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Abstract

We introduce a family of axioms Sliceκ, which claim the existence of nontrivial de-
compositions of the form

2<κ =
⋃
α<κ

2<κ ∩Mα,

where {Mα| α < κ} is a sequence of transitive models of set theory. We study com-
patibility of these axioms with versions of Martin’s Axiom, and in particular show that
Sliceω1 is compatible only with some very weak form of MA.
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1 Introduction

1.1 How "compact" is the real line?
We introduce and study a family of axioms Sliceκ for cardinal numbers κ. The axiom Sliceκ
basically claims that there exists an increasing sequence {Mα| α < κ} of transitive models
of ZFC, which decomposes 2<κ into an increasing union

2<κ =
⋃
α<κ

2<κ ∩Mα.

Our initial motivation was to find a single model of Martin’s Axiom, which doesn’t satisfy
typical consequences of PFA. This was in turn motivated by the following intuition:

If the universe is sufficiently complete, in the sense that it has many generic filters, then any
transitive submodel containing enough reals, contain all the reals.

This intuition is supported for example by the following result:

Theorem 1 (Thm. 8.6, [8]). If MM holds, then any inner model with correct ω2 contains
all reals.

The conclusion is quite strong, so it makes sense to ask what is left if we weaken MM to
MAω1 . This motivated us to formulate the axiom Sliceω1 , which turned out to be inconsistent
with MAω1

. The main results of this paper are the following

Theorem (Thm. 2). Sliceω1
=⇒ ¬MAω1

(σ-centred).

Theorem (Thm. 5). If κ is a regular cardinal such that κω = κ, then the following theory is
consistent

ZFC +MA(Suslin) + Sliceω1
+”2ω = κ”.

Theorem (Thm. 7). Assume that ω < κ ≤ θ are regular cardinals, such that θ<κ = θ. Then
the following theory is consistent

ZFC +MA<κ + Sliceκ +”2ω = θ”.
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The first of these results provides another argument in favor of the informal claim from
the beginning. The class of Suslin forcings is a class of c.c.c. forcings, which admit sim-
ple (analytic) definitions (see Definition 2). This class is more extensively described in [2].
Martin’s Axiom for this class is a considerable weakening of the full MA.

Theorem ([6]). MA(Suslin) implies each of the following:

1. Add(N ) = 2ω ,

2. Add(SN ) = 2ω ,

3. 2ω is regular,

4. each MAD family of subsets of ω has size 2ω .

It follows from 1. that all cardinal characteristics in the Cichoń’s diagram have value 2ω .
SN stands for the class of strong measure zero sets.

Theorem ([6]). MA(Suslin) does not imply any of the following:

1. t = 2ω ,

2. s = 2ω ,

3. ∀κ < 2ω 2κ = 2ω ,

4. there is no Suslin tree.

For an elaborated discussion of cardinal invariants of the continuum we refer the reader
to [4].

1.2 Preliminaries
All non-standard notions are introduced in the subsequent sections. By reals we denote ele-
ments of the sets ωω , 2ω , or seldom R. We take the liberty to freely identify Borel functions
with their Borel codes, so whenever we claim that

f ∈M,

for some Borel function f ⊆ 2ω × 2ω , and M |= ZFC, it should be understood that it is the
Borel code of f that belongs to M (so we don’t bother if, for instance, dom f 6⊆M ).
When we write P = {Pα ∗ Q̇α| α < θ} for a finite-support iteration of forcings, we some-
times denote by P the final step of the iteration, that is P = Pθ. When dealing with infinite
iterations, we assume that P0 is the trivial forcing. A function i : P0 ↪→ P1 is a complete
embedding if the following assertions hold:

1. ∀p, q ∈ P0 p0 ≤ p1 =⇒ i(p0) ≤ i(p1),

2. ∀p, q ∈ P0 p0⊥p1 =⇒ i(p0)⊥i(p1),

3. If A ⊆ P0 is a maximal antichain, then i[A] ⊆ P1 is a maximal antichain.

We write P0 l P1 if P0 ⊆ P1 and the inclusion is a complete embedding. We will be
frequently using the following observation

