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Abstract. We like to find a logic really stronger than first order for the
random graph with edge probability 1

2
but satisfies the 0-1 law. This means

that on the one hand it satisfies the 0-1 law, e.g. for the random graph Gn,1/2

and on the other hand there is a formula ϕ(x) such that for no first order

ψ(x) do we have: for every random enough Gn,1/2 the formulas ϕ(x), ψ(x)

are equivalent in it. We do it adding a quantifier on graphs Qt, i.e. have a
class of finite graphs closed under isomorphisms and being able to say that if

(ϕ0(x, c̄), ϕ1(x0, x1, c̄)), a pair of formulas with parameters defining a graph

in Gn,1/2, then we can form a formula ψ(ȳ) such ψ(c̄) says that the graph

belongs Kt̄. Presently we do it for random enough t̄.
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Annotated Content

§0 Introduction, pg.3

§1 Identifying the too simple graphs, pg.5

[We choose a h : N → (0, 1)R going to zero slowly enough. Out intention
is to add to first-order logic a quantifier describing random properties of a
graph but excluding some “low”, “explicitly not random” graphs. Those
are graphs such that for any quantifier free first order formula ϕ(x̄0, x̄1, z̄)
for some k, for random enough G = Gn,1/2 (or Gn,p for a given p ∈ (0, 1)R),

if c̄ ∈ `g(z̄)G and ϕ(x̄0, x̄1, c̄) define in G a graph with > k nodes then it is
so called low. This will be used in §2 to find a logic as desired.]

§2 The Quantifier, pg.14

[We choose randomly enough a set K of (isomorphism types of) finite non-
k-low graphs and show that adding a quantifier for it preserves the zero-one
law. So, the probability of H, a non-low graph to be in the class is h(|H|).
Why h is not constant? Because we like that on the one hand, Pr(Gn,p ∈ K)
converge to 0 (or to 1) so that a sentence saying (the graph Gn,p belongs to
K) converge to 0 (or to 1), and for similarly any graph definable in Gn,p by a
first order formula without parameters. On the other hand, the probability
of e.g. “there is a ∈ Gn,p such that Gn,p�{b : bRa} belongs to K” will go to
1, as there will be � n such nodes but still many.]
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RANDOM GRAPH: STRONGER LOGIC BUT WITH THE ZERO ONE LAW SH1077 3

§ 0. Introduction

Our aim is to find a logic L stronger than first order such that: for p ∈ (0, 1)R,
the p-random graph G = Gn,p (i.e. with edge probability p) satisfies the 0-1-law but
some formula ϕ(x) ∈ L(graphs) defines in random enough graph Gn,p a set of nodes
not definable by any first order logic formula (of course, small enough compared to
n, even with parameters).

The logic is gotten from first order L by adding a (Lindström) quantifier Qt̄ =
QKt̄

gotten from a “random enough” t̄ ∈ N{0, 1}; on quantifiers see [Be85]. We
may wonder, can we replace Q by a “reasonably defined quantifier”? We may
from the proof see what we need from K, the class defining the quantifier QK,
i.e. a class of (finite) graphs closed under isomorphisms. Excluding some graphs
which we call low, the membership in K should be random enough in the sense
that if we consider only random enough Gn,p, the non-trivial L(QK)-formulas with
parameters will define graphs which are not low and are pairwise non-isomorphic
except in trivial cases. So we just need a definition satisfying this; we hope to try
to do it in a work in preparation.

How does the randomness of t̄ help us to get the zero-one law? The idea is
that for the quantifier Qt̄ (see §2) used here, if we expand Gn,p by finitely many
relations definable by formulas from L(Qt̄), we get a random structure with more
relations essentially with constant probabilities, i.e. is interpretable in a suitable
M = Ms,p̄,n, see §1, it look like Gp,n (but with some relations of suitable kinds as
we sort out), with, e.g. p̄ = 〈pn : n < ω〉 with pn going slowly to zero.

That is, fixing formulas ϕ`(x̄`) ∈ L(Qt̄) starting with Qt̄, ` < k with no obvi-
ous connections we decide a priory that for a random enough Gn,p̄ the structure

([n], R
Gn,p
` )`<k = (ϕ(Gp.n), . . . , ϕ`(Gp,n), . . . )` for suitable formulas ϕ(x), ϕ`(x̄`),

will look like M above.
The decision is the simplest one: look as if truth values of R

Gn,p
` (ā) were drawn

independently, with probability pn. This is an over simplification! We need a more
involved such drawing, reflecting the original ϕ̄` to some extent, see below.

We may replace Ms,p̄,n by using (for some irrational α ∈ (0, 1)) p̄n = (p, pn),
such that pn = 1

nα , except the original drawing of the graphs as in [SS88]. We can
also analyze Gn, rnα and use several pairs (r, α) in the analysis (as long as the sets
of α’s is linearly independent over the rationals). We hope later to show that for
some such version there is a more natural definable QK which imitate its behavior.

So in the proof we have two questions to address: first fixing G = ([n], R`)`<k,
drawing the quantifiers, how ([n], RG` , . . .) look like. Second, we need to consider
all the G’s on [n]. For the first stage the main problems are: two definably derived
graphs which are isomorphic.

We do some kind of elimination of quantifiers: essentially if Mn is a τ -structure
(τ relational and finite) drawn randomly according to the sequence 〈pτ,R : R ∈ τ〉
of fixed probabilities, applying Qt̄ to some finitely many schemes 〈s0, . . . , sk〉 of
interpreting graphs, define a random M ′

n for τ ′-structures by expanding Mn by
R` = {c̄ : `g(c̄) = `g(z̄s`) and the graph Hs`,c̄ interpreted by s` for the parameter c̄
is in the class Qt̄}.

Our use of vocabulary and structure deviates a little from the standard, but fits
with the use in graph theory and is natural here. In graph theory the edge relation
R is assume to be symmetric and irrefelxive. So we use (say kt-place predicate)
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4 SAHARON SHELAH

Rt such that it is always irreflexive (fails for kt-tuples with a repetition) and Kt-
invariant for some group Kt of permutation of {0, . . . , kt − 1}, i.e. if 〈a` : ` < kt〉
satisfies it then so does 〈āπ(`) : ` < kt〉 for every π ∈ Kt. This is natural because
when the pair of formulas ϕ̄(c̄) defines a graph H = HM,ϕ̄,c̄ in the structure M (e.g.
a graph) and we like to draw a truth value for “H ∈ Kt̄”, a group of permutation
of `g(c̄) is dictated by ϕ̄.

Why the random auxiliary structures are better defined in a different way? Recall
the truth value of “H ∈ Kt̄” is chosen randomly, but if H is definable in the graph
G, say is HG,ϕ̄,c̄,t̄ then the probability of “H ∈ Kt” depends on H, and in natural

cases, on |H|, the number of nodes of H. But if M = ([n], . . . , R0
` , . . .) is random,

the standard way to make the probability of c̄ ∈ RG` naturally depend on n and in
many cases n 6= |H|.

We could have allowed using the quantifiers only on graphs H definable in Gn,q
with set of nodes [n] but this seems to me quite undesirable, restricting our logic
too much. We restrict ourselves to the class of graphs - twice, we consider Gn,q and
the quantifier Qt̄ is on graphs. But in both cases this is not really needed.

