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BETWEEN REDUCED POWERS AND ULTRAPOWERS, II.

ILIJAS FARAH AND SAHARON SHELAH

ABSTRACT. We prove that, consistently with ZFC, no ultraproduct of
countably infinite (or separable metric, non-compact) structures is iso-
morphic to a reduced product of countable (or separable metric) struc-
tures associated to the Fréchet filter. Since such structures are countably
saturated, the Continuum Hypothesis implies that they are isomorphic
when elementarily equivalent.

The trivializing effect of the Continuum Hypothesis (CH) to the struc-
ture of the continuum has been known at least since the times of Sierpinski
and Godel ([23]). The particular instance of this phenomenon that we are
concerned with in the present paper is the existence of highly non-canonical
isomorphisms between massive quotient structures of cardinality ¢ = 280,
The operation of taking a reduced product [[ A, of a sequence (A,) of
first-order structures often results in a countably saturated structure.! This
is the case with the two most commonly used reduced products: ultra-
products associated with nonprincipal ultrafilters on N and reduced prod-
ucts associated with the Fréchet filter. If each A, has the cardinality of at
most ¢, then so does [[r Ay, and the CH implies that the latter structure
is saturated. By a classical theorem of Keisler, elementarily equivalent and
saturated first-order structures of the same cardinality are isomorphic (see
[5, Theorem 5.1.13]). Therefore CH implies that the isomorphism of such
reduced products reduces (no pun intended) to elementary equivalence.

In [13], this observation was combined with computation of the theory of
the structure (K denotes the Cantor space)

(0.1) C(K,A)={f: K — A| fis continuous}
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for a separable (or countable discrete) structure A to prove that, assuming
CH we have?

(0.2) [, C(K A) = []p, A

for any nonprincipal ultrafilter i on N (H3;-Gerelary3-7[13, Theorem EJ).
This result is the basis for H3TheeremA}[13, Theorem B, asserting that

under CH there exists an ultrafilter &/ on N such that the quotient map
from [[p;, A to [[; A has a right inverse for every countable (or separable
metric) structure A. In the case when A is a C*-algebra, this significantly
simplifies some intricate arguments in Elliott’s classification program for
nuclear, separable C*-algebras (see the upcoming [4], also [46] and [33] for
related applications of ultrapowers). Although the assumption of CH can
be removed from the applications of (0.2) to the Elliott classification pro-
gramme (H3Fheeremr D13, Theorem A]), the question whether (0.2) can
be proved in ZFC remained.

A well-known instance of this-the trivializing effect of CH is Parovicenko’s
theorem from general topology. Stated in the dual, Boolean-algebraic, form,
it asserts that CH implies that all atomless, countably saturated, Boolean
algebras of cardinality ¢ are isomorphic. In [44] it was proved that the
conclusion of Parovicenko’s theorem is equivalent to CH. An alternative
proof of this fact is given by the main result of [19] (or by [28]), asserting
that if CH fails then there are 2° nonisomorphic ultrapowers of the countable
atomless Boolean algebra associated with nonprincipal ultrafilters on N-anéd

elearly— By Los’s Theorem all of these Boolean algebras are atomless,
and they are countably saturated and of cardinality ¢, being ultrapowers
associated with countably incomplete ultrafilters. Clearly, at most one of
them-these ultrapowers can be isomorphic to P(N)/ Fin. The-fellowing-twe
restlts-show-that-none-of them-is-isomerphiete PN}/ Fin-Theorem A and

Theorem B below show that in two of the most popular models of ZFC =

assumineg—in which CH fails (models of forcing axioms and in—the-eriginal
Cohen’s original model of ZFCin-whieh-CH-fails), none of these ultrapowers

is isomorphic to P(N)/ Fin.

Theorem A. The Proper Forcing Aziom, PFA, implies that P(N)/Fin
is not isomorphic to an ultraproduct of Boolean algebras associated with a
nonprincipal ultrafilter on N.

The study of quotient Boolean algebras of the form P(N)/Z for an ideal
Z on N, dates back at least to Erdos and Ulam (see [8]). The space P(N)
is_identified with the Cantor space, and thus equipped with a canonical
compact metrizable topology. In [25] it was proved that P(N)/Z is countably
saturated for every Fy ideal 7 that includes the Fréchet ideal. Fin. The
essence of the Just-Krawczyk construction is encapsulated in the concept

2In [13], [1ps, A was denoted A% and [],, A was denoted AY, following the notation
favoured by operator-algebraists. In the present paper we adopt the notation favoured by

logicians and apologize to any stray operator algebraists (see however Corollary D).
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of a layered ideals in [11], where it was proved that if 7 is a layered ideal

that includes Fin then P(N)/Fin is countably saturated. (This class of

ideals properly includes that of the Fj, ideals; for example, for any additively
indecomposable countable ordinal « the ideal {X C | the order type of
X is less than o} is layered.) Since the quotient over an analytic ideal
that includes Fin necessarily has cardinality ¢, these results show that all
quotients over layered analytic ideals that include Fin are isomorphic under

CH. This conclusion extends to the reduced products of countable Boolean
algebras A, associated with layered ideals ([20, Theorem 2.7]).

Note that P(N)/Z is canonically isomorphic to the reduced product

A, where A is taken to be the 2-element Boolean algebra. Also note
that all of these reduced products are projectively definable in the sense that

there is an n € N and X!-formulas A and such that the set
z € Rlp(x)} equipped with the operations defined b and is a

Boolean algebra.?
Theorem B. In a model obtained by adding at least ¢t Cohen reals to a

model of ZFC the following holds. If B is a Beolean—ealgebra—definable—from
a—reat—projectively definable Boolean algebra then B is not isomorphic to

an ultraproduct of countable Boolean algebras associated with a nonprincipal
ultrafilter on N.