Proposition 1. If V is a countable transitive model of ZFC, P0,P1 ∈ V , and P0 ⊆ P1 is an
inclusion of partial orders, then the following conditions are equivalent:

1. P0 l P1,

2. If a filter G ⊆ P1 is P1-generic over V then G ∩ P0 is P0-generic over V .
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2 The Slicing Axioms
Definition 1. Let κ be any uncountable cardinal. We will say that Sliceκ holds if there exists a
sequence of transitive classes (not necessarily proper) {Mα| α < κ}, such that the following
conditions are satisfied

• ∀α < κ Mα |= ZFC,

• ∀α < ω1 ωMα
1 = ω1,

• 2<κ =
⋃
α<κ

2<κ ∩Mα,

• ∀α < β < κ 2<κ ∩Mα ( 2<κ ∩Mβ .

We will say that the sequence {Mα| α < κ} preserves cardinals if κ ∈ M0 and for each
cardinal λ ∈M0 and each α < κ, λMα is a cardinal.

The most important of the slicing axioms is perhaps Sliceω1 , since it claims that the real
line can be decomposed into an increasing union of ω1 many sets, which belong to bigger
and bigger models. The fact that MAω1

is inconsistent with Sliceω1
shows, that the Martin’s

Axiom on ω1 imposes certain compactness on the real line.

3 Slicing the real line
We begin with showing that Martin’s Axiom on ω1 is not compatible with Sliceω1

.

Theorem 2. Sliceω1
=⇒ ¬MAω1

(σ-centred).

In the proof we will utilize the known result from [5]. Recall that a set A ⊆ R is a Q-set,
if each subset of A is a relative Fσ .

Theorem 3 ([5]). MA(σ-centred) implies that each set of cardinality less than 2ω is a Q-set.

Proof of Theorem 2. Assume that MAω1 holds, and (Mα)α<ω1 is a sequence of models wit-
nessing Sliceω1

. M0 |= "2ω is uncountable" , so there exists a sequence of pairwise distinct
reals X = {xα| α < ω1} ∈ M0 (note that this sequence is really of the length ω1). Let
f : ω1 ↪→ 2ω be a function such that ∀α < ω1 f(α) /∈ Mα. We will obtain a contradiction,
by showing that there exists some η < ω1, for which rg(f) ⊆Mη .

For every natural number m, let Am = {xα| f(α)(m) = 1} = X ∩ Fm, where Fm is an
Fσ subset of reals. Since the sequence (Fm)m<ω can be coded by a real, clearly it belongs
to some model Mη . It is enough to show that using this sequence we can give a definition of
rg(f). But

rg(f) = {x ∈ 2ω| ∃α < ω1 ∀m < ω xα ∈ Fm ⇐⇒ x(m) = 1}.

It is compatible with any value of 2ω that Sliceω1
holds and is witnessed by a cardinal

preserving sequence.

Proposition 2. Let P be any finite-support product of c.c.c. forcings adding reals, of the
length at least ω1. Then P 
 Sliceω1

, and the corresponding sequence of models is cardinal
preserving.

Proof. Let us consider a finite-support product of c.c.c. forcings

P =
∏
i∈I

Pi,

where each Pi adds some real number, and |I| ≥ ω1. We can decompose I into a strictly
increasing union I =

⋃
γ<ω1

Iγ . For each α < ω1 the product
∏
i∈Iα

Pi can be identified with a

complete suborder of P.
If G ⊆ P is generic over some model V , then Sliceω1

is witnessed by the sequence

Mα = V [G ∩
∏
i∈Iα

Pi].
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The following was proved by Baumgartner in [3].

Theorem ([3]). It is consistent with MAω1 , that all ω1-dense subsets of reals are order-
isomorphic. In particular, each ω1-dense set of reals has a non-trivial order-automorphism.

The natural question whether this assertion follows fromMAω1
was resolved by Avraham

and the second author in [1].

Theorem ([1]). It is consistent withMAω1
, that there exists a rigid ω1-dense real order type.