We thank Simi Haber for raising again the problem and for some stimulating
discussions and Noga Alon for asking during a lecture in the Noga-fest, January
2011, why we ignore the weak graph; a reasonable interpretation is: why we do not
draw a truth value for “G is green” for G a empty graph. One problem is that the
sentence ψ saying “the graph with all nodes (is [n]) and no edges” the probability
that Gp,n satisfies it is always zero or one and in non-trial cases is not eventually
constant; see more in §3
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RANDOM GRAPH: STRONGER LOGIC BUT WITH THE ZERO ONE LAW SH1077 5

§ 1. Identifying the low graphs

We like to add a quantifier Q on finite graphs, which give a property of finite
graphs respecting isomorphism (i.e. a subset closed under automormorphisms).
The aim is that for e.g. for the random graph Gn,p, the 0-1 law holds for L(Q)
but there is an L(Q)-formula ϕ(x) such that for no first order ψ(x) are ϕ(x), ψ(x)
equivalently in Gn,p.

More specifically, we better make the quantifier trivial on too simple graphs, then
we intend that for any fix finite set of formulas from L(Q), for random enough Gn,p
the structure (G,ϕG(−))ϕ∈∆ is a random structure excluding the “problematic”
graphs.

§ 1(A). Interpretation.

Convention 1.1. 1) h : N → (0, 1
2 )R goes to zero slowly enough, e.g. h(n) =

1/ log2 log2(n) for n > 16 and = 1 if n ≤ 16; slowly enough actually means:

(a) α ∈ (0, 1)R ⇒∞ = lim〈h(n)nα : n < ω〉
(b) 0 = lim〈h(n) : n < ω〉
(c) nh(n) is non-decreasing (for simplicity).

2) g : N→ R≥0 be g(n) = nh(n) hence g(1 + n) ≥ 1 and so g go to infinity slowly
enough.

Notation 1.2. 1) Let [n] = {1, . . . , n} or {0, . . . , n − 1} if you prefer (serve as the
universe of the n-th random graph).
2) Let τ denote a vocabulary (e.g. τ = τgr is the vocabulary of graphs; see Definition
1.3 below). Let L be first order logic so L(τ) is the set of first order formulas in the
vocabulary τ , but below we may write L(s) instead of L(τs).
3) A τ -model M is defined as usual.
4) For a formula ϕ = ϕ(x̄, ȳ), model M and b̄ ∈ `g(ȳ)M let ϕ(M, b̄) = {ā ∈ `g(x̄)M :
M |= ϕ[ā, b̄]}.

The following is a central definition, explicating the restriction to what is defin-
able.

Definition 1.3. 1) For a finite set I we say s is an I-kind or an I-kind sequence
(of a vocabulary) and write Is = I when :

(a) s = 〈(kt,Kt) : t ∈ I〉 = 〈(ks,t,Ks,t) : t ∈ I〉
(b) kt ∈ N
(c) Kt is a group of permutations of {0, . . . , kt − 1}.

1A) Let sgr = s(gr) be defined by (gr stands for graphs) Is = {sgr}, sgr fix, e.g.
0, ks,s0 = 2,Ks,s0 = sym(2), the group of permutations of {0, 1}.
2) For s an I-kind sequence we define:

(a) the s-vocabulary τs is {Rt : t ∈ I}, Rt a ks,t-place predicate

(b) an s-structure is M = (|M |, RMt )t∈I such that (so the universe |M | of M
may be empty):

(α) RMt is a kt-place relation on |M |
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6 SAHARON SHELAH

(β) RMt is Kt-invariant, i.e. if 〈a` : ` < kt〉 ∈ RMt ∧ b̄ ∈ ā/EKt ⇒ b̄ ∈ RMt
where ā/EKt = {〈aπ(`) : ` < nt〉 : π ∈ Kt}; let Es,t = EKt

(γ) RMt is irreflexive, i.e. ā ∈ RMt ⇒ ā with no repetitions.

(c) Ms = ∪{Ms,n : n ∈ N} where Ms,m = {M : M an s-structure with set of
elements [n]}.

3) For an I-kind s let P1
s be the set of p̄ = 〈pt,n : t ∈ I, n ∈ N〉, pt,n ∈ (0, 1)R, so

pt,n /∈ {0, 1}. We define the (s, p̄)-random structure on [n],M = Ms,p̄,n as follows
(see more in part (5),(6): for t ∈ I and ā ∈ kt([n]) with no repetitions we draw
a truth value for ā ∈ RM

t with probability pt,n, but demanding we have the same
result for ā′, ā′′ when they are Es,t-equivalent and independent otherwise.
3A) Let P0

s for s as above be the set of p̄ ∈ P1
s such that t ∈ Is∧n ∈ N⇒ pt,n = pt,0,

so we may write pt instead of pt,0. If s = sgr, we may write gr instead s.
4) Let P2

s be the set of p̄ ∈ P1
s such that for some q̄ ∈ P0

s and partition Ī = (I0, I1)
of I, we have pt,n is qt if t ∈ I0 and is q0/g(n) if t ∈ I1; we denote p̄ by p̄q̄,I0 =
p̄q̄,Ī = p̄[q̄, Ī].
4A) We may write p instead of 〈pt : t ∈ Igr〉 when psgr

= p.

5) For p̄ ∈ P1
s let µs,p̄,n be the distribution (= probability space) on Ms,n corre-

sponding to drawing the truth value of Rt(ā) really of 〈Rt(ā
′) : ā′ ∈ ā/Es,t〉 for a

sequence ā with no repetitions of length ks,t with probability pt,n, independently
of the other choices.
6) Let Ms,p̄,n be the random variable for the finite probability space (Ms,n, µs,p̄,n).
If s = sgr,q let Gq,n = Ggr,q,n = Msgr,q,n and µgr,q,n = µsgr,p̄gr,q,n.

Recall

Fact 1.4. 1) P0
s ⊆ P2

s ⊆ P1
s .

2) For every p̄ ∈ P0
s or p̄ ∈ P2

s ,Ms,p̄,n satisfies the 0-1 law for first order logic and
the limit theory Ts,p̄ has elimination of quantifiers, really is Ts, i.e. does not depend
on p̄ and g and h (as long as they are as in 1.1(2)).
3) Msgr,n is the set of graphs with set of nodes [n].

Proof. Should be clear. �1.4

Remark 1.5. 1) We first concentrate on one application of the quantifier.
2) We are interested in interpreting graphs. We give the most general case. Note
that we intend the quantifier to be a property of graphs. So we have to think
of an interpretation of a graph. In such general interpretations using quantifier
free formulas the elements may be only: a set of elements definable by a formula
ϕ(x, ā), ā is a sequence of parameters or more generally such a set of k-tuples,
maybe modulo suitable EK , or even a finite union of such. For each pair of the
nodes (fixing from where in the union they come) we define when it is an edge
by a quantifier free formula. So below z̄ are parameters, i(ϕ̄) number of “kinds of
elements”, ways to define a node; ϕ0,i restrict the i-th kind, ϕ2(z̄) describes the
relevant parameters, ϕ1,i,j describes the edges between a node of the i-th kind and
a node of the j-th kind.
3) Generally in interpretations we allow the set of elements to be e.g. the set
of equivalence classes of an equivalence relation defined say by ϕ(x̄′, x̄′′, ā), where
lg(x̄′) = lg(x̄′′) but in our case those will always be degenerated, see 1.10.
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RANDOM GRAPH: STRONGER LOGIC BUT WITH THE ZERO ONE LAW SH1077 7

Definition 1.6. 1) For s an I-kind, we say ϕ̄ is a s-scheme (of a graph interpretation
in s-structures) when it consists of:

(a) 〈ϕ0,i(x̄i, z̄), ϕ1,i,j(x̄i, x̄
′
j , z̄), ϕ2(z̄) : i, j < i(ϕ̄)〉 such that:

•1 `g(x̄′j) = `g(x̄j), it is possibly zero

•2 〈x̄i, x̄′i : i < i(ϕ)〉 are pairwise disjoint, each with no repetitions

•3 i(ϕ̄) is a non-zero natural number; if we allow i(ϕ̄) = 0 then we have
to allow the empty graph.

