if L* is empty this is easier.

Clause (B)(i):
Easy.

Clause (B)(j):

Sub-clause () is clear by the definition of Lim(Q) so we shall deal with sub-
clause ().

So let po € Lim¢(Q) for o < wy; let w, = Dom(p,) and without loss of generality
(wg + @ < wy) is a A-system with heart w.

A natural way fails because if (L? : a < wy) is increasing continuous, L}, C Ly

is K -closed, C-increasing continuous then (Lim¢(Q[L}) : @ < wy) is <-increasing
but not necessarily continuous.

Let {to,...,tn_1} list w without repetitions such that® £ < k < n = —(t;, < ty)
and let L be defined by induction on ¢ < 2n+1 =2(n — 1) + 3 as follows:

. LEZ@

o LT ={s:s <t for every k <n}

o Ly, o=1L5 ,U{ts} when ¢ <n equivalently 2¢ +2 < 2n + 1

o Ly o=1L5 ,U{s:s<tyforevery k€ {{+1,...,n—1}} when £ <n
equivalently 20+ 3 < 2n+1

So L3,y = Lo.
Clearly

@ (L} : £ <2n+1) is a C-increasing sequence of initial segments of Ly hence
is <¢-increasing

We prove by induction on ¢ < 2n + 1 that

(x)¢ for some g € Lim(Q IL}) we have g “_Lim‘(Q[Lj,f) “Pa | L; € G for Xy
ordinals o”.

5As Lt is a linear order, this mean tg < t1 < ....
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Case 1: ¢ = 0 trivial, (e.g. the empty ¢ € Lim(Q [ L})).

Case 2: £ =1 -
As (wo N LY : a < wy) are pairwise disjoint, every g € Lim¢(Q[L7) is compatible
with po [L7 for all but finitely many «a’s, so this follows.

Case 3: £ =2i+3 -
Recall ¢g10 € Lim(Q [L’Q‘HQ) has been chosen. Now assume ¢g;42 < g €

Lim¢(Q[L%;,5) and o < wy. Then w* = {y < w; : wy Ndom(q) € w} is fi-
nite, hence recalling Lim(Q[L3};,,) < Lim¢(Q[L3;,5) by the induction hypothesis,
there is 3 € (a,w:1)\w* such that pg[L3; o, q[ L5, are compatible hence there is
q1 € Lim{(Q[L3,, ,) above both.

It suffices to prove that ¢1, ¢, pg has a common upper bound (as a was an arbi-
trary countable ordinal).

We define a function r by:

dom(r) = dom(g;) U dom(g) U dom(pg)
if s € dom(qy) then r(s) = ¢1(s)
if s € dom(q)\ L3, 5, equivalently s € dom(q)\dom(q;) then r(s) = ¢q(s)

if s € (dom(pg)\L3,,5), equivalently s € dom(pg)\dom(q;) then r(s) =
ps(s)-

It is easy to verify the “equivalently” and as dom(qi) N dom(pg) C L3; o, the
function 7 is a well defined function. Also r € Lim¢(Q[L3;, 3) as its domain belongs
to [L3;,5]<" and each r(s) is as required.

Why is 7 above q1? Because r[L3; 5 = q1.

Why is r above pg? By 2.6(B)(d) recalling & above.

Why is r above ¢? By 2.6(B)(d).

So we are done proving this case.

Case 4: { =2+ 2 B
We can find G C Lim¢(Q[L3; ;) generic over V such that W = {a : po[L3; 1 €
G} is uncountable. Let ¢ = t;, for each o € W there is a f(—cl_osed A, € If such

that p, () is a Lim(Q[Aq)-name. So as Lim(Q[As,) < Lim¢(Q[L3;, ) clearly in
VI[G], ¢}, = pa(t¢)[G] is well defined and by absoluteness (i.e. (A)(a)) is a member

VG
Q-
Also VIG] “@V[E}] satisfies the c.c.c.” hence for some o # as from W, qq,, o,

t,Z]
are compatible in ng?], but er[,,G]

Let A = A,, U A;z so A is a K-closed subset of L5, , and it belongs to I;.

So Lim¢(Q[A,,) < Lim¢(Q[A) for ¢ = 1,2 hence by absoluteness ga,,¢a, belong
to Lim¢(Q[A) and as Lim(Q[A) < Lim¢(Q[L3; ) they are compatible, so we can
finish easily.

So we have carried the induction hence the proof of (B)(j).

is “too big”.

Clause (k): Easy.
Claim 2.7. 1) Assume

(a) tis an FSI-template, Dp(L, K) < 0o i.e. K is a smooth t-memory choice
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(b)) Q = (Qiy, : t € L) is a (t, K )-iteration of def-c.c.c. forcing notions, so
L C Ly is K-closed

(C)l Ll,LQ CLand Ly < Ly (that 8 (7vt1 S Ll)(vtz € Lg)(Lt ': t1 < tg)) and
te€ Ly= Ly €1} and Ly, Ly are K-closed and L = Ly U Lo.

() Lim¢(Q) is actually a definition of a forcing (in fact a c.c.c. one) so
meaningful in bigger universes, moreover for extensions (by c.c.c. forc-
ings) Vi C Vo of V.= Vg (with the same ordinals of course), we 5 get
[Lim¢(Q)]V* Cic [Lim¢(Q)]V2 (see 0.2(3)) and every mazimal antichain &
of Lim{(Q) from V7 is a mazimal antichain of Lim¢(Q) (in V).

Recall that L is K-closed.

(8) Lim¢(Q) is in fact Q1 * Qo where Q1 = Lim¢(Q | L1) and Qa2 = [Lim(Q |
L2)]V[Gaq,] (composition,).

2) Assume clauses (a), (b) of part (1) and

(¢)2 L has a last element t* and let L= = L\{t*}.

Then for any G~ C Limy(Q [ L™) generic over V, letting ny = 1, [G™] € V]G]

[Cal 4 € If. is

we have: the forcing notion Lim(Q)/G™ is equivalent to U{QXJH*

K-closed} where G; =: G~ NLim(Q | A) and nr = ne-[G™].
3) Assume clauses (a), (b) of part (1) and

(¢)s (L; : i < d) is an increasing continuous sequence of initial segments of L
with union L and 6 is a limit ordinal.

Then Lim(Q) is | Lim(Q | L;), moreover (Lim¢(Q | L;) : i < 8) is <-increasing
continuous. =

4) If t is not smooth then t | L is not smooth for some countable L C L', moreover
for every L' satisfying L C L' C L.

5) Assume t is smooth and Q = (Qy,, : t € LY. If Q is not a (t, K)-iteration of
def-c.c. forcing notions, then Q[L is not a (t]L, K|L)-iteration of c.c.c.-definition
forcing notions for some K-closed L C Lt which is the union of < Xy K-countable
sets.

Proof. Straightforward (or read [She04al). Uo7

We now give sufficient conditions for: “if we force by Lim¢(Q) from 2.6, then some
cardinal invariants are small or equal/bigger or equal to some p”. The necessity of
such a claim in our framework is obvious; we deal with two-place relations only as
this is the case in the popular cardinal invariants, in particular those we deal with.

Claim 2.8. Assume t is a smooth FSl-template and K = (K; : t € L) and

Q=(Qty, :t € L) are as in 2.6 and P = Lim(Q).
1) Assume

6of course possibly L1 =0
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(a) R is a Borel” two-place relation® on“w (we shall use <* forb andd, C* for
u and for s we use nRsp1v meaning Rang(v) N Rang(n), Rang(v) \ Rang(n)
are both infinite; the intention is to use this for s)

(b) L* C Lt

(¢) for every K-countable A C L' for some t € L* we have A € I}

(d) fort € L* and K-closed A € I} which includes K, in V4im(@l4) we have
g, “vt € “w is an R-cover of the old reals, that is p € (“w)VILim Q)] -

pRy.” where vy is the generic real of Q 5, or just a Limt(@[Kj)-name. We
may use vy a Lim(Q[A;) with A, € I}

Then IFp “(Vp € “w)(3t € L*)(pRyy), i.e. {ve:t € L*} is an R-cover, which, if

R =<* means 0 < |L*|”.

1A) If we weaken assumption (d) to IFp “for every p € “w for some t € L'

and v € V(ww)V[Lim‘(@mD] we have pRY” then IFp “(Vp € “w)(3t € L*)(Fv €

VLim‘(@thT))[pRl/]”. This implies that in VF, if R =<* then 0 < > |Lim((Q |
teLt

K])|; we could use K'-s index by other sets.

