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Abstract. We prove that the Borel space of torsion-free Abelian groups with

domain ω is Borel complete, i.e., the isomorphism relation on this Borel space

is as complicated as possible, as an isomorphism relation. This solves a long-
standing open problem in descriptive set theory, which dates back to the sem-

inal paper on Borel reducibility of Friedman and Stanley from 1989.

1. Introduction

Since the seminal paper of Friedman and Stanley on Borel complexity [3], descrip-
tive set theory has proved itself to be a decisive tool in the analysis of complexity
problems for classes of countable structures. A canonical example of this phenom-
enon is the famous result of Thomas from [14] which shows that the complexity of
the isomorphism relation for torsion-free abelian groups of rank 1 6 n < ω (denoted
as ∼=n) is strictly increasing with n, thus, on one hand, finally providing a satisfac-
tory reason for the difficulties found by many eminent mathematicians in finding
systems of invariants for torsion-free abelian groups of rank 2 6 n < ω which were
as simple as the one provided by Baer for n = 1 (see [1]), and, on the other hand,
showing that for no 1 6 n < ω the relation ∼=n is universal among countable Borel
equivalence relations. As a matter of facts, abelian group theory has been one of the
most important fields of mathematics from which taking inspiration for forging the
general theory of Borel complexity as well as for finding some of the most striking
applications thereof. The present paper continues this tradition solving one of the
most important problems in the area, a problem open since the above mentioned
paper of Friedman and Stanley from 1989. In technical terms, we prove that the
space of countable torsion-free abelian groups with domain ω is Borel complete.

As we will see in detail below, saying that a class of countable structures is Borel
complete means that the isomorphism relation on this class is as complicated as
possible, as an isomorphism relation. The Borel completeness of countable abelian
group theory is particularly interesting from the perspective of model theory, as this
class is model theoretically “low”, i.e., stable (in the terminology of [12]). In fact,
as already observed in [3], Borel reducibility can be thought of as a weak version of
Lω1,ω-interpretability, and for other classes of countable structures such as groups
or fields much stronger results than Borel completeness exist, as in such cases we can
first-order interpret graph theory, but such classes are unstable, while abelian group
theory is stable. Reference [8] starts a systematic study of the relations between
Borel reducibility and classification theory in the context of ℵ0-stable theories.
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2 GIANLUCA PAOLINI AND SAHARON SHELAH

Coming back to us, we now introduce the notions from descriptive set theory
which are necessary to understand our results, and we try to make a complete
historical account of the problems which we tackle in this paper. The starting
point of the descriptive set theory of countable structures is the following fact:

Fact 1.1. The set KL
ω of structures with domain ω in a given countable language

L is endowed with a standard Borel space structure (KL
ω ,B). Every Borel subset of

this space (KL
ω ,B) is naturally endowed with the Borel structure induced by (KL

ω ,B).

For example, if take L = {e, ·, ()−1}, and we let K ′ to be one of the following:

(a) the set of elements of KL
ω which are groups;

(b) the set of elements of KL
ω which are abelian groups;

(c) the set of elements of KL
ω which are torsion-free abelian groups;

(d) the set of elements of KL
ω which are n-nilpotent groups, for some n < ω;

then we have that K′ is a Borel subset of (KL
ω ,B), and so Fact 1.1 applies.

Thus, given a class K ′ as in Fact 1.1, we can consider K ′ as a standard Borel
space, and so we can analyze the complexity of certain subsets of this space or of
certain relations on it (i.e., subsets of K ′ ×K ′ with the product Borel space struc-
ture). Further, this technology allows us to compare pairs of classes of structures
or, in another direction, pairs of relations defined on pairs of classes of structures.

Definition 1.2. Let X1 and X2 be two standard Borel spaces, and let also Y1 ⊆ X1

and Y2 ⊆ X2. We say that Y1 is reducible to Y2, denoted as Y1 6R Y2, when there
is a Borel map B : X1 → X2 such that for every x ∈ X1 we have:

x ∈ Y1 ⇔ B(x) ∈ Y2.

Notice that Definition 1.2 covers in particular the case X1 = K ′ ×K ′ for K ′ as
in Fact 1.1, and so for example Y1 could be the isomorphism relation on K ′. Also,
given a Borel space X, we can ask if there are subsets of X which are 6R-maxima
with respect to a fixed family of subsets of an arbitrary Borel space (e.g., Borel
sets, analytic sets, co-analytic sets, etc). In particular we can define:

Definition 1.3. Let X1 be a Borel space and Y1 ⊆ X1. We say that Y1 is complete
analytic (resp. complete co-analytic) if for every Borel space X2 and analytic subset
(resp. co-analytic subset) Y2 of X2 we have that Y2 6R Y1.

We now introduce the notion of Borel reducibility among equivalence relations.

Definition 1.4. Let X1 and X2 be two standard Borel spaces, and let also E1 be
an equivalence relation defined on X1 and E2 be an equivalence relation defined on
X2. We say that E1 is Borel reducible to E2, denoted as E1 6B E2, when there is
a Borel map B : X1 → X2 such that for every x, y ∈ X1 we have:

xE1y ⇔ B(x)E2B(y).

Remark 1.5. Notice that in the context of Definitions 1.2 and 1.4, E1 6R E2

and E1 6B E2 have two different meaning, as in the first case the witnessing Borel
function has domain X×X, while in the second case it has domain X. Furthermore,
notice that E1 6B E2 implies E1 6R E2 (but the converse need not hold, see 1.7).

We now define Borel completeness, the notion at the heart of our paper.

Definition 1.6. Let K1 be a Borel class of structures with domain ω and let ∼=1 be
the isomorphism relation on K1. We say that K1 is Borel complete (or, in more
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modern terminology, ∼=1 is S∞-complete) if for every Borel class K2 of structures
with domain ω there is a Borel map B : K2 → K1 such that for every A,B ∈ K2:

A ∼= B ⇔ B(A) ∼=1 B(B),

that is, the isomorphism relation on the space K2 is Borel reducible (in the sense
of Definition 1.4) to the the isomorphism relation on the space K1.

The following fact will be relevant for our subsequent historical account.

Fact 1.7 ([3]). Let K be a Borel class of structures with domain ω. If K is Borel
complete, then its isomorphism relation is a complete analytic subset of K×K, but
the converse need not hold, as for example abelian p-groups with domain ω have
complete analytic isomorphism relation but they are not a Borel complete space.

We now have all the ingredients necessary to be able to understand the problems
that we solve in this paper and to introduce the state of the art concerning them.
But first a useful piece of notation which we will use throughout the paper.

Notation 1.8. (1) We denote by Graph the class of graphs.
(2) We denote by Gp the class of groups.
(3) We denote by AB the class of abelian groups.
(4) We denote by TFAB the class of torsion-free abelian groups.
(5) Given a class K we denote by Kω the set of structures in K with domain ω.

Convention 1.9. To simplify statements, we use the following convention: when
we say that a class K of countable structures is Borel complete we mean that Kω

is Borel complete. Similarly, when we say that a class K of countable groups is
complete co-analytic we mean that Kω is a complete co-analytic subset of Gpω.
Finally, when we say that the isomorphism relation on a class of countable groups
is analytic, we mean that restriction of the isomorphism relation on K to Kω ×Kω

is an analytic subset of the Borel space Gpω ×Gpω (as a product space).

In [3], together with the general notions just defined, the authors studied some
Borel complexity problems for specific classes of countable structures of interest.
Among other things they showed (we mention only the results relevant to us):

(i) countable graphs, linear orders and trees are Borel complete;
(ii) torsion abelian groups have complete analytic ∼= but are not Borel complete;
(iii) nilpotent groups of class 2 and exponent p (p a prime) are Borel complete1;
(iv) the isomorphism relation on finite rank torsion-free abelian groups is Borel.

In [3] Friedman and Stanley state explicitly:

There is, alas, a missing piece to the puzzle, namely our conjecture
that torsion-free abelian groups are complete. [...] We have not
even been able to show that the isomorphism relation on torsion-
free abelian groups is complete analytic, nor, in another direction,
that the class of all abelian groups is Borel complete. We consider
these problems to be among the most important in the subject.

The challenge was taken by several mathematicians. The first to work on this
problem was Hjorth, which in [6] proved that any Borel isomorphism relation is

1As already mentioned in [3], this result is actually a straightforward adaptation of a model
theoretic construction due to Mekler [9].
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Borel reducible (in the sense of Definition 1.4) to the isomorphism relation on count-
able torsion-free abelian groups, and that in particular the isomorphism relation on
TFABω is not Borel (as there is no such Borel equivalence relation), leaving though
open the question whether TFABω is a Borel complete class, or even whether the
isomorphism relation on TFABω is complete analytic (cf. Def. 1.3 and Fact 1.7).

The problem resisted further attempts of the time and the interest moved to
another very interesting problem on torsion-free abelian groups: for 1 6 n < m < ω,
is the isomorphism relation ∼=n on torsion-free abelian groups of rank n strictly less
complex (in the sense of Definition 1.4) than the isomorphism relation on torsion-
free abelian groups of rank m? As mentioned above, the isomorphism relation
on torsion-free abelian groups of finite rank is Borel while, as just mentioned, the
isomorphim relation on countable torsion-free abelian groups is not, and so the two
problems are quite different, but obviously related. Also this problem proved to be
very challenging, until Thomas finally gave a positive solution to the problem, in
a series of two fundamental papers [13, 14], proving in particular that, for every
n < ω, ∼=n is not universal among countable Borel equivalence relations.

The fundamental work of Thomas thus resolved completely the case of torsion-
free abelian groups of finite rank, leaving open the problem for countable torsion-free
abelian groups of arbitrary rank, i.e. the problem referred to as “among the most
important in the subject” in [3]. The problem remained “dormant” for various
years (at the best of our knowledge), until Downey and Montalbán [2] made some
important progress showing that the isomorphism relation on countable torsion-
free abelian groups is complete analytic, a necessary but not sufficient condition for
Borel completeness, as recalled in Fact 1.7. This was of course possible evidence
that the isomorphism relation was indeed Borel complete, as conjectured in [3].
Despite this advancement, the problem of Borel completeness of countable torsion-
free abelian groups resisted for other 12 years, until this day, when we prove:

Main Theorem. The space TFABω is Borel complete, in fact there exists a con-
tinous map B : Graphω → TFABω such that for every H1, H2,∈ Graphω:

H1
∼= H2 if and only if B(H1) ∼= B(H2).

The techniques employed in the proof of our Main Theorem, lead us to the
consideration of classification questions of co-Hopfian torsion-free abelian groups,
where we recall that a group G is said to be co-Hopfian if G does not have proper
subgroups H isomorphic to G, i.e., every injective endomorphism of G is surjective.
As well-known (see e.g. [4, Proposition 2.2, pg. 130]), for G ∈ TFAB, G is co-
Hopfian iff G is divisible and of finite rank, i.e. G is a finitely dimensional vector
space over Q, and so clearly the co-Hopfian groups form a Borel subset of TFABω.
We wonder: what if replace the notion of surjective morphism with a notion of
“almost-surjective” morphism which is appropriate for the class TFAB? Does the
classification problem becomes intractable? In particular we might consider:

Definition 1.10. (1) We define the collection Emb1 of embeddings between ele-
ments of TFAB as f : G→ H ∈ Emb1 if and only if H/f [G] is torsion.

(2) We define the maps Emb2 on TFAB as those f : G→ H ∈ Emb1 such that f [G]
is H/f [G] torsion and bounded (i.e., there is n ∈ ω such that n(H/f [G]) = 0).

(3) We define Emb3 as those f ∈ Emb1 of the form g 7→ mg for some m ∈ Z\{0}.
These three notions of “almost-surjective” morphism lead to three variations of

the notion of co-Hopfian group (cf. Definition 2.7) and for them we are able to show:
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Theorem 1.11. For ` ∈ {1, 2, 3}, the set of Emb`-co-Hopfian torsion-free abelian
groups is a complete co-analytic subset of the Borel space space TFABω.

In a work in preparation [10] we extend the ideas behind Theorem 1.11 to a
systematic investigation of various classification problems for various rigidity condi-
tions on abelian and nilpotent groups from the perspective of descriptive set theory
of countable structures. In another work in preparation [11] we study the question
of existence (and absolute exitence) of uncountable (co-)Hopfian abelian groups.

2. Notations and Preliminaries

For the readers of various backgrounds we try to make the paper self-contained.