(b) ϕ0,i, ϕ1,i,j , ϕ2 are formulas in the vocabulary τs, in this section they always
are quantifier free formulas in L(τs), note that possibly ϕ1,i=ϕ1,j though
i 6= j.

(c) Ki = Kϕ̄,i is a group of permutations of {0, . . . , `g(x̄i)− 1}, not related to
Ks,t(t ∈ I)!

(d) ϕ0,i(x̄i, z̄) is invariant under permuting x̄i by any π ∈ Ki; that is if π ∈ Ki;
x̄′i = 〈xi,π(f) : ` < `g(x̄i)〉 then ϕ2(z̄) `s (∀x0 . . . x` . . .)(ϕ1,i(. . . x` . . . ; z̄) ≡
ϕ1,i(. . . xπ(`), . . . , z̄)) where `s means implication in every s-structure

(e) ϕ1,i,j(x̄i, x̄
′
j , z̄) is invariant under permuting x̄i, x̄

′
j by π ∈ Ki,κ ∈ Kj re-

spectively, and ` ϕ1,i,j(x̄i, x̄
′
j , z̄) ≡ ϕ1,j,i(x̄

′
j , x̄i, z̄) and ` ¬ϕ1,i,i(x̄i, x̄i, z̄)

(f) if M is a τs-structure and G |= ϕ0,i[ā, c̄], so `g(c̄) = `g(z̄) then āˆc̄ is with
no repetitions.

So if we have ϕ̄ = ϕ̄ι then ϕι0,i = ϕ0,i, etc. and we may write z̄ϕ̄, x̄ϕ̄,1,i, x̄
′
ϕ̄,1,1.

2) If s and ϕ̄ are as above, M is an s-structure and c̄ ∈ ϕ2(M), i.e. c̄ ∈ `g(z̄)M
satisfies M |= ϕ2[c̄] then H = Hϕ̄,M ,c̄ is the follwoing graph:

(α) the set of nodes is {(i, ā/EKi) : M |= ϕ0,i[ā, c̄] for some i < i(ϕ̄) and

ā ∈ `g(x̄i)M}, see 1.3(2)(b)(β)

(β) {(i, ā/EKi), (j, b̄/EKj )} is an edge iff M |= ϕ1,i,j [ā, b̄, c̄].

3) Let ks(ϕ̄) = max({`g(x̄i) : i < i(ϕ̄)} ∪ {`g(z̄)}) and let ks,i(ϕ̄) = `g(x̄i), k
∗
s (ϕ̄) =

max{`g(x̄i) : i < i(ϕ̄)}.
4) We say ϕ2(z̄) is complete when for any s-structure M , if ā1, ā2 ∈ ϕ2(M) then
ā1, ā2 realizes the same quantifier free type in M .
5) We say ϕ̄ is complete when ϕ2(z̄) and each ϕ0,i(x̄i, z̄) is (not contradictory and
is) complete (see (4)) and ϕ0,i(x̄i, z̄) ` ϕ2(z̄). If not said otherwise, we assume ϕ̄ is
complete.

Observation 1.7. 1) In Definition 1.6(2), Hϕ̄,M,c̄ is indeed a graph (possibly
empty) and is finite when M is finite τs-structure.
2) For each ϕ̄ as in 1.6(1), for each i < i(ϕ̄) one of the following holds:

(α) for some k, ϕ2(z̄) ` (∃!kx̄i)(ϕi(x̄i, z̄))
(β) for every k for some s-structures M , in M we have ϕ2(z̄) ` (∃≥kx̄)ϕ0,i(x̄i, z̄).

Proof. Read Definition 1.6(1). �1.7

Observation 1.8. 1) Let s be an I-kind and ϕ̄ is a complete s-scheme.
The following are equivalent:
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(a) for every p̄ ∈ P2
s and random enough M = Ms,n we have ϕ2(M ) 6= ∅

(b) for some p̄ ∈ P2
s ∪P0

s we have 0 < lim supn Prob(ϕ2(Ms,p,n) 6= ∅).

2) For any sentence ψ ∈ L(τs), similarly replacing ϕ2(M ) 6= ∅ by “for some
c̄, Hϕ̄,M ,c̄ |= ψ”.

Proof. Easy. �1.8

Definition 1.9. 1) We call an s-scheme ϕ̄ trivial when for each i < i(ϕ) we have
`g(x̄i) = 0.
2) We call an s-scheme ϕ̄ degenerated when the conditions of 1.8 fail; as long as ϕ̄
is complete this does not occur as i(ϕ̄) 6= 0, Def 1.6(1)ab3.

3) We say the s-scheme ϕ̄ is 1-weak when at least one of the following holds:

(a) s is degenerated or s is trivial, i.e. `g(x̄i) = 0 for every i < i(ϕ) or

(b) for some truth value t and i1, i2 < i(ϕ) satisfying `g(x̄i1), `g(x̄i2) ≥ 1 and
v1 $ `g(x̄i1), v2 $ `g(x̄i2) we have

• for some (equivalently any) p̄ ∈ P2
s , for random enough M = Ms,p̄,n,

for some c̄ ∈ ϕ2(M ) and ā∗` ∈ ϕ1,i`(M , c̄) for ` = 1, 2 we have

• if ā` ∈ ϕ1,i`(M , c̄) and ā`�v` = ā∗`�v` for ` = 1, 2 and rang(ā1) ∩
rang(a2) ⊆ rang(ā∗1�v1) ∩ rang(ā∗2�v2) then M |= ϕi1,i2 [ā1, ā2, c̄]

if(t).

4) We say the s-scheme ϕ̄ is 2-weak when at least one of the following holds:

(a) it is degenerated or trivial, i.e. as in (a) of part (3)

(b) for some i < i(ϕ), `g(x̄i) ≥ 2

(c) for some i1, i2 < i(ϕ) with `g(x̄i2) = 1 = `g(x̄i2) and p̄ ∈ P2
s and random

enough M = Ms,p̄,n and c̄ ∈ ϕ2(M ) there is t ∈ {0, 1} such that for every
a1 ∈ ϕ1,i1(M ), a2 ∈ ϕ1,i2(M ) we have a1 6= a2 ⇒ Hϕ̄,M ,c̄ |= “a1Ra2 iff
t = 1”.

5) We say the s-scheme is 3-weak when it is 1-weak or 2-weak.

Claim 1.10. 1) For any k, if M = Ms,p̄,n is random enough for k and c̄ ∈ k≥M ,
and there is an interpretation using as parameter c̄ ∈ k≥M of a graph H in M
using (≤ k)-tuples (in the widest sense - the elements can be equivalence classes
of suitable definable equivalence relations on set of tuples satisfying a formula) by
formulas of length ≤ k then there is a complete s-scheme ϕ̄ such that H = Hϕ̄,M ,c̄

and k(ϕ̄) ≤ k.
1A) For any interpretation by first order formulas with parameter z̄

(*) there is an s-scheme interpretation equivalent to it, and we can compute it,
(*) moreover we can compute a finite sequence 〈ϕ̄i : i < i∗〉, each ϕ̄i is complete,

all with the same parameter c̄.

2) In fact ϕ̄ depends just on the interpretation and the quantifier free type of c̄ in
M , not on M (and even n).
3) Given s and k there only finitely many scheme ϕ̄ as above.