In particular, for any analytic ideal T on N, the quotient P(N)/Z is not
isomorphic to an ultraproduct of countable Boolean algebras associated with
a nonprincipal ultrafilter on N.

Our other main result applies to a mere-general-wider range of structures.
For the order property (OP) and the robust order property see Definition 1.1.
Any theory in which the order property is witnessed by an atomic formula
has the robust order property.

Theorem C. There exists a forcing extension in which for every countable
theory T that has the robust order property the following holds.

For every sequence (Ay,) of countable modets-of—structures in the langua

of T, every sequence (By,) of countable ﬁ%%%—m—&%—é&ﬁgﬁ&ge—efmodels
of T, and every nonprincipal ultrafilter U on N, the following are true.

(1) The ultraproduct [],; By is not isomorphic to [ [p;, An
(2) The wultraproduct [[,; Bn is not isomorphic to an elementary sub-

model of | [pi, An
(3) If the order property of T is witnessed by a quantifier-free formula

ﬁﬁd—&&&h—B—ﬁ—ﬁ#ﬁ%@é&—@f—&%—ﬁ%@ﬁﬂy—Wthen [1, Bn does

not embed into [ [p, An

Since the original impetus for these results drew from the Elliott classifi-

cation program of C*-algebras, we’ll explicitly state the relevant corollary.

3We avoid using the simpler term projective Boolean algebras in order to avoid
confusion with Boolean algebras that are projective objects in the category of Boolean
algebras.
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If A is a C*-algebra, then the structure C'(K, A) as in (0.1) is isomorphic to
the tensor product A ® C(K). By {#3;Cerellary3-7[13, Theorem EJ, for a
separable C*-algebra A and a nonprincipal ultrafilter &/ on N, CH implies
that the ultrapower (A® C(K)) is isomorphic to A% := £, (A)/co(A), and
the isomorphism extends the identity on A (A is routinely identified with
its diagonal copies in AY and A>).

Corollary D. There exists a forcing extension in which the following holds
for every separable C*-algebra A and every ultrafilter U on N.
(1) (A® C(K)) is not isomorphic to A>.
(2) (A® C(K)) is not isomorphic to a C*-subalgebra of B® for any
separable C*-algebra B.

The related conclusion, that C'(K)¥ is not isomorphic to a C*-subalgebra
of lso/co, is known to be relatively consistent with ZFC and its variant
(known as Woodin’s condition) plays an important role in Woodin’s proof
of automatic continuity for homomorphisms of Banach algebras ([6]).

Closely related to the questions answered in_theorems stated above is
another question trivialized by CH. This is the question on the existence
of a universal structure among the ultrapowers of a fixed countable (or
separable metric) structure. Some answers to this question which are easy

consequences of earlier work of one of the authors are given in §7.

Some notation. We will write X € ¥ as a shorthand for ‘X C ¥ and X

is finite’ (this relation is sometimes denoted X € [Y]<}0). The ideal of finite
subsets of a set X is denoted Finy (some authors prefer [X]<¥0). For the

Fréchet ideal Fing, we write Fin.

Rough outline. Our proofs use model theory (§1, §7) and set theory (§2,
§4). In §1 we discuss the order property (OP) of first-order theories, discrete
and continuous. Severallemmas—abeout—theso-called—depletions—of-partial
orderings—are—proved-Standard facts about posets are recalled in §2, and

depletions of posets are introduced and studied in 3. In §4 we define a functor
E — Hpg from the category of partial orderings into the category of forcing

notions. The material from §2-3 is used to prove that the forcing Hg embeds
E into the reduced product [, cn(n, <) (n is identified with {0,...,n —1})
in a particularly gentle way. Theorem C and Corollary D are proved in §5,
while Theorem A and Theorem B are proved in §6. In §7 we make remarks
about the existence of a universal model among the ultrapowers of countable
models of T associated with ultrafilters on N. Some concluding remarks and
questions can be found in §8.

Acknowledgments. I.F. would like to thank Alan Dow for pointing our

attention to [44]. The anonymous referee bravely read through the original
version of this paper and provided a very helpful report. For this we are
indebted to the referee, and so should be all future readers of this paper.
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1. REDUCED PRODUCTS, THE ORDER PROPERTY, CONTINUOUS LOGIC

In this section we recall the pertinent definitions and establish the nota-
tion <. It should be emphasized that the first-order theory 7" is not assumed
to be complete.

1.1. Reduced products. We will use the following convention. Suppose
that A, are structures of the same countable language, a, is a tuple in A,
for all n € N, and all of these tuples are of the same sort.* Then a denotes
the element—tuple (an) ofin [],, An of the same sort.

If 7 is a filter on N and A,, for n € N, are structures of the same
language £, then the reduced product []rA, is defined as follows. Its
domain is the quotient of [],, 4, over the relation @ ~ b if {n|a, = b,} € F.
The function symbols in £ are interpreted in the natural way (note that ~x
is a congruence). If £ > 1 and R(x(0),...,x(k—1)) is a k-ary relation symbol
and a(0),...,a(k—1) is a k-tuple, then we let [[ » A, |= R(a(0),...,a(k—1))
if and only if the set

{n|A4, E R(an(0),...,an(k—1))}

belongs to F.

The image of @ in the reduced product [[» A, under the quotient map is
also denoted a, by a standard and innocuous abuse of notation.