2.1. General notations

Definition 2.1. (1) Given a set X we write Y ⊆ω X for Y ⊆ X and |Y | < ℵ0.
(2) Given a set X and x̄, ȳ ∈ X<ω we write ȳ / x̄ to mean that lg(ȳ) < lg(x̄) and

x̄ � lg(ȳ) = ȳ, where x̄ is naturally considered as a function X lg(x̄) → X.
(3) Given a partial function f : M → M , we denote by dom(f) and ran(f) the

domain and the range of f , respectively.
(4) For ā ∈ Bn we write x̄ ⊆ B to mean that ran(x̄) ⊆ B, where, as usual, ā is

considered as a function {0, ..., n− 1} → B.
(5) Given a sequence f̄ = (fi : i ∈ I) we write f ∈ f̄ to mean that there exists

j ∈ I such that f = fj.

2.2. Groups

Notation 2.2. Let G and H be groups.

(1) H 6 G means that H is a subgroup of G.
(2) We let G+ = G \ {eG}, where eG is the neutral element of G.
(3) If G is abelian we might denote the neutral element eG simply as 0G = 0.

Definition 2.3. Let H 6 G be groups, we say that H is pure in G, denoted by
H 6∗ G, when if k ∈ H, n < ω and (in additive notation) G |= ng = k, then there
is h ∈ H such that H |= nh = k.

Observation 2.4. H 6∗ G ∈ TFAB, k ∈ H, 0 < n < ω, G |= ng = k ⇒ g ∈ H.

Observation 2.5. Let G ∈ TFAB, p a prime and let:

Gp = {a ∈ G : a is divisible by pm, for every 0 < m < ω},
then Gp is a pure subgroup of G.

Proof. This is well-known, see e.g. the discussion in [5, pg. 386-387].

Notation 2.6. We denote by Emb the class of embeddings between (abelian) groups.

Definition 2.7. (1) Let K be a class of groups and suppose that (K,Map1) and
(K,Map2) are categories. Then we say that G ∈ K is (K,Map1,Map2)-Hopfian
(or (Map1,Map2)-Hopfian) when f ∈ Map1(G,G) implies f ∈ Map2(G,G).

(2) We say that G ∈ K is co-Hopfian (resp. Hopfian) when G is (K,Map1,Map2)-
Hopfian, where K is the class of groups, Map1 is the class of embeddings (resp.
onto homom.) and Map2 is the class of onto homom. (resp. embeddings).

(3) More generally, when Map1 = Emb (cf. Not. 2.6), instead of (K,Map1,Map2)-
Hopfian we simply talk of Map2-co-Hopfian groups (we do this in Theorem 1.11).
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2.3. Graphs and Trees

Definition 2.8. By a directed graph we mean a structure in the language L = {R},
where R is a binary predicate symbol. We say that the directed graph M is irreflexive
when M |= ∀x(¬R(x, x)). We say that the directed graph M is asymmetric when
M |= ∀x∀y(R(x, y) → ¬R(y, x)). We say that the directed graph M has no cycles
(or that it is acyclic) when there is no n < ω and x0, ..., xn ∈M such that:

M |= x0 = xn, M |= R(xn, x0) and, for every i < n, M |= R(xi, xi+1).

Definition 2.9. By a graph we mean a structure M in the language L = {R},
where R is a binary predicate symbol, satisfying the following axioms:

(i) ∀x(¬R(x, x)) (irreflexivity of R);
(ii) ∀x∀y(R(x, y)→ R(y, x)) (symmetry of R).

The graph M has no cycles when there is no 2 6 n < ω and x0, ..., xn ∈M such that:

M |= x0 = xn, M |= R(xn, x0) and, for every i < n, M |= R(xi, xi+1).

Definition 2.10. Given an L-structure M by a partial automorphism of M we
mean a partial function f : M →M such that f : 〈dom(f)〉M ∼= 〈ran(f)〉M .

Definition 2.11. Let (T,<T ) be a strict partial order.

(1) (T,<T ) is a tree when, for all t ∈ T , {s ∈ T : s <T t} is well-ordered by the
relation <T . Notice that according to our definition a tree (T,<T ) might have
more than one root, i.e. more than one <T -minimal element. We say that the
tree (T,<T ) is rooted when it has only one <T -minimal element (its root).

(2) A branch of the tree (T,<T ) is a maximal chain of the partial order (T,<T ).
(3) A tree (T,<T ) is said to be well-founded if it has only finite branches.
(4) Given a tree (T,<T ) and t ∈ T we let the level of t in (T,<T ), denoted as

lev(t), to be the order type of {s ∈ T : s <T t} (recall item (1)).

Concerning Def. 2.11(4), we will only consider trees (T,<T ) such that, for every
t ∈ T , {s ∈ T : s <T t} is finite, so for us lev(t) will always be a natural number.

Fact 2.12. Let M be a graph, U 6= V ⊆M and assume that |U| = |M | = |V| = ℵ0.
Then the following are equivalent:

(A) h is an isomorphism from M � U onto M � V;
(B) there is ḡ = (gk : k < ω) such that:

(a) for every k < ω, gk is a finite partial automorphism of M ;
(b) for every k < ω, gk ( gk+1;
(c) for every k < ω, gk 6= g−1

k ;
(d)

⋃
k<ω gk = h.

3. Borel Completeness of Torsion-Free Abelian Groups

3.1. The Frame

Hypothesis 3.1. (1) M is (a copy of) the universal homogeneous graph of size
ℵ0 (a.k.a. the countable random graph) and M has set of nodes ⊆ ω;

(2) G is the set of finite partial automorphisms g of M such that either dom(g) = ∅
or g 6= g−1. Notice that in particular G is closed under g 7→ g−1;

(3) for m < ω, Gm∗ = {(g0, ..., gm−1) ∈ Gm : g0 ( · · · ( gm−1}.

Notation 3.2. (1) We use s, t, ... to denote finite subsets of M and U ,V, ... to
denote arbitrary subsets of M .
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(2) For ḡ = (g0, ..., glg(ḡ)−1) ∈ Glg(ḡ)
∗ and s, t ⊆ω M , we let:

(a) ḡ[s] = t mean that glg(ḡ)−1[s] = t;
(b) dom(ḡ) = dom(glg(ḡ)−1);
(c) ran(ḡ) = ran(glg(ḡ)−1);

(d) ḡ−1 = (g−1
i : i < lg(ḡ))

Definition 3.3. In the context of Hypothesis 3.1, let Kbo
1 (M) be the class of objects

m(M) = m = (Xm, X̄m, Im, Īm, f̄m, Ēm, p̄m, Sm, <m) = (X, X̄, I, Ī, f̄, Ē, p̄, S,<)
such that the following conditions are satisfied:

(1) X is a non-empty countable set and X ⊆ ω;
(2) (a) (X ′s : s ⊆ω M) is a partition of X into infinite sets;

(b) for s ⊆ω M , let Xs =
⋃

t⊆sX
′
t;

(c) X̄ = (Xs : s ⊆ω M) and so s ⊆ t ⊆ω M implies Xs ⊆ Xt;
(3) for U ⊆M let XU =

⋃
{Xs : s ⊆ω U} and so X = XM =

⋃
{Xs : s ⊆ω M};

(4) (a) Ī = (In : n < ω) = (Imn : n < ω) are pairwise disjoint;
(b) ḡ ∈ In implies ḡ ∈ Gm∗ for some m 6 n;
(c) In is finite;

(5) if ḡ′ / ḡ ∈ In, then ḡ′ ∈ I<n :=
⋃

`<n I`;
(6) I = Im =

⋃
n<ω In and <I is the order of being an initial segment;

(7) f̄ = (fḡ : ḡ ∈ I) and:
(a) fḡ is a finite partial permutation of X with no cycles, i.e. there are no

x0, ..., xn ∈ dom(fḡ) such that x0 = xn, fḡ(xn) = x0, and, for every i < n,
fḡ(xi) = xi+1, so in particular fḡ(x) 6= x and fḡ(x) = y implies fḡ(y) 6= x;

(b) dom(fḡ) ⊆ Xdom(ḡ) and ran(fḡ) ⊆ Xran(ḡ) (cf. Notation 3.2(2b)(2c));
(c) for s, t ⊆ω M and ḡ[s] = t we have:

fḡ(x) = y implies (x ∈ X ′s iff y ∈ X ′t).
(d) for s, t ⊆ω M , (fḡ(x) = y, x ∈ X ′s, y ∈ X ′t) implies (ḡ[s] = t);

(e) if ḡ ∈ In, then ḡ−1 ∈ In and fḡ−1 = f−1
ḡ ;

(8) ḡ / ḡ′ ⇒ fḡ ( fḡ′ ;
(9) for Z ⊆ X, we let seq(Z) =

⋃
0<n<ω seqn(Z), where, for 0 < n < ω, we let:

seqn(Z) = {x̄ ∈ Zn : x̄ injective};
(10) we define the graph (seqn(X), Rm

n ) as (x̄, ȳ) ∈ Rm
n = Rn when x̄ 6= ȳ and:

for some ḡ ∈ I we have fḡ(x̄) = ȳ,

notice that fḡ(x̄) = ȳ implies f−1
ḡ (ȳ) = x̄ and f−1

ḡ = fḡ−1 ∈ f̄ , as ḡ−1 ∈ I.
(11) the graph (seqn(X), Rn) has no cycles (cf. Definition 2.9);
(12) (a) Ēm = Ē = (En : n < ω) = (Em

n : n < ω), and, for n < ω, En is the
equivalence relation corresponding to the partition of seqn(X) given by the
connected components of the graph (seqn(X), Rn);

(b) Y = Ym = {x ∈ X : for some ḡ ∈ I, x ∈ dom(fḡ)}, and:

seqk(m) = {x̄ ∈ seqk(X) : for some ḡ ∈ I, x̄ ⊆ dom(fḡ)},
notice that seqk(m) ⊆ seqk(Ym) but the converse need not hold;

(13) p̄ is a sequence of prime numbers without repetitions such that:

p̄ = (p(e,q̄) : e ∈ seqn(X)/En for some 0 < n < ω and q̄ ∈ (Z \ {0})n);

(14) Sm ⊆ Im satisfies the following conditions:
(a) if ḡ ∈ Im is trivial, i.e. dom(ḡ) = ∅, then ḡ ∈ Sm;
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(b) for non-trivial ḡ ∈ Im, ḡ ∈ Sm iff ḡ−1 /∈ Sm;
(c) if ḡ_(g) ∈ Im and ḡ is non-trivial, then ḡ_(g) ∈ Sm ⇔ ḡ ∈ Sm;

(15) if n < ω, ḡ ∈ Sm ⊆ Im, ḡ = (g0, ..., gn) and s ⊆ dom(gn), then we have:
(a) n even implies Xs ∩ {0, ..., n− 1} ⊆ dom(fḡ);
(b) n odd implies Xgn[s] ∩ {0, ..., n− 1} ⊆ ran(fḡ);

(16) if 2 6 i∗ < ω and x̄0, ..., x̄i∗−1 ∈ x̄/En are pairwise distinct, then there are
i1 6= i2 < i∗ and `1, `2 < n such that the following holds:
(α) xi1`1 /∈ {x

i
` : ` < n, i < i∗, (i, `) 6= (i1, `1)};

(β) xi2`2 /∈ {x
i
` : ` < n, i < i∗, (i, `) 6= (i2, `2)};

(17) if k > 1, ȳ ∈ x̄/Ek and for some i, j < lg(x̄) = lg(ȳ), yi = xj, then i = j.
(18) <m is a linear order of Ym of order type 6 ω;
(19) if ḡ ∈ Sm, x̄ ∈ seqk(dom(fḡ)), k > 1, then max<m

(x̄) <m max<m
(fḡ(x̄)), fur-

ther if ` < k, ḡ = (gi : i 6 n) and x` /∈ dom(fḡ�n), then max<m
(x̄) <m fḡ(x`);

(20) for k > 1, x̄ ∈ seqk(Ym), let sucmk (x̄) = {fḡ(x̄) : ḡ ∈ Sm, x̄ ∈ seqk(dom(fḡ))};
(21) (a) the directed graph (seqk(Ym), Pm

k ) has no cycles (cf. Def. 2.8), where:

Pm
k = {(x̄, ȳ) : x̄ ∈ seqk(Ym), ȳ ∈ sucmk (x̄)};

(b) the transitive closure of {(x̄, ȳ) : x̄ ∈ seqk(Ym), ȳ ∈ sucmk (x̄)}, denoted as
<m

k , is a strict partial order on the set seqk(Ym);
(22) (seqk(Ym), <m

k ) is a tree (possibly with more than one root);
(23) if x̄, ȳ ∈ seqk(Ym) are Ek-equivalent, then:

(a) clearly, by (22), and recalling that x̄, ȳ ∈ seqk(Ym) are Ek-equivalent, we
have that x̄, ȳ have a greatest <m

k -lower bound, denoted as x̄ ∧mk ȳ;
(b) if z̄ = (x̄∧mk ȳ) <m

k ȳ, i < k and xi = yi, then yi is not <m-maximal in ran(ȳ);
(c) if x̄ <m

k ȳ, then ran(x̄) ∩ ran(ȳ) = ∅;
(24) if s, t ⊆ω M and X ′s ∩ Ym 6= ∅ 6= X ′t ∩ Ym, then for some x ∈ X ′s and y ∈ X ′t

we have that x 6= y ∈ Ym and (x, y) is <m
2 -minimal in (x, y)/E2.

