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2 SAHARON SHELAH

§ 0. Introduction

We prove a strong colouring theorem. On Pr1 see [She94, Ch.III,, §4] and later
Rinot citeRi14 and citeSh:1027. see on history there, we intend to say more. The
result is incomparable with the one in citeRi14- the assumption on the stationary
set is stronger but the the arity - the last parameter ∂ is bigger.

The connection between purely combinatorial theorems and topological construc-
tions is known for many years. Several results in general topology were proved using
the property Pr1(λ, µ, σ, θ), see recently [JS15], [She19], the latter by improving the
existence result on Pr1. Note that [She97, §4] states more than it proves. s Recall:

Definition 0.1. 1) Assume λ ≥ µ ≥ σ + θ0 + θ1, θ̄ = (θ0, θ1), see 0.4(1). Assume
further that θ0, θ1 ≥ ℵ0 but σ may be finite

Let Pr1(λ, µ, σ, θ̄) mean that there is c : [λ]2 → σ witnessing it, which means:

(∗)c if (a) then (b), where:

(a) for ι = 0, 1, iι < θι and ζ̄ι = 〈ζια,i : α < µ, i < iι〉 are sequences of

ordinals of λ without repetitions, and Rang(ζ̄0), Rang(ζ̄1) are disjoint
and γ < σ

(b) there are α0 < α1 < µ such that ∀i0 < i0,∀i1 < i1, c{ζ0
α0,i0

, ζ1
α1,i1
} = γ

and ζ0
α0,i0

< ζ1
α1,i1

.

2) Above if θ0 = θ = θ1 then we may write Pr1(λ, µ, σ, θ).

In this paper we prove e.g. that if some stationary S ⊆ {δ < ℵ2 : cf(δ) < ℵ1}
do not reflect then Pr1(ℵ2,ℵ2,ℵ2,ℵ1) holds, which means that countable infinite
sequences can be taken in both “sides”. Actually, the theorem says that, in par-
ticular, Pr1(λ, λ, λ, ∂) holds whenever ∂ = cf(∂) and λ = ∂+ and there is S as
there.

We thank a referee for many good suggestions.

Definition 0.2. 1) A filter D on a set I is uniform when for every subset A of I
of cardinality < |I|, the set I \A ∈ D; all our filters will be uniform
2) A filter D on a set I is weakly θ-saturated when θ ≥ |I| and there is no partition
of I to θ sets from D+,
3) We say the filter D on a set I is θ-saturated when the Boolean algebra P(I)/D
satisfies the θ-c.c.

Fact 0.3. 1) If D is a θ-complete filter on λ and is not θ-saturated then it is not
weakly θ-saturated; so those properties are equivalent.
2) If θ = σ+ and D is a θ-complete filter on θ, then D is not weakly θ-saturated.
3) If n ≥ 1 and λ = σ+n and D is a (uniform) σ+-complete filter on λ then D is
not weakly σ+n-saturated

Proof. 1) Obvious and well known
2) By [Sol71],
3) Let µ be the minimal cardinal such that D is not µ+-complete, so clearly µ ∈
[σ+, λ] hence µ is a successor cardinal. So there is a function f from λ into µ
such that for every subset A of µ of cardinality < µ, f−1(A) = ∅ mod D. Let E
be the family of subsets A of µ such that f−1(A) ∈ D. Clearly E is a (uniform)
µ-complete filter on µ hence by part (2) is not weakly µ-saturated, let 〈Aε : ε < µ〉
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COLOURING OF SUCCESSOR OF REGULAR AGAIN SH1163 3

be a partition of µ to sets from E+. Now 〈f−1(Aε) : ε < µ〉 witnesses the desired
conclusion.