2) Assume

(a) R is a Borel two-place relation on “w (we shall use <* or C* as above)

(b) p is a cardinality

(¢) if L* C L', |L*| < p then for some t € L' and K-closed L** 2 L* we have
L € I and in VEm(QILT) I, ,, “somev € “w is an R-cover of the old

reals”; (usually v is the generic real of Qq,p,), this we assume absolutely).

Then Ikp “(VX € [*w]<*)(3v € “w)( A pRv)” (so for R =<* this means b > ).
peX
3) Assume

a) R is a Borel two-place relation *° on “w (we use R = V) p, v €Y2 and
P P

p~H1}, v Y1} are infinite with finite intersection}, noting that “2 C “w)

(b) o0,k,0 are cardinals and k < 0 < X and ot > 9(t) with cf(A(t)) > Ny

(¢) if tip € L' fori <i(x),¢ <o and k <i(x) <0 and each {tiy: ¢ < o} is
K-closed, then we can find ty € L' for ¢ < o such that {ty: ¢ <o} C L'
1s K -closed and:

(¥) for every i <i(x) for some j < k,j # i and the mapping ti 4 — tig,tj 4
te is a partial isomorphism of (t, K,Q) (see Definition 2.9 below).

Then in VE we have

&ffﬁ if pi,vi € “w fori < i(x) and k < i(x) < 0 and i # j = v;Rp;, then we
can find p € “w such that i < i(x) = v; Rp.

7 here and below just enough absoluteness is enough, of course

8 Why not “27 Just as this notation is more natural for 9, b, our main concern here.

9 We can weaken Clause (c) by saying: for every set X of < u names of reals there is t € L!
such that for each such name from X .... )

10 56 R is defined in V; if R is from VLimt(QK) we need partial isomorphism (see below) of
(t,Q) extending id g
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Proof. Straightforward, but being requested we give details:

1) Let p be a P-name of a member of (“’w)vp, so as P satisfies the c.c.c. (see
2.6(B)(j)(c)), for each n there is a maximal anti-chain {p,; : i < i,} such that
Pn,i forces a value of p(n) and, of course, i, is countable. Let M = {a : a is a
K-countable subset of L'} partially ordered by inclusion, so obviously M is closed
under countable unions and U{a : @ € M} = L'; and let L, = a for a € M so

by 2.6(B)(i)(3) we have p € Lim(Q) & p € U{Lim{(Q[L,) : a € M} but P =

Lim¢(Q), hence for n < w,i < 4, for some a, ; € M we have p,, ; € Lim¢(Q [ Ly, ,)-
But M is ®y-directed so for some a € M we have {a,; :n <w,i <i,} C{c:c <y
a}. Also by 2.6(B)(e) we know Lim(Q| L) < Lim((Q) = P, so p is a Lim(Q | L,)-
name. Now by assumption (c) of what we are proving, as L, C L is K-countable,
we can find ¢ € L* C L' such that L, € If. Also we know that K; € I} (see
Definition 2.1(2)(c) hence A =: K; U L, belongs to I} and is K-closed; and easily
also B = AU {t} is K-closed.

Clearly A C B C L' are K-closed so as above Lim((Q | A) < Lim((Q | B) <
Lim¢(Q) = P and p is a Lim{(Q[A)-name (hence also a Lim((Q | B)-name) of a
member of “w. )

Now by assumption (d), in V™ «(@QI4) we have Fq,,, “pRy:”, hence by 2.7(2)
we know that Lim¢(Q | B) = Lim¢(Q | A) * Qt, » so together Iy qrp) “pRye”
hence by the previous sentence and obvious absoluteness we have Ikp “pRy:”. So

as p was any P-name of a member of (“’w)v]P we are done.

1A) Same proof.

2) So assume p lFp “X C “w has cardinality < p”. As we can increase p without
loss of generality for some 6 < p we have p lFp “|/X| = 6” so we can find a sequence
(pa : @ < ) of P-names of members of (“w)VP such that plFp “X = {pa : @ < 0}".
Let {Pani % < ian} be a maximal antichain of P, with pg ,, ; forcing a value to
Pa (n) and ¢q,, countable.

Define M = {a C L' : a is K-countable}, so for each o < 0,n < w,i < Tan

for some aq,n; € M we have po n; € Lim(Q | L, ,). So'' for some K-closed
L** C L' and t € L' we have L** € I{ and L, , C L** for « < 0,n < w,i < iqn.
We now continue as in part (1).
3) So assume i(x) € [k,0) and IFp “vi,p; € “w and i # j = v;Rp;”". So as
above we can find K-countable K} C L* such that v;, p; are Lim(Q | K})-names;
without loss of generality K # () and K} has cardinality < 8(t) hence < o. Let
(ti,p + ¢ < o) be a list of the members of K possibly with repetitions. Let f; ; be
the mapping from K7 to K defined by f; ;(t;,4) = ti 4 if well defined.

We define two-place relations E7, F5 on i(*) and on i(*) X i(x) respectively by:

(a) iBE1j iff fi; is a well defined partial isomorphism of (t, K,Q) such that f; ;
(see claim (B) of 2.9 below) maps (pj,v;) to (pi,vi)
(b) (il, iQ)EQ (jl, ]2) ﬂ i1E1j17 igEle and fi1,j1 Ufiz,jz isa partial iSOHlOI‘phiSIIl

of (t,Q).
Easily

®(i) E1, E, are equivalence relations over their domains

1 In the weaker version for some t for every a for some A € If ....
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(i) fj:= fifjl or both are not well defined.

Now we apply assumption (c), and get (tg : ¢ < o) and let K* = {t4: ¢ < o}. By
(%) of clause (c) and clause (A)(b) of Definition 2.9 below for any 4, j < i(*) clearly
Kf UK} and K; U K* are K-closed (see the definition below). For any i < i(x)
let j; < k be as in () of clause (¢) which means: j; # ¢ and the following mapping
gi is a partial isomorphism of (t, K,Q) : Dom(g;) = {tis,tji0 1 ¢ < 0},9i(tie) =
tig, 9i(tjg) =t

Let v, p be Lim(Q[K*)-names such that for some, equivalently any i, §; maps
Vj;, pj; to v, p respectively (this is O.K. as for any 41,42 we have j;, E1j;, because
959 fjiy.5i, = Gir | K*il) Now for any ¢ < i(x), as j; # ¢, we know ”_let(Qr(Ki*uK;_))
“viRp;,”, so applying g; we have H_Limt(@(Ki*uK*)) “viRp”. So we have prov:ad
@gf,{- Lo.g

In 2.9 below we note that isomorphisms (or embeddings) of t’s tend to induce
isomorphisms (or embeddings) of Lim(Q), and deal (in 2.10, 2.11) with some nat-
ural operations. In 2.9 we could use two t’s, but this can trivially be reduced to
one.

Definition/Claim 2.9. Assume that t, K and Q = (Qy,,, : t € L') are as in 2.6.

By induction on ¢ we define and prove 2

(A) [Def]  we say f is a partial isomorphism of (t,Q) of Depth < ( if:
(omitting ¢ means for some ordinal (; writing t instead of
(t, K, Q) means we assume Q; e = Q, i.e. constant, K; =0

for every t € L' and may say “t-partial isomorphism”)
f is a partial one-to-one function from Lt to L*
Dom(f), Rang(f) are (t, K)-closed sets of depth < ¢
for ¢ € Dom(f) and A C Dom(f) we have A € I} « f"(A) € I},

for t € Dom(f), we have: f maps K; onto Kf(t and f | K; maps

(a
(b

(
(d

D D

Nt to 1y, more exactly the isomorphism f which f induces from
Lim¢(Q | K;) onto Lim(Q | Kj(4)) does this.

(B) [Claim]  f induces naturally an isomorphism which we call f from Lim(Q[Dom(f))
onto Lim¢(Q[Rang(f)).

Proof. Straightforward, recalling we are assuming that ¢; is definable from n;. [
Definition 2.10. 1) We say t = t! + ¢? if
(a) L' = LY + LY (as linear orders)
(b) fort € LY I =TIt
(c) fort e LY I ={ACL': ANLY € I},
So ! + 2 is well defined if t!, 2 are disjoint, i.e. L' N LY = (.
2) We say th <. % iff

124 Ky = 0 and all Qt,n have the same definition of forcing notion, as in our main case, we
can separate the definition and claim.
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(a) LY C LY (as linear orders) and t € LY = It C IY
() it BseL! then It ={AeI:ACLY}
3) If (t¢ : ¢ < &) is <,x-increasing, ¢ a limit ordinal, we define t* =: |J t¢ by
<&
LY = U L (as linear orders)
¢<¢
Itts = U{Itt( (<€andte LZ}

Clearly ¢ < & = ¢ <y t&. Such t¢ is called the limit of (t¢ : ( < &); now a
<wk-increasing sequence (t¢ : ¢ < £) is called continuous if for every limit ordinal
§ < & we have £ = |J .