This is also an easy consequence of Sliceω1
.

Theorem 4. Sliceω1
implies that there is an ω1-dense rigid subset of the real line.

Proof. Let (Mα)α<ω1
be a sequence witnessing Sliceω1

. For each α, we choose

xα ∈ R ∩ (Mα \
⋃
β<α

Mβ).

We can easily arrange the construction, so that we hit each open interval ω1-many times. The
set X = {xα| α < ω1} is ω1-dense, and it remains to prove, that it is also rigid. Suppose
that f : X → X is an order isomorphism. f extends uniquely to a continuous function
f ′ : R→ R, and each such function can be coded by a real number. Therefore there is some
η < ω1, such that f ′ ∈ Mη . Now, for any ξ > η, it is not possible that f(xη) = xξ, because
it would mean xξ ∈ Mη , contrary to the choice of xξ. But, likewise, it is not possible that
f−1(xη) = xξ. The conclusion is that for all ξ > η, f(xξ) = xξ. But this means that f is
identity on a dense set, and therefore everywhere.

4 Slicing the real line while preserving MA(Suslin)
We are going to show that Sliceω1

is consistent with a version of Martin’s Axiom which takes
into account only partial orders representable as analytic sets (see [2], Ch. 3.6, or [6]).

Definition 2. A partial order (P,≤) has a Suslin definition if P ∈ Σ1
1(ωω), and both ordering

and incompatibility relations in P are analytic relations on ωω . P is Suslin if it has a Suslin
definition and is c.c.c.

The following is the main result of this Section.

Theorem 5. If κ is a regular cardinal such that κω = κ, then the following theory is consis-
tent

ZFC +MA(Suslin) + Sliceω1
+”2ω = κ”.

Let ψ(−,−,−,−) be a universal analytic formula, i.e. a Σ1
1 formula with the property

that for each analytic set P ⊆ ωω × ωω × ωω there exists r ∈ ωω such that

P = {x ∈ ωω × ωω × ωω| ψ(x, r)}.

We want to use ψ to add generic filters to all possible Suslin forcings. We will say that
ψ(−,−,−, ṙα) defines Q̇α if ṙα is a Pα-name for a real and Pα forces each of the following

Q̇α is a separative partial order with the greatest element 0,

ψ(x, 1, 1, ṙα) ⇐⇒ x ∈ Q̇α,

ψ(x, y, 2, ṙα) ⇐⇒ x ≤Q̇α
y,

ψ(x, y, 3, ṙα) ⇐⇒ x⊥Q̇α
y.

We will write ψ∈(x, z) for ψ(x, 1, 1, z), ψ⊥(x, y, z) for ψ(x, y, 3, z), and ψ≤(x, y, z) for
ψ(x, y, 2, z).

We are going to iterate all Suslin forcings, each of them cofinally many times. More
precisely, we define by induction a finite-support iteration {Pα ∗ Q̇α| α < κ}:

• P0 = {0},

• Pα 
 ”Q̇α = {x ∈ ωω| ψ(x, ṙα)} if this formula defines a Suslin forcing; else Q̇ =
{0}”,
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The variable ṙα ranges over all reals, and all possible names for reals, each of them
cofinally many times. In order to iterate through all possible parameters using a suitable
bookkeeping, we introduce the class of simple conditions, following [2].

Definition 3. By induction on α we define simple conditions in Pα.

• α = 0. P0 = {0}, and we declare 0 to be simple.

• α+ 1. (p, q̇) ∈ Pα+1 is simple if p ∈ Pα is simple and

q̇ = {(m,n, pmn )| m,n < ω, pmn ∈ Pα},

where each pmn is a simple condition in Pα. (for each m ∈ ω, the set {pmn | n < ω} is a
maximal antichain deciding q̇(m), i.e. pmn 
 q̇(m) = n)

• limα. p ∈ Pα is simple if for each β < α, p � β ∈ Pβ is simple.

It is straightforward to check by induction, that the set of simple Pα-conditions is dense
in Pα, and that each Pα has at most κ many names for reals (if we restrict to names with
simple conditions).