�0.3

Notation 0.4. 1) We denote infinite cardinals by λ, µ, κ, θ, ∂ while σ denotes a finite
or infinite cardinal. We denote ordinals by α, β, γ, ε, ζ, ξ. Natural numbers are
denoted by k, `,m, n and ι ∈ {0, 1, 2}
1A) Let D denote a filter on an infinite set dom(D)
2) For a set A of ordinals let nacc(A) = {α ∈ A : α > sup(A ∩ α)} and acc(A) =
A \ nacc(A). For regular λ > κ let Sλκ = {δ < λ : cf(δ) = κ}.
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4 SAHARON SHELAH

§ 1. A colouring theorem

Our aim is to prove

Theorem 1.1. 1) Pr1(λ, λ, θ, ∂) and moreover Pr1(λ, λ, λ, ∂) holds provided that:

(a) λ = ∂+, ∂ = cf(∂) ≥ θ = cf(θ) > ℵ0

(b) there is a stationary subset W of λ consisting of ordinals of cofinality < ∂
reflecting in no ordinal < λ
2) Clause (b) of the assumption above follows

Remark 1.2. 1) The case of θ colours, i.e. proving only Pr1(λ, λ, θ, θ) is easier so
we prove it first.
5) By monotonicity of Pr1 in θ, if clause (b) of 1.1 holds for some regular θ′ ∈ (θ, ∂)
this suffice
2) Can we weaken clause (b) of 1.1 replacing “reflecting in no ordinal < λ by
“reflecting in no ordinal of cofinlaity ∂?

The answer seem yes provided that we add

(a) there is a sequence 〈eα : α /∈ W 〉 such that (W is as above and) eα is a club
of α of order type < ∂ and for α ∈ Eβ from W we have eα = α ∩ eβ

(b) there is no exθ-complete not ∂+-complete uniform weakly ∂-saturated filter
on λ.

Proof. Stage A: We begin exactly as in earlier proofs. We let (κ1, κ2) = (θ, λ). Let

S ⊆ Sλ∂ be stationary and h : λ→ λ be such that α < λ⇒ h(α) < 1 + α, h�(λ\S)
is constantly zero and S∗γ := {δ ∈ S : h(δ) = γ} is a stationary subset of λ for every
γ < λ. Let Fι : λ → κι for ι = 1, 2 be such that for every (ε1, ε2) ∈ (κ1 × κ2) the
set Wε1,ε2(β) = {γ ∈ S∗β : Fι(γ) = ει for ι = 1, 2} is a stationary subset of λ for
every β < λ.

For ι = 1, 2 and ρ ∈ ω>λ let Fι(ρ) = 〈Fι(ρ(`)) : ` < `g(ρ)〉.
�0 without loss of generalityif δ ∈ W the δ is divisible by ∂.

Let ē = 〈eα : α < λ〉 be such that

�1 (a) if α = 0 then eα = ∅
(b) if α = β + 1 then eα = {β}
(c) if α is a limit ordinal then eα is a club of α of order type cf(α) disjoint

to Sλ∂ hence to S.
(d) if δ is a limit ordinal and δ /∈ W then eδ is disjoint to W .

In other cases (not here) instead h we use a sequence 〈hα : α < λ〉 of functions,
hα : eα → θ and use e.g 〈hγ`(β,α)(γ`+1(β, α)) : ` < k(β, α)〉 and ρh, but this is not
necessary here.

Now (using ē) for α < β < λ, let

γ(β, α) := min{γ ∈ eβ : γ ≥ α}.

Let us define γ`(β, α):

γ0(β, α) = β,

γ`+1(β, α) = γ(γ`(β, α), α) (if well defined).
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If α < β < λ, let k(β, α) be the maximal k < ω such that γk(β, α) is defined
(equivalently is equal to α) and let ρβ,α = ρ(β, α) be the sequence

〈γ0(β, α), γ1(β, α), . . . , γk(β,α)−1(β, α)〉.