If F is the Fréchet filter (i.e., the filter of cofinite subsets of N), then
[I7 Ay is denoted ][p;, An. (This is yet another standard and innocuous
abuse of notation; Fin denotes the ideal dual to the Fréchet filter, and the
reduced products are sometimes defined with respect to the dual ideals.) If U
is an ultrafilter (i.e., a proper filter maximal with respect to the inclusion),
then [[,, Ay is called the ultraproduct.

When all structures A,, are equal to some A, the corresponding reduced
products (ultraproducts) are called reduced powers (ultrapowers).

1.2. The order properties. This combinatorial property of a first-order
theory marks the watershed between well-behaved and wild (see [35]).
Definition 1.1. Suppose that T is a first-order theory.

(1) If o(z,y) is an asymmetric formula (with Z and gy of the same sort)
in the language of T" consider the asymmetric binary relation <, on
a model A of T', defined by &<zb-if-Af=p{a:b)

) 2.5 Al o(a)

Some aj, for j <n, in A form a <,-chain if for all i # j we have
a; <, a; if and only if i < j.

41f the language is multisorted, then the sort of a tuple is simply its arity. Note that the

natural languages associated with the unbounded metric structures, such as C*-algebras,

are multisorted.
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(2) If every model of T' has an arbitrarily long finite <,-chain, we say
that the pair (T,¢) has the order property, OP ([35]).°

(3) The pair (T, ¢) has the robust order property if it has the order
property and in addition for models A,,, for n € N, of T and @ and b

0 FAr s An we have [Ty, An = (a,0) if and only if the set_
{n | Ay ¥ (@0, b))}

is finite. (Note that it is not required that [[p,, An models T'.)
(4) The pair (T, ¢) is said to have the strict order property (SOP) if the
relation <, is a partial ordering on every model of T

The relation between the order property and the robust order depends
on the analysis of the relation between the theories of A, and the theory
of [Igi, An, as given by the Feferman—Vaught theorem ([21] and [22] for
continuous logic, also see [12, §16.3]). We will need only the following easy
case.

Lemma 1.2. If a pair (T, ¢) has the order property and ¢(%,y) is atomic,
or a conjunction of atomic formulas, then the pair (T,y) has the robust
order property.

Proof. Fix models A,, = T for n € N and suppose ¢ is a conjunction of
atomic formulas. If @, and b,, are tuples of the appropriate sort in A,, such
that A, = ¢(@n,b,), then (writing a for the element of the product that
has the representing sequence (a,)), we have [[, A, [ (@, b) and moreover
for any filter F on N we have [[-A, = ¢(a,b). The assertion follows
immediately. ([

1.3. Continuous logic. For more details on continuous logic see [2] and
H4-(see [14] or [12, §16] for operator algebras—alse—H2,616}). That said,
this subsection is targeted at the readers already familiar with the-contintous
legiecontinuous logic, and its aim is to convince these readers that the proofs
of the continuous versions of our main results are analogous to the proofs in
the discrete case.

The reduced product [] » A, of metric structures of the same language is
defined analogously to the discrete case. See e.g., [2, §5] (for ultraproducts)
and [12, §16.2 and §D.2.5] for the general case.

The value of a formula ¢(Z) evaluated in a model M, at a tuple a of
the appropriate sort, is denoted go(d)M and defined by recursion on the
complexity of ¢. In particular, if ¢(Z,7) is a formula (with Z and § of the
same sort) then the binary relation <, on a model A of T is defined by
a<,bif p(a,b)4 = 0 and b<,a if (b, a)4 = 1. The pair (T, ¢) has the order
property if every model A of T' contains arbitrarily long finite <,-chains ([16,
Definition 5.2]).

50ne says that ¢ has the order property when T is clear from the context.
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Definition 1.3. If T is a theory in a continuous language and ¢ is a formula
of the same language, we say that the order property of the pair (7)) is

robust if for models Ay, for n € N, of T', and all @ and b in Fr#7 ][, An
we have [[p, An = ¢(a,b) if and only if for all sufficiently small ¢ > 0 the
set

{n | ¢ (an, by) < € and @ (b, @n) > 1 — ¢}
is finite.

Therefore by replacing ¢ with f(p) for a suitable piecewise continuous
function f, the order property of a continuous theory as well as its robustness
are witnessed by a discrete (i.e., 0-1 valued) formula. Because of this, we
will provide proofs of our results only in the case of discrete theories, with
understanding that they carry on virtually unchanged to the continuous
context. A proof of the following is analogous to the proof of Lemma 1.2
and therefore omitted.

Lemma 1.4. If T is a continuous theory, a pair (T, @) has the order prop-
erty, and ©(Z,y) is atomic or a minimum of atomic formulas then the pair
(T, ) has the robust order property. O

2. BACKGROUND ON PARFIAL-ORDERB¥GSPOSETS

In this section we warm up by stating and proving some well-known re-
sults. Consider the following two partial quasi-orderings on NN (by ¥/ we

denote the quantifier ‘for all but finitely many j € N’):
< ge (Vi) ) <9()
<t ge (VN)f0) <g().

Any proper initial segment of (NN, <*) has the form ({f € NV | f < n}, <*)
for some n € NN, Such an initial segment is isomorphic to ([, n(n), <*) (if
f <* n, then the pointwise minimum of f and 7 is an element of [, n(n)
equal to f modulo finite) and these structures will be our main focus. The
following is essentially a bounded variant of [9, Proposition 0.1].

Lemma 2.1. There are n € NY and ®: ([[,,n, <*) — ([1,n(n), <*) such
that for all f and g, if f <* g and g £* [ then ®(f) <* ®(g).

A morphism ® as guaranteed by Lemma 2.1 is called strictly increasing.