(<6
4) If (€ : ¢ < &) are pairwise disjoint (that is ¢ # & = L N LY = ()) we define
3" ¢ by induction on ¢ naturally: for € = 1 it is t°, for ¢ limit it is (J (D t¢) and

(<€ e<€ (<e

for E = e+ 1itis (D t0)+1t5,50 & < &= >t <y O ¢ (even an initial
(<e (<& (<&

segment).

5) We can replace in 0) - 4) above t¢ by (¢, K¢).

Claim 2.11. Let t be an FSI-template.
1) If LY = 0 or just is well ordered then t is smooth.
2) If t4, €2 are disjoint FSI-templates, then t' + > is an FSIl-template and { €
{1,2} = ¢ <y th + 2.
3) If t1, 4% are disjoint smooth FSI-templates then t = t' + t* is a smooth FSI-
template; moreover, Dp,(L') < Dpa (L) + Dpe(LY) and Dp, (L") = Dp,(LY).
4) If (t¢ : ¢ < &) is an <x-increasing (2.10(2)) sequence of FSI-templates and ¢ is
a limit ordinal, then & =: U € is an FSI-template and ¢ < & = ¢ <q €.
¢<¢
5) If (¢ : ¢ < &) is an increasing continuous (see Definition 2.10(3)) sequence of
smooth FSI-templates and £ is a limit ordinal, then € =: U ¢ 4s a smooth FSI-
¢<¢
template and ¢ < € = 1€ <yy € and Dp.e (L) < sup{Dpy (L) +1:¢ < €}
6) If (¢ : ¢ < &) is a sequence of pairwise disjoint [smooth] FSI-templates, then
St ds a [smooth] FSI-template and (> ¢ : e <€) is increasing continuous.
¢<¢ ¢<e
7) In parts (1)-(6) we can expand t* by K¢ .
8) Assume J is a linear order, t, is a smooth FSI-template for every x € J and
(L' : x € J) are pairwise disjoint (for notational simplicity) and we define t by:
L'= Y L% (so L' =s <tiff(3z,y)(s€ LAt e L Az <5 y)V(z € J)(L* |
reJ
s<t))and I} = {ACL': (Vs € A)(s <p: t) and letting x € J be such that t € t*
we have AN LY € I and {y :y <y x, AN L% # 0} is finite}. Then t is a smooth
FSI-template (we can expand by K’s) (use in §3).

Proof. Easy, e.g. part (3) is proved by induction on Dp(L') and part (6) by induc-
tion on ¢ and in part (7) let M be [J]<X0 ordered by inclusion and Lizqy,...am)} =
U{L%® : £ =1,...,n} for any z(1),...,2(n) € J. Oz.11

13ye may restrict ourselves to FSI-templates t of globally countable, i.e., such that A € I} and
te L'=> |A| <N
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Discussion 2.12. 1) To prove our desired result CON(a > ) we need to construct
an FSI-template t of the right form. Now we do it using a measurable cardinal.
The point is that if we are given ((t;, :n <w) :i < i(x)),L'i(x) >k and D is a
normal ultrafilter on &, then in t*/D the w-sequence ((¢;,, : i < K)/D : n < w) is as
required in 2.8(3)(c), considering t*/D an extension of t.

2) We shall deal with s only in 2.18(2).

3) Note that our main old conclusion (i.e. 2.18(1)) has two proofs. The first is
shorter and depends on §1 and 2.16, 2.17. The second is longer but does not.

Definition 2.13. 1) For aq € Q and & = 9(q) < « and an d*-complete ultrafilter
D on k (hence (27)-complete), we define t* =: t*/D,jp ¢ and jp ((t) as follows:

(a) we define t* by:
LY = (LY*/D as a linear order
and if t* = (t; : i < k)/D where t; € L' then we let It = {A :
we can find A; € If, for i < k such that A C [] A;/D}
i<K
(b) We then let jp ¢ be the canonical embedding of t into t*/D that is jp ¢(t) =
(t:i < k)/D for every t € L* and

() let ¢ = jp(t) be defined by LY = LU | {jp.(s) : s € L'}, I
{{ip(t):t€ A}y Ac T

’JDt()

2) Similarly for q € Q instead t.
Remark 2.14. We may allow 9(q) > « but presently not worth the trouble.

Claim 2.15. In Definition 2.13:

1) ¥*/D is also an FSI- template and jp (t) <wk t*/D and jp ¢ is an isomorphism
from t onto jp ((t).

2) If t is a smooth FSI-template then t*/D is a smooth FSI-template.

3) Moreover, Dpy.)p(LV"/P) < (Dp,(LY)"/D.

4) Similarly we define q®/D for q € Q; so uy is increased if ul. is of cardinality
> Kk and similarly K}

Proof. Straightforward. U215

Now 2.16, 2.17 below are used only in the short proof of 2.18 depending on §1, so
you may ignore them.

Definition 2.16. Fix Xg < k£ < p = cf(p) < A = cf(A\) = A\* and D a k-complete
(or just (2%0)*-complete) uniform ultrafilter on . We define by induction on ¢ < A,
a smooth FSI-template t, ¢ for v < p such that:
(a) ty ¢ is a smooth FSI-template
(b) if 1 # 72 then t,, ¢, t,, ¢ are disjoint, ie. Ltc N Lba2c =)
(c) for & < ¢ we have t, ¢ <yi ty,
(d) if ¢ is limit then t, . = U 1‘7 ¢, see 2.10(3), 2.11(6).
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(e) if { =&+ 1 and £ is even, then there is an isomorphism j, ¢ from ﬁ; tge
<y

onto t, . which is the identity over t, ¢
(f) if =& +1 and £ is odd, then there is an isomorphism j, ¢ from (ty¢)"*/D
onto t, ¢ which extends the inverse of jp ¢ ..

Observation 2.17. The definition is 2.16 is legitimate.

Proof. By the previous claims. Coq7
Conclusion 2.18. Assume:  is measurable,'* k < p = cf(u) < A = cf(\) = \*.
1) For some c.c.c. forcing notion P of cardinality X, in V¥ we havea = \,b =0 = p

hence s < p.
2) If in addition 0 = cf(0) < k then for some PP as above in addition we have s > 0
(hence 0 <s < )

Proof. 1) Short Proof: (depending on §1).
Let ty¢ (for v < g, <A) be asin 2.16. Let t = > t,\ and let K = (K; : t €
Y<p
LY, K; =0 and let Q = (Q; : t € L) with Q; being constantly the dominating real
forcing (= Hechler forcing).
Lastly, let P = Lim(Q).
The rest is as in the end of §1. But if we like to use 2.6, etc. we need

B Qdom is as required in 2.6(A)(a)(i)-(iv), i.e. def - c.c.c.
We elaborate concerning why Qgom satisfying sub-clause (iv) of the full definition
of 2.6(A)(a).
Given py assume
(a) Py <Py < Ps (for £ =1,2) be c.c.c. forcing
(b) Qg the Pp-name of Qqom with the generic vy, (in a sense they are the same
name)

(¢) (pe;qe) € PpxQqfor £=0,1,2

(d) (posqo) IF “(pe; qe) € (PexQp)/(Po * Qo) for £=1,2

(e) p3 € P3 is a common upper bound of py,ps.

Of course

()1 we can replace (py, g¢) for ¢ < 3 by (p}, q;) above (pe,qe) for £ =0,1,2 and
(c),(d) still holds
()2 without loss of generality there is 11 € “”w such that p; IF “g; has trunk
1/1”.
[Why? Let G1 * G! C Py x Q; be generic over V such that (p1,q1), (po,qo) € G1,
and ps € P3 is a common up~per bound of py, ps. ) B
We can find v; and p} € G; above p; such that pj IFp, “tr(q1) = 11”. Let
q1 = q1 and choose (pg, ¢p) € Gy * G above (o, go) such that (pg, gp) IF “(p},¢71) €
(IPy * @1)/(]?0 * @0)”-
Let (p5,q3) = (P2, g2), so clearly we are done.]

14 Tnstead A = A® it suffice to demand A = A¥o = A¥/D. This holds for any strong limit
cardinal > k of cofinality # Yo, # k.
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(x)3 without loss of generality for some vo,ps IF “tr(qh) = v2” (and (x); still
holds); we shall not repeat such statements.

[Similarly as in the proof of ()2 because in the proof there (pz, g2) was not changed
and we can interchange Py, Ps.]