Proposition 3. If 2ω ≤ κ is an uncountable regular cardinal such that κω = κ, then

Pκ 
MA(Suslin) + ”2ω = κ”.

Proof. Let us denote byWα the corresponding extensions of V by Pα. Let (S,≤) be a Suslin
forcing in Wκ. Assume S is defined by the formula ψ(−, r). We fix a family {Aγ | γ < λ}
of maximal antichains in S, where λ < κ. By the Löwenheim-Skolem theorem, we can find
an elementary substructure of (S,≤, Aγ)γ<λ of size λ. For simplicity of notation we can
assume that S is this substructure, and so |S| ≤ λ. Therefore (S,Aγ ,≤)γ<λ ∈Wδ , for some
δ < κ, and we can enlarge δ so that

Pδ 
 ṙδ = r.

By absoluteness of the formulae ψ∈(−, r), ψ⊥(−, r), and ψ≤(−, r), the partial order defined
by ψ(−, r) in Wδ is a suborder of the one defined by this formula in Wκ (even a complete
suborder, which is not relevant here). Therefore the generic filter added for Q̇δ in Wδ will be
a filter intersecting the sets Aγ in S.

If N is a transitive class containing κ, we can define by induction the relativized iteration
PNκ ⊆ Pκ, taking into account only names from N .

• PN0 = {0},

• PNα 
 ”Q̇Nα = {x ∈ ωω| ψ∈(x, ṙα)} if this formula defines a Suslin forcing,
ṙα ∈ N , and ṙα is a PNα -name; else Q̇Nα = {0}”,

• PNα+1 = PNα ∗ Q̇Nα .

If we take direct limits in the limit step, it is clear that PNα is really a subset of Pα. Note,
that we do not define names ṙα inductively along the way, since they have already been
defined in the construction of Pκ, which we take as granted. This construction is inspired by
the lemmas 1.4 and 1.5 from [6], and conceptually is very similar. In order for it to work as
desired, we prove by induction some properties of PNα .

Theorem 6. If N is a transitive class containing κ, then for all α ≤ κ

PNα l Pα.

Specifically:

1. If p0⊥p1 in PNα , then p0⊥p1 in Pα.

2. If p0 ≤ p1 in PNα , then p0 ≤ p1 in Pα.

3. If G ⊆ Pα is a filter generic over V , then G ∩ PNα ⊆ PNα is also generic over V .
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Proof.
1.

• α = 0. Clear.

• α + 1. We can assume that Q̇Nα is defined by the formula ψ(−, ṙα), for otherwise
PNα+1 = PNα , and we are done by the induction hypothesis. Fix two incomparable
conditions p0, p1 ∈ PNα+1. Then p0 = (p′0, q̇0), p1 = (p′1, q̇1), where p′0, p

′
1 ∈ PNα , and

p′0 
 ψ∈(q̇0, ṙα),

p′1 
 ψ∈(q̇1, ṙα).

The forcing relation used above is a relation from PNα , however since ṙα, q̇0 and q̇1 are
PNα -names, this is the same relation as coming from Pα (remember that PNα lPα). We
aim to show that p0⊥p1 in Pα+1.

If p′0⊥p′1 in Pα, then clearly p0⊥p1 in Pα+1, so assume otherwise, and fix p ≤ p′0, p
′
1

(in Pα). Let p ∈ G ⊆ Pα be a filter generic over V . Conditions p0 and p1 were
incomparable in PNα+1 and, by the induction hypothesis, G∩PNα ⊆ PNα is generic over
V , therefore

V [G ∩ PNα ] |= ψ⊥(q̇0[G], q̇1[G], ṙα[G]).

By absoluteness

V [G] |= ψ⊥(q̇0[G], q̇1[G], ṙα[G]).

Since p was arbitrary, it follows that p0⊥p1 in Pα+1.

• limα. Follows from the induction hypothesis, since conditions have finite supports.

2.

• α = 0. Clear.