Proof. Obvious. �1.10
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RANDOM GRAPH: STRONGER LOGIC BUT WITH THE ZERO ONE LAW SH1077 9

Definition 1.11. Let s, ϕ̄ be as above, ϕ̄ is complete, see 1.6(5).
We say (s, ϕ̄) is reduced when : for every p̄ ∈ P2

s and random enough M = Ms,p̄,n

and c̄ ∈ `g(z̄ϕ̄)M satisfying ϕ2(z̄ϕ̄), the graph H = Hϕ̄,M ,c̄ is not H = Hϕ̄′,M ,c̄′

when (ϕ̄′, c̄′ appropriate and) Rang(c̄′) $ Rang(c̄); recall c̄ is without repetitions.

§ 1(B). Simple Random Graph.

Our intention is that the behaviour of Gq,n expanded by some formulas in the
expanded logic will be like Ms,p̄,n, p̄ ∈ P2

s , but we need a relative as we can iterate.

Definition 1.12. For ι = 1, 2, 3 let Uι be the set of objects u consisting of the
following (we may add subscript u):

(a) s̄ = 〈s` : ` ≤ `(u)〉
(b) s` is a kind sequence

(c) s0 = sgr, the graph kind sequence, see 1.3(1A)

(d) s` ⊆ s`+1, i.e. Is` ⊆ Is`+1
and t ∈ Is` ⇒ (ks`,t,Ks`,t) = (ks`+1,t,Ks`+1,t)

(e) notation: so we may write (ku,t,Ku,t) for t ∈ Is`(u)
and Iq = Is`(u)

(f) for t ∈ Is`+1
\Is` we have: ϕ̄t is a complete reduced s`-scheme, not ι-weak

such that Kt = Kϕ̄t , see Definition 1.18(2) let it = i(t) = i(ϕ̄t) and similarly
ϕt,2, ϕt,0,i, ϕt,1,i,j but let ϕt(z̄t) = ϕt,2(z̄t). In the case ι = 2, 3 if ȳt,i 6= 〈〉
then ȳt,i is a singleton so we shall write ϕt,0,i(y, z̄t,i)

(g) q = qu ∈ (0, 1)R.

Definition 1.13. For u ∈ Uι we define a random Mu,n, i.e. a 0-1 context, as
follows.

For a given n,Mu,n is gotten by drawing Mu,n,` ∈ Msu,`,n by induction on
` ≤ `(u) and in the end Mu,n = Mu,n,`(u).

Now

(a) if ` = 0,Mu,n,` is Gq(u),n, i.e.the random graph on n with edge probability
q

(b) if ` < `(u) and Mu,n,` has been drawn and t ∈ Isell+1
\Is` , we draws

Rt(Ms`+1
) as follows:

(α) if c̄ ∈ ϕt(M) we draw the truth value of c̄ ∈ Rt(Ms`+1,n) with probabil-
ity h(

∑
i<i(t)

EXP|ϕa,i(Ms`+1,n, c̄)|/|Kt,i|) recalling EXP is the expected

value

(β) if c̄ is a sequence of length kt but /∈ ϕt(M) then c̄ /∈ Rt(Ms`+1,t).

Claim 1.14. For u ∈ Uι,Mu,n is like Msq,p̄ for any p̄ ∈ P2
sq (and Mu,n,` like

Msq,`,p̄), in particular, satisfying the zero one law:

(∗) for any k1 for some k2, for any random enough Mu,n we have:

• if ϕ(x̄), ψ(ȳ, z̄) are complete L(τsu)-formulas such that ψ(ȳ, z̄) ` ϕ(z̄)
(so they respect the Ku,t’s!, see Definition 1.9(6)) and `g(ȳ) + `g(x̄) ≤
k1 and c̄ ∈ ϕ(Mu,n) and kt,i ≥ 1 then the number of members of

ψt,i(Mu,n, c̄) is similar to
(
n`g(ȳ)

kt

)
· kt

(Kt)
; fully
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• at most1
(
n`g(ȳt,i)

kt,i

)
· kt,i!|Kt,i| · (1 + 1

k2
)

• at least
(
nkt,i

kt

)
· kt,i!|Kt,i| · h(n)− k2

• if ι = 2, then kt,i = 1, so this is simpler.

Remark 1.15. What is the reason for our choice in Clause (b)(α) of Def 1.13? There
are some demands pulling in different directions.

(a) This probability should be not too small (considering it belongs to (0, 1/2))
such that the argument “a Σ1 formulas (∃y)ϕ(y, ā) hold when not excluded”
as in Ms,p̄,n

(b) but always is not so small such that Prob((∃ȳ)ϕ(ȳϕ) converge to zero or to
one

(c) The Mu,n are intended to imitate what we get by starting with Gp,n and
expanding it by relations definable by formulas ϕ(x̄) from our logic, so we
are applying our quantifier to a definable (with parameters) graph. So
such a graph even almost surely will not have exactly n nodes. In the
non-degenerated case the number will be of the order of magnitude
(*) Cnk for some positive real C and k ≥ 1 in the 1-low case
(*) Cn for some positive real C in the 2/3-low case,

Proof. Should be clear. �1.14

§ 1(C). Low/High Graphs.

An s’s scheme ϕ̄ may be such that, e.g. the bi-partite graph with the i-th kind and
the j-th kind is in the low case, see Definition 1.9(4); so we try to single out those
ϕ̄’s. Those cases are “undesirable” for us and we shall try to discard them.

Definition 1.16. 1) We say a finite graph H is h− 1-low (recall h is from 1.1 so
can be omitted) when there are no disjoint A,B ⊆ H and ι < 2 such that (letting
n = |H|)

(a) |A|, |B| ≥ |H|h(n)

(b) if a ∈ A and b ∈ B then (a, b) is an edge of H iff ι = 1.

2) We say that a finite graph H is h− 2-low when 2 letting n = |H|,m = bg(n)c =
bnh(n)c, there are no ā, b̄,M, c such that:

(a) ā = 〈a` : ` < m〉
(b) b̄ = 〈b`,k : ` < k ≤ m〉
(c) āˆb̄ is a sequence of nodes of H with no repetitions

(d) each c0, c1 is a function from {(`, j) : `, j ≤ m} to {0, 1, . . . , bg(n)c}
(e) c2 is a function from {(`, k) : `, k ≤ m} into {0, 1, . . . , bg(n)c}
(f) if `′ < k′ ≤ m and j′ < m and `′′ < k′′ ≤ m, j′′ ≤ n and c0(`′, j′) =

c0(`′′, j′′) and c1(k′, j′) = c1(k′′, j′′) and c2(k′, `) = c2(b′′, `′′) then (b`′,k′ , aj′)
is an edge of H iff (b`′′,k′′ , aj′′) is an edge of H.

1we could have allowed, e.g. when kt = 1 to be near to 1 though not too closely, but if we shal

use a quantifier Q such that � 1
2

of the structures are in it
2The specific choice of m is not important, but they have to be ≤ n1/k and > k for any k, for

large enough n. Similarly |Rang(c`)| compared to m.
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3) We say the finite graph H is h− 3-low when it is h− 1-low or h− 2-low.
4) In parts (1) and (2), h− ι-high means the negation of h− ι-low.