()4 without loss of generality for some vy of length > lg(v1),£g(v2) we have
po IF “tr(go) = vo”.
[Why? As we can just increase (po, go), not change p1, g1, p2, q2.]

(*)s without loss of generality tr(gqs) = 10

[Why? By the properties of Q.
Now ¢1,q2 are two Ps-names of members of Q3 with the same trunk hence
IFp, “q1,q2 are compatible” so we are done.

Alternative presentation of the proof of 2.18(1), self contained not depending on 2.16, 2.17:
We define an FSI-template t¢ = t[¢] from Qgom for ¢ < A by induction on (.

Case 1: For ( = 0.
Let ¢ be defined as follows:

L’L[C]:'u
I ={A:ACa} fora<pu

Case 2: For ( =&+ 1.

We choose t¢ such that there is an isomorphism j; from L' onto (L) /D,
satisfying je | L'¢) is the canonical embedding jp ), that if z € LS then j¢(z) =
(x.:e < r)/D e (LYY*/D and: A € I i for some A = (Ac : € < k) we have
AEEI;[EE] and {y:y € A} C{(y- :e <k)/D:{e<k:y. € A.} € D}.

Case 3: ( limit!®.
We choose t¢ as follows:

L = U LY as linear orders.
£<¢

I;;[C] is
Subcase 3A: If x € L' then {A: A C {s: L |= “s < 2”}}.
Subcase 3B: If z ¢ L but 2 € LY¢] then I is 16 (we rely on L is well ordered):

15 we may do one of the following changes (but not both): (a) in subcase 3B use I;[C] = {A:
for some £ < ¢,z € L and A € Iff} and/or (b) in sub-case 3A behave as in sub-case 3B.

16 50 members of L0 have the “veteranity privilege”, i.e. “founding father right”; members

t of L° have the maximal I:[C].
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{A: for some £ < ( we have z € LY and if y = Min{y € L* : L'l |= “2 < ¢}
which is € L% (and is always well defined see clause (b) of @ below) then
A\{t € LY LU = ¢ < 27 for some 2 such that L' |= “z < 57} belongs to I&
(hence is C L')}.

We now prove by induction on { < A that:

¢ is an FSI-template
LY is a cofinal subset of L¢]

® (a

(
(b

y<p

(¢) t¢ is smooth

(d) 18 <y 18 for € < ¢

(e) if x € L then {z : for some y € L' we have L¢] = “2 < g <

o) e 19

(f) LY has cardinality < (u+ |¢])*

(9)  we have t¢ = 3 7¢ where §7¢ = tS[{z € L9 : L% = 2 < v and
<

B<zif <7}

(h)  the sequence (57°¢ : { <)) is <-increasing continuous.

[Why? Easy, e.g. why clauses (a)+(c) hold? For ( =0 by 2.11(1). For ( =&£+1 by
2.15(2) noting that for ¢t € L% the desired value of I} holds. For ¢ limit, for any
teL" clearly 57°¢ is the union of the increasing continuous sequence (57 : & < ()
hence is a smooth FSI-template by clause (h) and 2.11(5). Now also t¢ is a smooth
FSI-template by 2.11(6). So @ holds indeed.]

Of course, we let K¢ = (K¢ : t € Ltc>,KtC = @ and Q; is the dominating real
forcing.

Lastly, let for ¢ < A, Pe = Lim((Q | LY).

® Now

(a) Py is a c.c.c. forcing notion of cardinality < AN hence VP |= 2% < )\
by 2.4(B)(j) as A = A"®

(8) in VP» we have d < y, by 2.8(1) applied with R =<* and L* = L'
using (+)(b) + (e)

(7) in VEx we have b > u by 2.8(2) applied with R =<*

(0) b=9=pand a > p by (8) + () as it is well known that b < d and
b <a.

[Why? e.g. why clause (3) holds? Applying 2.8(1), we let R =<*, L* = L% and
we have to verify clauses (a)-(d) there. They are easy, e.g. for clause (c) there, if
A C Lt is K-countable then there is t € L* as promised because L% is cofinal and
is of order type g which is a regular uncountable cardinal.]

But in order to sort out the value of a we intend to use 2.8(3) with € there chosen
as A here.

But why the demand (c) from 2.8(3) holds? Recall that every A € L' is K-
closed. So assume i(*) € [k, A) and t; , € LY fori < i(*),n < w be given. As A is

regular > i(x), necessarily for some £ < A we have {t;, : i < i(x),n < w} C L.
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Now let t,, € L be such that Jeq1(tn) = (tin 1 1 < K)/D; easily (t, : n < w) is as
required (note that the number of isomorphism types of w-sequences (t, : n < w)
in tis trivially 17 < J,).

So

(¢) in VEX we have a > k = a > \ by 2.8(3), see there.

We are assuming x < p and by ®() we have p < b and always b < a so together
k < a. Recallin (&) we are done.

2) We indicate how to adapt the second proof of part (1). For 9 a regular uncount-

able cardinal we consider only q € Qg“ which mean:

B Let q € Qcn mean
(a) qc Qfsi
(b) 9(q) <0
(c) for every t € L9 one of the following occurs
(o) K =0 and Q! is dominating real forcing= Hechler forcing
(8) K has cardinality < @ and I}' = Z(K{!) and Qf, is an ex-
plicitly linked (< 0)-forcing notion with universe v < 9; see
below
Where

o We say that the forcing notion Q is an explicitly linked (< 9)-forcing notion
with universe v when:
(a) the set of elements of Q is the ordinal 7
(b) for each n < w the set {wa+n : wa +n < v} is a set of pairwise
compatible elements of Q

Next
cln

Hs; the relevant claims 2.6-2.11 apply for all g € Q§™ with minor changes;
mainly recalling B (d)(5).
We choose t, (¢ : a < ) by induction on ¢ < X as we have defined t¢ in the
second proof of part (1), but the second case splits to two, that is:
Casel1 (=0
As above
Case 2 ( =&+ 1 and £ is even.
As in the successor case above
Case 3 ( is a limit ordinal
As above
Case4 ( =&+ 1 and € is odd
Now let us define q¢.. We let
® (a) LI = L9 U {(¢, o, ) 1 € < (u+ [€])*} and the order is defined by
(in addition to the old order)
() t = (qf,a,e) is below o + 1 € u = L' above a
(B8) moreover t is above any s € L'l¢) which is below o + 1
(7) welet (g, a1),e1) < (@, a),€2) iff (a1 < an) V(o = aa Aey <
€2)
(b) 5, (s*¢ : a < p) are as in @ above

17 in fact, it is < 280 by the construction, but irrelevant here
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(c) We define q° by induction on ¢ < . The new point is when ¢ = £+1, ¢
odd.

(d) In this case for v < plet (€, @, 7, Le,a,e; Qe ae) 1 € < (u+[€])") list the
quintuples (&, o, v, L, Q) such that L is a K¢ closed subset of L&
of cardinality < 0,y < 0 and Q is a canonical Limg¢ (Qal | L)-name
of a forcing notion as in B with universe ~}.

(e) lastly, if t = (q°, o, €) we let K; = L¢ o and @?[g] = Q¢ a.e

The rest should be clear. U2
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§ 3. ELIMINATING THE MEASURABLE

Without a measurable cardinal our problem is to verify condition (c) in 2.8(3).
Toward this it is helpful to show that for some N;-complete filter D on «, for any
i(x) € [k,A\) and t; 4 € L', for i < i(*),¢ < o, we have: for some B € D7 for every
J < i(x) some A € D satisfies: “for any ig,i1 € AN B, the mapping ;4 — t; 4;
tio,6 F ti1,¢ is a partial isomorphism of t”. So D behaves as an N;-complete
ultrafilter for our purpose.

[If you know enough model theory, this is the problem of finding convergent
sequences, see [She90, Ch.I,§2, II], [Shed, §2], [Shee]). The later had generalize
what we know on stable first order 7" with x = k,(T) (see [She90, Ch.II] k is
regular and < |T'|") any indiscernible sequence (equivalently set) (@, : a < a*) of
cardinality > &, is convergent; why? as for any b € #>¢, for all but < s ordinals
a < a*,b"a, has a fixed type so average is definable. The present is closed to
[She78], [Shec]. (The general case is harder to prove existence which we do there
under the relevant assumptions).|

Claim 3.1. Assume 2% < pu = cf(p) < A = cf(\) = AN, Then for some P we
have

(a) P is a c.c.c. forcing notion of cardinality X
(b) in V¥ we have b =0 = p and a = 2% = \.