Remark 3.4. Let m ∈ Kbo
1 (M). Notice that conditions (7a) and (17) of Defini-

tion 3.3 imply that for every fḡ ∈ f̄m we have that dom(fḡ) ∩ ran(fḡ) = ∅. Why?
Suppose there is x1 ∈ dom(fḡ) ∩ ran(fḡ), and let x0 ∈ X be such that fḡ(x0) = x1

and x2 := fḡ(x1). Then (x0, x1)E2(x1, x2), contradicting Definition 3.3(17).

Observation 3.5. Let m ∈ Kbo
1 (M). The set of conditions (1)-(23) from Defini-

tion 3.3 is not minimal. In particular clauses (18)-(23) imply (16) and also:

(·) if x̄0, ..., x̄i∗−1 ∈ x̄/En are pairwise distinct, then there exists j < i∗ and ` < n

such that xj` is <m-maximal in {xj0, ..., x
j
n−1} and the following holds:

xj` /∈ {x
i
m : i < i∗,m < n, (i,m) 6= (j, `)}.

Proof. For n = 1, both (16) and (·) are trivial. Let then n > 2.

(+) Let j < i∗ be such that x̄j is locally <m
n -maximal (i.e., i < i∗ implies x̄j 6<m

n x̄i).

Let ` < n be such that xj` is <m-maximal in x̄j (recall that x̄j is with no
repetitions). We claim that (j, `) is as required in (·).

We prove (+). Let (i,m) be a counterexample, i.e. i < i∗, m < n, (i,m) 6= (j, `) and

xim = xj` . By Definition 3.3(17), m = `, so necessarily i 6= j and let ȳ := x̄i ∧mn x̄j .
If ȳ 6= x̄j , then, noticing firstly that ȳ <m

n x̄j we may apply Definition 3.3(23b) with

x̄i, x̄j , ȳ here standing for x̄, ȳ, z̄ there, and so we have that xj` is not <m-maximal in
x̄j , a contradiction. If on the other hand ȳ = x̄j , then x̄j = ȳ <m

n x̄i, as x̄j = ȳ = x̄i

cannot happen, but this contradicts the fact that i < i∗ implies x̄j 6<m
n x̄i.
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TORSION-FREE ABELIAN GROUPS ARE BOREL COMPLETE 9

We are then left with proving (16). Now, if {x̄i : i < i∗} has two <m
n -incomparable

elements, then we are done by (+). Indeed, let i(1), i(2) < i(∗) be such that
x̄i(1), x̄i(2) are <m

n -incomparable. Now, for ` ∈ {1, 2} there is j(`) < i(∗) such
that x̄i(`) 6m

n x̄j(`) and x̄j(`) is locally <m
n -maximal among {x̄i : i < i(∗)}. We

can then choose m(`) < n such that x
j(`)
m(`) is <m-maximal in x̄i(`). By (+) we

know that (j(`),m(`)) are as required for (·). But then, by the choice of i(1), i(2)
and j(1), j(2), also x̄j(1), x̄j(2) are <m

n -incomparable (by Definition 3.3(22)), hence
j(1) 6= j(2). It follows that (j(1),m(1)), (j(2),m(2)) are as required for (16), and
so in this case we are done. So we are left with the case in which {x̄i : i < i∗} is
<m

n -linearly ordered. W.l.o.g. we have the following situation:

x̄0 <m
n x̄1 <m

n · · · <m
n x̄i∗−1.

By Def. 3.3(23c) the sets (ran(x̄i) : i < i∗) are pairwise distinct, so we are done.

Definition 3.6. For m ∈ Kbo
1 (M), we say that m ∈ Kbo

2 (M) when:

(∗)0 Xm = Ym;

(∗)1 if s ⊆ω M , then for some x 6= y ∈ X ′s we have ¬((x)E1(y)) (this condition
actually follows by Definition 3.3(24) but we chose to include it for clarity);

(∗)2 I =
⋃

n<ω In =
⋃

m<ω Gm∗ (cf. Hypothesis 3.1(3));

(∗)3 if, for every n < ω, gn ∈ G and gn ( gn+1, and U =
⋃

n<ω dom(gn) ⊆ M ,
then

⋃
n<ω dom(f(g` : `<n)) =

⋃
{Xs : s ⊆ω U} (this condition actually follows

by Definition 3.3(15) but we chose to include it for clarity).

Definition 3.7. (1) Kbo
0 (M) is the class of m ∈ Kbo

1 (M) such that for some n < ω
we have that for every m > n, Im = ∅, in this case we let n = n(m) to be the
minimal such n < ω. Note that if m ∈ Kbo

0 (M), then Ym is finite.
(2) We say that n ∈ suc(m) when:

(a) n,m ∈ Kbo
0 (M);

(b) n(n) = n+ 1, where n(m) = n;
(c) if ` < n(m), then Im` = In` and

∧
ḡ∈Im

`
fmḡ = fnḡ ;

(d) Inn = {ḡ, ḡ−1}, lg(ḡ) 6 n, and ` < lg(ḡ) implies:

ḡ � ` ∈
⋃
`<n

Im` ,

notice that ḡ /∈
⋃

`<n I
m
` (by Definition 3.3(4a)) and the symmetric condi-

tion ḡ−1 � ` ∈
⋃

`<n I
m
` follows from Definition 3.3(7e);

(e) if x̄Enȳ and ¬(x̄Emȳ), then x̄ /∈ seqk(m) or ȳ /∈ seqk(m), hence we have:

(x̄/Em
k is a singleton) or (ȳ/Em

k is a singleton);

(f) if ḡ is as in (d) and s ⊆ dom(ḡ)∪dom(ḡ−1), then for some x, y ∈ Yn ∩X ′s:

¬((x)En
1 (y));

(g) if s ⊆ dom(ḡ), then Yn ∩Xs ⊆ dom(fḡ);
(h) <m⊆<n (cf. Definition 3.3(18)), x ∈ Ym and y ∈ Yn \ Ym implies x <n y;
(i) Sm ⊆ Sn, so Sm = Sn ∩ Im;

(3) <suc on Kbo
0 (M) is the transitive closure of the relation n ∈ suc(m).

Claim 3.8. For M as in Hypothesis 3.1, Kbo
2 (M) 6= ∅.
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10 GIANLUCA PAOLINI AND SAHARON SHELAH

Proof. (∗)1 Kbo
0 (M) 6= ∅.

[Why? Let m be such that:

(a) |X| = ℵ0, and X ⊆ ω;
(b) (X ′s : s ⊆ω M) is a partition of X into infinite sets;
(c) for s ⊆ω M , Xs =

⋃
t⊆sX

′
t;

(d) X̄ = (Xs : s ⊆ω M);
(e) Im0 = {()}, f() is the empty function, f̄ = (f()) and I1+n = ∅, for every n < ω;
(f) Sm = {()}.
Notice that () denotes the empty sequence and under this choice of m, n(m) = 1,
where we recall that the notation n(m) was introduced in Definition 3.7(1).]

(∗)2 If m ∈ Kbo
0 (M), n = n(m) > 0, ḡ = (g0, ..., gm−1) ∈ Im<n (so n > m) and:

(i) g ∈ G;
(ii)

⋃
`<m g` ( g;

(iii) ḡ_(g) /∈ Im;
(iv) if m is even, then ḡ is trivial or ḡ ∈ Sm;
(v) if m is odd then ḡ /∈ Sm;

then there is n ∈ Kbo
0 (M) such that (recall thatfḡ = fmḡ ):

(a) n ∈ suc(m);
(b) ḡ_(g) ∈ Inn;
(c) dom(fḡ_(g)) contains {0, ...,m− 1} ∩Xdom(g);
(d) if m is even, then Sn ∩ Inn = {ḡ_(g)};
(e) if m is odd, then Sn ∩ Inn = {(ḡ−1)_(g)−1}, so n(n) = n(m) + 1.

We prove (∗)2. To this extent:

(∗)2.0 Let s∗ = dom(g) ⊆ω M , hence dom(ḡ) ( s∗.

(∗)2.1 Let u1, u2 be such that:
(a) u1 is a finite initial segment of X;
(b) u1 includes (X ∩ {0, ...,m− 1}) ∪ Ym;
(c) for every s ⊆ dom(g)∪dom(g−1) the set (u1∩X ′s)\Ym has > 2 elements;
(d) u2 = u1 ∩Xs∗ .

(∗)2.2 For ` ∈ u2, let y` = ` and z` = f∗(y`), where we let f∗ be such that:

(a) f∗ is a finite permutation of X obeying Def. 3.3(7a)-(7d) with dom(f∗) = u2;
(b) f∗ extends fḡ;
(c) if x ∈ dom(f∗) \ dom(fḡ), then f∗(x) /∈ (u2 ∪ Ym);
(d) if t ⊆ ran(ḡ), then the set (X ′t ∩ (ran(f∗)) \ ran(fmḡ ) is an initial segment of the

set X ′t \ Ym with respect to the standard order on the natural numbers (recall
that by Definition 3.3(1) we have that X ⊆ ω);.

It follows that:

(∗)2.2.1 (·1) if s ⊆ dom(g), then ((X ′s∩u2)\Ym)\ f∗[Ym] has at least two elements;
(·2) if s ⊆ ran(g), then ((X ′s∩f∗[u2])\Ym)\f∗[Ym] has at least two elements.

[Why (∗)2.2.1? E.g., for (·2), let t = g−1[s], so (X ′t ∩ dom(f∗)) \ Ym has at least two
elements, and thus f∗ maps them into distinct members of X ′s \ Ym.]
We now define n, as required in (∗)2.

(∗)2.3 (a) n(n) = n+ 1;
(b) fnḡ_(g) = f∗, f

n
(ḡ−1)_(g−1) = f−1

∗ and Inn = {ḡ_(g), (ḡ−1)_(g−1)};
(c) <m⊆<n and x ∈ Ym and y ∈ Yn \ Ym implies x <n y;
(d) Yn = Ym ∪ dom(f∗) ∪ ran(f∗);
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(e) for `,m ∈ Yn we let ` <n m iff one of the following three exclusive
conditions is verified:

(i) ` <m m;
(ii) ` ∈ Ym and m ∈ Yn \ Ym;
(iii) m, ` ∈ Yn \Ym and ` is smaller than m as natural numbers (recall

that by Definition 3.3(1) we have that X ⊆ ω);
(f) if n is even, then Sn = Sm ∪ {ḡ_(g)};
(g) if n is odd, then Sn = Sm ∪ {(ḡ−1)_(g)−1}.

We have to check that n ∈ Kbo
1 , in fact it being in suc(m) (and so in Kbo

0 ) is
then obvious, and (b) and (c) of (∗)2 are obvious too. Comparing the graphs
(seqk(X), Rn

k) and (seqk(X), Rm
k ) the set of new edges are the following:

{(x̄, ȳ) : (x̄, ȳ) ∈ Zk
1 ∪ Zk

−1},
where we let:

(∗)2.4

Zk
1 = {(x̄, ȳ) : x̄ ∈ seqk(u2), f∗(x̄) = ȳ, ȳ /∈ seqk(m)},

Zk
−1 = {(x̄, ȳ) : (ȳ, x̄) ∈ Zk

1 },
Notice that possibly x̄ ⊆ dom(f∗) ∧ x̄ /∈ seqk(m), and possibly x̄ ⊆ dom(f∗) ∧ x̄ 6⊆
dom(fmḡ )∧x̄ ∈ seqk(m) (as witnessed by some ḡ′ ∈ Im<n), anyhow the union Zk

1 ∪Zk
−1

is disjoint. Notice:

(∗)2.4.1 if x̄ ⊆ u2, lg(x̄) = k and ȳ = f∗(x̄), then:
(·1) x̄ ⊆ dom(fḡ)⇔ ȳ ⊆ ran(fḡ)⇒ x̄ ∈ seqk(m);
(·2) x̄ ⊆ dom(f∗) ∩ Ym 6⇒ x̄ ∈ seqk(m), in general;
(·3) there might be s ⊆ dom(ḡ) and x ∈ X ′s such that x ∈ Ym but x /∈

dom(fḡ), but then x ∈ u2 and so x ∈ dom(fḡ_(g)) \ dom(fḡ).