Let γ`t(β, α) = γk(β,α)−1(β, α) where `t stands for last.
Let

ρh = 〈h(γ`(β, α)) : ` < k(β, α)〉

and we let ρ(α, α) and ρh(α, α) be the empty sequences. Now clearly:

�2 if α < β < λ then α ≤ γ(β, α) < β

hence

�3 if α < β < λ, 0 < ` < ω, and γ`(β, α) is well defined, then

α ≤ γ`(β, α) < β

and

�4 if α < β < λ, then k(β, α) is well defined and letting γ` := γ`(β, α) for
` ≤ k(β, α) we have

α = γk(β,α) < γ`t(β, α) = γk(β,α)−1 < · · · < γ1 < γ0 = β

and α ∈ eγ`t(β,α)

i.e. ρ(β, α) is a (strictly) decreasing finite sequence of ordinals, starting
with β, ending with γ`t(β, α) of length k(β, α).

Note that if α ∈ S, α < β then γ`t(β, α) = α+ 1.
Also

�5 if δ is a limit ordinal and δ < β < λ, then for some α0 < δ we have:
α0 ≤ α < δ implies:

(i) for ` < k(β, δ) we have γ`(β, δ) = γ`(β, α)

(ii) δ ∈ nacc(eγ`t(β,δ))⇔ δ = γk(β,δ)(β, δ) = γk(β,δ)(β, α)⇔ ¬[γk(β,δ)(β, δ) =
δ > γk(β,δ)(β, α)]

(iii) ρ(β, δ) E ρ(β, α); i.e. is an initial segment

(iv) δ ∈ nacc(eγ`t(β,δ)) (here always holds if δ ∈ S) implies:
• ρ(β, δ)ˆ〈δ〉 E ρ(β, α) hence

• ρh(β, δ)ˆ〈h(β, δ)(δ)〉 E ρh(β, α).

(v) if cf(δ) = ∂ then we have γ`t(β, δ) = δ + 1 so δ ∈ nacc(eγlt(β,δ))

(vi) if cf(δ) = ∂ and δ ∈ eγ , then necessarily γ = δ + 1.
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6 SAHARON SHELAH

Why? Just let

α0 = Max{sup(eγ`(β,δ) ∩ δ) + 1 : ` < k(β, δ) and δ /∈ acc(eγ`(β,δ))}.

Notice that if ` < k(β, δ)− 1 then δ /∈ acc(eγ`(β,δ)) follows.
Note that the outer maximum (in the choice of α0) is well defined as it is over a

finite non-empty set of ordinals. The inner sup is on the empty set (in which case
we get zero) or is the maximum (which is well defined) as eγ`(β,δ) is a closed subset
of γ`(β, δ), δ < γ`(β, δ) and δ /∈ acc(eγ`(β,δ)) - as this is required. For clauses (v),

(vi) recall δ ∈ Sλ∂ and eγ ∩Sλ∂ = ∅ when γ is a limit ordinal and eγ = {γ− 1} when
γ is a successor ordinal.

�6 (a) if α < β < λ, ` < k(β, α), γ = γ`(β, α) then ρ(β, α) = ρ(β, γ)ˆρ(γ, α)
and ρh(β, α) = ρh(β, γ)ˆρh(γ, α)

(b) if α0 < . . . < αk and ρ(αk, α0) = ρ(αk, αk−1)ˆ . . . ˆρ(α1, α0) then this
holds for any sub-sequence of 〈α0, . . . , αk〉.

�7 let F ′ι be Fι ◦ h for ι = 1, 2; so F ′1 is a function from λ into ∂ and F ′2 is a
function from λ into λ.

�8 if α < β are from W then γlt(β, α) = α+ 1
[Why? by the assumptions on W ].]

Stage B:
Let

�2 T = {t̄ : t̄ = 〈tα : α < λ〉 satisfies tα ∈ [λ]<∂ and tα ⊆ λ\α}.
�3 for ε < ∂ and t̄ ∈ T let At̄,ε be the set of γ < λ such that for some (α0, α1)

we have:

(a) α0 < α1 < λ and1 (ζ, ξ) ∈ tα0 × tα1 ⇒ ζ < ξ

(b) for every (ζ, ξ) ∈ tα0 × tα1 for some ` we have:

(α) ` < k(ξ, ζ)

(β) γ`(ξ, ζ) = γ

(γ) if k < k(ξ, ζ) then F ′1(γ) ≥ F ′1(γk(ξ, ζ)) and F ′1(γ) ≥ ε
(δ) if k < ` then F ′1(γk(ξ, ζ)) < F ′1(γ).

