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Abstract. We prove some results in set theory as applied to general topology

and model theory. In particular, we study ℵ1-collectionwise Hausdorff, Chang
Conjecture for logics with Malitz-Magidor quantifiers and monadic logic of the

real line by odd/even Cantor sets.
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2 SAHARON SHELAH

§ 0. Introduction

In §1 we prove a result in general topology saying: if ♦∗ℵ1 then any normal space
is ℵ1 − CWH (= collectionwise Hausdorff ); done independently of and in parallel
to Fleisner and Alan D. Taylor.

In §2 we prove the Chang Conjecture for Magidor-Malitz Quantifiers. A recent
work is [HU17].

In §3 we prove the Monadic Theory of the tree ω>2 is complicated under a quite
weak set theoretic assumption.

Earlier [She75] proved this (i.e. the result on the monadic logic) assuming CH
or at least a consequence of it. The present note was circulated in the Spring of
1979 in a collection including others, and see [She85].

Later, Gurevich-Shelah [GS82] proved undecidability in ZFC, with further de-
velopments then more in Shelah [She88], still the older proof gives information not
covered by them. For more see [BS87], [GKKS02], [GGK04].

The results are old, still in particular, §1 gives a direct proof of the result com-
pared to others and §3 gives a considerably more transparent easier proof of the
result of [GS82].

The author would like to thank Shay Ben David for stimulating discussions on
part §2.

We thank the referee for his help, well beyond than the call of duty.
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§ 1. A note in general topology if �∗ℵ1 then any normal space is
ℵ1 − CWH (= collectionwise Hausdorff)

The normal Moore space problem has been a major theme in general topology,
see the recent survey Dow-Tall [DT18]. In this connection, Fleissner [Fle74, p.6]
proved: (V = L) every normal first countable (topological) space is CWH (CWH
means collectionwise Hausdorff ). He used a strengthening of diamond. The author
proved Fleissner strengthening (for ℵ1) does not follow from ZFC+♦+

ℵ1 (see [She81,

Th.5,pg.31]). Here we prove nevertheless ♦∗ℵ1 implies every normal first countable
space is ℵ1 − CWH.

The central idea of the proof in §1 is inspired by one key idea in Fleissner [Fle74].
Fleissner implicitly used a stronger combinatorial principle ♦SS . In 1979, the au-
thor and independently both Fleissner and Alan D. Taylor all saw (as mentioned in
[Tay81], [SS00] that a weaker principle, ♦∗ω1

, would suffice. Later Smith and Szep-
tycki [SS00] derive better results. On more recent results on diamond and strong
negation see [She10] and references there.

Convention 1.1. Below δ always denotes a limit ordinal (< ω1).
For transparency, below we refer to the following equivalent form of ♦∗ω1

.

Definition 1.2. Let ♦∗ℵ1 mean that there exist a sequence 〈gδ : δ < ω1〉 where

gδ = 〈ḡδ,k : k < ω〉 is of the form ḡδ,k = 〈gδ,kn : n < ω〉, where gδ,kn : δ → ω has
the property that, for any sequence ḡ = 〈gn : n < ω〉 with gn : {δ : δ < ω1} → ω,
there is a club (closed unbounded) set C ⊆ ω1 such that, for each γ ∈ C, there is
k = k(γ) ∈ ω with

ḡ�γ := 〈gn�γ : n < ω〉 = ḡγ,k = 〈gγ,kn : n < ω〉.

Claim 1.3. Assume ♦∗ℵ1 . If X is Hausdorff first countable normal and |X| = ℵ1
then X is CWH.

Proof. Let 〈gδ : δ < ω1〉 be as in 1.2.
Without loss of generality X∗ = {δ : δ < ω1} ⊆ X andX∗ is closed discrete in the

spaceX. Let U δn(n < ω) be a basis of open neighborhoods of δ (for δ < ω1). We shall
define by induction on α < ω1 a limit ordinal γα < ω1 and 〈fn(γ) : n < ω, γ < γα〉
such that γα is increasing continuous with α and γ0 = 0. For α = 0 choose
γα = ω; fn(γ) = 0. For limit α let γα be ∪{γβ : β < α} For α = β + 1 if γα > α
then we let γα = γβ + ω and let fn(γ) = 0 for γ ∈ [γβ , γα). Finally assume that
α = δ∗, γδ∗ = δ∗ so δ∗ ∈ X∗.