Now, we have:

(∗2.5) (a) if (x̄, ȳ) ∈ Zk
1 , then:

(α) x̄ ∈ seqk(u2), x̄ 6⊆ dom(fḡ) and x̄ ∩ f∗(Ym) ⊆ dom(fḡ);
(β) ȳ ⊆ f∗(u2), ȳ 6⊆ dom(fḡ), ȳ 6⊆ ran(fḡ) and ȳ ∩ Ym ⊆ ran(fḡ);

(b) the dual of item (a) for (x̄, ȳ) ∈ Zk
−1;

(c) if ȳ ∈ seqk(n) \ seqk(m), then ȳ occurs in exactly one edge of Rn
k.

Notice now that:

(∗)2.6 in the graph (seqk(X), Rn
k) we have:

(i) all the new edges have at least one node in seqk(u2) \ seqk(dom(fḡ))
and one in seqk(f∗[u2]) \ seqk(ran(fḡ));

(ii) every node in seqk(n) \ seqk(Ym) has valency 1.

Notice also that:

(∗)2.6.1 (a) if x̄0, ..., x̄m is a path in (seqk(n), Rn
k) with no repetitions and 0 < ` <

m, then x̄` ∈ seqk(m);
(b) En

k � seqk(m) = Em
k � seqk(m).

Thus, by (∗)2.6 and (∗)2.6.1, n satisfies Definition 3.3, in fact we have:

(∗)2.7 Definition 3.3(1)-(3) are obvious as they are the same for m;

(∗)2.8 Definition 3.3(4)-(15) and (18)-(24) are easy to check by our choices.

(∗)2.9 As noticed in Observation 3.5, Definition 3.3(16) follows from Definition 3.3(18)-
(23), and Definition 3.3(17) is easy.

So we finished proving (∗)2.
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12 GIANLUCA PAOLINI AND SAHARON SHELAH

(∗)3 We can choose an <suc-increasing sequence (m` : ` < ω) in Kbo
0 (M) whose

limit m is as wanted, i.e. m ∈ Kbo
2 (M).

We show this. We can find a list (ḡ` : ` < ω) of
⋃

m<ω Gm∗ such that:

(i) lg(ḡ`) 6 `;
(ii) if ḡ` / ḡk, then ` < k;

(iii) lg(ḡ`) = 0 iff ` = 0.

Now, by induction on ` < ω, we choose m` ∈ Kbo
0 such that n(m`) 6 ` + 1 and

m`+1 ∈ suc(m`). We proceed as follows:

(` = 0) use (∗)1;

(` = k + 1) (·1) if ḡk+1 ∈ Imk , then m` = mk;
(·2) if ḡk+1 /∈ Imk , let mk = lg(ḡk+1)− 1, so ḡk+1 � m ∈ Imk , and:

(·2.1) if mk is even, use (∗)2 with the pair n(mk), ḡk+1 here stand-
ing for the pair n, ḡ_(g) there;

(·2.2) if mk is odd, use (∗)2 with the pair n(mk), ḡk+1 here standing
for the pair n, ḡ_(g) there.

Clearly m = lim`<ω(m`) is as promised by the choice of (ḡ` : ` < ω), e.g. Def. 3.6
(∗1) holds by Def. 3.7(2f), which in turn holds by (∗2.1)(c) of the present proof.
Concerning <m, which is needed for Definition 3.3(18), let <m=

⋃
{<m`

: ` < ω}.
As, by the first half of Definition 3.7(2h), (Ym`

, <m`
) is an increasing sequence of

linear orders, clearly (Ym, <m) is a linear order, and it is easy to see that it is of
order type 6 ω, by the second half of Definition 3.7(2h). Finally, we show that
Ym = X. It suffices to prove that, for any s ⊆ω M , X ′s ⊆ Ym. For this it suffices to
prove that for any m < ω, {0, ...,m−1}∩X ′s ⊆ Ym. But clearly for some ḡ ∈ G∗m we
have that s ⊆ dom(ḡ), and so for some ` > 0 we have that ḡ` = ḡ, and also for some
i > ` and g′, g′′ ∈ G we have that ḡi = ḡ_(g′, g′′). Thus by Definition 3.3(15) we

have that {0, ...,m− 1} ∩X ′s ⊆ dom(f
m(i+1)
ḡ ) ⊆ Ym. This concludes the proof.

Definition 3.9. Let m ∈ Kbo
1 (M).

(1) Let G2 = G2[m] be
⊕
{Qx : x ∈ X}.

(2) Let G0 = G0[m] be the subgroup of G2 generated by X, i.e.
⊕
{Zx : x ∈ X}.

(3) Let G1 = G1[m] be the subgroup of G2 generated by:
(a) G0;
(b) p−m(

∑
`<n q`x`), where:

(i) 0 < m < ω;
(ii) x̄ = (x` : ` < n) ∈ seqn(X), e = x̄/En;

(iii) q̄ = (q` : ` < n) ∈ (Z \ {0})n;
(iv) p = p(e,q̄) (so a prime).

(4) For a prime p, let G(1,p) = {a ∈ G1 : a is divisible by pm, for every 0 < m < ω}
(notice that, by Observation 2.5, G(1,p) is always a pure subgroup of G1).

(5) For U ⊆M , we let:

G(1,U)[m] = G(1,U)[m(M)] = G(1,U) = 〈y : y ∈ Xu, u ⊆ω U〉∗G1
= 〈XU 〉∗G1

.

Notice that the notation m(M) was introduced in the second line of Def. 3.3.

(6) For fḡ ∈ f̄ (cf. Definition 3.3(7)), let f̂2
ḡ be the unique partial automorphism

of G2 which is induced by fḡ, explicitly: if k < ω and for every ` < k we have
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that y1
` ∈ dom(fḡ), y2

` = fḡ(y1
` ), q` ∈ Q and a =

∑
`<k q`y

1
` ∈ G2, then:

f̂2
ḡ (a) =

∑
`<k

q`y
2
` .

Notice that if
∑

`<k q`y
1
` ∈ G1, then also

∑
`<k q`y

2
` ∈ G1, by Definition 3.9(3)

recalling Definition 3.3(7a) and (12a), this is relevant for Lemma 3.10(2).

(7) For ` ∈ {0, 1} we let f̂2
ḡ � G` = f̂ `ḡ , a partial automorphism of G`, and f̂ḡ = f̂1

ḡ .
(8) For i ∈ {0, 1, 2}, a =

∑
`<m q`x` ∈ Gi, with x` ∈ X and q` ∈ Q \ {0}, let

supp(a) = {x` : ` < m}, i.e., supp(a) ⊆ω X is the smallest subset of X s.t.:

a ∈ 〈supp(a)〉∗Gi
.

Lemma 3.10. Let m ∈ Kbo
2 and ` ∈ {0, 1, 2}.

(1) G`[m] ∈ TFAB and |G`[m]| = ℵ0.

(2) Recalling f̂ḡ = f̂1
ḡ := f̂2

ḡ � G(1,dom(ḡ)) (cf. Definition 3.9(5)(7)), we have that

the map f̂ḡ is a well-defined partial automorphism of G1, and dom(f̂ḡ) is a pure

subgroup of G1[m], in fact dom(f̂ḡ) is the pure closure in G1 of dom(f̂0
ḡ ).

(3) If p = p(e,q̄), e ∈ seqn(X)/En, q̄ = (q` : ` < n) ∈ (Z \ {0})n and n > 1, then:

G(1,p) = 〈
∑
{Z(

∑
`<n

q`y`) : ȳ ∈ e}〉∗G1
.

(4) For e as in (3), assume that we have i∗ > 2 and ȳi ∈ e, for i < i∗, which are
pairwise distinct, qi ∈ Q\{0}, for i < i∗, and a =

∑
i<i∗

qi(
∑
q`y

i
`) ∈ G1. Then

supp(a) has at least two elements, where supp(a) is as in Definition 3.9(8).

Proof. Items (1), (2) are clear. We elaborate on items (3), (4). Concerning item (3),
if ȳ ∈ e and 0 < m < ω, then p−m

∑
`<k q`y` is one of the generators of G1, as this

holds for every 0 < m < ω it follows that
∑

`<k q`y` ∈ G(1,p), by the definition of
G(1,p). As G(1,p) is a subgroup of G1, for every ȳ ∈ e we have that Z(

∑
`<n q`y`) ⊆

G(1,p) 6 G1. But then we have that Z = {Z(
∑

`<n q`y`) : ȳ ∈ e} ⊆ G(1,p), and so
〈Z〉G1

6 G(1,p). Lastly, 〈Z〉∗G1
6 G(1,p), because by Definition 3.9(4) we have that:

(∗1) G(1,p) is a pure subgroup of G1, as G1 ∈ TFAB.

So we are done with one inclusion. Concerning the other inclusion, toward contra-
diction assume that g ∈ G(1,p) \ 〈Z〉∗G1

, where Z is as above. Now, we have:

(∗2) Z1 := 〈Z〉∗G1
is a pure subgroup of G1 and G1/Z1 ∈ TFAB;

(∗3) each non-zero element of G1/Z1 is not divisible by pm for some m < ω.

[Why? By the choice of G1 and Z.]
Hence we reach the following contradicting statement:

(∗4) g ∈ G(1,p) ⊆ G1 is not divisible by pm for some m < ω.

Concerning item (4), by Definition 3.3(16) applied to ȳ0, ..., ȳi∗−1 ∈ e there are
i1 6= i2 < i∗ and `1, `2 < n such that the following holds:

(α) yi1`1 /∈ {y
i
` : ` < n, i < i∗, (i, `) 6= (i1, `1)};

(β) yi2`2 /∈ {y
i
` : ` < n, i < i∗, (i, `) 6= (i2, `2)}.

But then, by (α), yi1`1 appears exactly once in the sum
∑

i<i∗
qi(

∑
q`y

i
`) ∈ G1,

and similarly, by (β), yi2`2 appears exactly once in the sum
∑

i<i∗
qi(

∑
q`y

i
`) ∈ G1.

Hence, as a =
∑

i<i∗
qi(

∑
q`y

i
`), we have that |supp(a)| > |{yi1`1 , y

i2
`2
}| = 2.
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Claim 3.11. Assume that m ∈ Kbo
2 (M), U 6= V ⊆M and |U| = |V| = ℵ0. Then:

M � U ∼= M � V ⇒ G(1,U)[m] ∼= G(1,V)[m].

Proof. Let h be an isomorphism from M � U onto M � V. Let (r` : ` < ω) list U
with no repetitions (recall |U| = |V| = ℵ0) in a such a way that:

(i) for k < ω, gk = h � {r` : ` 6 k};
(ii) (gk : k < ω) is as in Fact 2.12 with respect to h;

(iii) for k < ω, ḡk = (g` : ` 6 k), so ḡk ∈ Gk+1
∗ (cf. Hypothesis 3.1(3));

(iv) sk = {r` : ` 6 k} = dom(gk) and tk = {h(r`) : ` 6 k} = ran(gk);
(v) by Definition 3.6(∗)2, for every k < ω we have that ḡk ∈ Im and so fḡk ∈ f̄m.

Notice now that for k < ω we have:

(?1) (a) dom(fḡk) ⊆ Xsk , ran(fḡk) ⊆ Xtk ;
(b) {0, ..., k − 1} ∩Xsk ⊆ dom(fḡk+1

);

(c) {0, ..., k − 1} ∩Xtk ⊆ dom(f−1
ḡk+1

) = ran(fḡk+1
).

[Why? (a) is by Def. 3.3(7b). (b) and (c) are by Definition 3.3(14)(15).]
Notice also that:

(?2) (d)
⋃

k<ω dom(fḡk) =
⋃

k<ωXsk = XU ;

(e)
⋃

k<ω dom(f−1
ḡk ) =

⋃
k<ωXh[sk] = XV .

[Why? (d) is by (?1)(a)-(b) and the fact that X ⊆ ω. (e) is by (?1)(a)-(b), the fact
that X ⊆ ω and that h is from U onto V.]
Hence, we have:

(?3)
⋃

k<ω f̂ḡk is an isomorphism from G(1,U) onto G(1,V) (cf. Def. 3.9(7)).

[Why? By Def. 3.9(5)(6)(7).]

3.2. Analyzing Isomorphism

Hypothesis 3.12. Throughout this subsection the following hypothesis holds:

(1) m ∈ Kbo
2 (M);

(2) U 6= V ⊆M ;
(3) |U| = ℵ0 = |V|;
(4) π is an isomorphism from G(1,U)[m] onto G(1,V)[m].

Lemma 3.13. Let a ∈ G(1,U)[m] \ {0} and let b = π(a).