We define:

�4 D = {A ⊆ λ : A includes At̄,ε for some t̄ ∈ T, ε < ∂}.

Now note:

�5 (a) if s̄, t̄ ∈ T, ε ≤ ζ < ∂ and (∀α < λ)(sα ⊆ tα), then At̄,ζ ⊆ As̄,ε
(b) if s̄ ∈ T, ε < ∂, g is an increasing function from λ to λ and t̄ = 〈tα :

α < λ〉 is defined by tα = sg(α) then At̄,ε ⊆ As̄,ε.

[Why? Read the definitions.]

�6 (a) the intersection of any < ∂ members of D is a member of D, equiva-
lently includes the set At̄,ζ for some t̄ ∈ T, ζ < ∂

(b) for every β < λ for some t̄ ∈ T, At̄,0 ⊆ [β, λ)

1If we choose to add here “tα0 ⊆ α1”, then we would a problem in proving clause �5(b).
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(c) if t̄ ∈ T and α < λ⇒ tα 6= ∅ then ∩{At̄,ε : ε < ∂} = ∅
(d) D is upward closed.

(e) λ belongs to D

[Why? For clause (a) assume Aε ∈ D for ε < ε(∗) < ∂ then for some ζε < ∂
and t̄ε ∈ T we have Aε ⊇ At̄ε,ζε . Define tα =

⋃
{tεα : ε < ε(∗)} for α < λ and

ζ = sup{ζε : ε < ε(∗)}; as the cardinal ∂ is regular, clearly |tα| ≤
∑

ε<ε(∗)
|tεα| < ∂

and obviously tα ⊆ [α, λ) hence t̄ = 〈tα : α < λ〉 ∈ T and similarly ζ < ∂. Easily
At̄,ζ ⊆ At̄ε,ζε for every ε < ε(∗), see �5(a) so we are done proving clause (a).
For clause (b) define tα = {β + α + 1} and recalling �3(b)(β) and �4 check that
At̄,0 ⊆ [β, λ). Also clause (c) obviously holds because γ ∈ At̄,ε ⇒ F ′1(γ) ≥ ε by
�3(b)(γ) and F ′1 is a function from λ to ∂ and clauses (d),(e) hold trivially by the
definition.]

�7 (a) ∅ /∈ D
(b) D is a filter on λ, equivalently At̄,ε 6= ∅ for every t̄, ε; also D is uniform

∂-complete, not ∂+-complete.

[Why? Clause (a) is a major point, proved in Stage C below. That is, by �6(a), (d)
the only missing point is to show At̄,ζ 6= ∅, (in fact, |At̄,ζ | = λ). For clause (b) by
(a) and �6(a), (d), (e), D is a ∂-complete filter and the statement that D is uniform
holds by �6(b) and not ∂+-complete holds by �6(c).]

Note also

�8 D is not weakly ∂-saturated.

[Why? By �7 and clause (b) in the assumptions of the theorem. That is it is known
that if D fail this statement (and has the properties listed before) that there is no
S in in clause (b) of the theorem. transversality

Stage C:
In this stage we accomplish the proof of the missing point in �7(a) from above,

so we shall prove “At̄,ε is non-empty (in fact, has cardinality λ)” when :

� (a) tα ⊆ λ\α for α < λ

(b) |tα| < ∂

(c) ε < ∂.

To start we note that:

(∗)1 without loss of generality tα 6= ∅ and α < min(tα).

