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THE MONADIC THEORY OF ORDER
SAHARON SHELAH

ABSTRACT. We deal with the monadic (second-order) theory of order.
We prove all known results in a unified way, show a general way of re-
duction, prove more results and show the limitation on extending them.
We prove (CH) that the monadic theory of the real order is undecidable.
Our methods are model-theoretic, and we do not use automaton theory.

0. INTRODUCTION

The monadic logic is first order logic when we add variables ranging over
sets, and allow quantification over them. If pairing functions are available
this is essentially second order logic. The monadic theory of a class K of
L-models is {¢ : 1 is a sentence in monadic logic, satisfied by any member
of K}.

Here we shall investigate cases where the members of K are linear orders
(with one-place predicates).
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Let us review the history. Ehrenfeucht [Ehr61] proved the decidability
of the first-order theory of order. Gurevich [Gur64] deduced from it the
case of linear order with one-place predicates. Biichi [Biic60] and Elgot
[Elg61] proved the decidability of the weak monadic theory (i.e., we can
quantify over finite sets) of (the order of) w, using automaton theory. Biichi
continued in this direction, in [Biichi62], showing that also the monadic
theory (i.e., quantification is possible over arbitrary sets) of w is decidable;
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and in [Bilic65b] he showed the decidability of the weak monadic theory of
ordinals. In [BS73, p. 96]he proved the decidability of the monadic theory
of countable ordinals. Rabin [M.O69] proved a very strong and difficult
result, implying the decidability of the monadic theory of countable orders.
Biichi [BS73| showed the decidability of the monadic theory of w; and of
{a:a <ws}.

Meanwhile Laitichli [Lau68|, using methods of Ehrenfeucht [Ehr59] and
Fraisse [Frab6] and continuing works of Galvin (unpublished) and Laiichli
and Leonard [LL66], proved the decidability of the weak monadic theory
of order. He did not use automaton theory. Pinus [Pin72] strengthened,
somewhat, those results. Our results have been announced in [She73al,
[SheT3b]

By our notation Laiichli used T'h} only for k= (1,1,1,...) (changed for

the quantification over finite sets).
Remark: We are not interested here in results without the axiom of choice.
See Siefkes [Sil70] which shows that the result on w is provable in ZF. This
holds also for a < w*. Litman [Lit76] pointed out some mistakes in [BS73,
6] (theorems without AC); proved connected results, and showed in ZF that
w1 is always characterizable by a sentence.

In Section 7 we prove (CH) the undecidability of the monadic theory of
the real order and of the class of orders, and related problems. It can be
read independently, and has a discussion on those problems. Gurevich finds
that our proof works also for the lattice of subsets of a Cantor discontinuum,
with the closure operation, and similar spaces. Hence Grzegorczy’s [Grz51]
question is answered (under CH)!.

Our work continues [Lau68|, but for well ordering we use ideas of Biichi
and Rabin. We reduce here the decision problem of the monadic theories
of some (classes of) orders [e.g., well orderings; the orders which do not
embed w; not wj] to problems more combinatorial in nature. So we get a
direct proof for the decidability of countable orders (answering a question of
Biichi [BS73, p.35] Our proof works for a wider class, thus showing that the
countable orders cannot be characterized in monadic theory, thus answering
a question of Rabin [M.O69](p.12). Moreover, there are uncountable orders
which have the same monadic theory as the rationals (e.g., dense Specker
order; see [Jec03] for their existence; and also some uncountable subsets of
the reals). We also show that the monadic theory of {a : a < A1} is recursive
in that of A\, generalizing results of Biichi for w and w;. Unfortunately,
even the monadic theory of ws contains a statement independent of ZFC.
For a set A of ordinals, let F(A) = {a : « is a limit ordinal of cofinality
> w,a <sup A, and aN A is a stationary subset of a}.

Now Jensen [Jen72] proved the following:

lGurevich meanwhile has proved more and has a paper in preparation.
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Theorem 0.1. (V = L). A regular cardinal k is weakly compact if and only
if for every stationary A € k, such that (Va € A)[cf(a) = w], F(A) # 2.

As the second part is expressible in the monadic theory of order, the Hanf
number of the monadic theory of order is high. Clearly also the monadic
theory of the ordinals depends on an axiom of large cardinals.

Now, Baumgartner [Bau76] shows that if ZEC+ (there is a weakly compact
cardinal) is consistent, then it is consistent with ZFC' that

(*) for any stationary A € we, if (Vo € A)lcf(a) = w], then F(A) # @
(and in fact is stationary).

So ZFC does not determine the monadic theory of wa. This par-
tially answers [Biic65al (pp.34-43; p.38, problem 2).

We can still hope that the number of possible such theories is small,
and each decidable, but this seems unlikely. We can also hope to find
the sentences true in every model of ZFC. A more hopeful project is
to find a decision procedure assuming V = L. We show that for this
it suffices to prove only the following fact. Let D, be the filter of
closed unbounded subsets of wa. (Magidor disproves (**) inV =L,
but it may still be consistent with ZFC.)

(**) if A S {a < ws : cf(a) =w}, F(A) = BUC, A is stationary, then
there are A1, Ag, such that A = A1 U Ay, Ay N Ay = &, A1, Ay are
stationary and F(A;1) = B(modD,,,), F(A2) = C(modD,,,).

We prove, in fact, more: that the monadic theory of we and the
first order theory of (P(w2)/D.,,N,U, F) are recursive one in the
other.

Conjecture 0.2. (V = L). The monadic theory of wy (and even wy,) is
decidable.

Conjecture 0.3. (V' = L+ there is no weakly compact cardinal). The
monadic theory of well orders is decidable.

Laiichli and Leonard [LL66] define a family M of orders as follows: It is
the closure of {1} by

(1) M+ N,

(2) M -w and M - w*,

(3) >icy Mi which is 37, o M, and {a € Q : M, = M;} is a dense
subset of the rationals, and each M, € {M; : i < n}.

(See Rosenstein [Ros69] and Rubin [Rub74] for generalization.)

Léuchli [Lau68] proved that every sentence from the weak monadic lan-
guage of order has a countable model if and only if it has a model in M.
Easy checking of Section 4 shows this holds also for the monadic language.
On the other hand, looking at the definition of M, we can easily see that
for every M € M there is a monadic sentence 1 such that M | 1, and
[N|| £ Ro, N = ¢ imply N = M.

In this way we have a direct characterization of M.
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Theorem 0.4. M € M if and only if M is countable and satisfies some
monadic sentence which is (< Vg )-categorical.

Also for other classes whose decidability we prove, we can find subclasses
analogous to M. This theorem raises the following question:

Congecture 0.5. For every N € M there is a monadic sentence 1 such that
M = 4 implies that M and N have the same monadic theory. (It suffices
to prove this for the rational order.)

Related questions are:

Conjecture 0.6. There is a monadic sentence 1 such that R = v and M = ¢
imply that M and R have the same monadic theory.?

Conjecture 0.7. There is an order M which has the same monadic theory as
R, but is not isomorphic to R.>

Conjecture 0.8. There are orders with the same monadic theories, whose
completions do not have the same monadic theories.*
The characterization of M gives us also

Conclusion 0.9. The question whether a sentence in the first-order (or even
monadic) theory of order is (£ Ng)-categorical (or Rp-categorical) is decid-
able.

A natural question is whether the monadic theory of 9t is more “complex”
than that of the ordinals (the orders in 9t are countable unions of scattered
types; see Laver [Lav7l, §3], which includes results of Galvin). To answer
this, we have the

Definition 0.10. For a model M with relations only, let M* be the following
model:

(i) its universe is the set of finite sequences of elements of M;
(i) its relations are
(a) <, where @ < b means a is a initial segment of b,
(b) for each n-place predicate R from the language of M, RM b=
{{ar,...,am—1,b"),(a1,...,am_1,b%),... (a1, ..., am_1,b™)) :
a;, b are elements of M, and M = R[b*,...,b"]}.

The author suggested a generalization of Rabin’s automaton from
[M.O69], proved the easy parts: the lemmas on union and intersec-
tion, and solved the emptiness problem. Then J.Stup elaborated
those proofs, and proved the complementation lemma. Thus a gen-
eralization of the theorem and proof of [M.069] gives

Theorem 0.11. The monadic theory of M? is recursive in the monadic
theory of M.
Thus, using [LavTl, §3] notation, we get, e.g.,

2Confirmed by Gurevich
3Refuted by Gurevich
4Confirmed by Gurevich
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Conclusion 0.12. The monadic theory of {M : M € I, || M| < A} is recur-
sive in the monadic theory of .

Because by Section 2 the monadic theory of oy+ y+ is recursive in the
monadic theory of A, by 0.6 the monadic theory of )+ y+ is recursive in the
monadic theory of A, and so we finish, as by [Lav71, 3.2(iv),3.4] ny+ \+ is a
universal member of {M € M : || M| < A}.

Also useful are the following (Le Tourneau [LT68] proved parts (1),(2) at
least):?

Theorem 0.13. Let L be a language with one one-place function symbol,
equality and one place predicates.

(1) The monadic theory of L is decidable.

(2) If a monadic sentence 1 of L has a model, it has a model of cardi-
nality < Ng.

(3) In (2) we can find n = n(y) < Vg and a model M such that [{b €
M| : f(b) = a}| £ n for any a € |M].

This is because, if My is the model whose universe is X, and whose lan-
guage contains equality only, in M f\ we can interpret a universal L-model
(see Rabin [M.O69]). This implies (1). Note that all My (XA an infinite car-
dinal) have the same monadic theory. This proves (2). For (3) note that if
My, =1, then for all big enough n, My, |= 1.

Remark (1): Rabin [M.O69] prove the decidability of the countable Boolean
algebras, in first-order logic expanded by quantification over ideals. By
the Stone representation theorem, each countable Boolean algebra can be
represented as the Boolean algebra generated by the intervals of a countable
order. By the method of Section 3 we can prove that the theory of countable
linear orders in monadic logic expanded by quantification over such ideals, is
decidable, thus reproving Rabin’s result. (The only points is that methods
of Section 2 apply.)

Conjecture 0.14. The monadic theory of orders of cardinality < Ry is decid-
able when X; < 280,

Conjecture 0.15. The theory of Boolean algebras of cardinality < A or in
first-order logic expanded by allowing quantification over ideals is decidable
when A < 280 () = Ry < 2N0),

Remark: We can prove Conclusion 0.7 by amalgamating the methods of
Section 4,5, and 6.

5Le Tourneau only claimed the result. Lately also Routenberg and Vinner proved this
theorem.
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1. RAMSEY THEOREM FOR ADDITIVE COLORING

A coloring of a set I is a function f from the set of unordered pairs of
distinct elements of I, into a finite set T of colors. We write f(x,y) instead
of f({z,y}), assuming usually that x < y. The coloring f is additive if for
xi<yi<zi€I(i:1,2).

f(w1,91) = f(x2,92); f(y1,21) = f(y2, 22)

imply f(z1,21) = f(x2,22). In this case a (partial) operation + is defined
on T, such that for x < y < z € I, f(z,2) = f(z,y) + f(y,2). A set
J € I is homogeneous (for f) if there is a ¢ty € T such that for every
x<y€dJ flx,y) =tp.

Ramsey’s theorem [Ram29] states, in particular, that if we color an infinite
set with a finite set of colors, then there is an infinite homogeneous subset.
This theorem has many generalization and applications. It was used in
[Biichi62] for a coloring which was, in fact, additive. Using an idea of Rabin,
Biichi [BS73, 12, p.58] offered an alternative proof (using, in fact, additivity)
and in [BS73, 6.2, p.111] straightforwardly generalized it to w; (the result
for wy is not true for coloring in general). We give the natural extension to
arbitrary ordinals (which is immediate, and included for completeness) and
a parallel theorem for dense orders.

Theorem 1.1. If § is a limit ordinal, f an additive coloring of § (by a set
T of n colors), then there is an unbounded homogeneous subset J of §.