(1) For a prime p, a ∈ G(1,p) ⇔ b ∈ G(1,p);
(2) if a = qx, for some q ∈ Q \ {0} and x ∈ XU , then for some y ∈ XV :

(a) (x)E1(y);
(b) b ∈ Qy, i.e. there exist m1,m2 ∈ Z \ {0} such that m1b = m2y.

Proof. Item (1) is obvious by Hypothesis 3.12(4). Concerning item (2), let n < ω,
ȳ ∈ seqn(X) and q̄ ∈ (Q \ {0})n be such that b =

∑
{q`y` : ` < n}. It suffices to

prove (2)(b), as if b = m2

m1
y let p′ = p((x)/E1,q̄), then x ∈ G(1,p′) and so, by (1),

y ∈ G(1,p′) and thus by Lemma 3.10(3) we are done. Trivially, n > 0, we shall show
that n = 1, so toward contradiction we assume that n > 1. Let q∗ ∈ ω \ {0} be
such that b1 := q∗b ∈ G0[m]. Let e = ȳ/En, q′` = q∗q` and q̄′ = (q′` : ` < n), so that
q∗q`y` = q′`y` and q′` ∈ Z \ {0}. Let p = p(e,q̄′). Then we have:

(∗1) (i) b ∈ G(1,p);
(ii) a ∈ G(1,p).
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[Why (i)? By the choice of p we have that b1 ∈ G(1,p) (cf. Def. 3.9(3)(4)) and so, as
G(1,p) is pure in G1 (cf. Observation 2.5), b1 = q1b and q1 ∈ Z, we have b ∈ G(1,p)

(cf. Observation 2.4). Why (ii)? By (1) and (∗1)(i), recalling Hyp. 3.12(4).]
By Lemma 3.10(3), there are k < ω, and, for i < k, ȳi ∈ ȳ/En and qi ∈ Q \ {0}
s.t.:

(∗)2 a =
∑

i<k q
i(
∑

`<n q
′
`y

i
`) =

∑
i<k(

∑
`<n q

iq′`y
i
`).

Notice that by the assumption in item (2) of the present lemma we have that a = qx,
for some x ∈ X and q ∈ Q \ {0}, and so we have that:

(∗)3 (a) qx = a =
∑

`<n(
∑

i<k q
iq′`y

i
`);

(b) x ∈ {yi` : i < k, ` < n}.
By Lemma 3.10(4) k = 1, so qx = a = q0

∑
`<n q

′
`y

0
` , hence (recalling that q 6= 0 and

that ȳ0 ∈ seqn(X), as En is an equivalence relation on seqn(X)) necessarily n = 1,
as wanted. Finally, as π(a) = b ∈ Qx and π(a) ∈ G1[V] necessarily y ∈ XV .

Conclusion 3.14. (1) There is a sequence (q1
x : x ∈ XU ) of non-zero rationals

and a function π1 : XU → XV such that for every x ∈ XU we have that
π(x) = q1

x(π1(x)), moreover the function π1 is 1-to-1.
(2) There is a sequence (q2

x : x ∈ XV) of non-zero rationals and a function π2 :
XV → XU such that π−1(x) = q2

x(π2(x)), moreover π2 is 1-to-1.
(3) (i) π2 ◦ π1 : XU → XU = idU ;

(ii) π1 ◦ π2 : XV → XV = idV ;
(iii) π1 : XU → XV is a bijection.

Proof. (1) by Lemma 3.13. (2) by Lemma 3.13 applied to π−1. (3) by (1) and (2).

Claim 3.15. In the context of Conc. 3.14 and letting (q1
x : x ∈ XU ) = (qx : x ∈ XU ).

(1) For some q∗ ∈ Q \ {0} we have that, for every x ∈ XU , qx = q∗.
(2) There is an isomorphism σ1 : M � U ∼= M � V.

Proof. Let x 6= y ∈ XU be such that (x)/Em
1 6= (y)/Em

1 (cf. Definition 3.3(24)).
Let then e = (x, y)/E2, q̄ = (1, 1) and p = p(e,q̄). Now, by the choice of p, we have
that x+ y ∈ G(1,p) and so qxπ1(x) + qyπ1(y) = π(x) +π(y) = π(x+ y) ∈ G(1,p). So,

by Lemma 3.10(3), there are (xi, yi) ∈ (x, y)/E2 and qi ∈ Q \ {0}, for i < k, s.t.:

(?1) qxπ1(x) + qyπ1(y) =
∑

i<k q
i(xi + yi) = (

∑
i<k q

ixi) + (
∑

i<k q
iyi).

Let (xk, yk) = (π1(x), π1(y)). Now, (π1(x), π1(y)) ∈ seq2(X) by Conclusion 3.14.
Let e1 = (x)/Em

1 , e2 = (y)/Em
1 and, for ` = 1, 2, p` = p(e`,1). So:

(?1.1) for z ∈ X, z ∈ G(1,p`) ⇔ z ∈ e`.
Hence, xk = π1(x) ∈ e1 and yk = π1(y) ∈ e2, since π is an isomorphism and (by
Lemma 3.14(1)) π1 is such that for every x ∈ XU we have π(x) = q1

x(π1(x)). Also,
xi ∈ e1 and yi ∈ e2, for every i < k, as (xi, yi) ∈ (x, y)/E2 and so xi ∈ x/E2 and
yi ∈ y/E2. Lastly, clearly e1 ∩ e2 = ∅, by the choice of (x, y). Hence, the sets
{xi : i 6 k} and {yi : i 6 k} are disjoint. But this means that:

(?1.2) the sets {xi : i < k} ∪ {π1(x)} and {yi : i < k} ∪ {π1(y)} are disjoint.

Thus, by (?1) and (?1.2) we have:

(?2) (a) qxπ1(x) =
∑
{qixi : i < k};

(b) qyπ1(y) =
∑
{qiyi : i < k}.
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16 GIANLUCA PAOLINI AND SAHARON SHELAH

Let Ex = {(i, j) : i, j < k, xi = xj}, so Ex is an equivalence relation on k. By
(?2)(a), π1(x) ∈ {xi : i < k}, and so for some i∗ < k we have that xi∗ = π1(x).
Hence, again by (?2)(a), we have:

(?2.5) (a) qx =
∑
{qi : i ∈ i∗/Ex};

(b) if i < k and i /∈ i∗/Ex, then
∑
{qj : j ∈ i/Ex} = 0.

Together we have:

(?)3 qx =
∑
{qi : i < k}.

Similarly using (?)2(b) we get that:

(?)4 qy =
∑
{qi : i < k}.

Thus, qx = qy. So x, y ∈ XU and x/Em
1 6= y/Em

1 implies qx = qy. Hence, for every
x, y ∈ XU we have qx = qy. Why? If x/Em

1 6= y/Em
1 see above, if x/Em

1 = y/Em
1 ,

by Definition 3.6(∗)1, we can find z ∈ X \ x/Em
1 = X \ y/Em

1 , so qx = qz = qy.

Moving to item (2), we shall show:

(?5) if k = 2, z̄ ∈ seqk(XU ) and z̄ is <m
k -minimal, then there is a sequence (ḡ` : ` <

n) of members of Im and z̄` ∈ seqk(X), for ` 6 n, such that:
(a) z̄0 = z̄;
(b) z̄n = π1(z̄);
(c) if ` < n, then fḡ`(z̄`) = z̄`+1.

We shall now prove (?5). Let a =
∑
{z` : ` < k} ∈ G1 and b = π(a), so:

b = π(
∑
`<k

z`) =
∑
`<k

π(z`) =
∑
`<k

q∗π1(z`) = q∗
∑
`<k

π1(z`).

Let e = z̄/Ek, q̄ = (1, ..., 1)︸ ︷︷ ︸
k

and p = p(e,q̄), so a ∈ G(1,p) and thus b = π(a) ∈ G(1,p),

hence there are i(∗) and, for i < i(∗), ȳi ∈ z̄/Ek and qi ∈ Q \ {0} such that:

(i) (ȳi : i < i(∗)) is with no repetitions;
(ii) b =

∑
i<i(∗) q

i(
∑

`<k y
i
`).

Hence we have:

(+1) q∗
∑
`<k

π1(z`) =
∑

i<i(∗)

qi(
∑
`<k

yi`).

Now, k = 2, and so we have:

(+2) q∗π1(z0) + q∗π1(z1) = (
∑

i<i(∗)

qiyi0) + (
∑

i<i(∗)

qiyi1).

Recall that by Definition 3.3(17) we have:

(+3) {yi0 : i < i(∗)} ∩ {yi1 : i < i(∗)} = ∅.
We now distinguish three cases.
Case 1. i∗ = 1.
Recall that ȳi ∈ z̄/Em

k and z̄ is <m
k -minimal, so the tree (z̄/Em

k , <
m
k � z̄/E

m) has
only one root and this root is z̄, hence i < i(∗) implies z̄ 6m

k ȳi. By the definition
of <m

k , as z̄ 6m
k ȳ0, clearly there are n < ω, (z̄` : ` 6 n) and (ḡ` : ` < n) such that

z̄0 = z̄, z̄n = ȳ0 and, for ` < n, fḡ`(z̄`) = z̄`+1. Thus, as by assumption i∗ = 1, we

have that (?)5 holds, noticing that z̄n = ȳ0 = π1(z̄).
Case 2. i∗ > 2.
As (ȳi : i < i(∗)) is with no repetitions, there is i < i(∗) such that ȳi 6= z̄. Choose
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i < i(∗) such that ȳi is (locally) <m
k -maximal among {ȳi : i < i(∗)}, hence ȳi 6= z̄,

and let ` < k be such that yi` is <m-maximal in ȳi, then, by Definition 3.3(23c),
yi` appears only once in (ȳj : j < i(∗)), and it does not appear in z̄ (as z̄ <m

k ȳi),
contradicting the equality (+2). Hence, this case is not possible.
Case 3. i∗ = 0.
Contrary to the assumption that π is an isomorphism from G(1,U)[m] onto G(1,V)[m],
as then an element a 6= 0 is mapped to 0. Hence, this case is not possible.
As only Case 1 is possible and in that case (?5) holds, we are done proving (?5).

(?6) If s ⊆ω U , then for some unique t = ts ⊆ω V we have:
(a) π1 maps X ′s into X ′t;
(b) in (a) we have |ts| = |s|;
(c) s1 6= s2 implies ts1 6= ts2 ;
(d) for every t ⊆ω V there exists s ⊆ω U such that ts = t.

We prove (?6). Concerning item (a), if it fails, then there is z̄ = (z1, z2) ∈ seq2(X ′s)
such that

∧
`=1,2 π1(z`) ∈ X ′t` and t1 6= t2 and z̄/Em

2 is <m
k -minimal (see Defini-

tion 3.3(24)). Now, applying (?5) to z̄, let (ḡ` : ` < n) be as there. For each ` < n
and s1 ⊆ω M , either X ′s1 ∩ dom(fḡ`) = ∅ or fḡ` maps X ′s1 ∩ dom(fḡ`) 6= ∅ into X ′s2 ,
for some s2 ⊆ω M , by Definition 3.3(7d), so the contradiction follows, and clause
(a) holds. Concerning item (b), by the proof of clause (a) we can choose s0, ..., sn
such that s0 = s and ḡ`(s`) = s`+1, for ` < n, and t = sn. Now, by induction on
` 6 n we can prove that |s`| = |s0|, where the case ` = 0 is trivial, and the case `+1
is by Definition 3.3(7c)(7d), recalling that partial automorphisms are 1-to-1 maps.

Finally, concerning items (c) and (d), we can apply the above replacing (U ,V, π)
with (V,U , π−1). So for every t ⊆ω V there is st ⊆ω U such that |t| = |st| and π−1

maps 〈X ′t〉∗G1
into 〈X ′st〉

∗
G1

, but then it is easy to conclude. For example, concerning
item (c), toward contradiction, assume that s1 6= s2 but ts1 = ts2 := t. Choose
then x1 ∈ X ′s1 and x2 ∈ X ′s2 , so by (a) we have:

y1 = π1(x1) ∈ Xts1
and y2 = π1(x2) ∈ Xts2

.

Hence, y1, y2 ∈ X ′t = Xts1
= Xts2

, but then:

x1 = π−1
1 (y1) ∈ X ′s1 and x2 = π−1

1 (y2) ∈ X ′s2 .

By clause (a) for (V,U , π−1), we get a contradiction, since s1 6= s2, recalling that
by Definition 3.3(2a) we have that X ′s1 ∩X

′
s2 = ∅. All together (?6) holds.

We shall now show:

(?7) (a) the map h : U → V such that r ∈ U implies t{r} = {h(r)} is well-defined;
(b) h : U → V is one-to-one and onto;
(c) h is an isomorphism from M � U onto M � V.