Claim 1.17. Assume s is an I-kind, (see Definition 1.3) and ϕ̄ is a complete
s-scheme (see Definition1.9(2)). 1.6, 1.9(2))

(A) the following are equivalent:

(α) ϕ̄ is trivial

(β) if p̄ ∈ P2
s then for random enough M = Ms,n,p̄ and c̄ ∈ ϕ2(M ) the

graph Hϕ̄,M ,c̄ has ≤ i(ϕ̄)(k(ϕ̄)!) nodes

(γ) if ε > 0 and p̄ ∈ P2
s then 0 < lim supn Prob(letting M = Ms,p̄,n, for

some c̄ ∈ ϕ2(M ) the graph Hϕ̄,M ,c̄ has ≤ n1−ε nodes).

(B) the following are equivalent for non-trivial ϕ̄:

(α) ϕ̄ is 1-, see Def 1.9,

(β) if p̄ ∈ P2
s then for every random enough M = Ms,n,p̄ and for every

c̄ ∈ ϕ2(M ) the graph Hϕ̄,M ,c̄ is h− 1-low

(γ) if ε > 0 and p̄ ∈ P2
s then 0 < lim supn Prob(letting M = Ms,p̄,n, for

some c̄ ∈ ϕ2(M ) the graph Hϕ̄,M ,c̄ is 1-low)

(C) Like (B), replacing 1-weak, h− 1-low by 2-weak, h− 2-low respectively

(D) Like (B), replacing 1-weak, h− 1-low by 3-weak, h− 3-low respectively.

Proof. Clause (A):

Trivially (A)(α)⇒ (A)(β) and (A)(β)⇒ (A)(γ).
So it suffices to assume ϕ̄ is non-trivial, p̄ ∈ P2

s and let ε > 0 be small enough
and prove that for every random enough M = Ms,p̄,n and c̄ ∈ ϕ2(M ) the graph
Hϕ̄,M ,c̄ has ≥ εn nodes.

Let i < i(ϕ̄) be such that ki = `g(x̄i) > 0, so for n large enough and c̄ ⊆ [n] of
length `g(z̄) let Sn,c̄ = {ā : ā is a sequence of length `g(x̄i) with no repetition of
members of [n] not from c̄}. For every ā ∈ Sn,i, the real Prob(Ms,p̄,n |= “if ϕ2(c̄)
then ϕ1,i(ā, c̄)”) is the same for every ā ∈ Sn,c̄ and is of the form r(1)g(n)m for
some r(1) ∈ (0, 1)R,m ∈ N\{0} not depending on n. Fixing c̄ under the assumption
Ms,p̄,n |= ϕ2[c̄], considering a maximal set of pairwise disjoint i ∈ Sn,c̄, the events
Mx,p̄,n |= ϕ1,i[ā, c̄] are independent, such that almost surely the number |{ā ∈ Sn,c̄ :
Ms,p̄,n |= ϕ1,i[ā, c̄)} is ≥ n/(r(1)g(n)m(1− ε)). Similarly almost surely the number
of c̄ such that M |= ϕ2[c̄] is large.

Clause (B):

First why (B)(α)⇒ (B)(β)?

Note ϕ̄ is non-trivial; (s, ϕ̄) cannot satisfy clause (a) of Definition 1.9 because in
the present claim we are assuming ϕ̄ is non-degenerated. So assume clause (b) of
1.9(3) holds as exemplified by i1, i2, i(ϕ̄), v1, v2 and truth value t, i.e. `g(x̄i), `g(x̄j) >
0, etc. So assume n is large enough and M = M, c̄ ⊆ [n] has length `g(z̄ϕ̄).

Let A` = {ā : ā ⊆ [n] is of length `g(x̄i`) for ` = 1, 2 with no repetition and is
disjoint to c̄}. Choose for ` = 1, 2 disjoint ā∗` ∈ A`. So the event Ec̄ = “(c̄ˆā∗1ˆā∗n)

is as in 1.9(3)” has probability ≥ r1(g(n)k(1)) for some r1 ∈ (0, 1)R, k ∈ N\{0} not
depending on n (and c̄). Fixing (c̄, a∗1, a

∗
2) let C` ⊆ (n1\rang(c̄ˆā∗1ˆā∗2), |C`| ≥ (n−

|`g|(z̄ˆx̄i1ˆx̄i1)− 1
2 for ` = 1, 2 and C1∩C2 = ∅. Let A′` = {ā ∈ A` : Rang(ā) ⊆ C`}.
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Easily for some r(2), r(3) ∈ (0, 1)R not depending on n, t the probability of the
event E2 = E r

c̄,ā∗,ā∗1
is ≥ 1− 2−r(2)n where

(∗) E2 means: if M |= ϕ2[c̄] ∧ ϕ1,i1 [ā∗1] ∧ ϕ1,i2 [ā∗2] then |{ā` ∈ A′` : M |=
ϕ[ā`,m]}| ≥ n|u(`)|r(3) for ` = 1, 2.

If E2 occurs, clearly t and A∗M ,` = {ā/EKs,i,`
: ā ∈ A′` and M |= ϕ0,i` [an,m, c̄]} for

` = 1, 2 exemplifies Hϕ̄,M ,c̄ is low. As the number of c̄, ā∗1, ā
∗
2 is polynomial we can

finish.

Second, why (B)(β)⇒ (B)(γ):
Read the clauses and Definition of 1.16.

Third, ¬(B)(α)⇒ ¬(B)(γ): This suffices

Why this holds? Let M = Ms,p̄,n be random enough, c̄2 ∈ ϕ2(M ) and A1, A2 ⊆
H = Hϕ̄,M ,c̄ witness H is low, so |A`| ≥ nh(n). So n∗1 = min{|A∗1|; |A∗2|} ≥ mh(n).

Clearly for each ` ∈ {1, 2} for some i(`) < i(ϕ̄) we have

|ā/Ks,i,` ∈ A` : ā ∈ ϕ1,i(M , c̄)}| ≥ |A`|/i(ϕ̄) = n∗2 ≥ nh(n)/i(ϕ̄).

So for some r ∈ (0, 1)R not depending on n for ` = 1, 2 we can find 〈ā`,m : m <
n∗3 = 〈(n∗2)r〉 and partition v`, u` of `g(x̄i(`)) such that:

(∗) (a) ā`,m�vc = a∗`
(b) Rang(ā`1,m1

�u`) ∩ Rang(ā`2,m2
) = ∅ when m1,m2 < n∗3(ϕ̄) ∧ `1, `2 ∈

{1, 2} ∧ (`1,m1) 6= (`2,m2)

(c) Rang(ā`,m�u`),Rang(ā2,m(r)�u2), ā∗1ˆā∗2 are pairwise disjoint for ` ∈
{1, 2},m < n∗3.

We draw M �(c̄ˆā`,m) for every ` ∈ {1, 2} and m < n∗3 we get M ′. So ignoring
events of very low probability (≤ ( 1

2 )rn for fix r ∈ (0, 1)R)

(∗) w` := {m < n∗3 : (M ′�c̄ˆā`,m) |= ϕ1,i(`)[ā`,m, c̄]} has ≥ n∗4 :=
√
n
∗
3 members.

So n∗4 ≥ nε for ε small enough but let Y` = {ā`,m/Kt,i(`) : m ∈ w`}; it is a set of
≥ n∗ nodes of Hϕ̄,M ,c̄.

Now

(a) m(1),m(2) < n∗4 ⇒ Prob(M |= ϕ1,i(1),i(2)(ā1,m(1), ā2,m(2), c̄)) = r/g(n)k

for some r ∈ R>0, k ∈ N\{0} not depending on n

(b) if i(1), i(2) are not as required in 1.9(3)(h) and t = 0, 1 then with negligible
probability we have for some u1 ⊆ w2, u2 ⊆ w2 with bg(|H|)c elements each
we have m(1) ∈ u1 ∧m(2) ∈ u2 ⇒M |= ϕ1,i(1),i(2)(ā1,m(1), ā2,m(2), c̄)

if(t).