[Why? First, recalling �5(a) we can replace t̄ by t̄ = 〈tα ∪{α} : α < λ}, so we may
assume that each tα is not empty. Second, let t̄′ = 〈t′α : α < λ〉, t′α = tα+1, so easily
t̄′ satisfies (∗)1 and At̄′,ε ⊆ At̄,ε by clause �5(b).]

Now

(∗)2 we can find U dn
1 , εdn such that:

(a) U dn
1 ⊆ W is stationary in λ, see stage A on S∗0

(b) α < δ ∈ U dn
1 ⇒ tα ⊆ δ

(c) εdn < ∂
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8 SAHARON SHELAH

(d) if δ ∈ U dn
1 then for arbitrarily large α < δ we have ζ ∈ tα ⇒

Rang(F1(ρh(δ, ζ))) ⊆ εdn < κ1 = ∂.

[Why? Clearly E0 = {δ < λ : δ is a limit ordinal such that α < δ ⇒ tα ⊆ δ} is a
club of λ. For every δ ∈ W ∩E0 and α < δ we can find εdn

δ,α as in clauses (c),(d) of

(∗)2 (because |tδ| < ∂) and so recalling that cf(δ) < ∂ it follows that there is εdn
δ

such that δ = sup{α < δ : εdn
δ,α = εdn

δ }. Then recalling λ = cf(λ) > θ we can choose

εdn such that the set U dn
1 = {δ ∈ W ∩ E0 : εdn

δ = εdn} is stationary. So (∗)2 holds
indeed.]

(∗)3 We can find U up
1 , α∗1, ε

up such that:

(a) U up
1 ⊆ S∗0 is stationary

(b) h�U up
1 is constantly 0, actually follows by (a), see Stage A

(c) α∗1 < λ satisfies α∗1 < min(U up
1 ) and εup < ∂

(d) if δ ∈ U up
1 and α ∈ [α∗1, δ) and β ∈ tδ then :

• ρβ,δˆ〈δ〉 E ρβ,α
• Rang(F1(ρh(β, δ))) ⊆ εup.

[Why? For every δ ∈ S∗0 ⊆ S and ζ ∈ tδ let α1,δ,ζ < δ be such that (∀α)(α ∈
[α1,δ,ζ , δ)⇒ ρζ,δˆ〈δ〉 E ρζ,α), it exists by �5 of Stage A.

Let

• α1,δ = sup{α1,δ,ζ : ζ ∈ tδ}
• εup

δ = sup{F ′1(γ`(ζ, δ))(`)+1 : ζ ∈ tδ and ` < k(ζ, δ)} = ∪{sup Rang(F1(ρh(ζ, δ)))+
1 : ζ ∈ tδ}; as cf(δ) = ∂ = cf(∂) > θ and θ = cf(θ) > |tδ|, necessarily
α1,δ < δ and εup

δ < θ.

Lastly, there are α∗1 < λ and εup < κ1 = θ and U up
1 ⊆ S∗0 as required by using

Fodor lemma. So (∗)3 holds indeed.]

Now let E = {δ < λ : δ is a limit ordinal > α∗1 such that δ = sup(U dn
1 ∩ δ)

and α < δ ⇒ tα ⊆ δ}, it is a club of λ because α∗1 < λ by (∗)3(c) and U dn
1 is an

unbounded subset of λ by (∗)2(a), and tα is a subset of λ of cardinality < θ hence
is bounded.

Choose ε(∗) = max{εup + 1, εdn + 1, ε+ 1} where ε is from �(c), so ε(∗) < θ and
choose δ2 ∈ E ∩S such that F ′1(δ2) = ε(∗). Next choose α2 ∈ U up

1 \(δ2 + 1) and let
α∗ ∈ (α∗1, δ2) be large enough such that ζ ∈ (α∗, δ2)∧ξ ∈ tα2

⇒ ρ(ξ, δ2)ˆ〈δ2〉/ρ(ξ, ζ).
Now choose δ1 ∈ U dn

1 ∩ (α∗, δ2) and α∗∗ ∈ (α∗, δ1) be such that α ∈ (α∗∗, δ1)∧ ξ ∈
tα2 ⇒ ρ(ξ, δ1)ˆ〈δ1〉 / ρ(ξ, α).