Proof. Bet-Recursively define by 7(0) :== 0 and n(n+1) := 3", jn(j) +1
for n # 0. The following is the salient property of the function 7:

(m+ 1)n(n) > Zjn(j) + mn(n) > Z FGInG) + mn(n),
for any f € [L,,n. For f €[], n let <
O(f)(n) =>_ f(H)nG).

j<n
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Suppose that f and g inthe-demain—-of-Psueh—+that-are in [[, n and k is

such that f(k) < g(k). Using the salient property of n with m = f(n), we
obtain the following.

= 9()n(G) + g(n)n(n)

j<n
> S(90) + () + Fynn) > B(F)(n).
j<n
Therefore, if f and g are in n, then f <* g but—f+"g—Let-if and only
It remains to prove that if (V*°)nf(n) > g(n) and (3°°n)f(n) > g(n) then

Von)®(f)(n) > @ . For such f and g and fix m besueh-thatf{n)<-g{n)
gM&M\LfGr all n > m andlet-k>—m-besuchthatf{l)<glk)-

and f(m) > g(m). By induction we will prove that ® n)>e

for all n > m. For n = m this follows by the first part of the proof. If
[ n) > o n), then

By induction, ®(g) <* & as required. ([l

The universal structure obtained in Lemma 2.2 below is very similar to
the Rado graph, also known as the (countably infinite) random graph, and
it ought to be well-known. It was however easier to include a proof than to
look for it in the literature.

Lemma 2.2. There exists an injectively universal countable structure (C,<)
with an asymmetric binary relation <. This universality property is absolute
between transitive models of a sufficiently large fragment of ZFC.

Proof. Let C' := N and define the relation < as follows. If m < n are in N
and n = 3, d;(n)3 is the ternary expansion of n (so that d;(n) € {0, 1,2}
for all j) then let m<n if d,,(n) = 1, n<m if d;,(n) = 2, and let m and
n unrelated if d,,(n) = 0. The structure (C,<) has the following property
resembling the random graph:
(*) If F and G, are disjoint finite subsets of C, then there exists n € C
such that m € F implies m<n, m € G implies n<m, and m¢FlupG
m ¢ F' UG implies that m and n are unrelated.
To see this, let n:=3 3"+ -2 3™
Given the property (*) of (C, <), every countable (A, <) can be isomorphi-
cally embedded into (C,<) by recursion. Since (*) is a first-order property,



Paper Sh:1202, version 2021-08-10_2. See https://shelah.logic.at/papers/1202/ for possible updates.

BETWEEN REDUCED POWERS AND ULTRAPOWERS, II. 9

it is absolute between transitive models of a sufficiently large fragment of
ZFC (see e.g., [30, Lemma I1.4.3]). O

3. THE DEPLETION OF A POSET

The notion of the depletion of a linear ordering and{admittedly—rather
)T 3 3 il be_ins L ionl ] 4] Eof
Theorem413—

appears implicitly in [9].

Definition 3.1. Suppose that m > 2, A and F(i), for ¢ < m, are disjoint
sets, and < is a partial ordering on the set E := AUJ,_,, F(i).5 A binary
relation < on E defined as follows is called the depletion of < given-by-given
by A and Fli—feri—<-m(F(i)|i <m).

If x and y belong to E, we let x < y if and only if one of the following
applies.

(1) Both z and y belong to AU F(i) for some ¢ and = < y.
(2) There are ¢ < j such that € F(i) and y € F(j) and one of the
following holds.
(a) There exists a € A such that x < a and a <y
(b) With k = j — i, there are x; € F(i + ) for 0 <1 < k such that
xg =2, 2 =y, and x; < x;4q for all [ < k.
(3) There are ¢ > j such that € F(i) and y € F(j) and one of the
following holds.
(a) There exists a € A such that x < a and a <y
(b) With k =i — j, there are x; € F(j + 1) for 0 <[ < k such that
=420 =Y, T =2, and x; > x4 for all [ < k.
The elements z;, for i < k as in (2b) or (3b) are called an s-walk between x
and y, or an s-walk with endpoints x and y.

In order to help the reader memorize the definition, we state the followin
trivial lemma without a proof.

Lemma 3.2. With the notation as in Definition 3.5, if s Ct € I, and i

min(s) = min(¢) = &, max(s) = max(t) =n, and x or ( €t,1s at-walk

then x or ¢ € s, 1s an s-walk with the same endpoints. O

The (admittedly rather dull) Lemma 3.3 will be instrumental in a critical
lace in the proof of Theorem 4.13.

Lemma 3.3. The depletion < of a partial ordering < as given in Definition 3.1
is a partial ordering included in #<.7

6Warning: The definition of the relation < depends on the chosen ordering of the index

set m. In the context of this definition, m stands for an arbitrary finite linearly ordered
set.

"‘Included* when identified with its graph—we are set-theorists!
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Proof. Fix A, m, F(i), for i < m, and an ordering < on E := AUlJ,_,,, F'(7).

It is clear from the definition that z < y implies < y and that < and <
agree on AU F(i) for every i. Therefore < is antisymmetric and reflexive,
and it will suffice to prove that it is transitive.

Towards this end, fix z,y, and z such that * < y and y < z. Then z <y
and y < z, and therefore x < z. If  and z belong to AU F(i) for some 1,
then x < z by (1). Therefore if at least one of x € A or z € A holds then
r < z, and we may assume x € F'(i) and z € F(j) for distinct ¢ and j. If
y € A then z < z by (2a). Similarly, if there exists a € A such that z < a
and a < y, then x < z. Also, if there exists a € A such that y < a and
a < z, then x < z.