Remarks:
(1) If the cofinality of 4 is = wy we can assume that if a,b < ¢, f(a,c) =
f(b,d), then a,b < ¢ € J implies f(a,c) = f(b,c).
(2) Instead of |T'| < Ry, we need assume only |7 < cf(6).

Conclusion 1.2. Under the condition of 1.1, there are a closed unbounded
subset J of §, and Jy, J, 1 < k,¢ < |T| and tf; € T such that J = UpJ, =
UgJ?, the Jy’s are disjoint, the J'’s are disjoint, and if a < b € J,a € Jy, b €
J¢ then f(a,b) = t¢.

Theorem 1.3. If f is an additive coloring of a dense set I, by a finite set
T of n colors, then there is an interval of I which has a dense homogeneous
subset.

Conclusion 1.4. Under the hypothesis of 1.3, there is an interval (a,b) of I,
and (a,b) = U‘kT:‘le = UleTzllJZ and colors ¢ € T such that for z < y,z €
Jkay € Jgaf(xay) = ti

Remark: We can choose the Jy, Ji, J%s so that they are definable by first-
order formulas with parameters in the structure (6, <, f) (or (I, <, f)).

Proof of Theorem 1.1: Define: For x,y € 6,z ~ y if there is a z such that
x,y < z < 0, and f(z,2z) = f(y,2); clearly this implies by the additivity
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of f that for any 2,z < 2/ < 6, f(x,2") = f(y,2'). It is easy to verify that
~ is an equivalence relation with < |T'| equivalence classes. So there is at
least one equivalence class I, which is an unbounded subset of §. Let xg be
the first element of I. Let, for t € T.I; = {y : xo0 # y € I, f(z0,y) = t}.
Clearly I — {zo} = UerI;, hence for some s, I is an unbounded subset of
d. Let (a; : i < cf(6)) be an increasing unbounded sequence of elements of
. Define by induction on ¢ elements y; € I. If for all j < i(i < cf(9),y;
have been defined, let y; < & be such that y; > vy;,v; > aj,y; > xo and
f(zo,v:) = f(yj,yi) for any j < i, and y; € I,. Now J = {y; : i < cf(d)} is
the desired set. Clearly it is unbounded. If y; < y; (hence j < ¢) then

(s, ui) = f(xo,y:) = s.
So J is homogeneous.

Proof of Conclusion 1.2: If the cofinality of § is Ng, then the J from 1.1 is also
closed (trivially). So assume cf(8) > Rg, let T' = {t1,...,t,}, and let J, y; be
as defined in the proof of 1.1; and let J* be the closure of {yj+1:5 < cf(é)}
Then J* = {y’ : j < cf(d)} is increasing, continuous, and 3/ ™! = y;,1. Let
= {y’ : j is a limit ordinal},
Ji = {y’ : j is a limit ordinal, f(y/,y/*1) = t1},
J¢ = {7 : j is a limit ordinal, and (Vi < 7)(3a)(i < a < j A f(y*TLy7) =t0)
but this does not fold for any ¢ < ¢}.
Now clearly J' = UgJ, = UgJZ, and if ¢ € Jy,z € Je,a: < z then z =

Yz =1l ;4 < j, 1,7 are limit ordinals and there is an «, ¢ < a < j, such that
fy*tt y7) = t,. Hence
Fla,z) = f'97) = fOhy ™) + f Tyt + fye )
def
=t + f(Yir1, Yar1) Flo =t + s+t = 1)

Clearly all the demands are satisfied.
Proof of Theorem 1.3: Remember that J & I is dense in an interval (a, b)
if for every x,y € I,a < x <y < b, there is a z € J such that z < z < y.
It is easy to see that if J & I is dense in an interval (a,b) and J = U}, Jy
(m > 1) then there are k and o/, such that a < @’ < ¥ < b,1 <k <m and
Ji is dense in (a’, V).

Define for any a € I,J C T

Fla,J)={t:teT,(Vr>a)(Fye J)(a<y<zA fla,y) =1t)}.
Notice, that since T is finite, for any a € I, and any J & I there is a
b,a < b € I such that:
t € F(a,J) if and only if thereisa y € J,a <y < b, f(a,y) = t.

We define by induction on m < n2" + 2 intervals (am,, by,), sets J,, dense
in (am,bm), and (for m > 0) sets D,,, & T

For m = 0, let (ag, bp) be any interval of I, and Jy = {x € [ : a9 < = < by}.
Suppose (am, by ), Jm are defined. For any D € T let J,,(D) = {a € Jp,
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F(a,Jy) = D}. Clearly J,, = UpcrJm(D) and as there are only finitely
many possible D’s (< 2"), there is an interval (a1, byy1) and Dy,q € T
such that Jy,(Dy,+1) is dense in (am41, bm+1), and @y < ama1 < b1 < by
Let Jmt1 = (am+1,bm+1) N I (Dimt1). Clearly Jp, 2 Jyy1, and m > k
implies Jy, 2 Jy,, and (am, by,) is a subinterval of (ag, by).

As there are only < 2™ possible D,,, there are a D € T and 0

. < mp < n2" + 1 such that D,,,+; = D. Define, for 0 < k =
amkabk = bmkyjk = Jmk 6

It is easy to check that if 0 S k <1 < n,z € J then x € I, & Jmk+17
hence F(x,J) = F(, Jym,) = Dpm,., = D. It is clear that J 2 J1 2...2
Jm.

Choose zg € J™. Then there is 1,29 < 19 < x1 < b", such that g <
y < z1,y € J° implies f(zo,y) € F(x9,J) = D. Hence t € D if and
only if there is y € J" ' 20 < y < z1, f(z0,y) = t, if and only if there is
y € Jo,xo <y < x1, f(xo,y) = t. Clearly

g <
n,

J"N (1"07$1) = UtET{y HNNS Jn7x0 <y< J:luf(x07y) = t}

Hence there are a, b, tg such that zg < a < b < 7 and

J'={y:yeJ a<y<b, f(xo,y) =to}

is dense in (a,b). Clearly tg € D.

It is easy to check that for t,s € D,t + s is defined and € D, so for
t € D,m 2 1 defined mt € T, by induction on m : 1t = ¢, (m+ 1)t = mt +t¢.
As T has n elements, 1tg, 2tg, ..., (n + 1)ty cannot be pairwise distinct. So
there are 4,7,1 < i < (i+ j) < n+ 1 such that itg = (i + j)to. Define

J={y:a<y<b, f(zo,y) = jto,y € J"IH}.

We shall show that J is the desired set.
(I) J is dense in (a,b).

Suppose a < @' < b < b, and we shall find z € J,a' < z < V.
As J* is dense in (a,b) there are 2" € J* & J" d' < 2" < V. We
define by downward induction z¥ for n——j + 1 < k < n such that
2k e Jbd < 2F < V. For k = n, 2" is defined. Suppose zFT! is
defined, then as z**! € J*+1 is follows that F(z**1,j¥) = D. As
to € D there is z¥ € J*, such that 2**1 < 2F < b and f(2FF1, 2F) =
tg. Clearly

<2<V << I

flxo,2") =to, f(2"T1,2") =t

Hence f(zo,2" 7t1) = tg + ... +tg = jto, so 2"t € Jad <
2t <

6In fact Dy (T) 2 Do (T), hence we can replace n2" + 2 by n? + 2.
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(IT) J is homogeneous.

Suppose a <y < z < b,y,z € J. Then y € J* 71 Now define
by downward induction y* € J*¥ for 0 S k < i,y < yF < 2. Let y' =
y(y' € Jbecause y' =y € J* I andasi+j < n+1,i Sn——j+1
hence J"~7+1 C J%). If y*+1 is defined then F(y**!, J¥) = D, hence
there are y* € J* y*t1 < y*F < z such that f(y*+,y%) = to. Tt
follows that 7o <y =y’ <y ' < ... <y’ < z and

Fy* ") =to.
Hence
Fy,9°) = f'sy°) = ito.

So

Fly,2) = fly,9") + F(y°,2) = ito + f(y°, 2)

= (i + )t + f(y°, 2) = jto + ito + f(y", 2)

= f(x0,y) + f(y,4°) + F(¥°, 2) = f (w0, 2) = jito.

This proves the homogeneity of J.

Proof of Conclusion 1.4: Let (a,b),J and ¢y be as in the proof of 1.3. Let
T= {tl, ce ,tn}. Let

Jk = {y:ye (aab)atk GF(ya‘])7t17"'7tk—1 ¢F(ya'])}7

J={y:y€(ab)tee F(y,J)t1,....te-1 ¢ F'(y,J)}
where F’ is defined just as F' is, but for the reversed order.
Clearly (a,b) = UpJp = UgJ. Suppose = < y,z € Jy,y € Jo. Then we
can find o',y © < 2’ <y’ € J, such that f(x,2’) = tg, f(v',y) = t,. Hence

@ y) = fla,2) + F@ ) + Fy) =t +to+ te = 1.

2. THE MONADIC THEORY OF GENERALIZED SUMS

Feferman and Vaught [FV59] proved that the first order theory of sum,
product, and even generalized products of models depends only on the first-
order theories of the models. Their theorem has generalizations to even more
general products (see Olmann) and to suitable infinitary languages (L, see
Malitz [Mal71]).

On the other hand, it is well-known that for second order theory this is
false even for sum (as there is a sentence true in the sum of two models if
and only if they are isomorphic, for fixed finite language, of course). Also
for monadic (second-order) theory this is false for products of models (there
is a sentence true in a direct product of two models of the theory of linear
order if and only if the orders are isomorphic). We notice here that the
monadic theory of generalized sum depends only on the monadic theories
of the summands and notice also generalization of known refinement (see
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Fraissé [Fra56]). We can prove them using natural generalization of Ehren-
feucht games (see [Ehr61]). Lauchli [LAu68] uses some particular cases of
those theorems for the weak monadic theory. As there is no new point in
the proofs, we skip them. We should notice only that a subset of sum of
models is the union of subsets of the summands. The results of [FV59] can
be applied directly by replacing M by (|[M|UP(M), M, €).

Notation 2.1. L will be first-order language with a finite number of symbols,
LM the corresponding monadic language, L(M) the first-order, language
corresponding to the model M, the universe of M, is |[M|. Let z,y,z be
individual variables; X,Y, Z set variables; a, b, c elements; P, Q) sets; P(M) =
{P : P C |M|}. Bar denotes that this is a finite sequence, e.g., a; ¢(a) its
length, @ = (..., a;,...)icy@), and let a(i) = a;. We write @ € A instead
of a; € A and a € M instead of a € |[M|. K is a class of L(K) models
(L(K) = L(M) for any M € K). Let
K™ ={(M,P): P P(M)"}, K® = U<, K™.

Let k,£, m,n,p, q,r denote natural numbers.

Definition 2.2. For any L-model M,P € P(M),a € |M|,® a finite set
of formulas ¢(Xj,...,71,...) € L, a natural number n, and a sequence of
natural numbers k of length = n, define

t =thy((M,P,a),®)

by induction on n:
For n =0:

t={eXe, -y xj,. )t (X, x,.) €O M =[Py, ..., a5,, - )
Forn=m+1: B
t={th™(M,P,a"b) : b € [M|F™}.

Definition 2.3. For any L-model M, P € P(M), a finite set ® of formulas
@(X1,...,x1...) € Lyn, k of length = n + 1, define T' = Th?(M, P),®) by
induction on n:

For n =0:

For n=m + 1:
T = {Th™((M,P™Q),®) : Q € P(M)*™}.

(1) If @ is the set of atomic formulas we shall omit it and write Th? (M, P).

(2) We always assume k(i) = 1 for any i < £(k), and k(0) = mp if
R € L(M) is mp-place.

(3) If we write k(i) for i = ¢(k), then we mean 1, and when we omit k
we mean (max{mpg: R €€ L(M)},1,...).

(4) We could have mixed Definition 2.2, and 2.3, and obtained a similar
theorem which would be more refined.
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Lemma 2.4.  (A) For every formula (X)) € LM (M) there is an n such

that from Thi (M, P) we can find effectively whether M = [P].