• α + 1. Again, we can assume that Q̇Nα is defined by the formula ψ(−, ṙα). Fix two
conditions p0 ≤ p1 ∈ PNα+1. Then p0 = (p′0, q̇0), p1 = (p′1, q̇1), where p′0, p

′
1 ∈ PNα ,

and
p′0 
 ψ∈(q̇0, ṙα),

p′1 
 ψ∈(q̇1, ṙα).

By the induction hypothesis p′0 ≤ p′1 in Pα. Moreover ṙα, q̇0 and q̇1 are PNα -names, so
the forcing relation

p′0 
 q̇0 ≤ q̇1
holds in PNα as well as in Pα.

• limα. Follows from the induction hypothesis, since conditions have finite supports.

3.

• α = 0. Clear.

• limα. Let {pn| n < ω} be a maximal antichain in PNα , and p ∈ Pα. There is some
γ < α such that p ∈ Pγ . {pn � γ| n < ω} might not be an antichain in PNγ , however
each condition in PNγ is compatible with some pn � γ. We can refine {pn � γ| n < ω}
to an antichain in PNγ , and this antichain will remain maximal in Pγ by the induction
hypothesis. Therefore {pn � γ| n < ω} intersects every condition in Pγ , and in
particular some pn � γ is compatible with p in Pγ . But then pn is compatible with p in
Pα.

• α+1. We aim to show that for anyG ⊆ Pα+1 generic over V ,G∩PNα+1 is also generic
over V .

Lemma 1. If G ⊆ Pα is generic over V , and H ⊆ Q̇α[G] is generic over V [G], then
H ∩ Q̇Nα [G] ⊆ Q̇Nα [G] is generic over V [G ∩ PNα ].

6

Paper Sh:1210, version 2021-05-16. See https://shelah.logic.at/papers/1210/ for possible updates.



Why is this sufficient? Let G ⊆ Pα ∗ Q̇α be a filter generic over V . Recalling the
notation from [7],

G = G ∗H = {(p, q̇)| p ∈ G, q̇[G] ∈ H},

where
G = {p ∈ Pα| ∃q̇ ∈ Q̇ (p, q̇) ∈ G},

and
H = {q̇[G]| ∃p ∈ G (p, q̇) ∈ G}.

It is known that for any iteration P ∗ Q̇, if G ⊆ P is generic over V and H ⊆ Q̇[G]
is generic over V [G], then G ∗ H is generic for P ∗ Q̇ over V (for details consult for
example [7], Section 5, Chapter VIII). Let G′ = G ∩ PNα . It is generic for PNα over V
by the induction hypothesis. Now for filters G and H defined above

(G ∗H) ∩ (PNα ∗ Q̇Nα ) = {(p, q̇)| p ∈ G′, q̇[G] ∈ H, q̇ ∈ Q̇Nα } =

{(p, q̇) ∈ PNα ∗ Q̇Nα | p ∈ G′, q̇[G′] ∈ H} = G′ ∗ (H ∩ Q̇Nα [G′]).

But if the conclusion of Lemma 1 holds, this is a PNα ∗ Q̇Nα -generic filter over V .

We turn to the proof of Lemma 1.

Proof. Fix a maximal antichain A ⊆ Q̇Nα [G] = Q̇Nα [G′], belonging to V [G′]. As A is
a countable set of reals, it can be coded using a single real z ∈ ωω . Recall that Q̇Nα [G′]
is defined in V [G′] by the formula ψ with the parameter ṙα[G′] = ṙα[G]. It is standard
to check, that the following claim can be written as a Π1

1 formula.

φ(x, y) = ”x is a real coding a maximal antichain in the partial ordering defined by
the formula ψ(−,−,−, y)”.

Now
V [G′] |= φ(z, ṙα[G′]),

and so by absoluteness
V [G] |= φ(z, ṙα[G]).

Butψ(−, ṙα[G]) is the formula defining Q̇α[G] in V [G]. ThereforeA remains maximal
in Q̇α[G], and conclusion of the Lemma easily follows.

This concludes the proof.