We can therefore assume that y € F(n) for some n and both < y and
y < z are witnessed by instances of (2b). The following claim will help
when discussing the possible cases.

Claim 3.4. Suppose thati <m,0<k<m—i,z € F(i) andy € F(i+k).

(1) Assume there is no a € A such that x < a anda <vy. Then v <L y if

and only if there are x; € F(i+1) for all 0 <1 < k such that xo = x,
=1y, and x; < x4 for all 0 <1 < k.

(2) Assume there is no a € A such thaty < a and a < x. Theny < x if

and only if there are x; € F(i+1) for all 0 <1 < k such that xo = x,
=1y, and x141 < 27 for all 0 <1 < k.

Proof. (1) For the direct implication, note that the assumptions imply that (2b)
of Definition 3.1 applies. Let ¢ := x, x} := y, and for 0 <! < k let 2; be a
witness for (2b) of Definition 3.1. These objects are clearly as required.

For the converse implication, assume that x; for 0 < [ < k are as in the
statement of the claim. Then clearly (2b) of Definition 3.1 applies.

The proof of (2) is analogous and therefore omitted. O

Back to our proof. If i < n < j, then part (1) of Claim implies that
r < z. If i < j < n, then the witnessing sequence for r < y contains
t € F(j), such that z < t and ¢ < y. But then (since < implies <) ¢t < z,
and ¢t < z since both ¢ and z belong to F(j). A proof in the case when
n < i < j is similar and uses part (2) of the Claim. This proves our claim
in the case when ¢ < j.

The proof in the case when ¢ > j is analogous. ([

Definition 3.5. Given a linear ordering I, poset, disjoint subsets A and
F (&), for £ € 1, linear ordering <on F := AU F and s € I, let <

denote the depletion of < determined by A and F for £ € s.

By Lemma 3.2, < is a partial ordering on D, := AU F
Lemma 3.6. With the notation as in Definition 3.5, if s Ct € I, then for
any two x and y in D we have that x < y implies © g y.

Proof. Fix r <; y. A glance at Definition 3.1 shows that we may assume
that z € F'(€) and y € F(n) for some distinct € and » in s, since in any other
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situation z < vy follows immediately. If there is z € A such that z < z <
then clearly z < whenever Cw € I. We may therefore assume

that there is a t-walk with endpoints z and y. We denote the ‘steps’ of s b
T for ( €t and € < <1n. Lemma 3.2 implies that « for ¢ € s and
< ( < nis an s-walk with endpoints  and y, hence z <, y. O

Proposition 3.7 is a relative to a result of Kurepa ([31]) and to [9, Theorem 7.1]
- The role that this proposition plays in the proof of our Theorem 4.13 is
analogous to the role that [9, Theorem 7.1] played in the proofs of the main
results of [9]. For reader’s convenience, we include a proof. If I is a linear
ordering, then I denotes the converse ordering.

Proposition 3.7. Suppose that k is_an uncountable cardinal, A and F

or £ < Kk, are disjoint, and < is a partial ordering of B := AU F

In addition suppose that A is countable, all I are finite, and E has neither

Then there exists a_cofinal X C k_such that for any two distinct elements
and n of X there is s € k such that C s and there is no s-walk with
endpoints in F and F(n).8

Proof. We will choose X recursively. Let 0 € X, and assume that a proper
initial segment of X has been chosen and that it satisfies the requirements.
For simplicity of notation, we will denote this proper initial segment by X
and explain how an ordinal greater than all of its elements can be added to

If X has no maximal element. then add a := sup(X) to X. In order to
verify that the new X still satisfies the requirements, fix { € X. We need to
prove that there exists ¢ such that there is no t-walk with endpoints in F'({)

and F'(«a). Let n = min(X + 1)) and let s € k be such that Cs
and there is no s-walk with endpoints F'(¢) and F'(n). By Lemma 3.2, with
t = s U{a} there is no t-walk with endpoints in F and F(a).

Now suppose that X has a maximal element, £&. We need to find n >

and C s € k such that there is no s-walk with endpoints in F'(¢) and
F(n). Suppose, towards a contradiction, that for ever > ¢ and ever

C s € k there is an s-walk with endpoints in F'(£¢) and F'(n). Fix such
a walk, x(s for € s.

Let U be an ultrafilter on Fin, which for every s € k includes the set
t € kls C t} (such U exists, since the family of sets of this form has the

finite intersection property). Fix &€ < ( < k. Since F'(() is finite, there exists

a unique el such that {s|xz(s.() = € U. Clearl for

£ < C <k, form a r-chain or a r7-chain (as decided by U); contradiction.
Therefore there exist n > £ and C s € k such that there is no s-walk

with endpoints in F and F'(p). Add the minimal such n to X. This

completes the recursive construction of X and the proof. 0
®We emphasize that s is not necessarily a subset of X.
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4. EMBEDDING POSETS, GENTLY

In the present section we assume that the reader is familiar with the basics
of forcing as presented in e.g., [30] or [39]. The present section is largely
based on [9], and Theorem 4.1 is a close relative to [9, Theorem 9.1].

The category of partially ordered sets is considered with respect to the
order-embeddings, i.e., injections f: E — E’ such that a <g b if and only
if f(a) <gr f(b). The category of forcing notions is considered with respect
to regular embeddings (also known as complete embeddings, [30, Defini-
tion II1.3.65]). If a forcing notion Hy is a regular subordering of a forcing
notion H, we then write Hy < H;. Notably, Hy < H is equivalent to the
assertion that for every generic filter G C H;, G N Hy is also generic. In
other words, H; can be considered as a two-step iteration of Hy followed by
some other forcing notion.