(B) For every L,k,n,® C L, and m there is a set ¥ = {¢y(X) : £ <

lo(< w), {(X) = m}(w € LM) such that for any L-models M, N and

P e P(M)™,Q € P(N)™ the following hold:

(a) ThE((N, Q) ®) can be computed from {{ < ly: N = 1[Q]}.

(b) Th((N,Q),®) = Thi((M,P),®) if and only if for any { <
lo, M = [ P] & Ny[Q].

Proof: Immediate. In (A) it suffices to take for n the quantifier depth of 1.

Lemma 2.5. (A) For given L,n,m, k, each Th}—;(M7 P) is hereditarily fi-

nite, and we can compute the set of formally possible Thy (M, P),{(P) =
m, M an L-model. The same holds for ®.

If £(0) =2 k(0),1 =po < p1 <p2 < ... < pn <m and for 1 <

i < n, k(i) < > pi1<i<p: 0(j) then from Th((M, P),®) we can
effectively compute Thi ((M, P),®).

For every n, k,{ we can compute m such that from Th}((M, P), ®)
we can effectively compute Thi((M, P),®).

Suppose in Definition 2.3 we mak:e the following changes: We restrict
ourselves to partition P, and let Q be a partition refining P, which
divides each P; to 2M(™) parts. What we get we call pThY((M, P), ®).
Then from pTh((M, P), ®) we can effectively compute Th((M, P),®),
and vice versa.

Let K,n,® be given. If for every k there is an ¢ such that for every
m, M,N € K™,

Thy(M,®) = Th}(N,®) = Th!*'(M,®) = Thi*!(N, ®)
then for every m, k there is an £ such that for any n', M, N € K™
ThY(M,®) = Th}(N,®) = ThY (N, ®) = Th? (M, ).

Remark: This is parallel to elimination of quantifiers.

(F) In (E), if in the hypothesis £ can be found effectively from k then in the
conclusion, £ can be found effectively from m, k. If in addition {Thi (M, @) :
M € K™} is recursive in k,m then {Th7(M,®) : M € K} is recursive in

p, k.

Proof: Immediate.

The following generalizes the ordered sum of ordered sets (which will be
our main interest) to the notion of a generalized sum of models. (Parts
(1),(2),(3) of the definition are technical preliminaries.)



Paper Sh:42, version 2021-07-20. See https://shelah.logic.at/papers/42/ for possible updates.

12 SAHARON SHELAH

Definition 2.6. Let L1, Lo, L3 be first-order languages, M; an Lq-model (for
i € [N]), N an Ly-model, and we shall define the Lg-model M =37y M;

(the generalized sum of the M;’s relative to o).
(1) An n-condition 7 is a triple (E, ®, ¥) where:

(A) E is an equivalence relation on {0,1,...,n —1}.

(B) @ is a finite set of formulas of the form ¢(z;,,...,x;,) where
J1,---,Jk are FE-equivalent and < n; and ¢ € L.

(C) ¥ is a finite set of formulas of the form ¢ (z;,,...,x;,) where

.jl:"'7jk < nﬂb € L2-
(2) If ao,.. ,Qp_1 € Uze\N| M;,7 = (E,®,¥) is an n-condition, ay €
M;(g), then we say (ag, ..., an—1) satisfies 7 if:
(A) i(€) = i(m) < LEm;
( ) (xj1a"'7$jk)€q):>M2]1 ):W[aj1a"-aajk];
(C) @b(lev"'vxjk)e\II:N):@b[( ) Z(]k)]

(3) Therule, o is (L1, La, L3, 0*) where o* is a function whose domain is
the set of predicates of Ls; if R is an n-place predicate in L3, 0*(R)
will be a finite set of n-conditions.

(4) M = 377 x| M; is an Lz-model, whose universe is U;cn||M;|, and
for every predicate R € L3, R™ = {{ag,...,a,_1) satisfies some
T€d*(R)}.

Let ®(o) (¥(0)) be the set of all formulas ¢; € Li(o) (¢, €
Ls(0)) appearing in the o(R)’s, R € L3(0), and the equality.
Remarks:

(1) We use the convention that > 7 (M, P) = (30 y Mi, Uien P*)
where for P* = (P},...,P.),U; P = (U, P}, ..., U; P.).

(2) We could have defined the sum more generally, by allowing the uni-
verse and the equality to be defined just as the other relations.

Lemma 2.7. For any o,n,m,k, if for £ = 1,2, Pf € P(M/)™ and for every

1 €N,
Th%((lev Pi1)7 @(0’)) = Th%((MlZ, Pi27 Piz)7 (I)(U))a
then . .
1EN 1EN

Theorem 2.8. For any o,n,m,k we can find an ¥ such that: if
Z?eNMiyti = Thg((Miypi>a(I)(0>)7 and Qt = {Z € N: t; = t} E( z) m,
then from ThX((N,...,Qx,...), ¥(0)) we can effectively compete Th(M,|J; P;)
(which is uniquely determined).

Definition 2.9. (1) For a class K of models
ThE (K, ®) = {Th?(M,®) : M € K}.

"We assume, of course, that the |M;|’s are pairwise disjoint.
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(2) The monadic theory of K is the set of monadic sentences true in
every model in K.

(3) For any 7, K1, Ko, let C¢? (K1, K3) be the minimal class K such that
(A) K1 E K,

(B) if j < £(3), M; € K,N € Kj then Y00\, M; € K.

Conclusion 2.10. Suppose &, n, k, m are given. L1(0;) = L3(0;) = L, La(0;) =
Lo; L, Ly are finite and each ¥(o;), ¥(0;) is a set of atomic formulas. There
is an 7 such that for every K, Ks, from Th?(Kg(nH)),Thg(K{”) we can
effectively compute Thy(K™) where K = C7 (K1, K3) (remember K{* =
{(M,P): M e K;,P € P(M)™) (K; should be a class of L-models, K5 a
class of Lg-models).

Proof: For every j < £(7) let # relate to 5(j),n,k, m just as 7 relates to
o,n,k,m in Theorem 2.8. Now choose an 7 such that for every ¢ < n,7#({) =
rI(0).

Let T' be the set of formally possible Th? (M, P), for M and L-model,
{(P) = m, and we can define r(n + 1) = |T|. Let T = {t(0),...,t(p — 1)}
(sop=|T|=r(n+1)). '

Clearly, by the definition of 7/, and by (a trivial case of) 2.3(B), if M =
S0 Mty = Th2(M;, B), Qg = {i € N : t; = t(£)},£(P;) = m, then from
t=Thi(N,...,Q1,...)i<p We can effectively compute Thi (M, J;, P;), and
denote it by g(t).

Now define by induction on ¢,T, € T.

Let To = Th(K}"), and if T is defined let Ty be the union of Ty, with
the set of t € T satisfying the following condition:

(*) There is a t* € Th?(K;(nH)) such that t = g(t*), and if ¢* implies
that Qg is not empty, then ¢(¢) € T,.

Remark: Clearly if t* = ThZ?(N,...,Qq,...) then from ¢t* we can compute
ThY(N,...,Qq,...) and hence know whether Q; # @.

Clearly To € Th £ Ts,... £ T so, as |T| = p, for some q < p, T, = Ty11.

Now let

K.={M € K : for every P € (P(|M|)"Th}(M, P) € T,}.

Clearly Thi(k{") € Ty, and we can effectively find 7. Now if N € Ko, M; €
K, forie N,and M = Z?e(g\)f M, then for any P € P(|M|)™, Thi(M, P) €
Ty+1 = T, by the definition of Tj 11, and M € K by the definition of K, hence
M € K,. As clearly K1 € K, € K, by the definition of K = C¢°(K1, K>)
necessarily K, = K. So it suffices to prove that Thp(K") 2 T;. (Take
¢ = q.) This is done by induction on /.

Lemma 2.11. If M is a finite model, then for any ®,n, k we can effectively
compute Th (M, ®) from M.
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Remark 2.12. Naturally we can ask whether we can add to (or replace the)
monadic quantifiers (by) other quantifiers, without essentially changing the
conclusions of this section. It is easily seen that, e.g., the following quanti-
fiers suitable:

(1) (3 X) —there is a finite set X

(2) (FAX) ~thereis aset X, |X| < X () aregular cardinal). when dealing
with ordered sums of linear order, also

(3) (3*°X) —there is a well-ordered set X

(4) (3AX) —there is a set X, with no increasing not decreasing sequence
in it of length A (A a regular cardinal).

If we add some of those quantifiers, we should, in the definition of Th ((M, P), ®)
state which Boolean combinations of the P’s are in the range of which quan-
tifiers. If we e.g., replace the monadic quantifier by (3*X), we should restrict
the P’s to sets of cardinality < A.

Another possible generalization is to generalized products. Let M =
[I7cn M; (where L(M;) = Li(0),L(N) = Lo(0), L(M) = L3(c)) means:

M| = [Liey |Mi], and if f1,..., fn € M,M |= R[f1,..., f,] if and only if
N = ¢YRrl..., Py, ...] where

Py={i € N: M= @f[fi(i), ..., fa(i)]}

(and ¢y is a first order sentence from Li(0),1¥r a monadic sentence from
L3(0)). Then, of course, we use Thi(N,P),th}(M,a). All our theorems
generalize easily, but still no application was found.

If not specified otherwise, we restrict ourselves to the class K,.q of models
of the theory of order (sometimes with one-place relations which will be
denoted, e.g., (M, P)). ¢ = 044 is the ordered sum of ordered sets and
is omitted. Therefore ¥(o) and ®(o) are the set of atomic formulas. For
the sum of two orders we write M; + Ms. The ordinals, the reals R, and
the rationals ) have their natural orders. If M = Zie‘ n| M; we write

Thi(M, P) = 3y Thi{(M;, ;) where P = J; P;. Let T(n,m, k) be the
set of formally possible Th} (M, P), M an order, {(P) = m.

Corollary 2.13. For any n,m,_l;: there is ¥ = 7(n,m, k) such that if P; =
{ie N:ti=t} fort € T(n,m,k) then Y ;. nti can be effectively computed
from Th*(N,..., P, ...).

3. SIMPLE APPLICATION FOR DECIDABILITY

Using Section 2 we shall prove here some theorems, most of them known.
We prove the decidability of the theories of the finite orders, the countable
ordinals [BS73] and show that from the monadic theory of A we can compute
effectively the monadic theory of K = {a : @ < AT} (this was shown for
A = w, A = wj in [BS73] We do not try to prove the results on definability and
elimination of quantifiers. For finite orders this can be done and the method
becomes similar to that of automaton theory. For w, {a : a < w1}, w; this
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can be done by using the previous cases (e.g., for w using the result on the
finite orders). We can prove the decidability of the weak monadic theory
(with 3/ only) of the n-successors theory by the method of this section
(Doner [Don65] proved it). It would be very interesting if we could have
proved in this way that the monadic theory of the 2-successor theory is
decidable (Rabin [M.O69] proved it).

In order to use Section 1 we should note
Lemma 3.1. For any m, k, (N, P), the coloring f}j on N is additive where
fi(a,b) = Thy((N, P)l[a,b)),

where (N, P)[[a,b) is a submodel of (N, P) with the universe [a,b) = {z €
N:a<x<b}.

Proof: By lemma 2.7.
Let us list some immediate claims.

Lemma 3.2. (A) If for any n,k we can compute effectively Thi(K),

then the monadic theory of K is decidable; and vice-versa.
(B) If the monadic theory of K is decidable then so is the monadic theory
of K" where K' is the class of:
(i) submodels of K,
(ii) enitial segments of orders from K,
(iii) orders which we get by adding (deleting) first (last) elements
from orders of K,

(iv) converses of orders from K,

(v) (M,P),M € K,P € P(M)™.

Proof: Immediate.

Theorem 3.3. The monadic theory of the class Kgn of finite orders is
decidable.