Remark 3.2. About combining 3.1 with the end of §2, that is adding @ = (27)% <
and getting also 0 < s <y (and even s < ) see [STa], [STb] and more) and [S*c].

Proof. We rely on 2.6 + 2.8. Let L{ be a linear order isomorphic to A, let L; be
a linear order anti-isomorphic to A (and Ly N L = 0) and let Lo = Ly + L.
Let J be the following linear order:

(a) its set of elements is “~ (L)

(b) the order is: n <y v iff for some n < w we have n [ n = v [ n and
tg(n) = n Av(n) € LT or Lg(v) = n An(n) € Ly or we have lg(n) >
nALg(v) >nA Ly Enn) <v(n).

[See more on such orders Laver [Lav71] and [Sheb, §2], [Shea, §5] but we are self
contained.]
Note that

[J; every interval of J as well as J itself has cardinality A

Of ifXg < 0= cf(@) < Aorf =1or6 =0and (t; : i < 0) is a strictly
decreasing sequence in J then J [ {y € J : (Vi < 0)(y < t;)} has cofinality
A if it is non-empty

[J; the inverse of J satisfies [, moreover is isomorphic to J

Lo if 6 = cf(0) > Ny and s4,t, € J for @ < 6 then we can find a function
f : 8 — 0 which is regressive and a club E of 8 such that: if ay < 5, are
from E for ¢ = 1,2 and f(o) = f(81) = f(az) = f(B2) then: t,, <5 s5, <
ta, <3 5By and ta, = sp, = tay, = 5B, (we can add to, <J tﬂ1 S ta, <J tﬂz,
etc., but this can be deduced using the above several times).
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We now define by induction on ¢ < g an FSI-templates t; = t[¢] such that

@% the set of members of L'¢ is a set of finite sequences starting with ¢ hence
disjoint to L'¥! for € < ¢; for = € LY let £(2) = C.

Defining t¢:
Case 1: ¢ =0 or ¢ successor or cf({) = No.

2 Let L1 = {(¢)} and I;[§| = {0}.

Case 2: cf(¢) > N
First

©®3 Let h¢ : J — ¢ be a function such that: ¢ < { = hEl{a} is a dense subset
of J, specifically v = 1" (s) € J A (otp(L§ [{t : t <ri s}) =i < Votp(the
inverse of (L )s) =i < () = h¢(n~(s)) = ¢ and otherwise h¢(v) = 0, Let
(¢, m) = he(n) for n € J.
Second

©4 The set of elements of t¢, that is of L is

{Oru{Q mae:meJandae (J L“}
e<he¢(m)

Third

©s5 The order <¢, defined by (¢) is maximal and:

Q)" (m) z1 <ge) (€)"(m2) w2 iff at least one of the following holds:

(&) m <3 me
(b) m = mn2 A(a1) < €(a2)
(c) (m =n2

A f(’l}l) = f(l’g) N xq <t£(11) LL’Q).
Lastly,
(x); for y € L€ we define the ideal T = I}/

(@) if y = () then I ={Y : Y C LN\ {(()}}
(8) if y = (¢)"(v) "z, then T is the family of countable sets Y satisfying
the following conditions:
(i) Y C L'
(’LZ) (VZ IS Y)(Z <4[¢] y)
(731) the set {n € J: (F2)((¢)"(n) "z € Y)} is finite.
(iv) if v <ynand z € LW the ()" ()2 ¢ Y
(v) if n <5 v then the set {z € L' : (()"(n)"z € Y} belongs to
(]

Why is t¢ really an FSI-template? We prove, of course, by induction on ¢ that:
(¥)2 (i) L' is alinear order

(ii) I is an ideal of subsets of {s € I, : s < t}
(793) t; is an FSI-template,
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(tv) tc is disjoint to t. for € < ¢

[Why? By 2.11(8) and looking at the definitions.]
Next we prove by induction on (, that t; is a smooth FSI-template. Arriving at

¢

()% for n € J and & < he(n) + 1, we have t¢ [ {(0) ()" p : p € gU te} is a
<e
smooth FSI-template.

[Why? We prove this by induction on ¢; for ¢ = 0 by 2.11(1), for € successor by
2.11(3) for & limit by 2.11(5) and 2.11(6).]

(+)4 for Z € J we have tc | (U{(C)"m) p:pe U t}) is a smooth FSE
nez E<h¢(n)
template.

[Why? By induction on |Z|, for |Z] = 0,|Z| = n+ 1 by 2.11(3), for |Z| > Rg by
2.11(5).]

(02 te [ (L¥\{(¢)}) is a smooth FSI-template.
[Why? By (>x<)‘<L for Z=17J]

(¥)¢ t¢ is a smooth FSI-template.
[Why? By 2.11(3).]

#)7 if K C L% is countable and ¢ € L' then the ideal I, N 2 (K) is generated
¢ t
by a countable family of subsets of K.

[Why? Check by induction on (.]

Now for ¢ < u let

(0)8 8¢ =1 2 te, e
e<¢

(i) the set of elements of s¢ is Uc L%
e<

(i) for z,y € ¢ we have v <5, y iff {(z) < &(y) vV (§(z) = E(Y) Ax <, V)

(iii) I,¢ = {Y Cl: (V2 € Y)(2 <o, y) and {z € Y : £(2) = £(y)} €
10EC]

(¥)2 s¢ is a smooth FST-template.

[Why? Just easier than the proof above.]

()0 if K C L% is countable and t € L°¢, then the ideal I;* N #(K) of subsets
of K is generated by a countable family of subsets of K.
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[Why? By (+){ and the definition of s¢ and of the t.-s.]

Let 18 0 = Rg,0 = (29)F, we shall prove below by induction on ¢ that s¢,te are
(A, 0,0)-good (see definition below and Sub-claim 3.5); then we can finish the proof
as in 2.18 (and (x){ and (%)) Oz

Definition 3.3. 1) Assume BX>90>7>0,0is regular uncountable and
(Va < 9)[|a|” < 0] and W C P (H(0)). We say that a smooth FSI-template t is
(X, 0, 7,0, W)-good if :

@ assume that t, 4 € L' for « < 0,¢ < 0, {ta,s : ¢ < o} is K-closed, then we
can find # € W and a club C of 9 and a pressing down function h on C
such that:

@ if S C C is stationary in 9, (V§ € S)[cf(6) > o A (1 =0 — cf(§) = 7)] and
h[S is constant then:

K& for every a < B in S and w € ¥/, the truth value of the following

statements does not depend on («, 3): (but may depend on ¢, e and

weW)

(1) tag =tp.e

Z) ta,ep <pt t8,e

i) {tac: xcw} eI

w) {tgs.:xew}elf

v) A{ta:x€w} el |

X% let §* < O be such that cf(6*) = 7 and sup(SNd*) = §*;if < B* < A
and sg 4 € L' for 8 € [0, %), < w then we can find t, € L' for ¢ < w
such that for every g < *, for every large enough o € SN §* for some
t-partial ® isomorphism f we have f(ts) = ta,¢, f(58,6) = 58,0

2) We say t is strongly (A, 0,7, 0)-good if above we have W = (X (0)).

3) We may omit W in part (1) when W = {# : # is an ideal of the Boolean
algebra (o) generated by < o sets}

7
2
2

¢

(
(
(
(

4) Above we may omit 7 if 7 = .

Observation 3.4. In Def. 3.3, instead “h regressive” it is enough to demand: for

some sequence (X, : a < 0) of sets, increasing continuous, | X| < 6 and for every
(or club of ) 6 < 0, if c£(6) > Vg then h(0) € Ay, (Xs).

Claim 3.5. 1) In the proof of 3.1;

(1) t¢ is strongly (A, 0, 0)-good
(4) s¢ is strongly (X, 0, 0)-good
(138) if cf(() # 0 then s¢ is also strongly (A, 0)-good.
2) Assume A = cf(A) > p = cf(p),J, t-(e < p),s¢(¢C < p) are as in the proof of 3.1.
If 0 = (29)% < p then clauses (i), (ii), (iii) above hold.

18 but if you like to avoid using (*)Z, (*)%0 and # below just use d = 3. In fact even without
(*)Z + (*)éo above, countable # suffice but then we have to weaken the notion of isomorphisms,
and no point.