If x is an uncountable cardinal, a forcing notion P is said to have precal-
iber k if every set of x conditions in P has a subset of cardinality x such
that each of its finite subsets has a common lower bound. Precaliber Ny
is a strong form of the countable chain condition. For example, if P has
precaliber ¥y then it is productively ccc, in the sense that the product of P
with any ccc poset is ccc. (We will not need this fact.)

Theorem 4.1. There is a functor from the category of partially ordered sets
into the category of forcing notions E — Hpg with the following properties.

(1) Hg has precaliber k for every uncountable reqular cardinal k.

(2) Hg forces that F-embeds-into{Hn<there is an embedding Y : E — n, <*
thus a <g b if and only if Y(a) <* T(b)).

(3) If k > ¢ is a regular cardinal and neither k nor its reverse K* em-
bed into E, then Hg forces that k does not embed into | [p;,(An, <)
for every sequence (A, <) of countable structures equipped with an
asymmetric binary relation.

Proof. The proof of this theorem will occupy most of the present section.
For Hg see Definition 4.2, (1) is Lemma 4.4, (2) is Lemma 4.6, and (3) is

Theorem 4.13. U
In the Definition 4.2 and elsewhere, if dom(f) C N then f | m denotes
the restriction of f to m = {0,.. — 1}. We-swillalso-write-
XeY

Definition 4.2. For a partially ordered set F, Hg is the forcing notion
defined as follows. The conditions of Hg are triples p = (Dp,ny, fp), where

Dy € E, np €N, and fp+Py—Hmmfp: Dp = pen, m
The ordering is defined by p<p-q-letting p < q (p_ertends q) if the fol

lowing conditions hold.
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(1) Dy 2D Dy, ny > ng, fp(a) [ ng = fy(a) for all a € Dy, and

(2) forallaandbin Dy, ifa <p bthen fofaygh<pflbirfula)d) < L))

for all j € [ng,nyp).

In order to relax the notation, if (p¢) is an indexed family of conditions
in Hg we write pe = (Dg¢,ne, fe)-

Lemma 4.3. Suppose that E is a poset, R @ E, m > 2 and p;, fori < m,
are conditions in Hg such that the following holds whenever i # j.

(1) Whenever-i==j—we-We have D; N D; = R.

(2) All a € R satisfy fi(a) [ min(n;,n;) = fj(a) [ min(n;, n;).
Then some q € Hg extends all p;.°

Proof. Let Dy := |U;.,, Di and ng := max;cp,n;. If i < m is such that
n; = ng, then for a € D; let fy(a) = fi(a). Then f,(a) is well-defined for
a € R by (2). For i < m such that n; < ng and for a € D; \ R, let (with
max () = 0)

fi(a)(j) := max{fq(b)(j) | b€ R,b<p a}.
for n; <gp j < ng. This defines ¢ € Hg. We will prove that ¢ < p; for
all ¢ < m.

Clearly, ¢ and p; satisfy (1) of Definition 4.2 for all i < m. Fix i < m.

If n; = ng then (2) of Definition 4.2 is vacuous, hence ¢ <g p;.

Suppose n; < ng. To check that ¢ < p;, we need to verify (2) of Defini-
tion 4.2. Fix a and b in D; such that a <g b. If there is no ¢ € R such that
c <g b, then for all j € [n;,ny) we have fy(a)(j) = f4(b)(j) = 0. If there
is ¢ € R such that ¢ <g b, then {c | ¢ <g a} C {c¢ | ¢ <g b} and by the
definition of f; we have f,(a)(j) < f4(0)(J).

Thus (2) of Definition 4.2 holds, and ¢ < p;. O

Lemma 4.4. The poset Hp has precaliber k for every uncountable reqular
cardinal K.

Proof. Fix a family pe, for £ < &, in Hg. By the A-system lemma and
passing to a subfamily of the same cardinality, we may assume that there
exists R € E such that D¢ N D, = R for all distinct { and 1 below k.
By the pigeonhole principle (using the assumption that  has uncountable
cofinality), we may also assume that there exists n such that ng = n for
all £&. Also, since there are only finitely many possibilities for f¢(a), for
a € R, we may assume that the functions f¢ agree on R and therefore we
are in the situation of Lemma 4.3. Therefore, after this refining argument,
Lemma 4.3 implies that every finite subset of {p¢ | £ < x} has a common
lower bound. O

A proof of the following lemma is omitted as straightforward.

Lemma 4.5. For any poset E the following holds.

IWe write q < p if q extends p.
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(1) For every n and every a € E, the set
D(Hg,n,a) == {p € Hg | np > n,a € F,}

is dense in Hg.
(2) If b £g a in E, then for every n € N the set

EMp,n,a,b) :={p € Hg | Tk > n)fyp(a)(k) < f,(0)(k)}
is dense in Hg. O

Lemma 4.6. If E is a poset and G C Hg is a generic filter, then

Ta(a)(y) = fpla)(j)

for p € G defines a strictly increasing function Y¢: E — (], n, <¥).

Proof. By genericity, G intersects all dense sets defined in Lemma 4.5 and
therefore T is a strictly increasing map from E into ([[,, n, <*). 0

If E is a subordering of E’ then every p € Hp is (literally) a condition
in Hg. We will therefore identify Hg with a subordering of Hpgy.

Lemma 4.7. If E’ is a poset and E is a subposet of E', then Hg is a reqular
subordering of Hgy.