We have chosen above the functions 〈gδ∗,kn : n < ω, k < ω〉 with gδ
∗,k
n : δ∗ → ω;

now for each n, k < ω let Aδ
∗,n,k
` = ∪{Uδ

gδ
∗,k
n (δ)

: δ < δ∗, fn(δ) = `} (for n < ω, ` <

2). Call k < ω good for δ∗ when for infinitely many (pairs) n, ` we have

Bδ
∗,n,k
` := cl(Aδ

∗,n,k
` ) ∩ (X∗ \ δ∗) 6= ∅.

We let γα = γδ∗+1 = min{δ : δ > δ∗ and if ` < 2 and n, k < ω and Bδ
∗,n,k
` 6= ∅ then

(δ∗, δ) ∩Bδ
∗,n,k
` 6= ∅}.

Now we choose fn�[δ∗, γα) such that for any k good for δ∗, for some n, `, δ ≥ δ∗
we have
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4 SAHARON SHELAH

fn(δ) = 1− `( for δ ∈ cl(Aδ
∗,n,k
` )).

Then we complete arbitrarily the fn so that their domain is γα.
Thus we have defined fn(n < ω) with fn : ω1 → 2. For each n the sets f−1n {1}∩

X∗, f
−1
n {0} ∩ X∗ forms a partition of X∗, both are closed and discrete subsets of

X. But X is normal. So there are functions gn : X∗ → ω for n < ω so that letting
for ` = 0, 1

An` = ∪{Uδgn(δ) : δ ∈ X∗, fn(δ) = `}
we have

An0 ∩An1 = ∅.

Let g+n be any function from ω1 to ω extending gn. For some closed unbounded set
C ⊆ X∗ we have: δ∗ ∈ C ⇒ (∃k)(〈g+n �δ∗ : n < ω〉 = 〈gδ∗,kn : n < ω〉). Let the first
such k be denoted k(δ∗). Without loss of generality every δ∗ ∈ C satisfy γδ∗ = γ

hence if δ∗ ∈ C ∧ n < ω ∧ k < ω ∧ ` < 2 and Bδ
∗,n,k
` = cl(Aδ

∗,n,k
` ) ∩ (X∗\δ∗) 6= ∅

then min(Bδ
∗,n,k
` ) < min(C\δ∗).

For δ∗ ∈ C now k(δ∗) cannot be good for δ∗, (by the definition).
Now for at least one n (in fact, for infinitely many n-s) we have cl(An` |δ∗)∩ (X∗ \

δ∗) = ∅ for ` ∈ {0, 1}, let n(δ∗) be the first such n.
Define

Bn = {δ : for some δ∗ ∈ C∪{0} we have δ∗ ≤ δ < min(C\δ) and n = max{n(δ∗), n(δ)}

Now
⋃
n

(gn�Bn) almost exhibits X∗ has the right sequence of neighborhoods. Now

we can deal with each Bn separately (just choose Un by induction on n such that
Un is open, Un ∩X∗ = Bn and Un ⊆ X\c`(

⋃
`<n

U`), possible by normality).

By dealing as follows with each interval [δ∗,min(C\(δ∗+ 1)) for δ∗ ∈ C ∪{0} we
have U δgn(δ)(δ ∈ Bn) as required.

That is, for γ ∈ C ∪ {0} with γ+ its successor in C, choose a (countable) family
of pairwise disjoint open sets Uγ(β) for β ∈ X∗ ∧ γ ≤ β < γ+, with β ∈ Uγ(β),
this is possible as in the choice of the Un’s.

Now for β ∈ X∗ we let Wβ = Un(β) ∩Uγ(β)(β) ∩U β
gn(β)(β)

where:

• γ(γ) = max(C ∩ (β + 1))
• m(β) = max{n(δ∗), n((δ∗)+) : δ∗ = max(C ∩ β) ≤ β < (δ∗)+}

Finally 〈Wβ : β ∈ X∗〉 is a sequence of pairwise disjoint open sets of X with
β ∈ X∗ ⇒ β ∈Wβ , so we are done. �1.3

Remark 1.4. As in [Fle74] it suffices to assume every point in the space has a
neighborhood basis of cardinality ℵ1.
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§ 2. Chang Conjecture for Magidor-Malitz Quantifiers

Silver (see [Sil71]) had proved the consistency of Chang conjecture, i.e.