So this could not have occured.

Clauses (C),(D):
Also straightforward. �1.17

∗ ∗ ∗
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Definition 1.18. 1) Assume ϕ̄1 = ϕ̄1, ϕ̄
2 = ϕ̄2 are s-schemes and ϕ̄1, ϕ̄2 are

reduced and complete. We say (s, ϕ̄1), (s, ϕ̄2) are explicitly isomorphic when some
π and κ witness it which means:

(a) i(ϕ̄1) = i(ϕ̄2) and `g(z̄ϕ̄1) = `g(z̄ϕ̄2)

(b) π is a permutation of {0, . . . , i(ϕ̄1) − 1} such that kϕ̄1,i = kϕ̄2,π(i) and
Kϕ̄1,i = Kϕ̄2,i for i < ϕ̄1

(c) κ is a permutation of `g(z̄ϕ̄1
)

(d) for random enough M = Ms,p̄,n, if ` ∈ {1, 2},M |= ϕ`2[c̄`] then letting

c̄3−` be such that c̄2 = κ(c̄1) we have M |= ϕ3−`
2 [c̄3−`] and ϕ1,i(M , c̄1) =

ϕ1,π(i)(M , c̄2) and ϕ1,i,j(M , c̄1) = ϕ1,π(i),π(j), (M , c̄2)

2) For s, ϕ̄ as above let Kϕ̄ = Ks,ϕ̄ be the group of permutations K of `g(z̄ϕ̄) such
that ϕ̄ is explicitly isomorphic to itself using our κ in 1.18(1).

Claim 1.19. 1) For every s-scheme ϕ̄ we can find 〈ϕ̄ι(z̄ι) : ι < ι(∗)〉 such that:

(a) ϕ̄ι(z̄ιi) is a complete reduced s-scheme such that z̄ι is a subsequence of z̄

(b) for every s-structure M and c̄ ∈ ϕ2(M) for some ι letting c̄ι = 〈cj : j ∈
dom(z̄) and zj appears in z̄ι} we have Hϕ̄,M,c̄

∼= Hϕ̄ι,M,c̄ι

(c) for every s-structure M ι < ι(∗) and c̄ι ∈ ϕι2(M) there is c̄ such that
(c̄, c̄ι, ϕ̄, ϕ̄i) are as in clause (b).

2) For complete ϕ̄ in the definition of “trivial”, “degenerated”, “reduced” we can
replace “some c̄” by “ c̄′”.
3) In the definition of L(Qt)(τ), see Definition 2.2, we can use (Q . . . , x̄1,i, x̄

′
1,i, . . .)ϕ̄

for complete reduced non-trivial, non-degenerated ϕ̄.

Proof. Easy. �1.19

The Isomorphism Claim 1.20. Assume s is an I-kind and ϕ̄′, ϕ̄′′ are complete
reduced s-schemes as above.
1) If M = Ms,p̄,n is random enough and M |= ϕ′2[c̄′]∧ϕ′′2 [c̄′′] so H ′ = Hϕ̄′,M ,c̄′ , H

′′ =
Hϕ̄′′,M ,c̄′′ are well defined then H ′ ∼= H ′′ iff Rang(c̄′),Rang(c̄′′) and moreover
(s, ϕ̄′), (x, ϕ̄′′) are explicitly isomorphic, as witness by (π,κ) such that π maps c̄′

to c̄′′, see Definition 1.18.
2) Being explicitly isomorphic s-schemes is an equivalence relation.

Proof. Straightforward. �1.20
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§ 2. The random quantifier

Hypothesis 2.1. Let ι ∈ {1, 3} but ι = 3 is simpler and large part is O.K. also for
ι = 2.

Definition 2.2. 1) We say Q = QK is a h− ι-high-graph quantifier when :

(a) Q is a quantifier on finite graphs, i.e. it is a class of finite graphs closed
under isomorphisms

(b) if H is a finite graph and is h− ι-low then H /∈ Q.

2) We define a probability space on the set of high-graph quantifiers as follows: let
H̄∗ = 〈H∗m : m ∈ N〉 be a sequence of pairwise non-isomorphic finite graphs such
that each finite graph is isomorphic to exactly one of them.

For ι ∈ {1, 2, 3}, we let:

(a) T = Tι = {t̄ : t̄ = 〈tm : m ∈ N〉, tm a truth value, tm = 0 if H∗m is
h− ι-low}

(b) we draw the tm’s independently, tm = 0 if H∗m is i− ι-low and tm = 1 has
probability 1/g(|H∗m|) when H∗m is not h− ι-low

(c) Let µTι be the derived distribution.

2A) So the probability space is (B, µT),B is the family of Borel subsets of N2, µT

the measure.
3) For t̄ ∈ T let Qι

t̄ be the quantifier QKt̄
,Kt̄ = {H : H a finite graph isomorphic

to some H∗m such that tn = 1}.
4) We say H is h− ι-high where H is a finite graph which is not h− ι-low.

Claim 2.3. For every random enough t̄ ∈ T the following holds.
1) Qt is a Lindström quantifier.
2) For random enough graph Gn,p,Qt̄ define non-trivial quantifier, defining (with
parameters) non-first order definable sets.
3) More specifically the formula ψ(x) = (the graph restricted to {y : yRx} belongs
to Kt̄)define in every random enough Gn,p, a set which is not first order definable
by a formula of length k.

Proof. Straightforward. �2.3

So

Definition 2.4. 1) The set of formulas ϕ(x̄) of L(Qt)(τs) for a kind sequence s
is the closure of the set of atomic formulas of L(τs) by negation (ψ(x̄) = ¬ϕ(x̄)),
conjunction (ψ(x̄)) = ϕ1(x̄)∧ϕ2(x̄)), existential quantification (ψ(x̄) = (∃y)ϕ(x̄, y))
and applying Qt, ψ(z̄) = (Qt, . . . , x̄0,i, x̄

′
0,i, . . .)i<i(ϕ̄)ϕ̄ where ϕ̄ is an s-scheme of

formulas which are already in L(Qt)(τs), so as defined in 1.6(1) except that now
the ϕι,i are not necessarily quantifier free formulas from L(τs).
2) Satisfaction, i.e. for a (finite) s-structure M , formula ϕ(x̄) and sequence ā of
elements of M of length `g(x̄), we define the truth value of M |= ϕ[ā] by induction
on ϕ, the new case is when:

• ϕ(z̄ϕ̄) = (Qt̄, . . . , x̄0,i, x̄
′
0,i, . . .)i<i(ϕ̄)ϕ̄.
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Now M |= ϕ[c̄] iff c̄ ∈ ϕ2(M) and Hϕ̄,M,c̄ is isomorphic to some graph from {H∗m :
tm = 1}.
3) The syntax of L(Qt̄) does not depend on t̄ so may write L(Q) that is L(Q)(τ)
is the relevant set of formulas, but the satisfaction depends so we shall write M |=t̄

ϕ[ā] for ā a sequence from M and formula ϕ(x̄) ∈ L(Q); of course, such that
`g(ā) = `g(x̄).

Theorem 2.5. 1) For any p ∈ (0, 1)R for all but a null set of t̄ ∈ T, the random
graph Gn,p satisfies the 0-1 law for the logic L(Qι

t̄), i.e. we may allow to apply Qt̄

to definitions as in Definition 1.6, see Claim 1.10.
2)The limit theory T∗ is decidable modulo an oracle for the random Kt.