Proof: Let K, be the class of orders of cardinality n; up to isomor-
phism K, has only one element, n. Hence by Lemma 2.11 we can compute
Thi(K;). Hence by Conclusion 2.10, for every n, k we can compute Thi(K)
where K = CUl(K, K>). But clearly K is the class of finite orders. So by
3.2(A) we finish.

Theorem 3.4. The monadic theory of w is decidable.

Proof: We shall compute {Th?(w, P) : P € P(w)™} by induction on n,
for every k, m simultaneously.

For n =0 is it easy.

Suppose we have done it for n — 1 and we shall do it for n,m, k. By the
induction hypothesis we can compute Thj(w) for every ¢, in particular for
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7 = 7(n,m, k) (see 2.13). Now for any M = (w, Py,...,Py), by 1.1 we can
find an f7'-homogeneous set {a; i < w}(a; < a;y1). So letting

t =T ((w, P)I[0,a0)), s=Thi((w, P)l[ai,a;)) for i < j;

we have B - -
Th%(wa P) = Thg((wa P) H0>a0)) + Zi<w Th?f?((w¢ P) ”aia a’i+1)) =t+
Zi<w S _

As Thy!(w) is known, by 2.13, we can compute Th (M, P) from s,¢. Now
for any t,s € Thi(Kg}), s # Thi (0, P), P € P(@)™, there is an (w, P) such
that Th (w, Py=t+>,_,s

As we know Th (K¢} ) by 3.3, and can easily find whether s € Thi (Kg}) —
—Th}({0}), we finish.

Theorem 3.5.  (A) From the monadic theory of X (A a cardinal) we can
compute effectively the monadic theory of K = {a: a < AT}.
(B) Moreover every monadic sentence which has model o < A", has a
model B < A\¥.
(C) (i) For every a < A% there is a 8 < AT+ \“ which has the same
monadic theory
(i) if p < X and for every reqular x < X there is a X' < u such
that x, X' have the same monadic theory, then we can choose

B< AN+ 8

(iii) If we could always find x < pu then B < A, and if A = w, B <
DU T

(iv) Also, for every a < AT, there are n < w,\1,...,A\n < X\, such
that the monadic theory of a is recursive in the monadic theories
of M, ..., An, and A; is a regular cardinal.

(D) In general, the bounds in (B),(C) cannot be improved.
Remark: Biichi [BS73] already proved (B),(C) for A = w and (B) for A + w;.

Proof:

(A) Define K1 = Ko = {a : a < A}; by 3.2(A)(i) and 3.2(B) we can
compute Thi(K;) for every n,k and i = 1,2 (from the monadic
theory of A, of course). Hence by 2.10 we can compute Th?(K")
for every n,k where K’ = Cl(K1, K3). Clearly every member of
K’ is well-ordered and has cardinality < X. So up to isomorphism
K’ € K. We should prove now only that equality holds. If not, let «
by the first ordinal not in K’, and o < A*. If o is a successor ordinal,
a—1€eK'; 1,2¢€ K hence o = (e — 1) + 1 € K, a contradiction.
If a is a limit ordinal, its cofinality is < \. Let v = > ._. «ay,ip =
A\, a; < a; then ig, o; € K’ so a € K/, a contradiction.

<10

8In fact, 8 < M“T' + M.
9n the first case B <M.
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(B) Let us first show that
(*) For every n,k there is ¢ = q(n,k) < w such that if o, <
AT, cf(a) = cf(B), and a, 8 are divisible by A9, then Thi(a) =
Th!(8).
For n = 0 it is immediate, and we prove it for n. By the pigeon-
hole principle there are 1 < £ < p < 2|T(n,0, k)| + 1 such that
Th(X') = Th(X). Clearly,

A2 = Z()\Z-l-l + /\£>.
i<
Hence
ThE(AM) = Thg[ZK)\(/\jJrll + )\Z)] = ;i<)\ Th}-;‘(V“ + )‘Z)

Diaa[Thy (A1) + Thyp (X)) = Zi<)\[Th%(/\p)

Yoien Thg()\e) =Th (> i<x M) = Thi(A .
Hence we prove by induction on m, ¢ < m < w that Thy(A™) =
Thg()\“l); choose ¢ = q(n,k) = £+ 1. Let o, 3 < At be di-
visible by A? and have the same cofinality, and we shall prove
Thi(a) = Thi(B). Clearly it suffices to prove Th} (o) = Thg(Aqu)
where p = cf(a). Let us prove it by induction on «, and let
a = Ny, If vy = v 4+ 1, then for vy = 0 i is trivial, and for
71 >0

Th2(a) =Th(Ay + A7) = Th(A%y;) + Th2(A7)

k
= Th[A? o cf(A%y1)] + ThZ(A?H2)
= Th2[A? o cf(Ay1) + X772 = Th(X7T2) = Th (A7 o \)

= Th[\ o cf(a)].

If 7 is a limit ordinal v =, <cf(y) Vir Vi < 7Y @ SUCCessor,

Th%(a) = Th};‘[Aq(Zchm Vi) = Th’,%(ZKCfW) Ay;)
= Yicc(y) Thi (AT)
i<ct(y) Ty [AT o cf(AT7y;)]
Zi<cf('y) ThZ()‘q—H) = Zi<cf('y) Thg()‘q)
= Th[A o cf(7)].

So we have proved (*). Let us prove (B). Let a < AT be a model
of a sentence 1. Choose by 2.2(A),(OR 3.27) n,k such that from
Thi(B) we know whether 8 [= ¢, and let ¢ = q(n, k), and let a =
A 4,7 < M. Then

Thi(a) = Th[A o cf(X1B) + 7], and A? o cf(A1B) + v < ATH2.

(C) Divide o by A¥ s0o @ = A a3 + ag, 0 < A, Let o) be 1if ay is a
successor, and cf(ay) otherwise. Then Ay, \Ya) are divisible by
A4(K) for every n, k and have equal cofinality. So by the proof of (B),
for every n, k, Th (X ai1) = Th(A\aj). Hence A1 +ag, \a] +ay
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has the same monadic theory, and Ao +ag < AYAH+AY = ML )\w,
This proves (C)(i).

If X' < p has the same monadic theory as o) then A« +ag, Ao+
ag and Ay’ +ag (which is < AYu+ A*) have the same monadic the-
ories. If X/ < p clearly Ay + as < Ap.

If A = w then cf(A\)“a;) = w in any case, hence o = w¥ay + o,
and w® + a1 < w® +w® has the same monadic theory. Every a < AT
we can uniquely represent as

a=Xa 4+ Nap+ ...+ MNag +ap;a; < A

The monadic theory of « is recursive in the monadic theories of
A, cf(A\)¥a)), ap, ..., . So we can prove inductively (C)(iv).
Suppose A > w, A is regular, and there is a sentence 1 such that
a = ¢ if @ = A. Then there are sentences 1, such that o |= v, if
and only if & = A", sentences ¢, such that o = ¢, if and only if
« is divisible by A", and sentence ¢ such that « = ¢ if cf(a) = A.
Then A1 is a model of {p, ¢, : n < w}. If o is also a model of
{¢,pn : n < w} then A" divides «a for every n, hence A\“ divides «,
so a = AYf. If B is a successor, cf(a) = w but o = ¢ so [ is a limit
hence cf(a) = cf(3), so cf(8) = A, 50 8 = Ahence a = Ao\ = \**F1,
Similarly A“*! 4+ A" is the smallest model of its monadic theory.

Lemma 3.6.  (A) In 3.5(A) it suffices to know the monadic theory of

(B)

(©)

Proof:

(A)
(B)

{w: p a reqular cardinal < \}. So if X is singular it suffices to know

the monadic theory of {a: v < A}.

For every sentence 1,

(1) there is a sentence ¢ (all in the monadic theory of order) such
that o = if and only if « is a limit and cf(«a) = 1,

(2) there is a sentence characterizing the first ordinal which satisfies
Y and

(3) for every n < w there is p, such that o = ¢y, if and only if ¢
is the n'™ reqular cardinal satisfying 1.

There are monadic sentences py, such that o = ¢, if and only if

a = wy. If V =L there are monadic sentences @k such that a = ¢},

if and only if o is the n*™ weakly compact cardinal.

Immediate by 3.5(C)(iv).

(a) Let ¢ say that there is no last element, and for any unbounded P
there is an unbounded @ € P which satisfies ¢ (if cf(«) | =
we can choose @ as a set of order-type cf(a); so a = . If
cf(a) E =1, let P be a subset of « of order-type cf(«); hence
any unbounded @ £ P has order-type cf(a), so a = —¢).

(b) Immediate.

See https://shelah.logic.at/papers/42/ for possible updates.
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(c) We use (1) and (2) to define ¢,, inductively. Let ¢q say that « is

the first ordinal whose cofinality satisfies ¢. Let y,4+1 say that

« is the first ordinal whose cofinality satisfies Y A—poA. . . A—,.

(C) For ¢, use (B)(3) for ¢ sating « is an infinite ordinal. For o} use
(B)(3) and Theorem 0.1 (of Jensen).

4. THE MONADIC THEORY OF WELL-ORDERINGS
If a € (M, P) let
th(a,P)={r € X;:a€ P}U{z ¢ X;:a ¢ P}
(so it is set of formulas).

Let D, denote the filter of (generated by) the closed unbounded subset
of a, cf(a) > w.

Lemma 4.1. If the cofinality of o > w, then for every P € P(a)™ there is
a closed unbounded subset J of a such that: for each B < «, all the models

{(e, P)I[B,7) : v € J,cf(v) = w,y > B}

have the same monadic theory.

Remark: Biichi [BS73, 6.1,p.110] proved Lemma 4.1 for & = wy, by a different
method.

Proof: For every n, k there is, by 1.1, 3.1 a homogeneous unbounded S C a,
by the coloring f;' of (av, P), so there is t7 such that for every f < v €
I, Thi((a, P)[[B,7)) = t. Let J7 be the set of accumulation points of I7,
and J = (), ;. J¢. Clearly J is a closed and unbounded subset of .

Let § < a, and B be the first ordinal > § in I}’. Then for any v € J,y >

B,cf(y) = w, and for every n, k we can find 7, € I ve < vegr, imysye =y
and o = . Therefore

Thi (e, P)I1B, 7)) = Thi((a, P)IB, BY)) + X pees ThE (e, P)1[ve, Yes1))
= Thg((a7 P) Hﬂvﬁg)) + Zﬁ<w t;cl'

So, Thi((a, P)[[B,7) does not depend on the particular ~.

Definition 4.2. AThZ (8, (a, P)) for 8 < a,a a limit ordinal of cofinality

> w is Thg((a,f_’)[[ﬁ,’y)) for every v € J,v > B, cf(vy) = w; where J is from
Lemma 4.1.

Remark: As D, is a filter, this definition does not depend on the choice of
J.

Definition 4.3. We define WTh?(a, P):

(1) if « is a successor or has cofinality w, it is &,
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(2) otherwise we define it by induction on n: B
for n = 00 WTh(a, P) = {t : {8 < a : th(B,P) = t} is a
stationary subset of a},

for n+1: let WIRI (o, P) = {(S1(Q), $2(Q)) : Q € P(a)*"+1)}
where
Sl(Q) :WThg(a,P, Q), o o
52(Q) = {(t,s) : {8 < a: WThi((e, P,Q)[B) = t,th(B, P7Q) = s}
is a stationary subset of a}.
Remark: Clearly, if we replace (a, P) by a submodel whose universe is a

closed unbounded subset of o, WT h%(a,P) will not change. Of course
WTh} (M) is well defined for every well-ordered model.

See https://shelah.logic.at/papers/42/ for possible updates.

Definition 4.4. Let cf(«) > w, M = a, P) and we define the model g (M) =

(a, g7 (P)).
Let

(g7 (P))s ={B < a:s=AThp(8, M)}
and (when m = ((P))
G (P) = (- (G (P))ss - )sernm k)
Remark:
(1) In g?(P) we unjustly omit a, but there will be no confusion.
(2) Remember T'(n,m, k) is the set of formally possible T'h% (M, P), {(P)
m.