Let us note that even if N is an inner model of ZFC, usually PNκ /∈ N . Definition of PNκ
makes use of a list of PNα -names, for all α < κ, and although some such enumeration belongs
to N (as it is a model of choice), this particular might not. In what sense is PNκ a relativized
version of Pκ, is explained by the next lemma.

Lemma 2. For any transitive class N containing κ, for each α ≤ κ, N ∩ Pα ⊆ PNα .

Proof. We proceed by induction.

• α = 0. Clear.

• limα. If r ∈ N ∩ Pα, we choose γ < α containing the support of r. Then r � γ ∈
Pγ ∩N ⊆ PNγ . It is routine to verify by induction that for all γ ≤ δ ≤ α, r � δ ∈ PNδ .

• α + 1. If r = (p, q̇) ∈ N ∩ (Pα ∗ Q̇α), then p ∈ PNα , q̇ ∈ N , and we need only
to prove that q̇ is a PNα -name. But note, that q̇ = {(m,n, smn )| m,n < ω}, where
∀m,n < ω smn ∈ Pα ∩N ⊆ PNα .

Lemma 3. For each α ≤ κ, if p ∈ Pα is simple then p is definable (in the language of set
theory) with a parameter from κω .
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Proof.

• α = 0. Clear, since each real is definable with a real parameter.

• α+ 1. Let r = (p, q̇) be simple. We can write

q̇ = {(m,n, pmn )| m,n ∈ ω, pmn ∈ Pα},

where each pmn is simple. By the induction hypothesis each pmn definable with a param-
eter from κω , and so is p. Clearly r can be defined from them, and so r is definable with
countably many parameters from κω . We can easily code them as a single parameter.

• limα. Fix r ∈ Pα. r has finite support, so there exists β < α containing the support
of r. By the induction hypothesis p � β is definable with a parameter from κω , and p is
definable with parameters p � β, β, and α.

Proof of Theorem 5. We start with a model V |= Sliceω1
+”2ω = κ”, and we assume more-

over that the sequence {Mα| α < ω1} witnessing Sliceω1
satisfies the following stronger

property:

κω =
⋃
α<ω1

κω ∩Mα.

Such model is easy to get, for example by adding κ many Cohen reals to a model of CH ,
and proceeding like in the proof of Proposition 2.

Let P = {Pα ∗ Q̇α| α < κ} be the iteration described above, which forces

MA(Suslin) + ”2ω = κ”.

We claim that if G ⊆ P is generic over V , then the sequence V [G ∩ PMα ] witnesses Sliceω1

in V [G]. For this we need to show two things

1. If r ∈ ωω , then r ∈ V [G ∩ PMα ] for some α < κ.

2. None of the models V [G ∩ PMα ] contains all reals.

Concerning 1. assume that Pκ 
 ṙ ∈ ωω . We can assume that

ṙ = {(m,n, pmn )| m,n < ω},

and all conditions pmn are simple. By Lemma 3 each condition pmn is definable with a param-
eter from κω . It follows, that ṙ is definable with a parameter from κω , and by our assumption
this parameter belongs to some model Mα. Therefore ṙ is a PMα -name, and so

ṙ[G] = ṙ[G ∩ PMα ] ∈ V [G ∩ PMα ].

Concerning 2. fix a real r ∈ ωω \Mα. There exists a representation of the Cohen forcing
as a Borel subset of ωω , from which the real r is definable. For concreteness, let us put

Cr = ω<ω ∪ {r} ⊆ ωω,
where ω<ω is ordered by the end-extension and

∀s ∈ ω<ω s⊥r.

Since r /∈Mα, it follows that for some γ < κ

PMα
γ 
 Q̇Mα

γ = {0},

and
Pγ 
 Q̇γ = Cr.

Therefore we can find a complete embedding of Cr into the quotient forcing

Cr ↪→ Pκ/(PMα
κ ∩G),

given by the formula

x 7→ 1Pγ

_ (1Pγ
, x) _1Pκ\(γ+1)

.