⊕ any model M with universe ℵ2 (and countable signature= vocabulary) τ ,
has an elementary submodel N, ‖N‖ = ℵ1, |‖N‖ ∩ ω1| = ℵ0)

Silver did this by starting with a model V with κ Ramsey (in fact, something
weaker suffices), forcing MA and then collapsing κ to ℵ2 by PκSet = {f : Dom(f) ⊆
{µ : ℵ1 < µ < κ, µ a cardinal} has cardinality ≤ ℵ1, and for some α < ω1,
(∀µ ∈ Domf)(f(µ) is a function from α to µ)}. See also Koszmider [Kos05] for a
topological application.

We can ask whether this submodel N can inherit more properties from M .

Definition 2.1. Let us define a (technical variant of) Magidor-Malitz quantifiers.
M |= (Qnx̄)ϕ(x1, . . . , xn) means that there is a set A ⊆ M,A is of cardinality

‖M‖ such that (∀a1 . . . an ∈ A)ϕ(a1 . . . an).

The result is that:

Claim 2.2. In ⊕ above, we can have N an elementary submodel of M even for the
logic L(Q0, Q1, . . .)n<ω. So e.g. Suslinity of trees is preserved.

For this we need the following.

Definition 2.3. Call a forcing P suitable when for any sequence 〈pi : i < ω1〉 of
members of P there is a set U ⊆ ω1 of cardinality ℵ1 such that: for any finite
u ⊆ U there is q ∈ P such that

∧
i∈u

q ≥ pi.

Claim 2.4. Forcing by suitable forcing preserves satisfaction of sentences of Magidor-
Malitz quantifiers for models of power ℵ1.

Proof. See [BJ95, 1.5-13,pg.34]. �2.4

Claim 2.5. There is a suitable forcing P, |P| = 2ℵ1 , such that in VP: if Q is a
suitable forcing of power ℵ1,M

˜
a Q-name of a model of power ℵ1, in a language

L ∈ V, universe ℵ1, then there is a directed G ⊆ P, which determines M
˜

as M and
such that for any sentence ψ from the L(Q0, Q1, . . .) (the variant of Magidor-Malitz
logic from Definition 2.1)


Q “M
˜
|= ψ” implies M |= ψ.

Proof. Just iterate the required forcings, with direct limit (i.e. finite support) and
remembering it is known that suitability is preserved under iteration, i.e. 2.4.

Proof of Main result 2.2:
Do as Silver, start with V |= “κ Ramsey”, force by P from Claim 2.5, and then

use PκSet. The rest is as in his proof.
But we have to choose G as in Claim 2.5, and notice that more is reflected to

the submodel he uses, (just check the definition carefully) and work a little, and
remember that ℵ1-complete forcing preserves satisfaction of sentences in L(Q0, . . .)
(and P is ℵ1-complete). �2.5
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6 SAHARON SHELAH

§ 3. A Remark on the Monadic Theory of Order

In [She75] we prove the undecidability of the monadic theory of (the order)
R, assuming CH, or the weaker Baire-like hypothesis that R is not the union of
fewer than continuum sets of first category sets. This condition is weaken below to
‘‘not (St) at least for T where a closely related theory is the monadic theory T of
M = (ω≥2, /) where ω≥2 is the set of sequences of zeros and ones of length ≤ ω, / is
the (partial) order of being initial segment. T is closely related to Rabin’s monadic
theory of (ω>2, /) which he proved decidable [M.O69]. It is still unknown whether
we can prove those results in ZFC. We prove here that a statement “not(St)”
implies the undecidability of T (and all results on its complexity, see [She75] and
the paper of Gurevich on the subject) but it is not clear (at that time) whether
(St) is consistent with ZFC.