Lemma 4.5. (A) gg(P) s a partition of a.
(B) gp(P7Q) is a refinement of g7 (P) and we can effectively correlate
the parts.
(C) g%“(?) is a refinement ofgg(P) and we can effectively correlate the
parts.

(D) The parallels of Lemma 2.5 for Th,pTh, hold for WTh,pWTh.

Proof: Immediate.

Theorem 4.6. For every n,m, k we can effectively find ¥ = 71 (n, m, k) such

that: If cf(a) > w, M; = (a*, PY),{(P") = m fori = 1,2 and ATRZ(0, M) =
ATH2(0, My) and WThP(gr(My)) = WTh2 (g7 (Mz)) then Th (M) = Th™(Ms).

Proof: We prove by induction on n.

For n = 0, it is easy to check that Thi(M;) = ATh?(0,M;) hence the
theorem is trivial.

Suppose we have proved the theorem for n, and we shall prove it for
n + 1. Suppose Q' € P(a')*" D and we shall find Q2 € P(a?)*+1) such
that Thy (o, PL,QY) = Th;—;(oﬂ, P2, Q?); be the symmetry in the hypothesis
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this is sufficient. Let g} (PlAQ ) = Q* ,gzﬂ( b = P*l,gZH(PQ) p*2.
Define 7(n + 1) = (g} (P'7Q™")) = £(Q*) and 7[(n + 1) = ri(n,m +
((PY), k).

By the assumptions and Deﬁmtlon 4.3, there is Q*? € P(a?) k(nt1) guch
that (for our n,7 and a2, P*2; o', P*1), Sy(Q*') = Sp(Q*?) for £ = 1,2.
(The notation is inaccurate, but should be clear.) So, for £ = 1, we get
WTh2(al, P*t, Q") = WTh2(a?, P*?,Q*?), and without loss of generality
0€Q!+ 0e Q. (From now on we can replace 7 by 7[(n + 1).) So by
Lemma 4.3, for £ = 1,2, Q*' is a partition of ! refining P**, hence for every
B < o' there is a unique s¢(3) such that 3 € Q:f(ﬁ)

Now, for ¢ = 1,2, choose a closed unbounded subset J; of o such that:

(0) every member of J; which is not an accumulation point of Jy, has
cofinality w,
(1) for any s, if Q' is not a stationary subset of of then Q*N.J, = @
(2) if B < < af; cf(v7) = w then B
TR ((of, POIB, ) = ATRE(B, (o, P))  (use Lemma 4.1),
(3) for every v € Jy, cf(y) = w,

Thi((af, P10, 7)), ATAFH(0, (o, PY)),

(4) if Qi NJi#@,8€ s
then there are y € Jy,v > B, s¢(y) = ssuchthat {{ € Jy: 5 S £ < v}
is finite,

(5) for any s,t, if {5 < al it = WThQ((ae,Q*Z)[B),S = Th(ﬂ,@“)} is

not a stationary subset of .J;, then it is disjoint to .J,.

Remark: Note that (5) just strengthens (1).
Now we define Q2 by parts. That is, for every 8 < vy € Jo U {0}, is the
successor of 3 in Ja, we define Q2[[3,) such that
s2(8) = Thit((e?, P*7Q%)1[B,7))-
This is possible as by definition of s3(3), 8 € Q:?(ﬂ), hence
si(8) € ATRI(B, (o, P?)).

We now prove
(*) if B <y € JoU{0},cf(y) = w, then

SZ(B) = Thz((QQ? P27 QQ) Hﬁa 7))
We prove it by induction on « for all g.
(i) By (0) the first v > 1,7 € J2 has cofinality w, and by the
definition of Q?(x) is satisfied.
(ii) Let 8 < & < v,& € Ja, for no ¢ € Jy,& < ¢ < 7, has cofinality
w. Then by the induction hypothesis Thg((oﬂ, Py, Q)1[B,8)) =
s2(B) and

Thi((a®, P2, Q%) 7)) = s(£)-
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We should now show that s2(8) + s2(§) = s2(8). So it suf-
fice to find ' < & < o € Ji,s1(8) = s2(8),cf(¢) = w =
cf(7'),s1(&") = s2(¢'); and by the definition of aQ,Q:;(ﬂ) is a
stationary subset of a', hence for some ' € Ji, 3 € szl(ﬁ)
hence s2(f') = s2(B). As € € Ja,

{C€ Q) : WThE(a?, P?,Q%) = &}

is stationary, hence we can find & € Jy,ch(&) = w, sa(xi’) =

s2(§).

(iii) If 7 is an accumulation point of J the proof is similar to that
of (ii). Choose &n,m < w, B8 < &n < &ne1 < 7, limp&, =
v, cf(&m) = w, and s2(&n) = s2(§m+1) (use (4)). Then

Thi(a? P?,Q*)1[8,7)) =Thi((a? P?,Q*)(8,£%))
+ Zm<w Thg((OéQ, P2> Q2) Hgmv ferl))
= 52(8) + 2ncw 52(80)-
We should prove this sum is s2(3), and this is done as in (ii).
(iv) There are £ € J,8 < £ < =,7 the successor of £ in Jo and
cf(§) > w. As before we can find f' < & <o € Jy,s1(8) =
s2(8), WTh((a!, P1)1€') = WTh((a?, P*?)[€), 51(€') = s2(§), cf(¢') >
w,cf(v) = w. So clearly
Thi((o®, P%,Q*)1[6.7)) = s2(6) = s2(&') = Thi{((a", PL.QNIE' )
Now also
Thi((?, P*,Q*)1(8,€)) = Thi (!, PL,QNIA,€))
by the induction hypothesis on n and on 7.
So we have proved (*) and gg((a2,P2, Q%)) = (a?,Q*?).
Now by the induction hypothesis on n it follows that Thg(al,Pl,Ql) =
Thg(oﬂ,PQ,QQ).

Theorem 4.7. If cf(a) > w,
t1 = WTh (g} (P)),ta = ATh(0, (o, P)), 7 = 71(n, L(P), k),
then we can effectively compute Thg(a,P) form tq,ts.

Proof: The proof is similar to that of 4.4.

Conclusion 4.8. If X is a regular cardinal, and we know ATh7(0, ), WThz(}), (r =
r1(n,0,k)), then we can compute Thi ().

Lemma 4.9. If \ is a reqular cardinal > w,7 = r(n,0,k), then, letting
Ty = {ThZ(p) : w < p < A\, a regular cardinal}, Ty = {Th? () : v < A},
we can compute effectively AThg(O,/\) from Ti; and we can compute T
effectively from Ts.
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Proof: Let T' = {t1,...,t,}, and if t; = Thy!(u) let t; = Th (u?),q = q(n, k),
(we can compute it effectively: see the proof of 3.5(B) for the definition of
q(n,k)) and let t =t} + ... +t}, then

Dt =tw=ATh}(0,)).1°

m<w

Conclusion 4.10. Let A be a regular cardinal. If the monadic theory of {a :
a < A}, and {WTh(A) : n,k} are given then we can compute effectively
the monadic theory of .

Lemma 4.11. For a regular \,{WTh"(\) : n < w} and the first-order
theory of M» = (P(\)/Dx,U,N,—, @,1,...,R},...) are recursive one in
the other, where R)(P, Q) holds if and only if

{B < X:B € P, and for some n,t = WTh"((\,Q)[B)} # @(mod D).

Remark: Note that for every ¢ there is at most one possible n.

Proof: Immediate, similar to the proof of Lemma 2.4.

Conclusion 4.12. If the monadic theory of {a : a < A} and the first-order
theory of M* are decidable, then so is the monadic theory of \.

Using 4.12 we can try to prove the decidability of the monadic theory of
A by induction on .

For A = w we know it by 3.4.

For A = w; the Ry*’s are trivial, (because each < w; is a successor or
cf(B8) = Ry, hence by Definition 4.4(1), Ry* (P, Q) holds if and only if ¢ = @).
So it suffices to prove the decidability of (P(w1)/Dy,,N,U, —, &, 1). But by
Ulam [Ula30] this is an atomless Boolean algebra, so its theory is decidable.
Hence we reprove the theorem of Biichi [BS73].

Conclusion 4.13. The monadic theory of w; is decidable.

Now we can proceed to A\ = wo. Looking more closely at the proof for
w1, we see that WTh}—Z(wl, P) can be computed from the set of atoms in the
Boolean algebra generated by the P; which are stationary subsets of wy; and
we can replace wy by any ordinal of cofinality w;. So all the R can be

defined by the function F'/D,,,,
F(I)={a<wsy:cf(a) =w,a\I Nwy ¢ D,}.
Conclusion 4.14. The first order theory of
My? = (P(w2)/Dy,,N,U,—, 2,1, F/D,,)

is decidable if and only id the monadic theory of ws is decidable.
Notice that F(IUJ) = F(I)UF(J), and that for M;” to have a decidable
theory, it suffices that it have elimination of quantifiers. For this it suffices

10The second phrase is immediate by 3.6(3).
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(*) for any stationary A € {a < ws : cf(a) = w} and B, C such that
F(A) = BUC there are stationary A, B’ A= A" UB A NB =
&, F(A") = A(modD,,,) and F(B') = B(modD,,).

Congecture 4.15. (*) is consistent with ZFC.

5. FROM ORDERS TO UNIFORM ORDERS

An equivalence relation E on an ordered set N is conver if xFEy, © <
z <y € N, implies xEy, i.e., every equivalence class is convex. On N/E =
{a/E : a € N} a natural ordering is defined. If J is a convex of a model
(M, P) then th(J, P) is (£, 51, s2) such that if there is no last (first) element in
J,s9 =1 (s1 = 1), if bis the last (first) element, so = th(b, P) (s1 = th(b, P))
(for definition, see the beginning of Section 4) and ¢ = min(|J|,2).

Definition 5.1. (1) k(M) is the first cardinal k, such that neither x
nor k* is embeddable in M.
(2) k(K) is Lub. {k(M): M € K}.

Definition 5.2. We define for every n, k, the class U* and UTh}((M, P))
for M € U}

(1) U = {(M, P) : M is dense order with no first nor last element and
there are ¢y and a dense I € |M| such that for every a < b € I:

to = Th2((M, P)[(a,b)) and th(a, P) = th(b, P)}.

Now we define UTh} (M, P) be induction on n.
(2) UThY(M, P) = ThY(M, P).
(3) UTth(M, P) = (81, S2,com) where
(A) S1 ={UTh?(M,P,Q): Q€ P(M)*"+) (M, P,Q) € Ur},
(B) Before we define Sy, we make some conventions:
() T1(Ty) is the set of formally possible th(J, P'),J # @,
and ((PY) = ¢(P), (¢(P") = ¢(P) + k(n + 1));
(B) Tz = {{l, s1,t,s2) : (€,s1,52) € T, t € T(n,l(P)+ k(n+
1),k) and ¢ = 1 if and only if ¢ is the “theory” of the
empty model};
(7) Il s1,892) € Tn, (¢, 8, t,85) € Ty then (£, s1,s2) < (¢, 8], t,55)
when: £ =/¢ and s1 =1 s, =1,s9=1< s, =1and
s1£1— 81 C8l,80#1— s9C s
(6) Atlastlet 7 = 7(n, £(P), k) be from 2.13, Sy = {UTh2(M/E, P*,Q*) :
E anon-trivial convex equivalence relation over |M|, (M/E, P*,Q*) €
Ur,P* = (...,PF, .. Ver,, where P} = {a/E : a €
|M|,th(a/E, P) =t} and Q" = (..., QF, .. .)eT; is a par-
tition of |M|/E refining P* and () # Qi) & P implies
t(1) < t}.
(C) Com is + if M is a complete order, and —— otherwise.
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Lemma 5.3.  (A) From Thg”(M, P) we can check whether (M, P) €
Uy and compute UTh} (M, P).
(B) Also the parallel to 2.3 holds.

Lemma 5.4. For every dense N € K,|N|| > 1,n,k, there is a convex
submodel M of N which belongs to U7, || M| > 2.