This shows that V [G] contains a Cohen real over V [PMα ∩G].
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5 Slicing 2<κ

AlthoughMAω1 is inconsistent with Sliceω1 , it is consistent with Sliceκ for any κ > ω1. The
idea of the proof is very much like that of Theorem 5, and actually even simpler, because we
iterate forcings directly, instead of coding them as Borel sets.

Theorem 7. Assume that ω < κ ≤ θ are regular cardinals, such that θ<κ = θ. Then the
following theory is consistent

ZFC +MA<κ + Sliceκ +”2ω = θ”.

We are going to apply a finite-support iteration of the form

P = {Pα ∗ Q̇α| α < θ},

where for each α < θ
Pα 
 Q̇α = (λα, ≤̇α),

for λα < κ. We also assume that 0 ∈ λα is always the largest element in Q̇α. We can arrange
the iteration so that each partial order of size < κ will appear cofinally many times (see the
proof of Proposition 3).

Definition 4. By induction on α, we define the class of simple Pα-conditions.

• α = 0. P0 = {0}, and we declare 0 to be simple.

• α+ 1. (p, q̇) ∈ Pα+1 is simple if p ∈ Pα is simple and q̇ = {(γn, pn)| n < ω}, where
conditions pn are simple.

• limα. p ∈ Pα is simple if for each β < α, p � β ∈ Pβ is simple.

Like in the previous section, is is easy to check that the set of simple conditions is always
dense.

Lemma 4. For each α ≤ κ, if p ∈ Pα is simple then p is definable (in the language of set
theory) with a parameter from κω .

Proof.

• α = 0. Clear.

• α+1. Let r = (p, q̇) be simple. We can write q̇ = {(γn, pn)| n < ω}, where conditions
pn are simple. By the induction hypothesis each pn is definable with a parameter from
κω , and so is p. Clearly r can be defined from them, and so r is definable with countably
many parameters, which we can code as one.

• limα. Fix r ∈ Pα. r has finite support, so there exists β < α containing the support
of r. By the induction hypothesis p � β is definable with a parameter from κω , and p is
definable with parameters p � β, β, and α.

Like in the previous Section, we can define by induction the relativized forcings PNκ ⊆
Pκ, taking into account only names from N .

• PN0 = {0},

• Assume PNα is defined. We define a PNα -name Q̇Nα as follows

– Q̇Nα = Q̇α if Q̇α ∈ N , and Q̇α is a PNα -name,

– Q̇Nα = {0} otherwise.

• PNα+1 = PNα ∗ Q̇Nα .

In limit steps we take direct limits, so PNκ ⊆ Pκ. Repeating the proof of Lemma 2, we
obtain

Lemma 5. If N is a transitive class containing κ, α ≤ κ, then Pα ∩N ⊆ PNα .
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Lemma 6. If N is a transitive class, then for all α ≤ κ

PNα l Pα.

Specifically:

1. If p0⊥p1 in PNα , then p0⊥p1 in Pα.

2. If p0 ≤ p1 in PNα , then p0 ≤ p1 in Pα.

3. If A ⊆ PNα is a maximal antichain, then A is maximal in Pα.

Proof. We proceed by induction on α.
1.

• α = 0. Clear.

• α + 1. Assume (p0, q̇0)⊥(p1, q̇1) in PNα+1. If p0⊥p1 in PNα , then by the induction
hypothesis p0⊥p1 in Pα and we are done. Suppose otherwise, and fix a condition
p ≤ p0, p1 from Pα. Let G ⊆ Pα be any filter generic over V , containing p. p0, p1 ∈
G ∩ PNα , so

q̇0[G ∩ PNα ]⊥q̇1[G ∩ PNα ]

in model V [G∩PNα ], and in V [G] as well. Since p and G were arbitrary, it follows that
(p0, q̇0)⊥(p1, q̇1) in Pα+1.

• limα. Follows from the induction hypothesis, since the supports are finite.

2.

• α = 0. Clear.