Remark 2.6. 1) Of course, we can replace the class of graphs by the class of s-
structures, s any kind sequence.

2) Does the limit theory depend on t̄? The problem is for when we apply the
quantifier . to graphs of fixed size, so use completer ϕ̄ with k∗s (ϕ̄) = 0. So we have
to decide if to include formulas in which this occurs. Does

Proof. Consider a sentence ψ ∈ L(Q), see 2.4.

�0 for each n we consider drawing (Gp,n, t̄) ∈ Graphn × T, that is, indepen-
dently we draw

• t̄ ∈ T by the probability space from 2.2(2)

• Gn,p̄ ∈ Graphn = the set of graphs with set of nodes [n] with each edge
drawn with probability pn independently of the other edges

�1 It suffices to prove that

(a) the probability of “Gn,p |=t̄ ψ”, i.e. the pair (Gn,p̄, t̄) satisfies this,
either is ≥ 1

2nr or is ≥ 1− 1
2nr for some r = r(ψ) ∈ (0, 1)R

(b) which case does not depend on n

(c) moreover the probability is ≥ 1− 1
2n≥

iff ψ ∈ T∗.

[Why? Consider the drawing of (〈Gn,p : n ∈ N〉, t) ∈
∏
n

Graphn × T. For every

ψ ∈ L(Q), the following event E 1
ψ ∧ E 2

ψ has probability zero, where

E 1
ψ := (for infinitely many n,Gn,p |=t ψ)

E 2
ψ := (for infinitely many n,Gn,p |=t ¬ψ).

This holds by (a)+(b) of �1. Hence also the event E =
∨
{E 1

ψ ∧ E 2
ψ : ψ ∈ L(Q)}

has probability zero. Hence, by Fubini theorem, drawing for a set of t̄’s of measure
1, the event E 1

ϕ [t]∧E 2
ψ [t] has probability zero, where E `

ψ[t] is the event E `
ψ fixing t.]

To prove �1, fix ψ ∈ L(Q)(τgr). We can find a ∆̄ such that:

�2 (a) ∆̄ = 〈∆` : ` ≤ `(∗)〉
(b) ∆` is a finite set of formulas from L(Q) increasing with `

(c) ∆0 is the set of quantifier free formulas

(d) ψ ∈ ∆`(∗)

(e) every formula in ∆2`+1\∆2` is gotten from formulas from ∆2` by a
first order operation (¬ϕ(x̄), ϕ1(x̄) ∧ ϕ2(x̄),∃yϕ(x̄, y))
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(f) every formula in ∆2`+2\∆2`+1 is of the form ψ(z̄) = (Q . . . x̄i, x̄
′
i, . . .)i<kϕ̄(z̄)

where ϕ̄ = ϕ̄(z̄) recalling 1.20 is a complete reduced s′-scheme for some
s′, i.e. is as in Definition 1.6 but the ϕ0,i(x̄, z̄), ϕ1,i,j(x̄i, x̄j , z̄), ϕ2(z̄)
being from ∆2`+1

(g) no two distinct ϕ̄’s which occur in ∆ on (Q, . . .)ϕ̄ are explicitly iso-
morphic (see Definition 1.18), but replacing equality of formuals by
equivalence for every randm enough Gp,n (during the proof this will
get a syntactical characterization).

[Why? Should be clear.]

�3 let ∆` = {ϑs(x̄s) : s ∈ I∗` } hence T` is finite and m < `⇒ I∗m ⊆ I∗` .

Now by induction on ` ≤ `(∗) we choose s`, ϑ̄
′
`, ϑ̄
′′
` and the function G 7→MG,t̄,` for

G a graph on [n] some n such that:

�4,`(A) (a) I` finite

(b) s` is as in Definition 1.3, an I`-kind of a vocabulary

(c) (α) s0, I0 are defined by I0 = {s0} for some s0 /∈ I∗`(∗), ns,s0 =

2,Ks0,s0 = Sym(2), the group of permutation of {0, 1}
(β) I2`+1 = I2`

(γ) I2`+2 = I2`+1 ∪ (I∗2`+2\I∗2`+1)

(δ) so
• 〈I` : ` ≤ `(∗)〉 is increasing

• Ms0,n is Graphn, the set of graphs with set of nodes [n]

(d) ϑ̄′` = 〈ϑ′s(x̄s) : s ∈ I`〉
(e) ϑ′s(x̄s) a formula in L(τs`) for s ∈ I`
(f) ϑ′′s (x̄s) is a quantifier free formula in L(τs`) equivalent to ϑ′s(x̄s) in the

limit theory Ts` , see Definition 1.4

(g) for any given G ∈ Gn,p, i.e. G ∈Ms0,n and t̄ ∈ T we define MG,t̄,` ∈
Ms`,n by:

(α) MG,t̄,` is a τs` -model expanding MG,t̄,m for m < ` and for s ∈
I`, R

MG ,t̄,`
s is defined by ϑs(z̄s) and also by ϑ′s(z̄s)

(β) if ` = 0,MG,t̄,` is G

(γ) if ` = 2m+1, s ∈ I`\I2m we apply the the first order construction
of ϑs(x̄s) from the formulas 〈ϑs(x̄s) : s ∈ I2m〉 to construct
ϑs(z̄s) from 〈ϑ′′t (x̄t, z̄s) : t ∈ I2m〉

(δ) for ` = 2m+2 and s ∈ I`\I2m+1 if ϑs(x̄s) = (Q . . . , x̄i, x̄
′
i, . . .)i<i(ϕ̄i)ϕ̄s(x̄s)

we define ϑ′s(x̄s) by replacing in ϕ̄s every ϑt by ϑ′′t getting ϕ̄′s
and let ϑ′s(x̄ι) = (Q . . . , x̄i, x̄

′
i, . . .)i<i(ϕ̄ι)ϕ̄

′
s

(ε) we choose ϑ′′i (x̄i) by 1.4 sequence clause (f) here.

Now for each ` ≤ `(∗) we have two relevant ways to draw as s`-structure M with-
universe = set of elements [n].

First, draw t ∈ T and G = Gq,n (recall q ∈ (0, 1)R was fixed in the beginning of
Theorem 2.5) and compute MG ,t̄,n, a s`-structure. This induces a distribution µq,n,`
on Ms`,n, i.e. µq,n,`(M) = Prob(MGq,n,t,n = M |µgr,q,n × µT = µsgr,p̄gr,q,n

× µT).
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Second, we shall choose p̄` ∈ P2
s`

and draw Ms,p̄`,n here the distribution is ? The
interest in the first is that our aim is to prove the 0-1 law for MG ,p̄,n, in particular,
for ` = `(∗) and our sentence ψ; we use the other `’s in an induction.

A priori the probability of “MG ,p,n |= ψ” is opaque.
For the second, Ms,p̄`,n an understanding of the probability of Ms,p̄`,n |= ψ is now

well known and satisfies the 0-1 law. Hence it suffices to prove that the distribution
of MG ,t,` (for G ∈ Gp,n) from Ms`,n and Ms`,p̄,n ∈ Gs`,n are sufficiently similar.

Naturally we choose:

(∗)1 (a) psgr,sgr,n = ps0,sgr,n = q

(b) ps`,t,n = q/g(n) for t ∈ Is`\{ssq}.

Of course, we induct; for ` = 0 there is no difference so we deal now with `+ 1 if `
is even this is trivial so assume ` is odd.