We prove (?7). Clause (a) is by (?6)(a)(b). Clause (b) is by (?6)(c)(d). Clause (c)
holds by (?5), but we elaborate. Let r0 6= r1 ∈ U and let r′0 = h(r0) and r′1 = h(r1).
Since h is one-to-one from U onto V it suffices to prove:

(∗) (r0, r1) is an edge of M iff (r′0, r
′
1) is an edge of M .

Now, apply (?5) to z̄ = (z0, z1) for z0 ∈ X ′{r0} and z1 ∈ X ′{r1} such that (z0, z1)

is <m
2 -minimal (cf. Definition 3.3(24)), and let (ḡ` : ` < n) and (z̄` : ` 6 n) be a

witness of this, so z̄n = π1(z̄). For ` < n and i ∈ {0, 1}, let:

(1) z0
i = zi;

(2) z`+1
i = fḡ`(z

`
i );
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18 GIANLUCA PAOLINI AND SAHARON SHELAH

(3) r0
i = ri;

(4) r`+1
i = h(r`i ).

Notice that by the choice above we have that, for i ∈ {0, 1}, rni = r′i. Furthermore,

by Definition 3.3(7b)-(7e) we have that, for ` < n, ḡ` maps (r`0, r
`
1) to (r`+1

0 , r`+1
1 ).

Recall now that, for ` < n, ḡ` is a partial automorphism of M , and so it is immediate
to prove by induction on ` 6 n that the following holds:

M |= R(r0, r1)↔ R(r`0, r
`
1),

and so we are done, since, as already noticed, rni = r′i, for i ∈ {0, 1}.

Claim 3.16. In the context of Claim 3.15, q∗ is an integer.

Proof. If not, then q∗ = m
k , for m ∈ Z \ {0} and k ∈ ω \ {0, 1}. Let p be a prime

dividing k. Let x1 ∈ XU . If in G1 we have that x1 is not divisible by p, then we
are done (since then π(x1) cannot be q∗x1). Thus, by Lemma 3.10(3)(4), it must
be the case that p = p(x1/E1,(q)), for some q ∈ Q \ {0} such that qx1 ∈ G0, but
by Definition 3.6(∗)1 we can find x2 ∈ XU such that (x2) /∈ (x1)/E1, and so, by
Lemma 3.10(3), also in this case we reach a contradiction. Thus, q∗ ∈ Z.

Claim 3.17. In the context of Claim 3.15, q∗ ∈ {1,−1}.

Proof. If not, then we contradict Claim 3.16 when applied to π−1.

3.3. The Proof of the Main Theorem

Notice that in this subsection Hypothesis 3.12 is no longer assumed.

Conclusion 3.18. Let m[M ] ∈ Kbo
2 , U ,V ⊆M and |U| = |V| = ℵ0. Then:

(?) M � U ∼= M � V ⇔ G(1,U)[m] ∼= G(1,V)[m].

Proof. First assume that U = V, then clearly both the left-hand-side (LHS) and
the right-hand-side (RHS) of (?) holds. Assume then that U 6= V. If the LHS of
(?) holds, then by Claim 3.11 also the RHS of (?) holds. On the other hand, if the
RHS of (?) holds, then the assumptions in Hyp. 3.12 are fulfilled and thus 3.13-3.17
holds, so in particular Claim 3.15(2) holds, and thus the LHS of (?) holds.

Convention 3.19. In Fact 1.1 and Definition 1.8(5) instead of considering struc-
tures with domain ω we could have considered structures with domain an infinite
subset of ω. We take the liberty of not distinguishing between these two variants.
This happens most notably in the Proof of Main Theorem right below.

Proof of Main Theorem. Let M be as in Hypothesis 3.1. Fix m ∈ Kbo
2 (M) (cf.

Claim 3.8) and assume without loss of generality that G1[m] has set of elements
ω. For every graph H with domain ω we define F [H] : H → M by defining
F [H](n) by induction on n < ω as the minimal k < ω such that {(`, F [H](`)) :
` < n} ∪ {(n, k)} is a graph isomorphism from H � (n + 1) onto M � ({F [H](`) :
` < n} ∪ {k}). The map H 7→ M � {F [H](n) : n < ω} is clearly continuous.
We will show that the map F ′ : M � U 7→ G(1,U)[m], for U ⊆ M infinite, is
also continuous (recall Convention 3.19), thus concluding that the map B := F ′ ◦
F : H 7→ G(1,{F [H](n) :n<ω})[m] is a continuous map from Graphω into TFABω

(Convention 3.19) and so, by Conclusion 3.18, the map B is as wanted.

In order to show that F ′ is continuous, first recall that m as well as p̄ from 3.3(13)
are fixed. Now, given a ∈ G1[m], we have to compute from U whether a ∈ G(1,U)[m]
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or not. To this extent, let a =
∑
{qa` xa` : ` < n} with the x`’s pairwise distinct and

q` ∈ Q \ {0}. Now, as by 3.3(3), XU =
⋃
{Xs : s ⊆ω U} =

⋃
{X ′s : s ⊆ω U} and the

latter is a partition of X, for every ` < n, there is a unique finite sa` ⊆M s.t.:

a ∈ G(1,U)[m]⇔
∧
`<n

sa` ⊆ U .

This suffices to show continuity of F ′, thus concluding the proof of the theorem.

Remark 3.20. We observe that in the context of the Proof of Main Theorem we
can choose both M and m to be computable stuctures, in the sense of computable
model theory, i.e., all the relations and functions of the structure are computable.

4. The Co-Hopfian Problem for Torsion-Free Abelian Groups

Fact 4.1 ([4, Proposition 2.2, pg. 130]). For G ∈ TFAB, G is co-Hopfian iff G is
divisible and of finite rank, i.e., G is a finitely dimensional vector space over Q.

Conclusion 4.2. The co-Hopfian groups in TFABω form a Borel subset of TFABω.

On the other hand, we will show below that there are variations on the notion
of co-hopfianity (cf. Definition 2.7) which give a completely different answer.

Hypothesis 4.3. Throughout this section the following hypothesis stands:

(1) T = (T,<T ) is a rooted tree with ω levels and we denote by lev(t) the level of t;
(2) T =

⋃
n<ω Tn, Tn ⊆ Tn+1, and t ∈ Tn implies that lev(t) 6 n;

(3) T0 = ∅, Tn is finite, and we let T<n =
⋃

`<n T` (so T<(n+1) = Tn);
(4) if s <T t ∈ Tn, then s ∈ Tn.

Definition 4.4. Let Kco
1 (T ) be the class of objects:

m(T ) = m = (XT
n , f̄

T
n : n < ω) = (Xn, f̄n : n < ω)

satisfying the following requirements:

(a) X0 6= ∅, Xn is finite and strictly increasing with n, and X<n =
⋃

`<nX`;

(b) f̄n = (ft : t ∈ Tn), so if s ∈ Tm for some m < n, then fs is determined by f̄m;
(c) if n > 0 and t ∈ Tn \T<n, then ft is a one-to-one function from Xn−1 into Xn;
(d) for every t ∈ T , X0 ∩ ran(ft) = ∅;
(e) if s <T t ∈ Tn, then fs ⊆ ft;
(f) if t ∈ Tn \ T<n, ft(x) = y and y ∈ Xn−1, then for some s <T t, x ∈ dom(fs);
(g) if s, t ∈ Tn and x ∈ ran(fs) ∩ ran(ft), then for some r ∈ Tn such that r 6T s, t

we have that x ∈ ran(fr), equivalently, ran(fs)∩ran(ft) = ran(fr), for r = s∧t,
where ∧ is the natural semi-lattice operation taken in the tree (T,<T );

(h) Xn+1 =
⋃
{ran(ft) : t ∈ Tn+1 \ Tn} ∪Xn;

(i) we let X = Xm =
⋃

n<ωXn.

Convention 4.5. m = (Xn, f̄n : n < ω) ∈ Kco
1 (T ) (cf. Definition 4.4).

Observation 4.6. In the context of Definition 4.4, we have:

(1) If m < n < ω, t ∈ Tn \ T<n and for every s <T t we have s ∈ Tm, then:

(Xn−1 \Xm) ∩ ran(ft) = ∅.

(2) Let t ∈ T , then for every x ∈ dom(ft) we have that x 6= ft(x), moreover there
is unique 0 < n < ω such that x ∈ Xn−1 and ft(x) ∈ Xn \Xn−1.
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Proof. We prove (1), by Definition 4.4(c) we know that ft is one-to-one from Xn−1

into Xn. If n = 1, then m = 0 and so Xn−1 = X0 = Xm, thus the conclusion
is trivial. Suppose then that n > 1 and let y ∈ (Xn−1 \ Xm) ∩ ran(ft), and let
x ∈ dom(ft) be such that ft(x) = y. Then, by Definition 4.4(f) there exists s <T t
such that x ∈ dom(fs). But then, using the assumption in (1), we have that
s ∈ Tm (so m = 0 is impossible by Definition 4.3(3)). Hence, by Definition 4.4(c),
ran(fs) ⊆ Xm, so y = f(x) ∈ Xm, contradicting the fact that y ∈ (Xn−1 \Xm).

We prove (2). Assume that x, t, and thus also ft, are fixed and x ∈ dom(ft). Let
s 6T t be 6T -minimal such that fs(x) is well-defined, and let n < ω be such that
s ∈ Tn \ T<n (notice that n > 1 since T0 = ∅). Clearly, there is unique m < ω
such that x ∈ Xm \X<m. As x ∈ dom(fs) and s ∈ Tn \ T<n necessarily m < n, so
x ∈ X<n. But by the choice of s we have that r <T s implies x /∈ dom(fr). By the
last two sentences and Def. 4.4(f) we have fs(x) ∈ Xn \X<n, but ft(x) = fs(x).

Claim 4.7. For T as in Hypothesis 4.3, Kco
1 (T ) 6= ∅ (cf. Definition 4.4).

Proof. Straightforward.

Definition 4.8. On X (cf. Convention 4.5) we define:

(1) for x ∈ X, suc(x) = {ft(x) : t ∈ T, x ∈ dom(ft)};
(2) for x, y ∈ X, we let x <X y if and only if for some 0 < n < ω and x0, ..., xn ∈ X

we have that
∧

`<n x`+1 ∈ suc(x`), x = x0 and y = xn;
(3) seqk(X) = {x̄ ∈ seqk(X) : x̄ is injective};
(4) we say that x̄ ∈ seqk(X) is reasonable when the following happens:

n1 < n2, xi(1) ∈ Xn(1) \X<n(1), xi(2) ∈ Xn(2) \X<n(2) ⇒ i(1) < i(2);

(5) <k
X is the partial order on seqk(X) defined as x̄1 <k

X x̄2 if and only if x̄1, x̄2 ∈
seqk(X) and there are 0 < n < ω, ȳ0, ..., ȳn ∈ seqk(X) and t0, ..., tn−1 ∈ Tm
such that for every ` < n we have that ft`(ȳ

`) = ȳ`+1, and (x̄1, x̄2) = (ȳ0, ȳn);
(6) notice that for k = 1 we have that <k

X=<X , where <X is as in (2).

Observation 4.9. (1) (X,<X) is a tree with ω levels;
(2) (X,<X) is well-founded iff (T,<T ) is well-founded;
(3) every z ∈ X0 is a root of the tree (X,<X);
(4) if y ∈ Xn+1 \Xn, then for one and only one x ∈ Xn we have y ∈ suc(x);
(5) if y ∈ suc(x), then {t ∈ T : ft(x) = y} is a cone of T ;
(6) if x̄ ∈ seqk(X), then some permutation of x̄ is reasonable (cf. Definition 4.8(4));
(7) if ft(x̄) = ȳ and x̄ is reasonable, then so is ȳ;
(8) for every k > 1, (seqk(X), <k

X) is a tree;
(9) if x̄ <k

X ȳ and x̄ is reasonable, then ȳ is also reasonable;
(10) if x̄ ∈ seqk(X) is reasonable, x̄ 6k

X ȳ1 = (y1
0 , ..., y

1
k−1), x̄ 6k

X ȳ2 = (y2
0 , ..., y

2
k−1)

and y1
k−1 = y2

k−1, then ȳ1 = ȳ2.

Proof. Items (1)-(3) and (8)(9) are clear. We prove (4). By Definition 4.4(h) we
have at least one x ∈ Xn such that y ∈ suc(x), but by Definition 4.4(f)-(g) we
have at most one x ∈ Xn such that y ∈ suc(x), putting everything together (4)
holds. Items (5) and (6) are also easy. Item (7) can be proved for t ∈ Tn \ T<n by
induction on n < ω. Finally, concerning item (10), w.l.o.g. n[ȳ1] 6 n[ȳ2], where for
ȳ ∈ seqk(X) we let n[ȳ] = min{m < ω : ȳ ⊆ Xm}, and we can prove item (10) by
induction on n[ȳ2]. Item (5) is not used but we retain it to give the picture.
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Definition 4.10. Let m ∈ Kco
1 (T ) (i.e. as in Convention 4.5).