19 Wwe ignore here K and {(t, @t,mt) : t € L'} using the default values
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Proof. 1) Recall that = (27)% (see before Definition 3.3).
First note that
x)1 for every ¢ < p there is a sequence g such that:
Yy K ¢
(a) o¢ = (o¢,s =5 € L19))
(b) 0¢,s €Y
(c) the truth value of L!¢ = “s < #” depends only on
(@) lg(oc.s)
(8) lg(ec,t)
() the truth values of o¢ (k) < 0c.t(€), oc,s(k) = 0¢i(£), o¢,s(k) >
0¢.+(£) for the relevant k, ¢
[Why? Read the definition of t.]
Second note that
()2 there is a sequence g = (g, : s € L*M]) satisfying the parallel of (x);.
hence
(¥)3 if 5 = (54 = s(¢) : ¢ < o) € 7t (L5M]) then the truth value of {s4 : ¢ <
o} € I*l1 depends only on
(a) lg(os(g)) for ¢ <o
(b) the truth values of QC,S(E) (k) < 0¢,s(¢) (8)7 QC,S(&‘)(k) = QC,S(C) (6)7 QC,S(E) (k) >
0¢,s(¢)(£) for £, < o and relevant k, ¢
Why? Again look at the choice of s,
Now, given f, = (ta.s = tla, ¢] : ¢ < o) € 7 (L) for o < O define

(#)a U = U{Rang(oyp,4)) : B < o, ¢ < o} U {0}
Next
(x)5 we define the function hy, £ = 0,1 with domain 9\ {0}, so for « € (0,9) we
let:
(a) ho(a) is equal to the set as {(¢, &, €,£) : 04[a,4](F) < 04[a,(£) and both
are well defined}}
(b) h1(«) is the minimal non-zero member 8 of %, such that (if there is
no one then it is zero):
for every ¢ < o,k <lg(ta,s)(k), the following are equal:
() the minimal member of %, which is > g;[4,4](k)
(B) the minimal member of % which is > o3 ¢)(k),
(*b)’ similarly for > (and so for equal)
Clearly
x)g ho has range of cardinality < 0 and h; is regressive
(%) g y g
Lastly

(¥)7 if S C 0 is stationary and 6 € S = cf(d) > o and hg, hy restricted to S are
constant then S is as required.

OLD/ pre 2020 PROOF
We prove this by induction on (.

For s¢:

If ¢ = 0 it is empty. Otherwise given ¢, 4 € 5¢ = > t. for a < 0,¢ < w let
e<(

h{(a) be the sequence consisting of:
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(1) €a,o = Min{€ : £ € {&(tg,e) : B < d,e < w}U{oo} and £ > £(ta,4)} for
¢ < w and
(i) ua = {(0,€,5) : {(ta,p) = Ea,e N e =1 or {(ta,g) < E(ta,e) N> =2} and
(i1i) wo = {(n,w) : ¢ <w,w C wand {la.: €€ w} € If  } thatis hj(a) =
<u04’ <§o¢,¢ : ¢ < w),wa>.

If Sy = {6 : cf(d) > Ry, h§(6) = y} is stationary we define hj[S, such that it codes
hi(0) and if ¢(*) < w and the sequence ({(fn,g(x)) : @ € Sy) is constant call it
Ey.o() 10t Uy g = {0 €ap = &y,p(x) }» then A [ Sy codes a function witnessing
the (A, 0)-goodness of t¢, ., for (ta,¢ 1 @ € Uy gx), @ € Sy).

Fix S as in @'. It is easy to check that this shows K} even if cf(¢) = 6. But
assume cf(¢) # O A 0" = 0 or 6" < 0,cf(0*) = Wy (or just Ny < cf(0*) < 0),
§* = sup(S N d*); we shall prove also the statement from X%. Let w; = {¢ :
the sequence ({(tg,4) : B € S) is strictly increasing}, wo = {¢ : ({(tp,4) : B € S) is
constant}, let £(5, @) = €s.4 = U{{(tp,¢) : B € S} as cf(¢) # 0 it is < ¢ also when
¢ € wi.

Given (53 : f < %), < A and 53 = § = (s34 : ¢ < w) we have to find
(typ : ¢ < w) as required in K%. If ¢ € wp let wy g = {€ € wo : E(ta,¢) = E(ta,e) for
a € S} and to choose (te : € € w; ,) we use the induction hypothesis on tg(s.4). If
¢ € wy then we can find ¢ € t¢, , such that {t : ¢ € t¢g ,,t <¢. 5, "} is disjoint to
{tpe: B <" e <w}U{sg.:f < [* and m < w} this is possible because the lower
cofinality of L'«(s:# is the same as that of Ly and is A = cf(\) > 6 + |3*|. Then we
choose n* € J such that (Vz)((C)"(n*) 2 € te(s,9) = (O)"(n%) " (¥) <ies, t7) and
we choose together (ty : ¢ € wi,&s,¢ = &€s,4) such that t5 € {(¢) () (z) € s¢ :
n <y n*} taking care of #, (inside {¢ € w; : {(ta,¢) = &€s,c} and automatically for
others, i.e. considering t4,,tq, such that g4, # &g,4,), this is immediate.

For t¢:
Similar (using [y + [p). Uss

* * *

We may like to have “2%0 = ) is singular”, a = A\,b = 0 = p. Toward this we
would like to have a linear order J such that if Z = (x, : @ < ) is monotonic, say
decreasing then for any ¢ < A for some limit § < 6 of uncountable cofinality the
linear order {y € J : @ < § = y <3 x,} has cofinality > . Moreover, § can be
chosen to suit w such sequences = simultaneously. So every set of w-tuples from J
of cardinality > 6 but < A can be “inflated”.

Lemma 3.6. Assume

(@) (27)" < p=cf(pn) < A=A\, X singular
(b) (Vo < m)laf™ < p]
(€) 1> Nepeny or at least

(¢)” thereis f: A — cf(X) such that if (o : € < p) € # X is (strictly) increasing
continuous, ae < A and v < cf(X) then for some € < p we have f(ae) > 7.
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Then for some c.c.c. forcing notion of cardinality X we have lFp “2%0 = X\, b =0 =
wya=\".

Proof. Note that (¢) = (¢)7, just let @ < AAcf(a) =R Ae < cf(A) = f(a) =¢,
clearly there is such a function and it satisfies clause (¢)~. So we can assume
(¢). Let 0 = cf(\) and (\; : € < o) be a strictly increasing sequence of regular
cardinals > p + o with limit A\. Let Lo, L$, Ly be as in the proof of 3.1, Lo be
the unique interval of Ly of order type (the inverse of A\¢) +A¢, so (Loe : € < o)
be ia C-increasing with union Lg, Lo an interval of Lo ¢ for ¢ < { < 0. We define
g: Lo — cf(\) as follows: if x € L then g(x) = f(otp({y € L§ : y <r z},<)) and
if z € Ly and the order type of ({y € L : <, y},<p) is the inverse of v then
6(x) = /() and let

J*={ne“(Lo):n(0) € Lop and n(n+1) € Lo g(n(ny) for n < w}

ordered as in the proof of 3.6.
We define s¢, t; as there. We then prove that s¢, t; are (7, 8)-good and (A, 7)-good
as there and this suffices repeating the proof of 3.1. Os6

Discussion 3.7. We may like to separate b and 9. So below we adapt the proof
of 3.1 to do this (can do it also for 3.6).

A way to do this is to look at the forcing in 3.1 as the limit of the FS iteration
(P7, Q5 4 < p,j < p, so the memory of Q} is {7 : i < j} where Q7 is Lim[(Q; :
t € LY)]. Below we will use the limit of FS iteration (P}, Q} : j < pu x 1), Q¢ has
memory w¢ € ¢ where e.g. for ( = pa +1i where i < p,we ={kB+j: 5 < a,j <
i,(8,7) # (o, i)} Let P* =P be U{P; 1i < pux pr}.

Of course, Q¢ will be defined as Limy, (Q), the t¢ defined as above and b = pu,0 =
1. Should be easy. If (A, : e < &%) exemplifies a in V', so €* > u then for some
(a*,8%) € p x p for (= 0) of the names they involve {Qua4s : a < o, 3 < 5%}
only.

Using indiscernibility on the pairs («, 3) to making them increase we can finish.

Lemma 3.8. 1) In Lemma 3.1, if p = cf(u) < cf(p1), u1 < A, then we can change
in the conclusion b =0=p to b = 1,0 = p.
2) Similarly for 3.6.

Proof. First assume p4 regular.

First Proof: Let pup = p. In the proof of 3.1 for ¢ € {0,1} using p = ue gives

5ﬁ , and without loss of generality 520,5L , are disjoint. Let s be 5o 4’ §; meaning

4
Lf = L0 + leln, and for t € L% we let I = I:” (this is not s + 81 of 2.11).
Now the appropriate goodness can be proved so we can prove a = \. Easily we get
0 > pp and b < pg. This is enough to get inequality but to get exact values we
turn to the second proof.