There are several reasons for a difference, for a given model M ∈Ms`,n

(∗)M,1 t ∈ I∗`+1\I∗` and c̄ ∈ ϕt,2(M). The graph Hϕ̄t,M,c̄ is ι-low (for a given n

there are at most nk(ϕ̄′t) (check cases)

(∗)M,2 for some t(1), t(2) ∈ I∗`+1\I∗` , c̄2 ∈ ϕt(1),2(M) and c̄2 ∈ ϕt,2(M) we have
(t(j), c̄1/Eϕ̄′

t(1)
6= (t(2), c̄2/Eϕ̄′

t(2)
) but the graphs Hϕ̄′

t(1)
,M,c̄1 , Hϕ̄′

t(2)
,M,c̄2 are

isomorphic

(∗)M,3 for some t(1), t(2) ∈ I∗`+2\I∗` and t(2) ∈ ∪{I∗2k+2\I∗2k+1 : 2k + 2 ≤ `}
and c̄1 ∈ ϕt(1),2(M), c̄2 ∈ ϕ′t(2),2(M) the graphs Hϕ̄′

t(1)
,M,c̄2 , Hϕ̄′

t(2)
,M,c̄2 are

isomorphic

(∗)M,4 the sequence p̄ ∈ P2
q try to immitate t, but having the probability for

Ms`+1,p̄,n |= Rt[c̄] is pt,n = 1/g(n) whereas the probability ti = 1 is
1/g(|H∗i |) where i is such that Hϕ̄t,MG ,t,c̄ = H∗i for G = Gq,n.

Now there is no reason that usually i = n. However, if ι = 2 then |H∗i | ≤ k(ϕ̄t) · n
and if ι = 1, H∗1 ≤ nk(ϕ̄2). In both cases with probability very close to 1, (for
µs`+1,p̄,n), |H∗i | ≥ n/2k(ϕ̄t). So clearly as q grow slowly enough, see 1.1(2).

This is also true for (∗)M,1, (∗)M,2, (∗)M,3. Together, we have two distributions
on Ms`+1,n and for the second, omitting a set of M with small probability (in
µs`+1,p̄,n) for any other M , the two distributions give almost the same values. The
computations are easy so we are done. �2.5

Remark 2.7. To eliminate (∗)4M, in the end of the proof we may complicate the
drawing of Ms`+1,p̄,n We draw Msm,p̄,n by induction on m: if m = 2j + 2,M =
Mx2j+1,p̄,n given for Rt(t ∈ I∗m\I∗2k+1) we consider only c̄ ∈ ϕ′t,2(M) let m =
mt(c̄) = mt(c̄,M) be the number of nodes of Hϕ̄′t,M,t and we draw a truth value of
Rt(c̄) with probability 1/g(m). Proving the 0-1 law for such drawing is easy.
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§ 3. How to get a real quantifier, i.e. definable K

Discussion 3.1. In the introduction we have considered drawing a truth value
to all graphs. So replacing “converge to zero or to one” we ask only “for every
ε > 0 for every n large enough the probability is up to ε closed to zero or to one,
The point is that otherwise we can weakly express “|ϕ1(Gp,n, ā1)| = |ϕ2(Gp,n, ā2)|,
e.g. for ϕ(x, y) = xRy. So we can find ψ1(x1, x2) implying valencyGp,n(y1) =

valencyGp,n(yn), this will complicate the matter.

In more details, let ψϕ(y) say “the empty graph on ϕ(Gp,n, y) is green”.
Let ψ2(y1, y2) say:

(a) ψ1(y1) ≡ ψ2(y2)

(b) for ` ∈ {1, 2} and y′` there is y3−` such that |ϕ(Gp,n, y1) ∩ ϕ(Gn,p, y′1)| =
|ϕ(Gp,n, y2) ∩ ϕ(Gp,n, y′2)|.

This nearly expresses |ϕ(Gp,n, y1)| = |ϕ(Gp,n, y2)|. We can strengthen this and find
approximation to a+ 1 and cases of addition.

While the above does not suffice to prove impossibility, it suffices to show the
problem is not promising and is different; maybe relevant is the late [S+a].

Discussion 3.2. Can we use a quantifier QK which depends just on the number
of edges via the number of nodes.
1) If it depends only on the number of nodes, it seemed that this is bad for 0-1
laws.
2) Notes that surely graphs H1, H2 occur up to isomorphism when H2 is gotten by
omitting one edge of H1. So we may try that it depends only the number modulo
(blog log(4 + 1)c)! Quite reasonable choice of the quantifier but not ideal.
3) So we may try to change the logic such that essentially just changing one edge
does not matter; that is excluding some family of graphs which with probability
one does not occurs for a random enough Gp,n. This is a reasonable logic, even
without “H ∈ K depends just on the number of edges (and nodes)”

(A) if we forget this restriction, we need to change the flipping of coins for the
logic, e.g. fixing size first, choose one randomly, do this for each neighbor-
hood, choose with distorted probability; not clear if converge and there is
a natural way

(B) Here ng(h) goes slowly to∞ and is used how to make the results O.K.. Note:
in Gn the size of a definable graph for some m, is ≈ n

m so the variance is

c
√

n
m ; still the edges have probability 1

2 and so O.K.

However for later M ι
n (ι < quantifier depth) the probability of each case of a relation

is, i.e. H ∈ K for a structure with probability 1
h(n) so manipulating h gives different

results.
4) But we have a more profound problem: we have nicely definable H1, H2 getting
H2 from H1 by, for some nodes a 6= b omitting the edges (a, c) and adding the edges
(b, c) whenever (b, c)) is an edge when (a, c) is not.

Alternatively omitting the edge (a, c) when (b, c) is an edge, The first does not
change the number of edges, the second changes seriously. This may be close to the
variance for the number of edges.

A medicine? ask: omitting log∗(H) edges, what is the minimal number of edges?
The overcoming may cost: in how to make the probability computations right.
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5) Note: from random Gn,1/2 we build M 9
n1

= Gn,H an s0-structure M 1
n expands

by applying the quantifier getting an s1-structure. But M s1
n is different:

(a) for M s1
n the cases are totally independent

(b) M 1
n is different: first we draw Rgr (= R0 in the lecture) after this we draw

the other relatives but their probabilities:

• depends on the drawing of Mn = G1/2,n

• in particular, on the sizes of the H’s which are not too far from n but
are different.

This complicates our work but the estimates are not so different.

Discussion 3.3. One which seems easiest while not unreasonable is: given a finite
graph G, with m points, which is reasonable - defined as in [S+b] and a point b in
it, compute the valency minus m/2, divided by square root of m (or the variance
of the related normal distribution) and ask if rounding to integers is odd or even.

We may replace the valency by the number of edges of G.
What are the dangers? As we may define a variant of the graph omitting one

edge, in some cases this will change the truth value. For each nod the probability
goes to zero but in binomial distribution the probability of e.g. getting valency
exactly half of the expected value (rounded) is about 1 divided by the square root
of m.

So we should divide not by the square root of m but by a larger value (maybe
instead of asking on even/odd of the rounded value just ask if it can be larger than
one, or absolute value) such that:

(a) almost surely (i.e. with large probability) for some node the value is above
1

(b) the probability that it is exactly one for some node is negligible, and this
is true even if we use a graph only definable (reversing edge/non-edge,
omitting some, etc.).

So we should say that clearly by continuity considerations there are such choices.
A danger is that the n being odd/even can be expressed.

Another avenue is to choose the more natural “the valency is at least half”;
but then it seems we can express being even/odd: say change by one edge change
the truth value and this is true even if we omit one node. So the number of
neighborhoods is half in both cases.
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