Proof. The identity map from Hpg into Hg: is clearly an order-embedding. It
suffices to prove that there exists a reduction (or projection) m: Hp — Hpg:

A map such that for every p € Hp we have p<pw{p)p < m(p) and
every ¢ € Hp such that ¢<g#{p)—q < m(p) is compatible with p ([30,

Lemma I11.3.72]). Let
7-‘—E(p) = (DP N Eanpv fp f (Dp N E))

Clearly, p < 7g(p). If ¢<p=pjq < 7(p), then D,N D, = D, N E and
fp(a)(j) = fq(a)(j) for all a € D, N D,y and all j < ny. By Lemma 4.3, p
and g are compatible. ([l

In the situation when E is a subordering of E’, as in Lemma 4.7, we will
need a description of the quotient forcing Hp:/ G, for a generic G C Hg. If
for some k € N we have s € [[, ., n and f € [],n, then s =f-standsfor

sC [standsfor s = [ [ k.

Definition 4.8. If E C E’ are partial orderings and T: E — (], n, <*)
is a strictly increasing function, a forcing notion Hpg/(F,Y) is defined as
follows. The conditions in Hg/ (E,T) are the triples p = (Dp, ny, fp), where
Dy, € E',ny €N, fp: Dy = [[;.,,n, and for a € E we have f,(a) C Y(a).
The ordering is defined-by <y ¢ inherited from Hp, Therefore p < g (»

extends q) if the following conditions hold.

(1) Dy 2 Dy, ny > ng, fpla) | fq(a) for all a € Dy, and
( ) fOI" au a and b 11 Dq, lf & ~F b thu f (Cv)( ) ~F fp(b)(j) Q/\iE\/,VQ
then_fo(a)(i).< fu(b)(j) for all j € [ng,ny).
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Thus Hg/(F,Y) is a subordering of Hps consisting of those conditions
that ‘agree’ with T on FE and Hg/ (FE,Y) generically adds an embeddin
from E'\ E into [[, n. Note that Hg/(E,Y) is not necessarily separative;
this will not cause any issues.

The proofs of the two parts of Lemma 4.10 below are virtually identical to
the proofs of [9, Theorem 4.2] and [9, Lemma 4.3], respectively. For-acF
let—

Definition 4.9. For a poset £’ and a € E’ let
L(a):={be E' | b<p a}

and
R(a):={b€ E"|b>p a}.

Lemma 4.10. Suppose E' is a poset, E is a subposet of E', and G is a-the

canonical name for the Hg-generic filter.
(1) With the projection mg: Hpr — Hpg as in the proof of Lemma 4.7, the
map p = (7e(p), p) from Hg into Hp «Hpg /G is a dense embedding.

(2) Hg forces that Hg: /G is forcing-equivalent to FipA-E-A-X- Yerrlle (B, X s
Y is the generic embedding, see Lemma 4.6).

(3) If X C F is such that for every a € E'\ E the set X N L(a) is cofinal
in L(a) and the set XN R(a) is coinitial in R(a), then Hg forces that

HE‘/(E,T')U/nduub (EQVTG[Y>H / EﬂX,T X are

forcing-equivalent. ([

The following is [9, Lemma 5.1] (see also [3, Lemma 2.5]).

Lemma 4.11. Suppose Py and Py are forcing notions and f] is a Pj-name
for an element of [, n for j < 2. If Py x Py I fo <* fi then the set of
all p € Py x Py such that there exist m € N and h € ], n which satisfy
pll—fo Smﬁandpll—fzgm f1 is dense in Py x Py. O

The-In combination with Lemma 4.11, the following lemma will be used in
a crucial place in the proof of Theorem 4.13in-combination-with-Lemma-4-11.

Lemma 4.12. Suppose (E,<) is a poset and A, B, and D are subsets of E
such that E = AUB, D = AN B, and for every a € A and every b € B the
following conditions hold.

(1) a <bif and only if a < d and d < b for some d € D, and

(2) a>bif and only if a > d and d > b for some d-=A~Bd € D.

Then Hp forces that the-map- G is the canonical name for the generic filter
in Hp) Heg(D, Y ) and Hy (D, T ) x Hg(D, Y ) are forcing equivalent.

With the assumptions of Lemma 4.12 it can be proved that the function
= HE(D, TG) — HA(D, TG) X HB(D, TG)
defined by Z(p) := (ma(p),75(p)) is a dense embedding—, but we will not

AN AN A AN AR ANAARAANA
need this fact.
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Proof. We use the notation from Lemma 4.10 and write G/(X) for the canon-

ical name for the generic filter for Hx (or Hx (Y, T) for some Y and 1) where
Xis A B,D,or E.

By Lemma 4.10 (1) with £ and A in place of F’ and E, Hp is forcin
equivalent to Hy x Hg(A, T, By the same lemma with A and D in

lace of F' and F, %he—mﬂp—p—H—&Fgép)—p}ﬂﬁ—a—éeﬁte—efﬁbeééﬁrg—ef—HE
fﬂ%@—H—Dak—HF{—BJPH—ﬁrd—bhe—}&%ef—efﬁbeéréeﬂse}yhmm— H 4 is forcing

equivalent to Hp * ]HI D T . Therefore Hg is forcing equivalent to the
iteration
(4.1) Hp «Hpa(D, Ty py) * He(BA, T gy ea))-

The assumptions imply that Z{e}-~-5-L(b) N D is cofinal in £Aerand-R{a)~D
L(b) and R(b)N D is coinitial in %éa—}}jm for every a—&él%“—hefeiefe

G(D) G(B)