Proof: By Theorem 1.3, and 2.7

Lemma 5.5. Suppose N is a dense order, K(N) < Xy; I £ |N| is a dense
subset, and for every a < b € I,ty = Th((N, P)[la, )) “Then there is t1
such that
(1) for every a <b € |N|,t1 = Thi((N, P)[(a,b)).
(2) Moreover for every conver J & |N|, with no first nor last element,
t1 = The((N, P)]J).

Proof: Clearly it suffices to prove (2). Choose ay € J N I. Now define
an,0 < n < w such that a, € JNI,a, < apy1 and {a, : n < w} is
unbounded in J (this is possible as k(N) =< N;). Now define similarly,
an € JNI,n a negative integer so that a,—1 < an, < ap and {a, : n is a
negative integer} is unbounded from below in J.

So, letting Z be the integers,

THE((N,P)1J) = Y ThE((N, P)lan, ans1) = > to < t.
nez nez

Theorem 5.6. Let M be an order, k(M) = N;.
(A) Knowingt and thatt = UTh7 (M, P),(M,P) e UL we can effectively
compute F(t) = Thi (M, P).
(B) If (M*,barP") € U} fori=1,2, and UTh(M', P') = UTh}(M?, P?)
then ThY (M, P') = Th?(M?, P?).

Proof: Clearly (A) implies (B). So we prove (A) by induction on n.
For n = 0 it is trivial.
Suppose we have proved the theorem for n, and we shall prove it for n+1.
Let UTth(M, P) = (S, S2,com). We should find

T = {Th}(M,P,Q) : Q € P(M)F" D},

If t € S, then for some Q € B(M)k("+1), (M,P,Q) € UP and t =
UTh%(M, P, Q), hence, by the induction hypothesis F(t) = Th’]%(M, P,Q),
so F(t) € T. We can conclude that 7" = {F(t) : T € S1} C T.

Now if t* € S5, then there is a convex equivalence relation E on M, such

that t* = UTh2(M/E, P*,Q*) where the conditions of Sy are satisfied. If
¥ ) # @, and £ > 1 implies ¢ € T then we can define @ € P (M) such

(€,51,t,52)

that for a/F € Q7 (0,51,t,52)"
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(1) UThE((M, P, Q)lint(a/E)) =
(2) th(a/E,Q) = (¢, s1, s2).

Remark: (1) can be done because by Lemma 5.5(2) if int(a/FE) # @ then
n+1 D _ pntl By _
Th+Y((M, P)[nt(a/E)) = Th* (M, P) = T
Now clearly knowing ¢* we can compute
SE) ={t: Qlus, 1,50 # Dt # Thi(2), for some s1, 52}

where Q* is an above. We can also compute G(t) = Th%(M,P,Q). We
know that ¢t € So,S(t) & T, imply G(t) € T
We know also that if
(i) t =Thz((M, P)[{a}) for some a € M, and
(ii) t1,to €T,
then: > o<, (ti+t) € T and Y o (t+1t2) € T,t1 +t+t2 € T and if com
= nez
is —,t1 +t2 € T (where Z is the set of integers) (we use the facts that M is
dense, k(M) < Nyp). o
Now let T* be the minimal subset of T'(n, ¢(P), k) such that
( ) T* D T/
(b) te Sy, S (t) € T* imply G(t) € T*,
(c) if t1,t2 € T*,t = ThZ((M, P)[{a}) then t1 + ¢ +t2 € T
(d) ifto e T*, 81 = Th"((M < P)[{a}) for some a € M then

D (ta+t) €T D (ti+ta) €T
0sn<w n=<0
nez
(e) if t1,t9 € TQ, com is —— then ¢t1 + 9 € T*.
It is easy to see that as Sy, Sy are given and T'(n, £(P), k) is (hereditarily)
finite and known, we can effectively compute 7. So it suffices to prove that
T = T* but as clearly T* € T it suffices to prove:

teT =teT".

Ast € T, there is Q € P(M)*"*1) such that t = Th?(M,P,Q). Define
the equivalence relation £ on M : aFEb if and only if a = b or, without
loss of generality we assume that a < b, for every o,/ € M,a < o <
b < b, Thi(M, P,Q)|(a’, b)) € T*. Tt is easy to check that E is a convex
equivalence relation over M. Now we shall show that if a € M, int(A/FE) #
@ then ThZ((M,P,Q)lint(a/E)) belongs to T*. Choose ag € a/E, and
then define a,,n = 0 such that a, < ap+1,{a, : 0 < n < w} is unbounded
in int(a/F). Without loss of generality th(a,, P7Q) = so for every n > 0.
Hence

Thy((M, PQ){x

€ int(a/E) : ap < x})
= 2ogn<w[ThE (M, P, Q)|

(am an-‘rl)) + Thg((M7 pﬂ Q) r{an-f-l})]'
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By the definition of E, ThZ((M, P,Q)l(an,ans1)) € T*, hence by (d),
Th((M,P,Q){z € int(a/E) : ag < x}) € T*.
Similarly,
Thi((M,P,Q){x € int(a/FE) : x < ao}) € T".
So by (c),
Thi(M,P,Q)lint(a/E)) € T*.
Similarly, by (c),(e) in M/FE there are no two successive elements, so M/FE

is a dense prder. -
Define P* = (..., Py g s),---), Q" = (..., Q?@,sl,t,w}’ ...) such that

(1) a/E € Py, s, if and only if th(a/E, P) = ((, s1, s2),
(2) a/E € Q:<“4751Jt752> if and only id Thi((M, P,Q)lint(a/E)) = t; and
th(a/E, P7Q) = ({,s1,52).
By Lemma 5.2, (M/E, P*,Q*) either has only one element or it has an
interval (a/E,b/FE) # @ such that (M/E, P*,Q*)(a/E,b/E) € UZ.
Now we prove aFEb and so show that this case does not occur and E has
one equivalence relation, hence Thg(M ,P,Q) € T* and so we shall finish.

Let a < d’ < b < b, then let
Jyo={ceM:d/E<c/E<V/E},
Jy={ceM:d <ceint(d/E)},
Jy={ceM:V >cecint(t//E)}.
By (b), Thi((M,P,Q)]J2) € T*; by (d) ThX((M,P,Q).J;) € T* for
i =1,3. Hence by (c) and (e) Th?((M, P,Q)[(d’,V')) € T*. So aEb, and we
finish.

Theorem 5.7.  (A) If k(K) £ Xy, and for every M € K, there is N €
K N U extending M, then from UTth(K) = {UTh”—zH(M) :
M e KN U]—ZLH}, we can compute Thi(K). Hence if UTh"(K) is

recursive in n, then the monadic theory of K is decidable.

See https://shelah.logic.at/papers/42/ for possible updates.

(B) Suppose k(K) = Ry, K is closed under M+N,> " M,> .cz My, ZiEQ M;
n<0

are convex submodels and division by convex equivalence relations.
Then from UTh2(K) (7 = r(n,0,k)) we can compute Thi(K). Hence
if UTh™(K) is recursive in n, then the monadic theory of K is de-
cidable.

Proof:

(A) Immediate.
(B) Essentially the same as the proof of 5.4.

Remark: Of course there are other versions of (B), e.g., for a class of complete
orders.
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6. APPLICATIONS OF SECTION 5 TO DENSE ORDERS

Definition 6.1. Kg is the class of orders M such that no submodel of M
is isomorphic to wy or w} or an uncountable subset of the reals'!

Lemma 6.2.  (A) Kg satisfies the hypothesis of 5.7(B). Also no member
of Kg is complete, except the finite ones.
(B) Kgs has uncountable members, but M € Kg implies || M| < N;.

Proof:

(A) Immediate.
(B) The Specker orders. See e.g., [Jec71]1? for existence.

Theorem 6.3. (A) The monadic theory of Kg is decidable.
(B) All dense order from Kg, with no first nor last element, have the
same monadic theory.

Proof: We shall show that for (M, P) € U°(K), P a partition, pUTh'(M, P)
can be computed from pUTh?(M, P) (hence the former uniquely determine
the latter). Then by the parallel to Lemma 2.5, clause (B) follows immedi-
ately and (A) follows by5.7(B).

So let t = pUTRY(M, P) be given; that is, we know that P is a partition
of M to dense or empty subsets, M € U°, hence M is dense with no first
and no last element, M € K, and we know {i : P; # &}. So without
loss of generality. P; # @ for every i and also M # @, P; is dense. Let
pTh'(M, P) = (S, S2,com), so we should compute com, Si, Sa.

Part (1) com: As M € K, and as clearly the rational order is embeddable
in M, M cannot be complete.

Part (2) Si: It suffices to prove that any dense subset P of M can be split
into two disjoint dense subsets of M.
So we shall prove more.

(*) If M is a dense order, I & |M] is a dense subset, then we can
partition I to two dense subsets of M. That is, there are Jy, Jo, I =
JiU Jo, J1NJy = @ and Jq, Jo are dense subsets of M.

We define a equivalence relation E on I : aEb if, a = b or there
are ag < a,b < by and ag < @’ < b < by implies |{c €: d’ < ¢ <
b} =[{c el :a<c<b} (and they are infinite by assumption).
Now for every E-equivalence class a/F with more than one element,
let \=[{ael:V <a<} foreveryd < €a/E.

Case I: |[a/E| =X > 0.
Then let {(b;,c;) : i < A} be an enumeration of all pairs (b, ¢) such that
b,c € a/E,b < c. Define by induction on i < \,a},a? € a/E. If we have

HThose are the Specker orders; we get them from Aronszajn trees.
2T here is some overlapping between S; and So.
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defined them for j < 7, choose
a}E{dEI:bi<d<Ci}\{a?:j<i},
ai e{del:b <d<ciP\{aj:j<i}.
By cardinality considerations this is possible. Define Ji(a/E) = {a} : i < A}.

Case II: X\ < |a/E].

Then clearly |a/E| = A*, and we can partition a/F into A™ convex subsets
A;j,i < AT, each of power . So on each we can define Jj(A;) such that
J1(A;i), Ai\J1(A;) are dense subsets of A;. Let Ji(a/E) = J;o\+ J1(4i).
Case III: A =0, so |a/E| = 1.

Let Jl(a/E) = . Let J; = Uae[ Jl(a/E),Jg = I\Jl

It is easy to check that Ji, Jy are the desired subsets.

Part (3) S2: By (2) it suffices to find to possible UTh?(M/E, P*), where

pr — <__,.,P<>;751182>,...>,P<>;751782> = {a/E : th(a/E,P) = (£,s1,52)}, and
(M/E,P*) € UYK); so Wi = {{{,s1,52) : Plsis) 7 @} contain all

relevant information. Clearly Wg # @ and (¢, s1, s2) € Wg = £ > 0 and we
can also discard the case (¢, s1,s2) € Wg = £ = 1. Also if (¢, s1,s9) € Wpg,
then (¢, s1, s9) is formally possible.

Suppose W satisfies all those conditions, and we shall find a suitable E
such that Wg = W. Let W = {(£},s%,5s}) : i < ¢ < w}. Choose a J C |M],
countably dense in itself, unbounded in M from above and from below, such
that each P; N J is a dense subset of J, and for no a € |M|\J is there a first
(last) element in {b € J :b>a} ({b € J;b < a}). J defines 2% Dedekind
cuts, but as M € K, only < Xy of them are realized. Let {a, : n < w} be
a set of representatives from those cuts (that is, for every a € |[M|\J there
is n < w such that [a,a,] or [ay,a] is disjoint to J). Let J = {b, : n < w).
Now we define by induction on n a set H,, of convex disjoint subsets of M,
such that:

(a) Hp, € Hp41; Hy, is finite.

(b) If I} # I, € H,, then I} < I or I < I; and between them there are
infinitely many members of J.

(¢c) If I € Hy, I has no last element, then for every a € |M|\J,a > I,
thereis b € J,I < b < a, and also J NI is unbounded in I.

(d) The same holds for the converse order.