• α + 1. Assume (p0, q̇0) ≤ (p1, q̇1) in PNα+1. From the induction hypothesis we know,
that p0 ≤ p1 in Pα, and p0 
 q̇0 ≤ q̇1 in the sense of PNα . We must show that the
assertion

p0 
 q̇0 ≤ q̇1
holds also in the sense of Pα. If Q̇Nα = {0} it is trivial. Otherwise Q̇Nα = Q̇α. In that
case q̇0 and q̇1 are PNα -names, and the 
 relation for them is the same in PNα as in Pα.

• limα. Follows from the induction hypothesis, since the supports are finite.

3.

• α = 0. Clear.

• α + 1. The proof is exactly the same, as in the paragraph after Lemma 1, so we need
to prove the conclusion of Lemma 1 in the current setting. But this is trivial, once we
recall that

PNα 
 Q̇Nα = {0},

or
PNα 
 Q̇Nα = Q̇α.

• limα. Let {pn| n < ω} be a maximal antichain in PNα , and p ∈ Pα. There is some
γ < α such that p ∈ Pγ . {pn � γ| n < ω} might not be an antichain in PNγ , however
each condition in PNγ is compatible with some pn � γ. We can refine {pn � γ| n < ω}
to an antichain in PNγ , and this antichain will remain maximal in Pγ by the induction
hypothesis. Therefore {pn � γ| n < ω} intersects every condition in Pγ , and in
particular some pn � γ is compatible with p in Pγ . But then pn is compatible with p in
Pα.

Proof of Theorem 7. Let
V |= ZFC +GCH + Sliceκ

and let P be the forcing defined in the beginning of the Section. Suppose that {Mα| α < κ}
witnesses Sliceκ in V , and G ⊆ P is generic over V . We aim to shows that the sequence
V [G ∩ PMα ] witnesses Sliceκ in V [G]. For this we need to show two things
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1. If F ∈ 2<κ, then F ∈ V [G ∩ PMα ] for some α < κ.

2. None of the models V [G ∩ PMα ] contains all sequences from 2<κ (here we use the
regularity of κ, so we can later pass to a strictly increasing subsequence).

Concerning 1. assume that Pκ 
 Ḟ ∈ 2δ , for some ordinal δ < κ. We can assume
that Ḟ = {(α, αn, pαn)| α < δ, n < ω}, and all conditions pαn are simple. By Lemma 4
each condition pαn is definable with a parameter Eαn ∈ κω . The set {Eαn | α < δ, n < ω}
is definable from a sequence of the length < κ, so it belongs to some model Mα, and so
Ḟ ∈Mα. Therefore Ḟ is a PMα

κ -name, and it follows that

Ḟ [G] = Ḟ [G ∩ PMα ] ∈ V [G ∩ PMα ].

Concerning 2. fix a sequence F ∈ 2<κ \Mα. There exists a representation of the Cohen
forcing, say CF , from which the sequence F is definable and |CF | < κ. Since F /∈ Mα, it
follows that for some γ < κ

PMα
γ 
 Q̇Mα

γ = {0},
and

Pγ 
 Q̇γ = CF .
Therefore we can find a complete embedding of CF into the quotient forcing

CF ↪→ Pκ/(PMα
κ ∩G),

given by the formula

x 7→ 1Pγ

_ (1Pγ
, x) _1Pκ\(γ+1)

.

This shows that V [G] contains a Cohen real over V [PMα ∩G].

Corollary 1. The following theories are consistent

ZFC +MAω1
+ Sliceω2

+”2ω = ω2”,

ZFC +MAω1
+ Sliceω2

+”2ω = ω3”,

ZFC +MAω2
+ Sliceω3

+”2ω = ω29”.

6 Final comments
It is easy to see that all sequences of models witnessing Sliceκ that we built, are cardinal pre-
serving. Moreover, we proved thatMAω1

and Sliceω1
are not compatible. It looks reasonably

to expect that for any regular cardinal κ

MAκ =⇒ ¬Sliceκ .

What about singular κ?

References
[1] U. Avraham, S. Shelah, Martin’s Axiom does not imply that every two ℵ1-dense sets of reals are

isomorphic, Israel Journal of Mathematics, vol. 38, Nos. 1-2 (1981)
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