[Why this is possible? First as α∗∗ > α∗ it is enough to have α ∈ (α∗∗, δ1) ⇒
ρ(δ2, δ1)ˆ〈δ1〉/ρ(δ2, α). Second here cf(δ1) < ∂ however this condition holds because
δ1 ∈ U dn

1 ⊆ W so necessarily γlt(δ2, δ1) = δ1 + 1 by �8).
Next let `∗ < `g(ρ(α2, δ1) be such that:

(∗)4 • γ∗ = F1(ρh(α2, δ1))(`∗) = max RangF1(ρh(α2, δ1))

• under this restriction `∗ is minimal.

Now let γ∗ = ρ(α2, δ1)(`∗).
Lastly, choose α1 ∈ (α∗∗, δ1) which is as in (∗)2(d) with respect to δ1, i.e. such

that:
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(∗)5 if ζ ∈ tα1
then RangF1(ρh(δ1, ζ)) ⊆ εdn.

Now we shall prove that the pair (α1, α2) is as required. So let (ζ, ξ) ∈ tα1
× tα2

;
now by our choices

(∗)6 ρ(ξ, ζ) = ρ(ξ, α2)ˆρ(α2, δ2)ˆρ(δ2, δ1)ˆρ(δ1, ζ) and ρ(α2, δ1) = ρ(α2, δ2)ˆρ(δ2, δ1)

So

(∗)7 Rang(F1(ρh(ξ, α2)) ⊆ εup ≤ ε(∗)
[Why? by (∗)3(a), the choice of α2 ∈ U up

1 and ξ being from tα2
]

(∗)8 Rang(F1(ρh(δ1, ζ)) ⊆ εdn ≤ ε(∗)
[Why by (∗)2(d) and the choice of α1 (and ζ being a member of tα1

]

(∗)9 ε(∗) = F1 ◦ h(δ2) ∈ Rang(F1(ρh(α2, δ1))), see (∗)6 and (before and after)
�1 .

[Why? Recall that δ2 was chosen in E ∩ S such that F ′1(δ2) = ε(∗).]
Hence

(∗)10 in �3(b) for our t̄ and the pair (α1, α2), our γ∗ (chosen before (∗)5) is gotten,
witnessing γ∗ ∈ At̄,ε(∗) ⊆ At̄,ε as first ε < ε(∗), by the choice of ε(∗), and
second if (ζ, ξ) ∈ tα1 × tα2 then ` = `g(ρ(ξ, α2)) + `∗ is as required in �3(b)
for t̄ by (∗)6 − (∗)9

So we are done proving �7(a).

Stage D: By �8

~1 there is F∗ : λ→ θ such that ε < θ ⇒ F−1
∗ ({ε}) 6= ∅ mod D.

We first deal with the easier version with θ colours, i.e. proving Pr1(λ, λ, θ, θ).
We now define the colouring c1 : [λ]2 → θ by:

~2 if α < β < λ then c1{α, β} is F∗(γ`(β,α)(β, α)) where `(β, α) = min{` <
k(β, α) : F ′1(γ`(β, α)) = max Rang(F ′1(ρ(β, α)))}.

To prove that the colouring c1 really witnesses Pr1(λ, λ, θ, θ), our task is to prove:

~3 given t̄ ∈ T and ι < θ there are α < β such that:

• ζ ∈ tα ∧ ξ ∈ tβ ⇒ c1{ζ, ξ} = ι.

[Why does ~3 holds? Let Bι = {γ < λ : F∗(γ) = ι}. By the choice of F∗ we know
that Bε 6= ∅ mod D. Focus on At̄,ε for the specific t̄ ∈ T and any ε < θ. Since
At̄,ε ∈ D we conclude that Bε ∩At̄,ε 6= ∅.