Definition 3.1. A Cantor [set] C is a non-empty subset of ω≥2 with the properties

(a) C is closed under initial segments,

(b) if η has length ω then η ∈ C ≡ (∀n)(η�n ∈ C),

(c) η ∈ C ∩ ω>2 implies η _ 〈0〉 ∈ C or η _ 〈1〉 ∈ C,

(d) for every η ∈ C ∩ ω>2, there is ν ∈ C ∩ ω>2 such that η / ν and ν _ 〈0〉 ∈
C, ν _ 〈1〉 ∈ C.

Definition 3.2. 1) For a Cantor C, the set of its splitting points is Sp(C) = {η ∈
ω>2 : η _ 〈0〉 ∈ C and η _ 〈1〉 ∈ C}.
2) For a set A ⊆ ω>2, C is an A-Cantor, if Sp(C) ⊆ A.
3) For a set S ⊆ ω,C is called an S-Cantor, if

Sp(C) ⊆
⋃
n∈S

n2.

4) An odd Cantor is one that is an {2n + 1 : n < ω}-Cantor. An even Cantor is
one that is an {2n : n < ω}-Cantor.

Now the statement we speak about is

Definition 3.3. Let (St) mean: the set ω2 is the union of less than 2ℵ0 Cantors
each of them odd or even.

Problem 3.4. Is (St) consistent with ZFC?

Claim 3.5. Let {Ci : i < α} be a family of odd and even Cantors, ω≥2 =
⋃
i<α

Ci.

Then 2ℵ0 ≤ |α|+.

Proof. Let for η, ν ∈ ω2, ρ = p(η, ν) be defined by ρ(2n) = η(n), ρ(2n + 1) = ν(n),
and then let η = pr1(ρ), ν = pr2(ρ).

Now for any even C, and η there is at most one ν such that p(η, ν) ∈ C; why?
if ν0, ν1 are such ν’s, ρ` = p(η, ν`), then, by the definition of p(−,−), for some
m < ω, ρ0�m = ρ1�m, ρ0(m) 6= ρ1(m). If m = 2n then ρ`(m) = ρ`(2n) = η(n)
so they are equal, contradiction. If m = 2n + 1, then (ρ0(m) 6= ρ1(m) and)
ρ0�m = ρ1�m is a splitting point of C, however m is odd and C is an even Cantor,
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a contradiction. So really there is at most one ν, and let %(η, C) be the unique ν
such that p(η, ν) ∈ C if there is one and η otherwise.

Similarly if C is odd and η ∈ ω2, then for at most one ν, p(ν, η) ∈ C and let
%(η, C) be ν for this η, and let %(η, C) = η otherwise. Our definition of the function
% does not contradict, because no Cantor is odd and even.

Let for η ∈ ω2,Dp(η) = {%(η, Ci) : i < α}. So clearly Dp(η) is a subset of ω2 of
cardinality ≤ |α|.

Now if η, ν ∈ ω2, by hypothesis ρ = p(η, ν) belongs to some Ci. If Ci is odd this
implies ν = %(η, Ci) ∈ Dp(η) and if Ci is even this implies η = %(Ci, ν) ∈ Dp(ν).

If |α|+ < 2ℵ0 we can easily find a counterexample. �3.5

Claim 3.6. Assume ¬(St).
1) If Sn ⊆ ω are infinite pairwise almost disjoint (for n ∈ {0, 1, 2}), Ci(i < α <

2ℵ0) are Cantors, each an Sn-Cantor for some n (or just an Sn ∪ S2-Contor for
some n), C is a Cantor such that for every η ∈ C ∩ ω>2, ` ∈ {0, 1}, there is ν,
such that η / ν ∈ Sp(C), ν ∈

⋃
k∈S`

k2.

Then there is η ∈ C \
⋃
i<α

Ci \ ω>2.

2) Similarly for Sn ⊆ ω>2

Proof. 1) We can find a Cantor C ′ ⊆ C, and 0 = k(0) < k(1) < . . . < k(n) < . . . <
ω such that :

(∗) if η ∈ k(n)2, then there are exactly two ν ∈ k(n+1)2 ∩ C ′, η / ν, and if
they are ν1, ν2 and m := min{m : ν1(m) 6= ν2(m)} then m ∈ S0 ∪ S1 but
/∈ S2 ∪ (S0,∩S1). Moreover m ∈ S0 iff n is even.