(1) Let G2 = G2[m] be
⊕
{Qx : x ∈ X}.

(2) Let G0 = G0[m] be the subgroup of G2 generated by X, i.e.
⊕
{Zx : x ∈ X}.

(3) For t ∈ T , let:
(a) H(2,t) =

⊕
{Qx : x ∈ dom(ft)};

(b) I(2,t) =
⊕
{Qx : x ∈ ran(ft)};

(c) f̂2
t is the (unique) isomorphism from H(2,t) onto I(2,t) such that x ∈ dom(ft)

implies that f̂2
t (x) = ft(x) (cf. Definition 4.4(c)).

(4) For t ∈ T , we define H(0,t) := H(2,t) ∩G0 and I(0,t) := I(2,t) ∩G0;

(5) For f̂2
t as above, we have that f̂2

t [H(0,t)] = I(0,t). We define f̂0
t as f̂2

t � H(0,t).

(6) We define the partial order <∗ on G+
0 := G0 \ {0} by letting a <∗ b if and only

if a 6= b ∈ G+
0 and, for some 0 < n < ω, a0, ..., an ∈ G0, a0 = a, an = b and:

` < n⇒ ∃t ∈ T (f̂t(a`) = a`+1).

(7) For a =
∑

`<m q`x`, with x` ∈ X and q` ∈ Q \ {0}, let supp(a) = {x` : ` < m}.
(8) For a ∈ G+

2 , let n[a] be the minimal n < ω such that a ∈ 〈X<n〉∗G2
.

Lemma 4.11. (1) If {t ∈ T : f̂2
t (a) = b} 6= ∅, then it is a cone of T .

(2) <∗� X =<X (where <X is as in Definition 4.8(2)).
(3) (G0, <∗) is a tree with ω levels (recall Hypothesis 4.3(1)).

(4) If s 6T t, then f̂ `s ⊆ f̂ `t , for ` ∈ {0, 2}.
(5) If t ∈ T , f̂2

t (a) = b and a ∈ G+
0 , then n[a] < n[b] (cf. Definition 4.10(8)).

(6) If a <∗ b (so a, b ∈ G+
0 ), then the sequence (a` : ` 6 n) from 4.10(6) is unique.

(7) If a <∗ b, and, for ` ∈ {0, 1}, a` =
∑

i<k qix
`
i , qi ∈ Q \ {0}, x̄` = (x`i : i < k) ∈

seqk(X), then maybe after replacing x̄1 with a permutation of it, x̄0 6k
X x̄1.

Proof. Unraveling definitions, e.g. for item (3) use Definition 4.4(e), we elaborate
only on item (5). Concerning item (5), as a 6= 0, let a =

∑
i6n qixi, xi ∈ X with

no repetitions, qi ∈ Q \ {0}. Let xi ∈ Xk(i) \X<k(i) and w.l.o.g. k(i) 6 k(i + 1),
for i < n (cf. Observation 4.9(6)). Clearly a ∈ 〈Xk(n)〉∗G2

but a /∈ 〈X<k(n)〉∗G2
. As

f̂2
t (a) is well-defined, clearly {xi : i 6 n} ⊆ dom(ft) and b = f̂2

t (a) =
∑

i6n qift(xi)

and, as ft is 1-to-1, the sequence (ft(xi) : i 6 n) is with no repetitions. By
Observation 4.6(2) applied with n there as k(n) here, ft(xn) /∈ 〈Xk(n)〉∗G2

, hence we
have that n[b] > n(ft(xn)) + 1 > k(n) + 1 = n[a], so (5) holds.

Claim 4.12. If (A), then (B), where:

(A) (a) a, b` ∈ G0, for ` < `∗;
(b) a 6∗ b` and the b`’s are with no repetitions;
(c) a =

∑
{qixi : i < j};

(d) x̄ = (xi : i < j) ∈ Xj is injective and reasonable;
(e) qi ∈ Z \ {0};

(B) there are `∗ and for ` < `∗, ȳ
` = (y(`,i) : i < j) such that:

(a) y(`,i) =: y`i ∈ X and x̄ 6j
∗ ȳ

` (cf. Definition 4.8(5));

(b) b` =
∑
{qiy(`,i) : i < j}, and so the ȳ` are pairwise distinct;

(c) (y(`,i) : i < j) is injective and reasonable;
(d) if j > 1 and `∗ > 1, then there are at least two y ∈ X such that:

|{(`, i) : ` < `∗, i < j and y(`,i) = y}| = 1;
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(e) if j > 1 and `∗ > 1, then there are `1 6= `1 < `∗ and i1, i2 < j such that:
(i) if ` < `∗, i < j and y(`,i) = y(`1,i1), then (`, i) = (`1, i1);

(ii) if ` < `∗, i < j and y(`,i) = y(`2,i2), then (`, i) = (`2, i2).
(f) (y(`,j−1) : ` < `∗) is without repetitions and none of {y(`,i) : ` < `∗, i <

j − 1} appears in it (recall that x̄, ȳ0, ..., ȳ`∗−1 are reasonable).

Proof. By the definition of 6∗ there are (y(`,i) : i < j, ` < `∗) satisfying clauses

(a)-(c) of (B) as in the proof of Lemma 4.11(7). Recall that ({ȳ : x̄ 6j
X ȳ},6j

X) is
a tree. We now imitate the proof of Observation 3.5.
Case 1. {ȳ` : ` < `∗} is not linearly ordered by 6j

X .

Then there are `(1) 6= `(2) < `∗ such that ȳ`(1), ȳ`(2) are locally 6j
X -maximal. So

as in the analogous case in the proof of Obs. 3.5 we can choose i1, i2 < j s.t.:

x`1i1 ∈ Xn[b`1 ] \X<n[b`1 ] and x`2i2 ∈ Xn[b`2 ] \X<n[b`2 ],

notice that by the assumption that the sequences are reasonable we can choose

i1 = j − 1 = i2, see Lemma 4.11(5). Hence, y
`(1)
i1

, y
`(2)
i2

are as required.
Case 2. Not Case 1.
So w.l.o.g. we have that, for every ` < `∗ − 1, ȳ` <j

X ȳ`+1. Now, for ` < `∗ and
i < j, let n(`, i) < ω be such that y`i ∈ Xn(`,i) \X<n(`,i). Let:

(·1) i(1) < j be such that i < j implies n(0, i) > n(0, i(1));
(·2) i(2) < j be such that i < j implies n(`∗ − 1, i) 6 n(`∗ − 1, i(2)).

Then (0, i(1)), (`∗ − 1, i(2)) are as required. As, for ` < `∗, ȳ
` is reasonable we can

actually choose i(1), i(2) such that i(1) = 0 and i(2) = j∗ − 1.

Definition 4.13. Let (pa : a ∈ G+
0 ) be a sequence of pairwise distinct primes.

(1) For a ∈ G+
0 , let:

P6∗a = {pb : b ∈ G+
0 , b 6∗ a} and P>∗a = {pb : b ∈ G+

0 , a 6∗ b}.
(2) Let G1 = G1[m] = G1[m(T )] = G1[T ] be the subgroup of G2 generated by:

{m−1a : a ∈ G+
0 , m ∈ ω\{0} a product of primes from P6

∗

a , poss. with repetitions}.
(3) For a prime p, let G(1,p) = {a ∈ G1 : a is divisible by pm, for every 0 < m < ω}

(notice that, by Observation 2.5, G(1,p) is always a pure subgroup of G1).

(4) For b ∈ G+
1 , let Pb = {pa : a ∈ G+

0 , G1 |=
∧

m<ω p
m
a | b}.

Remark 4.14. (1) If a, b ∈ G+
1 and Qa = Qb ⊆ G2, then Pa = Pb.

(2) If b ∈ G+
1 , then Pb is infinite.

Proof. Concerning (1), let q∗1a = q∗2b, where q∗1 , q
∗
2 ∈ Q\{0}. W.l.o.g. q∗1 , q

∗
2 ∈ Z\{0}

and so q∗1a = q∗2b ∈ G1. Let now p be an arbitrary prime, and, for ` ∈ {1, 2}, let
m(`) < ω be such that that q` = pm(`)q∗` , p 6 | q∗` and (q∗` , p) = 1. By transitivity of
equality, w.l.o.g. a ∈ G+

0 . Now, let m ∈ Z with m > 0. Then we have:

(a) In G1, pm| a iff pm| q∗1a.

[Why (a)? First assume that G1 |= pm| a, then there is a1 ∈ G1 such that G1 |=
pma1 = a. Let a2 = q∗1a1, then G1 |= q∗1a = q∗1(pma1) = pm(q∗1a1) = pma2, so
G1 |= pm| q∗1a. Assume now that G1 |= pm| q∗1a, and let q∗1a = pma3, with a3 ∈ G1.
By the choice of p we know that (p, q∗1) = 1 and so also (pm, q∗1) = 1. It follows
that 1 belongs to the ideal of Z that pm and q∗1 generates, hence:

for some m1,m2 ∈ Z, we have m1p
m +m2q

∗
1 = 1.
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But then:
a = 1 · a

= (m1p
m +m2q

∗
1)a

= m1p
ma+m2q

∗
1a

= pm(m1a) + (m2p
ma3)

= pm(m1a) + pm(m2a3)
= pm(m1a+m2a3),

and so pm| a, and thus we are done proving item (a).]

(b) In G1, pm| q∗1a iff pm+m(1)| pm(1)q∗1a.

[Why (b)? Similar to (a).]

(c) In G1, pm+m(1)| pm(1)q∗1a iff pm+m(1)| pm(2)q∗2b.

[Why? Since by our assumptions, pm(1)q∗1a = pm(2)q∗2b.]

(d) In G1, pm+m(1)| pm(2)q∗2b iff pm+m(1)−m(2)| q∗2b.
[Why? Like (b).]

(e) In G1, pm+m(1)−m(2)| q∗2b iff pm+m(1)−m(2)| b.
[Why? Like (a).]
Thus, putting everything together we have:

(f) In G1, pm| a iff pm+m(1)−m(2)| b.
As for n < ω we have pn+1| c implies pn| c, clearly:∧

n<ω

pm| a⇔
∧
n<ω

pm| b.

As p was an arbitrary prime, this concludes the proof of (1). Also, item (2) follows
from (1) considering the distinct primes pb, p2b, p3b, ....

Lemma 4.15. (1) If p = pa, a ∈ G+
0 , then:

G(1,p) = 〈b ∈ G+
0 : a 6∗ b〉∗G1

.

(2) For t ∈ T , H(1,t) := H(2,t) ∩G1 and I(1,t) := I(2,t) ∩G1 are pure in G1.

(3) For f̂
(i,2)
t as in Definition 4.10(3c), f̂

(i,2)
t [H(1,t)] ⊆ I(1,t). We define f̂

(i,1)
t as

f̂
(i,2)
t � H(1,t).

(4) f̂2
t � H(1,t) = I(1,t).

Proof. Item (1) is clear by Claim 4.13(1)(2). Concerning item (2), simply notice:

H(1,t) = 〈Zx : x ∈ dom(ft)〉∗G1
,

I(2,t) = 〈Zx : x ∈ ran(ft)〉∗G2
.

Item (3) is by item (2) and the following observation, if ft(x) = y, then we have
x 6∗ y (recall Lemma 4.11(2)), and so Px ⊆ Py (cf. Definition 4.13(1)). Finally,
concerning item (4), assume that 0 < n < ω and t ∈ Tn \ T<n, then there is
x ∈ Xn−1 such that y = ft(x) ∈ Xn \ X<n (cf. Observation 4.6), notice that in
particular x <∗ y. So py is well-defined, since y ∈ G+

0 , and we have the following:

(a) G1 |= py 6 | x, and so H(1,t) |= py 6 | x (as H(1,t) is pure in G1, cf. item (2));
(b) G1 |=

∧
m<ω p

m
y | y.
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[Why (b)? By the definition of G1 recalling that x <∗ y.]

But then, since by item (3), f̂t � H(1,t) is an embedding of H(1,t) into I(1,t) we have

that f̂t[H(1,t)] |= py 6 | f(x)∧ f(x) = y. On the other hand, since I(1,t) is pure in G1

(cf. item (2) of the present lemma) we have that for every m < ω, p−my y ∈ I(t,1)

(cf. Observation 2.4), and so we are done. Finally, the fact that I(1,t)/f̂
1
t [H(1,t)] is

torsion is easy (and it is not used in the proof of Theorem 4.16).