Instead of starting with (Q; : ¢ < p) with full memory we start with (Q¢ : { <
px p1), Q¢ with the following “memory” if ( = pa +1i,i < K, we = {[LB +7:
B <a,j<i(8,5) # (a,i)}. To deal with the case p is singular we should use a
p-directed index set (instead pg X p1) as the product of ordered sets. Os.8
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§ 4. ON RELATED CARDINAL INVARIANTS

Explanation of §4:

On Th. 4.1 you may wonder: u has nothing to do with order or quite directed
family, so how can we preserve small u? True, using the “directed character” of b
and 9 has been the idea, i.e. in the end we have P = (P; : i < p) is <-increasing,
P = U{P; : i < pu} and 7; a P;;-name of a real dominating V¥:. But really what
we need for a triple (P,7,P') as (P;,7;,Pi1) above, is that taking ultrapower by
the k-complete ultrafilter D, preserve the property of 7, in our present case 7 has
to witness u = u. For being a dominating real this is \~/ery natural (Los theofem).
But here we shall use (D; : ¢ < u), D; a P;-name of an ultrafilter on w and demand
Rang(n;) to be mod finite included in every member of D; and moreover 7; is

generic over Vi for a forcing related to D;. When we like to preserve something
in inductive construction on o < A of (P& : i < ), it is reasonable to have strong
induction hypothesis more than needed just for the final conclusion. We need here a
condition on (P, ,nf*,P§, DY) preserved by the ultrapower (as the relevant forcing
is c.c.c. nicely enou;gh defined this work).

Secondly, we need in limit a: if cf(a) > Ny straightforward if not, being generic

for the @Q; has nice enough properties so that we can complete [J Df to a suitable
B<a
ultrafilter.

This explains to some extent the scope of possible applications, of course, in
each case the exact inductive assumption on (Pg 1, 7§, P, Y§) with Y a relevant
witness, varies.

On continuing §2, §3 so eliminating the measurable here see [S*a], [STc].

Theorem 4.1. Assume

(a) k is a measurable cardinal

(b) k <p=cf(p) < A=cf(A) = A"
Then for some c.c.c. forcing notion P of cardinality A, in VT we have: 280 =
Au=0=b=panda=M\

Remark 4.2. Recall u = Min{| 2| : & C [w]|X° generates a non-principal ultrafilter
on w}.

Proof. The proof is broken to definitions and claims. Cyn

Definition 4.3. For a filter D on w (to which all co-finite subsets of w belong) let
Q(D) be:

{T': T C“>wis closed under initial segments, and for some
tr(T) € “?w, the trunk of T, we have :
(i) €<{Lg(tr(T)) = TN w = {t=(T) | £}
(i) tr(T)dne“w={n:n"(n)eT}e D}

ordered by inverse inclusion.

Definition 4.4. 1) Assume S C {i < p: cf(i) # k} is unbounded in p (the default
value is {i < p: cf(i) # Kk}).
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Let Ry,s be the family of t consisting of Q = Q' = (P;,Q; : i < ) = (P}, Q! : i <
p)and D = D' = (D; :i < p and cf(i) # k) = (D! :i € S) and 7' = (tY :i < p)
such that:

(a) Q is a FS-iteration of c.c.c. forcing notions (and Py = P!, = Lim(Q") =

U i)

i<p
) if ¢ € S, then Q; = Q(D;), see Definition 4.3 above
) D, is a P;-name of a non-principal ultrafilter on w when i € S
(d) [Pi] <A
(e) for i € S let n; be the P;;;-name of the Q;-generic real

ni = U{tr(p(i) : p € Gp,, }-
and we demand: for i < j < p of cofinality # x we have

“_P]. “Rang(gi) S .~Dj”

(f) 1:is a P;-name of a function from Q; to {h : h is a function from a finite
set of ordinals to #(w)}, such that:
IFp, “p,q € Q; are compatible in Q;) iff the functions 74(p), 7:(¢) are com-
patible, i.e. 7i(p) [ (Dom(z;(p)) N Dom(zi(q)) = 7i(q) [ (Dom(zi(p)) N
Dom(7;(q)) and then they have a common upper bound r such that 7;(r) =
Ti(p) Uti(q)”

(9) if i € SNDom(p),p € P; and i < j < p then 7;(p(¢)) is {(0,tr(p))}; i.e.
this is forced to hold

(h) we stipulate P; = {p : p is a function with domain « finite subset of i such
that for each j € Dom(p), @p; forces that p(j) € Q; and it forces a value to
(7))}

(i) IFp, “Q; € Hy, () for some ordinal +”.

2) Let v(t) be the minimal ordinal v such that i < p =lFp, “if x € Q; then
dom(t;(z)) € 7. i

3) We let 7} be the function with domain P; such that 7}(p) is a function with
domain {y(t)j + 8 : j € Dom(p) and p | j IFp, “B € Dom(7;(p(j))”} and let

7 (7()j + B) be the value which p | j forces on 75(5).

Convention 4.5. We fiz A\, 1, S as in 4.1, 4.4; so we may write R instead Ry s.

Obviously

Subclaim 4.6. £ # 0.

Proof. Should be clear. Oie
Recall

Subclaim 4.7. If in a universe V, D is a nonprincipal ultrafilter on w then

(a) ko) “{tr(p)(€) : £ < Lg(tr(p)) and p € Gop)} is an infinite subset of w,
almost included in every member of D”

(b) Q(D) is a c.c.c. forcing notion, even o-centered
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(¢) mi = U{tr(p) : p € Gop)} € “w is forced to dominate (“w)V

(d) {p € Q(D) : tr(p) = n} is a directed subsets of Q(D) for every n € “>w.

[Note that this, in particular clause (c), does not depend on additional properties
of D; but as we naturally add many Cohen reals (by the nature of the support) we
may add more and then can demand e.g. D; (cf(i) # k) is a Ramsey ultrafilter.]

Definition 4.8. 1) We define <g by: t <g s if (t,s € £ and) i < u = P! <P$ and
i < pand cf(i) # k =lkps “Di C Df” and i < p =lkps “73 C 757
2) We say t is a canonical <g-u.b. of (t, : @ < ) if:

(1) Lta €R
(i) a<B<d=ty<qtg<pt

(iid) if i € p\ S then lFpe “Qt = |J Q7.
p= UL

Note that if c¢f(5) > Rg then we can add IFpe “Qf = |J Q=" for every i < p, so t
tT a<d
is totally determined.

3) We say (t, : o < o) is <g-increasing continuous if: a < < a* = t, <z t3
and for limit 6 < a*, 5 is a canonical <g-u.b. of (t, : @ < J). Note that we have
not said “the canonical <g-u.b.” as for § < a*,cf(§) = Ny we have some freedom
in completing U{D}* : @ < 6} to an ultrafilter (on w in VE when i € )\ 9).

Subclaim 4.9. If Py <Py and Dy is a Py-name of a nonprincipal ultrafilter on w
for £ =1,2 and IFp, “Dy C D5, then Py x Q(D1) <Py x Q(D3).

Proof. Why? First, we can first force with Py, so without loss of generality P; is
trivial and Dy € V is a nonprincipal ultrafilter on w. Now clearly p € Q(D;) = p €
Q(D2) and Q(D1) = p < ¢ = Q(D2) = p < g and if p,q € Q(D1) are incompatible
in Q(Dy) then they are incompatible in Q(Ds).

Lastly, in V, let & = {ps : ¢ < w} € Q(D;) be predense in Q(D;), we shall
prove that . is predense in Q(D5) in VF2.

For this it suffices to note

X if D; is a nonprincipal ultrafilter on w, ¥ C Q(D;) and n € “”w, then the
following conditions are equivalent:

(@), there is no p € Q(D;) incompatible with every ¢ € # which satisfies
tr(p) =n
(b),, there is a set T" such that:
(1) veT=ndvep
(1) n<JvdpeT=veT
(i4i) if v € T then either {n:v"(n) € T} € Dy or
(Vn)(v™(n) ¢ T) A (3q € I)(v = tr(q))
(iv) there is a strictly decreasing function h : T — wy
(v) nep
Uag
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Proof. Proof of X:

Straightforward.

Soasin V,.# C Q(D,) is predense, for every n € “”w we have (a), for D; hence
by X we have also n € “Zw = (b),, but clearly if T}, witness (b),, in V for Dy, it
witnesses (b),, in V2 for Dy hence applying X again we get: n € “”w = (a), in
VP2 for Dy, hence .# is predense in Q(D3) in V2. So we have proved Subclaim
4.9. O

Subclaim 4.10. Ift = (t, : a < §) is <g-increasing continuous and 6 < A\ is a
limit ordinal, then it has a canonical <g-u.b.