(e) If Iy < Iy € Hy,i < qthenthereare I € Hy,,1,th(I, P) = (£, s}, s5).13

(f) an,bp € U{I : I € Hy,}.

(g) If I € H,, has a first (last) element then this element belongs to J.
It is not hard to define the H,’s. Clearly J, Urcy, I = |M]. So
define E as follows:

aFEb if and only if a = b or for some n < w,I € Hy,a,b € I.

13Also, Iy < I < I, and Iy € H,, implies th(Ily, P) € W.
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It is not hard to check that Wg = W. So we finish the proof.

Along similar lines we can prove

Theorem 6.4. Suppose M is a dense order with no first nor last elements,
M is a submodel of the reals, and for every perfect set P of reals, P N |M|
is countable, or even < 2%0. Then the monadic theory of M is the monadic
theory of rationals.

Remark 1: We can integrate the results of 6.3, 6.4. Always some M satisfies
the hypothesis of 6.4. If 2% > R, any dense M C R,|M| < 2%, and if
280 = Ry, the existence can be proved.

Remark 2: In 6.4 we can demand less of |M|: For all countable, disjoint and
dense sets Yi,...Y,(n < w) there is a perfect set P of reals such that Y; is
dense in P for 1 £i < nand PN|M|is < 2% (see Section 7 for definition).

The proof of 5.4 is easily applied to the monadic theory of the reals. (We
should only notice that R is complete.)

Conclusion 6.5. If we can compute the UTh™(R) for n < w then the monadic
theory of the real order is decidable.

Remark: Similar conclusions hold if we add to the monadic quantifier (or
replace it by) (3™ X) (i.e., there is a countable X). Notice that if E is a
convex equivalence relation over R, then {a/F : |a/E| > 1} is countable.

Grzegorezk [Grzb1] asked whether the lattice of subsets of reals with the
closure operation has a decidable theory. One of the corollaries of Rabin
[M.OG69] is that the theory of the reals with quantification over closed sets,
and quantification over Fy sets is decidable.

By our methods we can easily prove

Theorem 6.6. The reals, with quantifications over countable sets, has a
decidable theory. (We can replace “X countable” by “X| < 2% 7 or 4VP)
(P closed nowhere dense — |P N X| < 2%)”).

As every closed set is a closure of a countable set, this proves again the
result of Rabin [M.O69] concerning Grzegorczk’s question. We can also prove
by our method Rabin’s stronger results, but with more technical difficulties.

7. UNDECIDABILITY OF THE MONADIC THEORY OF THE REAL ORDER

Our main theorem here is

Theorem 7.1.  (A) (CH) The monadic theory of the real order is unde-
cidable.
(B) (CH) The monadic theory of order is undecidable.

Theorem 7.2. (CH) The monadic theory of K, = {(R,Q1,...,Qn) : Q; S
R}, where the set quantifier ranges over countable sets, 1 < n, is undecid-
able. (We can even restrict ourselves to sets of rationals.)
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Let 2% be the set of sequences of ones and zeros of length < w; let <
be a partial ordering of 2=% meaning that it is an initial segment, < the
lexicographic order.

Theorem 7.3.  (A) CH The monadic theory of (25%,<, <) is undecid-
able.
(B) (CH) The monadic theory of K, = {(25*,<,<,Q1,...,Qn) : Q; S
25‘*’}, where the set quantifier ranges over sets, 1 < n, is undecidable.
(We can even restrict ourselves to subsets of 2<%).
Instead of the continuum hypothesis, we can assume only:

(*)  “The union of < 280 sets of the first category in not R”.

This is a consequence of Martin’s axiom (see [Jec03]) hence weaker
than CH, but also its negation is consistent, (see Hechler [Hec73] and
Mathias [Mat74] and Solovay [Sol70]). Aside from countable sets, we
can use only a set constructible from any well-ordering of the reals.
Remember that by Rabin [M.O69] quantification over closed and Fy
sets gives us still a decidable theory.

Conjecture 7A: The monadic theory of (25“’, <, <), where the set quantifier
ranges over Borel sets only, is decidable.

This should be connected to the conjecture on Borel determinacy (see
Davis [Dav64], Martin [Mar70] and Paris [Par72]).1* This conjecture implies

Conjecture 7B: The monadic theory of the reals, where the set quantifier
ranges over Borel sets, is decidable (by Rabin [M.O69)]).

Conjecture 7C: We can prove 7.1-7.3 in ZFC.

Theorems 7.1(A),(B),7.3(A) answer well known problems (see e.g., Biichi
[BS73, p.38, Problem 1,2a,2b,4a]. Theorem 7.3(B) answers a question of
Rabin and the author.

Unless mentioned otherwise, we shall use CH or (*).

Notation: R denotes the reals. A prefect set is a closed, nowhere dense set
of reals, with no isolated points and at least two points (this is a somewhat
deviant definition). We use P to denote prefect sets. Let x be an inner point
of P if x € P, and for every € > 0, (z——€,2) N P # &, (z,x + €) N P # .
Let D CC R be dense in P if for every inner point x < y of P, there is an
inner z € PN D,z < z < y. Note that if D is dense in P, P is the closure of
P N D. Real intervals will be denoted by (a,b) where a < b, or by I; (a,b)
is an interval of P if in addition a, b are inner points if P.

Lemma 7.4. Let J be an index-set, the D; (i € J) countable dense subsets
of R, and D = J;c; D;; and for every P,|D N P| < 2%. Then there is
Q C R\D,Q =Q{D, :i € J}, such that

1\ eanwhile Martin [Mar75] proved the Borel determinacy.



Paper Sh:42, version 2021-07-20. See https://shelah.logic.at/papers/42/ for possible updates.

32 SAHARON SHELAH

(A) if PND S D; (i € J) and D; is dense in P (P is, of course, prefect)
then [P N Q| < 2%,

(B) if for no (interval) I of P, andi € J, PNDNI < D; but D is dense
in P then PNQ # @.

Proof: Let {P, : 0 < a < 2%} be any enumeration of the perfect sets. We
define x4, < 2% by induction on a.

For a = 0,2z, € R is arbitrary.

For any a > 0, if P, does not satisfy the assumptions of (B) then let
xq = xg and if P, satisfies the assumptions of (B) let z, € P\ |U{Ps : 5 <
a,(Fie J)(PsND S D; and D is dense in Pg)} = D.

This is possible because for any 3,4, if PsND & D;, D is dense in Pg, P3N
P, is a closed nowhere dense subset of P,. As otherwise for some interval I of
P,, PsNP, is dense in P,, so by the closeness of PsN P, PsNP,NI = P,NI;
therefore

D; 2 PsnD2P,NIND,
a contradiction of the assumption on P,. So by (*) and the hypothesis
| P, N D| < 2% there exists such z,.

Now let Q = {z4 : @ < 2%}, If P satisfies the assumption of (A), then
P € {P,:0 < a < 2%}. Hence for some a, P = P,, hence PN D C {zp :
B < a}, so |PND|<2%. If P = P, satisfies the assumption of (B) then
To € Py, zq € Q, hence P, N Q # @. So we have proved the lemma.

Lemma 7.5. There is a dense D € R and {D; :i € J},|J| = 2%° such that
(1) |D N P| < 2% for every perfect P.
(2) The D; are pairwise disjoint.
(3) D; € D, D; is dense.

Proof: Let {P, : a < 2%} enumerate the perfect subsets of R, and let
{I,, : n < w} enumerate the rational intervals of R, and if « = § +n
(n < w,d a limit ordinal) choose zo € I\ Ug, Ps\{zp : B < o} and let
D= {z5: < 2%), Dy = {Tyatn: n < w}.

Notation: J will be an index set; [J|" ={U : U € J,|U| = n}, and if D; is
defined for i € J, let Dy = |J;cy Di. Subsets of [J]", i.e., symmetric n-place
relations over J, are denoted by S; and if we know {D; : i € J}, Qg will by
Q{Dy : U € SU[J]"" !} from 7.4.

Definition 7.6. Let ¢, (X, D, @, I*) be the monadic formula saying

(A) X is a dense set in I* and X £ D.

(B) For every interval I € I'* and sets V;,...,i=1,n+ 1, if ;NI S X
and the Y; are pairwise disjoint and each Yj is dense in I then there
is a perfect set P,PN(Q = @&, and each Y; N[ is dense in P.

Remark: We can represent the interval Iy as a convex set.
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Lemma 7.7. Let D, {D; :i € J} be as in 7.5, I* an interval, S C]J|", Qs =
Q{Dy : U € SU[J]™ '} as in 7.4. Then for any set X € R,R |=
SOTL[X7D’Q57I*] Zf and OTZly Zf

(A) X is densein I*, X C D,
(B) for any interval I S I* there is a subinterval Iy and U € S U [J]"~!
such that X N 11 C Dy.

Proof: (I) Suppose R = ¢,[X, D, Qs, I*]. Then by (A) from Definition 7.6,
X is dense in I*, X € D so (A) from here is satisfies. To prove (B)let
I € I* be an interval, and suppose that for no subinterval I of I and for no
U e SU[J]™, does X N I; € Dy hold, and we shall get a contradiction.
Now we define by induction on ¢,1 < ¢ < n + 1, distinct i(¢) € J and
intervals I¢,0 £ ¢ < n so that 10 = I, It1 C I*, and X N Dj N I* is dense
in I¢.

If we succeed, in Definition 7.6(B), choose I"*! as I, and X N Dj(p NI+t
as Y'. So necessarily by ¢,’s definition there is a perfect P such that
X N Dy N I+t is dense in P for { = 1,n+ 1, and PN Qg = &. But this
contradicts Lemma 7.4(B) by the definition of Qg. So for some ¢ < n+1 we
cannot find appropriate i(£41), I*t1. Soif welet Y = (X — Ur<e Dir)) NnIt,
forno IT CIYandnoi € Jis YND;NIT dense; i.e., for every i € J, Y ND;
is nowhere dense.

If £ =n, but {i(1),...,i(n)} & S let Dj,y N X NI* =Y, UY,L, |, where
Ynl,YnlJrl are dense subsets of I¢, and Yk1 = X NDipN It and we get a
contradiction as before.

If Y is not dense in I, it is disjoint to some It C I, XNIT so XNIt C
User Diry- So U = {i(0),...,i(¢) € SU[J]" 1, X NIT € Dy, contradicting
an assumption we made in the beginning of the proof. Hence Y is dense in
I

As (Vi € J)YND,; is nowhere dense also for every finite UssuU € J,YNDy
is nowhere dense. So we can chose inductively distinct ¢, € J and distinct
Tm € Y N D;,, such that {2(,43)m4k : m < w} are dense subsets of I, for
0<k<n+2 If welet Y2 = {T(mggymer * m < w} for bk = n+1, by
Definition 7.6 there is a perfect P, such that Y,f is dense in P,PNQ = J,
and we get contradiction by 7.4(B) and the choice of the z,,’s.

As all the ways give a contradiction, we finish one implication.

(IT) Now we want to prove that R = ¢,[X, D, @, I*] assuming the other
side.

Clearly X € D, and X is dense in I* (by condition (A) of Lemma 7.7).
So condition (A) in Definition 7.6 holds. For condition (B) of that definition
let T € I* be an interval, Y, NI € X,Y} dense in [ for k=1,...,n+1 and
k#/0=Y,NY, = @. We should find a perfect P such that P NY} is dense
in Pand PNQ = @. We can choose a U € SU [J]" ! and I; C I so that
X NI € Dy (by the hypothesis). Choose a perfect P such that each Yy is
dense in P. As D is as in 7.4, either case gives |P N D| < 2%0.
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(*) Now we can find perfect P,(a < 280) such that each Y (1 £ k <
n+ 1) is dense in P, and a # (3 implies P, N Pg & UZLI Y.