Let A = {η�k(n) : n < ω, η ∈ C ′}, so A ⊆ C ′. Clearly there is an isomorphism f ,
of the models (ω≥2, /), (C ′, /).

Let C ′i = {f(η) : η ∈ C ′, η ∈ Ci}, it is easy to check that each C ′i is countable,
or the union of a countable set and a Cantor which is odd or is even.

We can find odd Cantor C ′i(α ≤ i < αω) such that all countable sets we men-
tioned are covered by them. Now by - “not (St)” there is η ∈ ω≥2 such that
η /∈

⋃
i<αω

C ′i (as αω < 2ℵ0) and f−1(η) is the required elements.

2) Similarly. �3.6

Now1

Claim 3.7. Assume ¬(St).
1) The monadic theory T is undecidable.

Proof. Below let P vary on Cantors and not that We can repeat the proof of [She75]
with small adaptation (and prove T is undecidable). That is, the change needed is
in [She75, 7.4] which has a set-theoretic hypothesis (CH or the Baire-like hypothesis
mentioned above), so we repeat it with the needed changes below.

�3.7

Lemma 3.8. Assume not(St) and let J be an index-set of cardinality at most 2ℵ0 ,

1We have added 3.7(1) and 3.8 in 2019

Paper Sh:E88, version 2021-03-03. See https://shelah.logic.at/papers/E88/ for possible updates.



8 SAHARON SHELAH

1) Assume the Di(i ∈ J) countable dense subsets of ω>2 and D =
⋃
i∈J

Di and

D̄ = 〈Di : i ∈ J〉2. Then there is Q ⊆ ω2\D,Q = Q[D̄] such that for every Cantor
P :

(A) if P ∩D ⊆ Di(i ∈ J) and Di is dense in P then |P ∩Q| < 2ℵ0

(B) if for some i ∈ J the sets P ∩Di, P \Di are dense in P then P ∩Q 6= ∅.
2) For some such D̄ we can strengthen clause (B) above to

(B) if P is a Cantor and for every i ∈ J the set Di ∩ P is nowhere-dense in P
then for every , dense subsets D∗1 , D

∗
2 of P ∩D we can find D•1 ⊆ D∗1 , D•2 ⊆

D∗2 satisfying for any P we have: is P ∩D•1 , P ∩D•2 are dense in P then
P ∩Q 6= ∅.

Proof. 1) Let {Pα : 0 < α < 2ℵ0} be any enumeration of the Cantor sets. We define
xα, α < 2ℵ0 by induction on α.

For α = 0, xα ∈ R is arbitrary.
For any α > 0, if Pα does not satisfy the assumptions of (B) then let xα = x0

and if P satisfies the assumptions of (B) (hence in particular D is dense in P ) let
xα ∈ Pα −

⋃
{Pβ : β < α, (∃i ∈ J)(Pβ ∩D ⊆ Di and D is dense in Pβ)} = D.

This is possible; to prove this let U = {β < α : there is i ∈ J such that
Pβ ∩ D ⊆ Di} and for β ∈ U let iβ ∈ J be such that Pβ ⊆ Diβ Let i(∗) ∈ J be
such that P ∩Di(∗), P \Di(∗) are dense in P . Now we apply 3.6(2), (or 3.6(1) if we
restrict the Di-s, does not matter)

So by (St) and the hypothesis |Pα ∩D| < 2ℵ0 there exists such xα.
Now let Q = {xα : α < 2ℵ0}. If P satisfies the assumptions of (A), then

P ∈ {Pα : 0 < α < 2ℵ0}. Hence for some α, P = Pα, hence P ∩D ⊆ {xβ : β < α},
so |P ∩D| < 2ℵ0 . If P = Pα satisfies the assumption of (B) then xα ∈ Pα, xα ∈ Q,
hence Pα ∩Q 6= ∅.
2) Similarly.

So we have proved the lemma. �3.8

Remark 3.9. We can interpret the monadic theory of (R,<) in T , but the converse
was not clear at the time, but looking at it again probably we can carry the proof
for R.
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