Proof. Why? By induction on i < y, we define P} and if i < p we then have Q% 7;
and D; (if cf(i) # k) such that the relevant demands (for t € & and for being
canonical <g-u.b. of t) hold.

Defining PP} is obvious: for i = 0 trivially, if i = j + 1 it is P}« Q} and if 7 is limit
it is U{PY : j < i}.

If P! has been defined and cf(i) = x we let Q! = |J Q* and 7% = |J 7/

L

a<d a<d
easy to check that they are as required. If P! has been defined and cf(i) # &, then

U D;" is a filter on w containing the co-bounded subsets, and we complete it to
a<d
an ultrafilter, call it D% .

Note that there is such D% because:

(a) for a < §,P'» < P} hence IFp “Di* is a filter on w to which all co-finite
subsets of w belong and it increases with a”.

Note that there will be no need for new values of the 7;’s nor any freedom in defining
them. As we have proved the relevant demands on P§, Q5 for j < i clearly P} is
c.c.c. by using (7; : j < i) and clearly (P¢,Qf : ¢ < 4,§ < ) is an FS iteration.
Now we shall prove that o < § = Pl < PL.

So let .# be a predense subset of IP:»” and p € P! and we should prove that p is
compatible with some ¢ € .# in P!; we divide the proof to cases.

Case 1: i is a limit ordinal.

So p € P§ for some j < i, let &' = {q [ j:q€ F}, s0 clearly S is a predense
subset, of ]P’;-"‘ (as t, € R). By the induction hypothesis, in ]P’; the condition p is
compatible with some ¢’ € .#'; so let 7’ € P§ be a common upper bound of ¢’,p
recalling that ¢’ = ¢ [ j where ¢ € .#. So 7" U(q | [4,4)) € P} is a common upper
bound of ¢, p as required.

Case 2: i = j + 1,cf(j) = k.

If j ¢ Dom(p) it is trivial. So without loss of generality for some 8 < 6, p(j) is
a IP’;B -name of a member of (N@;B ; and without loss of generality o < 5 < §. By the
induction hypothesis ]P’;B < IP§ hence there is p’ € IP’;B such that [p’ < p” € ]P’;B =
p",p | j are compatible in P}].

Let

I ={d1j: ¢ € IP’:»‘3 and ¢’ is above some member of .
and ¢’ [ j I, “p() <% ¢/ ()}
i
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Now _# is a dense subset of IP’;ﬂ (since if g € ]P;B then qU{{j,p(7))} belongs to ]P’:»fj
hence is compatible with some member of .#).
Hence p’ is compatible with some ¢’ € # (in IP’;ﬁ ), so there is r such that

p<rec ]P’;B,q” <r. Asq”" € Z thereis ¢ € ]P’;fj such that ¢’ | j = ¢",q is above

some ¢* € # and ¢'[j IF “p(j) g@;ﬁ q3)”.

As IF’;B E “p’ <rA¢d' [ j =q" <r” and by the choice of p' there is p* € IP§ above r
(hence above p’ and above ¢ = ¢’ | j), and above p | j. Now let * = p*U(¢” | {j}),
clearly r* € P} is above p | j and r* | j forces that r*(j) is above p | {j}. Clearly
r* | j is above r and r* is also above ¢* € .# so we are done.

Case3:i=j+1,57€8
Use Subclaim 4.9 above.
So we have dealt with o < § = Pl < PL.
Clearly we are done. a0

Subclaim 4.11. Ift € 8 and E is a k-complete non-principal ultrafilter on k, then
we can find s such that:

(i) t<gseRr

(1) there is (ki ji : ¢ < p,cf(i) # k) such that:
() k; is an isomorphism from (P})*/E onto P§
(B) ji is the canonical embedding of Pt into (P})*/E
(7) kioj; = identity on P}

(i17) D® is the image of (D;)"/E under k; and similarly 7% if i < p,cf(i) # K

(i) if i < p,cf(i) = kK, then 7% is defined such that, for j < k,cf(j) # k we
have k; is an isomorphism from (P, ~',71)"/D onto (P{,~",7;") for some
ordinals v',~y" (except that we do not require that the map from ' to "
preserves order).

Proof. Straightforward.
Note that if cf(i) = #,i < p then Qf is isomorphic to P§,,/P} which is c.c.c. as
by Lo$ theorem for the logic L . we have | (P})*/E < (P, ,)"/E, similarly for
j<i
which guarantees that the quotient is c.c.c., too (actually 7; is not needed for the
c.c.c. here). 0411

Subclaim 4.12. Ift € R then H_[PL ‘u=b=0o=p".

Proof. In VFu the family 2 = {Rang(n;) : i < p and cf(i) # k} U {[n,w) :n <w}
generates a filter on @(w)V[PL], as Rang(n;) € [w] i < j < p and cf(i) # k and
cf(j) # k = Rang(n;) C* Rang(n;).

Also it is an ultrafilter as ,@(w)V[PL] = U 2w)VE] and if i < p, then

i<

Rang(n;+1) induces an ultrafilter on z@(w)v[ﬂm:ﬂ]. So u < u. Also (“w)V[PL] =
U (“w)VEI («w) VI s increasing with i and if cf(i) # & then 7; € “w dominates
i<p -
(“w)VE] by Subclaim 4.7, so b = 0 = y as in previous cases.

Lastly, always u > b hence u = pu.] 0410



Paper Sh:700a, version 2021-02-10_4. See https://shelah.logic.at/papers/700a/ for possible updates.

44 SAHARON SHELAH

Now we define t, € & for @ < A by induction on « satisfying (t, : @ < A) is
<g-increasing continuous such that t,1 is gotten from t, as in Subclaim 4.11.
Let P =P}, so |P| < A hence (2N0)Vlp < (AR)V and easily equality holds.

We finish by
Subclaim 4.13. We have®° H_Pila “a> N\,

Proof. Why? Assume toward a contradiction that § < A and p € P and p IFp “o =
{A;:1 <0} is a MAD family; i.e.

(i) Ai € [w]*
(ZZ) 275] = |Alﬂz~4j| < Ng
(#47) under (i) + (ii), & is maximal”.

Without loss of generality IFp “A; € [w]N0”. As a > b = u by Subclaim 4.12, we
have 6 > p. For each i < § and m < w there is a maximal antichain (p; ;mn : 17 < w)
of PP and there is a sequence (t; ., : 7 < w) of truth values such that p; ,,, » IF “(m €
A;) = timn”. We can find countable w; C p such that |J Dom(p;m.n) C w;.

- m,n<w
Possibly increasing w; retaining countability, we can find (R, - : v € w;) such that:

(o) w; has a maximal element and v € w;\{max(w;)} = v+ 1€ w;

(B) Rin is a countable subset of P{* and ¢ € R; , = Dom(q) € w; Ny

(7) for yi <2 inwi,q € Riyy = q [ 7 € Risyy

(6) fory; € wy,y € y1Nw; and q € R; 4, the PY-name ¢(v) involves ¥y maximal
antichains all included in R; ,

(6) {pi,m,n tm,n < w} - Ri,max(w,y)~

As cf(A) > Rg (as p < A = cf(N) by the assumption of Theorem 4.1) we have
Pt = L<J/\ Pix. Clearly for some oo < X we have U{R; , : i < 6,7 € w;} C Pi¢. But
@

IP’:‘;Y < ]P’/‘}. So IFPLQ “of ={A;:i<0}is MAD”.
Now, letting j be the canonical elementary embedding of V into V*/D, we know:

(¥) in V*/D,j(«/) is a j(P})-name of a MAD family.

As V*/D is k-closed, for c.c.c. forcing notions things are absolute enough but
{j(@) i < p}isnot {i: V*/D =i < j(u)}, soin V, it is forced for IF5pte), that
{j(4;) : i < p} is not MAD!
Chasing arrows, clearly H‘Pta 1 “{4; i < 0} is not MAD” as required. 0413
W

Discussion 4.14. 1) We can now look at other problems, like what can be the
order and equalities among 0, b, a,u; have not considered it. I have considered
having a = p but there was a problem.

2) (2020) In 4.1 We can add p = t = p proving as in 4.10. Let me elaborate: in
Definition 4.4 (our forcing is P, for such t), we have an ultrafilter generated by a
sequence of subsets of w which is decreasing modulo finite; see clauses (c) and (e).
3) So P, forces s is at least . But always s is at most u so in 4.1 we can add u = p.

20 recall A is regular; if we allow A singular we have to use cf()).
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