Proof of (*): For 7 a finite sequence of ones and zeros X,, will be a set of
closed-open intervals and singletons with endpoints in UZill Y)., which are
pairwise disjoint. We define X, by induction on £(n). Let X = {[a,b)},
where a,b € Y7, and if X, is defined, for each interval [a,b) € X, choose a
decreasing sequence z¢ (i < w) whose limit is a, and z§ < b and z¢ € Y}, if
and only if /(n) =k mod n+ 1,1 <k <n+ 1. Let, for m =0, 1:

Xy~m) = {(le—i-la xi) : for some b,[a,b) € X, and i = m mod 2}

U{{a} : for some b,[a,b) € X,), or {a} € X,}.
For 7 a sequence of ones and zeros of length w, P, = (,,(U Xyn)-
Because |P N D| < 2% for some a, P, N D C [J}2] Yi; so by 7.4 (and
the choice of Q’s), |Po N Qs| < 2%0. We can find P&B(ﬁ < 2%) such that
each Yj is dense in PP and B # v = PPN Py - Zii Y. So for some
B,PINnQC UZI% Yr € D, but Q@ € R\D hence PPN Q = @, and we finish.

Definition 7.8. Let ¢, (X, D, @, I*) be the monadic formula saying
(A) QOn(X, Dv Qa I*),
(B) for any interval I; C I*, if Y is disjoint to X and dense in I; then
_‘SOH(X U Yu Da Q7 Il)

Lemma 7.9. Let D,J, D;,S,Qg be as in 7.7. Then for any X € R,R |E
Y[ X, D, Qg, I"] if and only if
(A) X is densein I*, X € D,
(B) for any interval I S I* there is a subinterval Iy and U € SU{V €
[J]" L (Vie J)(VU{i} ¢ 8)} such that X NI = Dy N 1.

Proof:

(I) Suppose R = ¥, X, D, Qs, I*], then clearly condition (A) holds. For
condition (B) let I € I* be an interval. By Definition 7.8(A), R
on[X, D, Qg, I*], hence by Lemma 7.7(B), I has a subinterval I such
that XNIy S Dy where U € SU[J]""L. If (Dy\ X )N 1 is somewhere
dense, let it be dense in I) C Iy, and let Y = (Dy\X) N I;, which
gives us a contradiction to Definition 7.8(B). If U € [J]"~!, and for
some i € J,V =UU{i} € S, we can get a similar contradiction by
Y = (Dy\X) N Iy in the interval Iy (as D; C Dy \X,Y is dense).
We can conclude that: U € S or U € [J]" ! and U U {i} ¢ S for
every ¢ € J and that (Dy\X) NIy is nowhere dense. Hence for some
I C Iy, (DU\X) NI = @ hence X NI{ = Dy NlI.

(II) Now suppose that conditions (A),(B) hold; by Lemma 7.7 it is easy
to see that R = ¢,[X, D,Qg, I"*].

See https://shelah.logic.at/papers/42/ for possible updates.



Paper Sh:42, version 2021-07-20. See https://shelah.logic.at/papers/42/ for possible updates.

THE MONADIC THEORY OF ORDER 35

Definition 7.10. Let x1(D, @, I*) be the monadic formula saying:

(A) D is dense in I*, I* an interval;
(B) if I CI*,X,Y are dense in I and

R ):wl[X7D7Q>I]/\¢1[Y7D7Q>I]
then for some I; C I,
XNYNni=gor XNl =YNI.

Lemma 7.11.  (A) If D,{D;:i € J}, are as in 7.5 then for any interval

IR ': Xl[DaQJ’I*]'

(B) If R = xa[D,Q,I*] then we can find I < I*, and X;,i < g such
that
(a) each X; is a dense subset of I and R = y1[X;, D, Q, 1],
(b) if Ip £ I, and X < Iy is dense in Iy and R = y1[X, D, Q, Iy]

then there are i < o and I; € Iy such that X NI} = X; N 1I;.
(C) In (B), |aw| is uniquely defined by D,Q, 1.

Proof:

(A) By 7.9 it is immediate.

(B) Let {X; : ¢ < a} be a maximal family satisfying (1) and (2) for
I = I*. If for some interval I there are no subintervals I' and dense
X* C XNI' such that (Vi < o) (X;NX* is nowhere dense)!® we are
finished. Otherwise we can choose inductively on n intervals I"™ € I*
disjoint to (J,,, I* and X € X N I" such that (Vi < ap), X; N X}
is nowhere dense'®, and such that J,, <o I" is dense in I. Then we
could have defined X,, =, D}, a contradiction.

(C) Easy.

n<w

Definition 7.12. Let x"(Q1, D, @, I*) be the monadic formula saying

(A) D is dense in I*, which is an interval.
(B) Suppose Ip € I*, Xy € In(¢ <n)and R = A\, ¥1(X¢, D, Q, Ip). Then
there is I1 € Iy such that for all Iy € I;

RE=Yu(| X6, D,Q1, 1) = n(| ) X0, D, Q1 I2).
I<n I<n
Lemma 7.13. If D,{D; : i € J} are as in Lemma 7.5, S < [J]" then for
any interval I*, R = x"[Qs, D, Q, I*].

Proof: Immediate.

Theorem 7.14. The set A, is recursive in the monadic theory of order;
where A, = {0 : 6 is a first order sentence which has an w-model i.e., a
model M such that (|M|, R1) is isomorphic to (w,z +1=1y)}.

15and R ': wl[X*7D7Q7ll}'
Yand R = y1[X*, D,Q,1"].
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Conclusion 7.15. True first order arithmetic is recursive in the monadic
theory of order.

Proof: It suffices to define for every first order sentence 0, a monadic sentence
G(0) so that R = G(#) if and only if # has an w-models.

By using Skolem-functions and then encoding them by relations, we can
define effectively the sentence G1(6) such that 6 has an w-model if and only
if G1(0) has an w-model and

G1(0) = (Y1, s Tn(0) 3Ty 415 - - - >$n(1))(\//\9@'j),

6;; is an atomic, or a negation of an atomic, formula; only the relations
Ry, ..., Ry 2y appear in it; Ry is the equality; and R; has m(i)-places.

Define (where X,Y, D, (@ are variables ranging over sets, I is a variable
ranging over intervals and z,y are individual variables):

(0) Go(Xp = Xy) = (VI' CSTHEP CIH( XN I? = X, N T?),
(1) GalGelXqa)s -+ Kemiey)) = (Y)Y € D\D*wedge N7 tha( Xy
Y, D, Qj, I*) (for £ < 0),
(2) GQ(G) (VX17"‘? n(0 ))(ElX (0)+1y -+ > n(l))
(VI° € 1)@E1* € IARS ¢1 (X0, D, Q% T AN X, € D
n(1) n(1)
— /\ ngD*ﬂ /\ ’(ﬁl(Xg,D,Q*,[*)/\/\\/GQ(@Z']')].
t=n(0)+1 t=n(0)+1 i
(4) Let x* be the conjunction of the following formulas:
(o) D, D* are dense in I, D* C D,
(6) Xl(D'vQ*w[)a
(v) x*(Q%, D, Q*, ). Let us denote
RI(X,Y,Q},Q?I''=(XCSD*ANY S D'AXNY = @A
1 (X, D, Q" I") ANy (Y, D, Q*N, I'Y A (3Z)[Z S D\D* A1(Z, D, Q*, I')A
¢2(XU Z?-DinI/) /\wQ(YUZwDaQ%I/)]
and
(6) 1(Xo, D, @, 1) A Xo € D* A (¥Y)[t1 (Y, D, Q" T) AY € D*
(I R1(Y, YD) A (VI S I)(VY)-Ry (Y, XO,Q%, %,I’)/\
(Y1Y2Y3)(VI° S D[R (Y1, Y2, Q1, Q1. 1°) A Ri(Y1, Y3, Q1. @1, 1°)
S (VIS IEPC YN =Y3n 1.
(€) The formula saying that if (§) holds when we replace Q1,Q% by
Q3, Q? resp. then
(YX)(VY)(VI' S D[R:(X,Y,Q1,I') = Ri(X,Y,Q1,QF, I')].
(5) G(0) = (3Q*, D, D*, Xo,...,Qp, .. ) (YD) [x* A G3(0)].

Now we should prove only that € has an w-model if and only if

R = G(0).
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(I) Suppose M is an w-model 2021-06-14 if and only if R F G(0).
Let J = w4+ w, D;(i < w4 w) be countable, pairwise disjoint,
dense subsets of R. Choose symmetric and reflexive relations
S} on w + w so that

k(£)
M = Ry(21, .- 2p)) & (Jy € w+w) /\(y,xi) €S;Ny ¢ w).
i=1

To prove R = G(0), let D = J; 4, Dis D* = U, D, Q) =
Q(Sg;)aXO = Dy, and Q* = Qu+w- Let I be any interval. It is
not hard to check that under those assignments R |= z* AG3(6).

(I) Now suppose R = G(). Let Q*, D,D*, Xy, Q% be such that
R = (VI)(x"A\G3(0)). BY (4) (8), clearly R |= (VI)x1(D, Q" I).
Hence by Lemma 7.11(B) there are I and D;,i < « satisfying
(1),(2),(3) from 7.11(B). As R = (VI)(x* N G3(6)), then in par-
ticular R = x* A G3(0). By (4)(0), R E ¥1(Xo,D,Q*,I), so
we can choose Dy = Xj. (See the proof of 7.11.) By (4)(d) we
can also assume that R = Ry(Dp, Dpy1) for n < w. By (4)(e)
necessarily D; € D* & i < w.
Let {j; : £ < w} enumerate all sequences j = (j(1),...,5(n(0)))
of natural numbers. As R |= G3(0) for every j, we can choose
Xi = Dj, (i), and so there is an assignment X; — D% for n(0) <
i < n(1) showing that R = G3(6). So we can define by induction
on n < w intervals I, so that: I,11 € I,,, Iy € I, and for every
n(O) <1< n(l) for some jn(l) < «p, De’iﬂfn_i_l = Djn(i) Nlpt1.

Now we define amodel M : |M| = w, and M = Ry[j(1),...,j(m({))] <
for some n, R |= (3Y)[Y S D\D* AN 4o(D;)NY, D, Q' I7)].
It is easy to check that R = 6.

Remark: By some elaboration, we can add to the definition of A, also the
demand
“Rs is a well-founded two-place relation”

(also for uncountable structures). Thus, e.g., there are sentences 6,,, such
that MA implies: R = 6 if and only if 2% = R,,.

Theorem 7.16. The set of first-order sentences which has a model, is re-
cursive in the monadic theory of {(R,Q) : @ & R} where the set-variables
range over subsets of the rationals.

Remark: Notice that a quantification over P such that D is dense in P can
be interpreted by a quantification over P N D, as the property “x in the
closure of X” is first-order. Hence ¢, ¥, are, in our restricted monadic
theory.

By 7.14,7.15, Theorems 7.1,7.2 and 7.3 are in fact immediate. Theorem
7.1(B) can also be proved by the following observation of Litman [Lit76],
which is similar to 3.6(B)(1):
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Lemma 7.17. The monadic theory of the real order is recursive in the
monadic theory of order.

Proof: For every monadic sentence 6 let G(6) be the monadic sentence saying:
“If the set X is completely ordered, is dense and has no first nor last
elements then some Y € X has those properties and in addition (Y, <) = 0.”
As every complete dense order contains a subset isomorphic to R, and
any complete dense order & R with no first nor last element is isomorphic

to R, clearly R = G(0) if and only if € is satisfied by all orders so our results
is immediate.

Conjecture 7D: The monadic theory of R and the (pure) second-order theory
of 2% are recursive in each other.!”

Conjecture 7E: The monadic theory of {R,Q) : @ £ R} with the set-
quantifiers ranging over subsets of the rationals; and the (pure) second-order
theory of Ng are recursive in each other. Gurevich notes that if V = L the
intersection of 7D,E holds.

Conjecture 7F: The monadic theory of order and the (pure) second-order
theory, are recursive in each other.
In conjectures 7D,E,F use (*) or CH if necessary.

Conjecture 7G: If Dy is a dense subset of R, and for every P, |PNDy| < 2%,
for £ = 1,2 then (R, D1), (R, D3) have the same monadic theory.'®
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