Fix an ordinal γ ∈ Bι ∩ At̄,ε. By the very definition of At̄,ε in �3 we choose
α < β < λ and γ ∈ Bι such that for every (ζ, ξ) ∈ tα× tβ there exists ` < k(ξ, ζ) for
which γ`(ξ, ζ) = γ and F ′1(γ) ≥ F ′1(γk(ξ, ζ)) whenever k < k(ξ, ζ) and F1(γ) ≥ ε
and F ′1(γ) > F ′1(γk(ξ, ζ)) whenever k < `. Let `(ξ, ζ) be this `, in fact, this ` is
unique (for the pair (ζ, ξ)).

Now c1{ζ, ξ} = F∗(γ`(ξ,ζ)(ξ, ζ)) (by ~2) which equals F∗(γ) (by the choice of
`(ξ, ζ)) which equals ι (since γ ∈ Bι). Hence ~3 holds and we finish Stage D.]

Stage E: The full theorem: the case of λ colors; so from now on we can assume
θ = ∂.

Paper Sh:1163, version 2021-04-14 2. See https://shelah.logic.at/papers/1163/ for possible updates.



10 SAHARON SHELAH

Let h′, h′′ be functions from θ into θ, ω respectively such that the mapping ζ 7→
(h′(ζ), h′′(ζ)) is onto θ × ω and moreover each such pair is gotten θ times.

We have to define a colouring c2 : [λ]2 → λ exemplifying Pr1(λ, λ, λ, θ).
This is done as follows using h′, h′′ and F∗ from ~1:

⊕1 for α < β < λ we let

•1 ζ = ζ(β, α) := h′(c1{β, α}), necessarily < θ

•2 n = n(β, α) := h′′(c1{β, α}), necessarily < ω

•3 m = m(β, α) is the n-th member of {k < k(β, α) : F ′1(γk(β, α)) = ζ}
when there is such m and is zero otherwise

•4 we define c2 as follows: for α < β, c2{α, β} is F ′2(γm(β,α)(β, α)) recall-
ing that F ′2, a function from λ to λ is from �2 from the end of stage
A.

To prove that c2 indeed exemplifies Pr1(λ, λ, λ, θ) it suffice to prove (this is the task
of the rest of the proof)

⊕2 assume t̄ ∈ T and j∗ < λ and we shall find α < β such that tα ⊆ β and
(ζ, ξ) ∈ tα × tβ ⇒ c2{ζ, ξ} = j∗.

Toward this:

⊕3 (a) we apply (∗)3 to our t̄, getting εup,U up
1 , α∗1 as there

(b) we apply (∗)2 to our t̄ getting U dn
1 , εdn

(c) let εmd = max{εup + 1, εdn + 1}.

We can find g2,U
up

2 , γ∗, α
∗
2,m

∗
2 such that:

⊕4 (a) γ∗ < λ satisfies F2(γ∗) = j∗ and F1(γ∗) = εmd

(b) U up
2 ⊆ S∗γ∗ is stationary hence δ ∈ U up

2 ⇒ F ′2(δ) = F2(h(δ)) =

F2(γ∗) = j∗ ∧ F ′1(δ) = F1(h(δ)) = F1(γ∗) = εmd

(c) g2 is a function with domain U up
2 such that δ ∈ U up

2 ⇒ δ < g2(δ) ∈
U up

1

(d) α∗2 satisfies α∗1 < α∗2 < min(U up
2 )

(e) if δ ∈ U up
2 and α ∈ [α∗2, δ) and β ∈ tg2(δ) then

• ρ(g2(δ), δ)ˆ〈δ〉 E ρ(g2(δ), α) hence

• ρβ,δˆ〈δ〉 E ρβ,α
(f) m∗2 satisfies: for every δ ∈ U up

2 , it is the cardinality of the set {` <
k(g2(δ), δ) : F ′1(γ`(g2(δ), δ)) = εmd} which may be zero.