Recall Definition 1.10 for the definition of Emb`-co-Hopfianity, for ` ∈ {1, 2, 3}.

Theorem 4.16. Let m(T ) ∈ Kco
1 (T ).

(1) We can modify the construction so that G1[m(T )] = G1[T ] has domain ω and
the function T 7→ G1[T ] is Borel (for T a tree with domain ω).

(2) T has an infinite branch iff G1[T ] is not Emb1-co-Hopfian.
(3) T has an infinite branch iff G1[T ] is not Emb2-co-Hopfian.
(4) T has an infinite branch iff G1[T ] is not Emb3-co-Hopfian.

Proof. Item (1) is easy. We prove items (2)-(4) with a single proof. Concerning
the “left-to-right” direction of items (2)-(4), let (tn : n < ω) be an infinite branch

of T . By Lemma 4.11(4), (f̂tn : n < ω) is increasing, by Definition 4.10(3c), f̂2
tn

embeds H(2,tn) into I(2,tn), thus f̂2 =
⋃

n<ω f̂
2
tn is an embedding of G2 into G2,

since G2 =
⋃

n<ωH(2,tn), where (H(2,tn) : n < ω) is a chain of pure subgroups of
G2 with limit G2, because, recalling 4.4(e), we have that:

H(2,tn) ⊇ dom(ftn) ⊆ dom(ftn+1) ⊆ H(2,tn+1)

and by 4.4(c) we have that
⋃

n<ωH(2,tn) = G2. Thus f̂1 := f̂ � G1 =
⋃

n<ω f̂
1
tn =⋃

n<ω f̂
2
tn � H(1,tn) is an embedding of G1 into G1 (cf. Lemma 4.15(3)), in fact we

have that dom(f̂tn) = H(1,tn) (cf. Lemma 4.15(3)) and G1 =
⋃

n<ωH(1,tn), where

(H(1,tn) : n < ω) is chain of pure subgroups of G1 with limit G1. Clearly f̂1 is not
of the form g 7→ mg for some m ∈ Z \ {0}, since for every x ∈ dom(ft) we have
x 6= ft(x) (cf. Obs. 4.6), this is enough for the “left-to-right” direction of item (4).

We claim that G1/f̂
1[G1] is not torsion. To this extent, first of all notice that

X0 6= ∅ (by Definition 4.4(a)) and X0 ∩ ran(ftn) = ∅ (by Definition 4.4(d)). Thus:

ran(f̂1) ⊆ G2
X\X0

:=
∑
{Qx : x ∈ X \X0} = 〈X \X0〉∗G2

.

Now, let x ∈ X0, then x ∈ G1 \ ran(f̂1), moreover, for q ∈ Q \ {0}:

qx /∈ G2
X\X0

and so qx /∈ ran(f̂1),

and so in particular, for every 0 < n < ω we have that nx /∈ ran(f̂1), hence

n(x/(ran(f̂1)) 6= 0. This is enough for the “left-to-right” of items (2) and (3).

We now prove the “right-to-left” direction of item (2). To this extent, suppose
that (T,<T ) is well-founded and, for the sake of contradiction, suppose that there
exists f ∈ End(G1) one-to-one such that G1/f [G1] is not torsion. Let G∗0 = G1 and
G∗n+1 = f(G∗n) and notice that the sequence (G∗n : n < ω) is strictly ⊆-decreasing.
Let now c∗0 ∈ G∗0 be such that c∗0/f [G∗0] is not torsion in G∗0/f [G∗0], and let then,
for 0 < n < ω, c∗n = fn(c∗0), where f0 = f and fn+1 = fn ◦ f . Notice that then
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for every n < ω, c∗n ∈ G∗n and c∗n/G
∗
n+1 is not torsion in G∗n/G

∗
n+1. Thus, for every

n < ω, c∗n ∈ G∗n ⊆ G∗0 = G1 ⊆ G2, and so we have that:

(∗0) c∗n =
∑
{q(n,x)x : x ∈ wn},

where wn ⊆ X is finite and non-empty, and q(n,x) ∈ Q \ {0}. Notice that:

(∗1) (i) for n 6= m < ω we have that Qc∗n 6= Qc∗m (in G2);
(ii)

⋃
n<ω wn is infinite.

[Why? Because (c∗n : n < ω) is linearly independent in the Q-vector space G2. To
see this, toward contradiction, suppose there is `∗ < ω and n(0) < · · · < n(`∗) and
q0, ..., q`∗ ∈ Q \ {0} such that G2 |=

∑
`6`∗

q`c
∗
n(`) = 0. Then:∑

0<`6`∗

q`c
∗
n(`) ∈ G

∗
n(0)+1,

and so q0c
∗
n(0) ∈ G

∗
n(0)+1, contradicting that c∗n(0)/G

∗
n(0)+1 is not torsion, as letting

q0 = n0/m0, with n0,m0 ∈ ω \ {0}, m0q0 ∈ Z \ {0} and (m0q0)c∗n(0) ∈ G
∗
n(0)+1.]

Notice now that:

(∗2) for every n < ω, there is hn : wn+1 → wn such that y ∈ wn+1 ⇒ hn(y) 6X y.

[Why? Fix n < ω, then, by the definition of G(1,p) (Definition 4.13(3)) and the
choice of (fm : m < ω) and (c∗m : m < ω), for every prime p, we have:

(∗2.1) c∗n ∈ G(1,p) ⇒ c∗n+1 ∈ G(1,p).

Let mn ∈ ω \ {0} be such that mnc
∗
n := c+n ∈ G0 and let p′ = pc+n , then c+n ∈

G(1,p′), and so, since G(1,p′) is pure in G1 (cf. Observation 2.5), mnc
∗
n = c+n and

mn ∈ Z \ {0}, we have c∗n ∈ G(1,p′) (cf. Observation 2.4). Thus, by (∗3) and
Lemma 4.15(1), there is k ∈ Z \ {0} such that the following holds:

(∗2.2) kc∗n+1 ∈
∑
{Zb : c∗n 6∗ b}.

Hence, there are j < ω, c∗n 6∗ b0, ..., bj−1 ∈ G+
0 , and k, k0, ..., kj−1 ∈ Z \ {0} s.t.:

(∗2.3) G1 |= kc∗n+1 =
∑
i<j

kibi.

Notice that by the definition of <∗ (cf. Def. 4.10(6)), for every i < j, we can find

f̄i = (f̂t(i,`) : ` < `(i)) such that f̂t(i,`(i)−1)
◦ · · · ◦ f̂t(i,0) := fi ∈ End(G1) satisfies:

(∗2.4) bi = fi(c
∗
n) =

∑
{q(n,x)fi(x) : x ∈ wn}, q(n,x) ∈ Q \ {0},

and x 6X fi(x) := y(i,x), for all x ∈ wn (cf. (∗1)). Thus, by (∗2.2), we have:

(∗2.5) c∗n+1 ∈
∑
{Qy(i,x) : i < j, x ∈ wn}.

Hence, wn+1 ⊆ {y(i,x) : i < j, x ∈ wn}. Let hn : wn+1 → wn be such that if
y ∈ wn+1, then for some i < j, y = y(i,x) and hn(y) = x 6X y(i,x) = y.]

Let ȳn = (y(n,`) : ` < `n) be a reasonable sequence listing wn. As in (∗2.2), for
each n < ω there are in < ω such that for every i < in and ` < `n there are
q1
(n,i), q

0
(n,`) ∈ Q \ {0} and yi(n,`) such that the following holds:

(∗2.6) c∗n+1 =
∑

i<in
q1
(n,i)

∑
`<`n

q0
(n,`)y

i
(n,`), where ȳn 6

`n
X ȳin = (yi(n,`) : ` < `n).

Now, firstly, we have:

(∗2.7) For no n < ω do we have ȳn ∈ {ȳin : i < in}.
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[Why? As otherwise c∗n and c∗n+1 would be linearly dependent, a contradiction.]
Secondly, we have:

(∗2.8) For every ` < `n we have:
(a) y(n,`) /∈ ran(ȳn−1), if n > 0;
(b) there is `′ < `n+1 such that hn(y(n+1,`′)) = y(n,`).

[Why? By (∗2.6) and (∗2.7) (or for more details see below between (?1.5) and (?2).]
So we can choose `2n < `n by induction on n < ω such that we have:

hn(y(n+1,`2n+1)) = y(n,`2n) and y(n,`2n) <X y(n+1,`2n+1).

This gives an infinite branch of (X,<X), contradicting the fact that (X,<X) is a
well-founded tree (cf. Observation 4.9(2) recalling that T is well-founded). Thus,
we have finished proving item (2) of the present theorem.

We now prove the “right-to-left” direction of items (3)-(4). To this extent, relying
on the “right-to-left” direction of item (2), it suffices to show that if f ∈ End(G1)
is one-to-one and G1/f [G1] is torsion, then:

(a) G1/f [G1] is bounded;
(b) for some m ∈ Z \ {0} we have that f(a) = ma, for all a ∈ G1.

Since G1/f [G1] is torsion, for each x ∈ X, there is mx ∈ Z \ {0} such that mxx ∈
ran(f). Fix now x ∈ X. Then we can find a ∈ G+

1 such that f(a) = mxx, further,
as we can replace the pair (a,m1) by the pair (ma,mmx) for any m ∈ Z \ {0}, we
can assume w.l.o.g. that a ∈ G+

0 . We claim that:

(?1) a ∈ Qx.

To this extent, let p = pa. Then a ∈ G(1,p), and so f(a) = mxx ∈ G(1,p). Thus,
since G(1,p) is pure in G1 (cf. Lemma 4.15(1)), we have that x ∈ G(1,p) (cf.
Observation 2.4). But then, again by Lemma 4.15(1), we can find n < ω and
m2,m(2,0), ...,m(2,n−1) ∈ Z \ {0}, and b0, ..., bn−1 ∈ G+

0 such that:

(?1.5) (i) m2x =
∑
{m(2,`)b` : ` < n} ∈ G1;

(ii) a 6∗ b`, for every ` < n;
(iii) the b`’s are pairwise distinct (w.l.o.g.).

Suppose now (as a ∈ G+
0 ) that a =

∑
{qjyj : j < j∗} for some j∗ < ω, q0, ..., qj∗−1 ∈

Z \ {0}, and yj ∈ X, with (y1, ..., yj−1) without repetitions. Clearly j∗ > 0.

(?1.6) We claim that j∗ = 1.

For the sake of contradiction suppose that j∗ > 1. Now, as for every ` < n, a 6∗ b`,
there are (f̂t(`,i) : i < i(`)) such that f` = f̂t(`,i(`)−1)

◦ · · · ◦ f̂t(`,0) and f`(a) = b`.

Thus, by (?1.5)(i), we have:

(?1.7) m2x =
∑
`<n

m(2,`)

∑
j<j∗

qjf`(yj).

If n = 0 we get a contradiction (i.e. mxx = 0). If n = 1, thenm2x =
∑

j<j∗
q`f0(yj),

but as we are assuming that (yj : j < j∗) is without repetitions, necessarily j∗ = 1,
as desired. So assume n > 2. Then, w.l.o.g. (yj : j < j∗) is reasonable (cf.
Lemma 4.9(6)), and so using Claim 4.12 (with (yj : j < j∗) here as (xi : i < j)
there) we immediately get a contradiction, since the support of the right hand side
of (?1.7) has at least 2 members by Claim 4.12(B)(d)-(e), while the support of the
left hand side of (?1.7) has exactly one member. Thus, (?1.6) holds, as wanted.
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Let f̂ be the extension of f to an embedding of G2 into G2 (which exists as f
embeds G1 into G1 and G1 ⊆ G2 = 〈G1〉∗G2

). Hence, by (?1) we have:

(?2) for every x ∈ X there is qx ∈ Q such that G2 |= f̂(qxx) = x.

Furthermore, we have:

(?3) the sequence (qx : x ∈ X) is constant, call it q∗.

[Why? Toward contradiction, suppose that x1 6= x2 ∈ X and qx1
6= qx2

. Then we
have x1 + x2 ∈ G+

0 and f(x1 + x2) = 1
qx1

x1 + 1
qx2

x2. Let now p = px1+x2 , then

x1 + x2 ∈ G(1,p) and so 1
qx1

x1 + 1
qx2

x2 ∈ G(1,p), but then arguing as in the proof of

Claim 3.15 and using Claim 4.12 we reach a contradiction.]

(?4) q∗ ∈ Z \ {0}.
[Why? Clearly q∗ 6= 0, and if q∗ /∈ Z, then G1 is divisible by some prime number p,
but clearly this is false. Hence q∗ ∈ Z \ {0}, as wanted.]
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