[Why? First choose γ∗ as in clause (a) of ⊕4 (possible by the choice of F0, F1, F2

in the beginning of Stage A; hence δ ∈ Sγ∗ ⇒ F ′2(δ) = F2(h(δ)) = F2(γ∗) = j∗ and
F ′1(δ) = F1(h(δ)) = F1(γ∗) = εmd (by the choice of F ′1 in �7 recalling the definitions
of h, F ′1). Second, define g′ : S∗γ∗ → U up

1 such that δ ∈ S∗γ∗ ⇒ δ < g′(δ) ∈ U up
1 .

Third, for each δ ∈ S∗γ∗\(α
∗
1 + 1), find α′2,δ < δ above α∗1 and m2,δ such that the

parallel of clauses (e),(f) (with g′ here instead of g2 there) of ⊕4 holds. Fourth, use
Fodor lemma to get a stationary U up

2 ⊆ S∗γ∗ such that 〈(α′2,δ,m2,δ) : δ ∈ U up
2 〉 is

constantly (α∗2,m
∗
2) and lastly let g2 = g′�U up

2 \(α∗2 + 1). Now it is easy to check
that ⊕4 holds indeed.]
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Next

⊕5 if δ ∈ U up
2 then :

(a) F ′1(δ) = εmd

(b) if α ∈ [α∗2, δ), ξ ∈ tg2(δ) then u = {` < k(ξ, α) : F ′1(γ`(ξ, α)) = εmd}
has > m∗2 members and if ` is the m∗2-th member of u then γ`(ξ, α) = δ.

Why? Clause (a) holds by ⊕4(a), (b). For clause (b) use clause (a) and the demands
on m∗2. That is

(a) ρ(ξ, α) = ρ(ξ, g2(δ))ˆρ(g2(δ), δ)ˆρ(δ, α)
[Why? by (∗)3,⊕4(e)]

(b) Rang(ρh(α, g2(δ))) ⊆ εup ⊆ εmd

[Why? by (∗)2]
(c) the set {` < k(g2(δ), δ) : F ′1(γ`(g2(δ), δ)) = εmd} has m∗2 members

[why? by ⊕4(f)]
(d) F ′1(γ0(δ, α)) = F ′1(δ) = εmd

[Why? by ⊕4(a), (b)]]
(e) if `∗ is the m∗2-th member of {` : F1(γ`(ξ, α)) = εmd} then γ`∗(ξ, α) = δ

[Why? putting the above together]

So ⊕5 holds indeed.
Now choose ε(∗) < θ such that h′(ε(∗)) = εmd and h′′(ε(∗)) = m∗2.
Next, let E = {δ < λ : δ limit ordinal > α∗2 such that δ = sup(U dn

1 ∩ δ) and
α < δ ⇒ g2(α) < δ}.

Lastly,

⊕6 choose δ1 < δ2 such that
(a) δ1 ∈ U dn

1 ∩ E
(b) δ2 ∈ U up

2 ∩ E\(δ1 + 1)
(c) c1{δ2, δ1} = ε(∗),

[Why does such a pair (δ1, δ2) exist? By Stage D applied to s̄ = 〈sα : α < λ〉
where sα = {min(U dn

1 ∩ E\α),min(U up
2 ∩ E\α)}.

That is, we can find ordinals α < β < λ such that: for every (ζ, ξ) ∈ (sα × sβ)
we have c1{ξ, ζ} = εmd.

Let δ1 = min(U dn
1 ∩ E \ α and let δ2 = min(U up

1 ∩ E \ β.
So (δ1, δ2) ∈ (sα × sβ) hence clearly δ1 < δ2, c1{δ1, δ2} = ε(∗), δ1 ∈ U dn

1 ∩ E
and δ1 ∈ U up

1 ∩ E. So the pair (δ1, δ2) is as promised in in ⊕6]
Now let β = g2(δ2) and choose α ∈ U dn

1 ∩ δ1\(α∗2 + 1). Easy to check that α, β
are as required.

So we have finished proving Theorem 1.1. �1.1
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