I ) ( ) I . /
the-fermer-b € B. Therefore by Lemma 4.10 (3 ) lied with Hp (A, Y/
E, A, and D in place of Hp/ (E, Y ), E', E, and X, we conclude that H
forces that Hg(A, Y - is forcing equivalent to Hpg(D, T . also recall

that Hp is a regular subordering of H 4, and that ¥ extends T .
Since Hg(D, T, does not depend on G&Bé—t—he—ﬁﬁmf—aﬂl—eﬂﬂaeéehﬂg—ef
the-iteration—inG(A), but only on its intersection with Hp, the iteration
in (4.1) imbe-is forcing equivalent to

and Hp forces that Hg (A, T is forcing equivalent
to the roduct of Hp(D, Y, and HA(A, T, as claimed. O

In the proof of Theorem 4.13 below, for f and g in CN (Wlth (C, <) as guar-
anteed by Lemma 2.2) we will write f <" g if H<pegliteradlf(j) 19(])
for all j > n. A proof of Theorem 4.13 is analogous to, but shorter than, the
proof of [9, Theorem 9.1] (a baroque writeup of this proof with an ample
supply of limiting examples and all sorts of digressions (many of which were
warranted) can be found in [9]).

Theorem 4.13. Suppose k is a reqular cardinal such that x>\ < i
for every cardinal A\ < K and E is a partial ordering such that neither k nor
k* embeds into E. Then Hp forces that [ [p,(An, <) has no k-chains for
any sequence (Ap,<y), for n € N, of countable sets with asymmetric binary
relations.

Proof. By Lemma 2.2, Hp forces that [[g;,(An,<,) has a k-chain for some
sequence (A;,,<,) (not necessarily in the ground model) if and only if Hpg
forces that (CN,<*) := [[f;,(C,<) has a & chain. It will therefore suffice to
prove the theorem with the additional assumption that (A4,,<,) = (C,<) for
all n.
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Assume that fg, for £ < k, is a name for a k-chain in (OV,<*). (We
emphasize that this means that for all £ < n, Hg forces both fe <* f, and

fn v fg ) The ccc-ness of Hp and-bemma-4-7-togetherimply-implies that
for every limit ordina limit ordinal £ there exists a countable E(§) C E such that f@s

W@HE(g)-ﬂame—Byh—names recall that Lemma 4.7

moreover implies that H is a regular subordering of H Since k 1is

regular and A\™ < k for all A < x, the A-system lemma {for countable sets

—using—+—>—c)-and-implies that any family of k countable sets includes a
A-system of cardinality x. By passing to a subfamily, we may assume that

the sets E(&) form a A-system with countable root A.
For a limit ordinal § fix ¢¢ € Hg and n € N such that

(4.2) Ge IF fe <" ferr 4" feo.

Lemma 4.7 implies that H is a regular subordering of Hg, and we ma
therefore assume g € Hpe). Writing g¢ = (D, ne, fe), let F(§) == D¢ \ A.
Fix a well-ordering <,, of C. Fera-mement-

Fix € < for a moment and fix a generic filter &G C Haup() such that
qe € G—&Hd—f@i— . For j € Nlet he(j) be the <,-least element of C' such that

P J§+1\J =€

for some r in the quotient Hp(A U F(£),Y¢)/G (see Lemma 4.10).

This defines hge € CN in V[G]. Use the Mazimat-Maximality Principle
([30, Theorem IV.7.1]) to choose W&Wkg for this func-
tion.

Claim 4.14. The condition q¢ forces that fg " hg " feyo.

Proof. If there are r < g¢ in Hg and j > n such that r |- fg( /) 7& hg( )

a generic filter G in Hg containing r. Then in V[G] we have fg 4" f§+1,
although ¢¢ € G; contradiction. An analogous argument gives that there is
no j > n such that some r <g g¢ forces that he(j) 4 fer2(4)- O

By the pigeonhole principle and passing to a subset if necessary, we may
assume that n as in (4.2) is the same for all £&. The pairs (g, hg) are indexed
by limit ordinals below k. We re-enumerate them preserving the order and
obtain conditions g and names ﬁg for £ < k. Since Hg has the ccc, some
condition ¢ € Hpg forces that k of the g¢’s belong to the generic filter.
Therefore gAiggcAeAsA:cthaicNthis family is a name for a n—chain in (CN, <l*).

%h&t—%hef&eaﬂ%%%B Pro 081t10n 3.7, there exists a cofinal X C k such
that for al-&—wehave-
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éeﬂe%e—ﬁh&elep}eﬁeﬂ—e{—ég—ée%efﬂﬂﬂed—byan two distinct elements of
X there is C s € k such that there is no s-walk (see Definition 3. 1W1t—h
A={and-L({(5))forj<n) with endpoints in F'(§) and I’

no_s-walk with endpoints in F(£) and F(£'). We will analyze the relation
between the names fggand-hrg—rrhe and he.
Consider the depletion <7< of <p en-theset-A=AC{J— F())-

CD
=}

Then# <<z y-implies# <z yand-this-impliesw<p-yfor-allw-and-ygly
by A and F' for 1 € s. By Lemma 3.3, <#< is a partial ordering on AL

A =AU F(n). Let
s = {80l <n}
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be an increasing enumeration of s. We may assume that £(0) = ¢ and
§n=1) =¢. Fori<j<nlet

A(i, j) = AU F((i) U F(£(7)),
ordered by <. Then H 4(; jy<<Has by Lemma 4.7. For every+<n—10 <i<n—1,
the ordering on A(i,i + 1) agrees with the ordering induced from FE, and
therefore in—addition—we haveH,(;,;41) < Hp. Since he;) and he(;) are
H 5(; j)-names -and Hp forces hf(i) <* ﬁg(iﬂ) for all ¢ < n — 1, thisimphes
we_have that H 4/ forces hg(z) <* h5(1+1) for all i < n — 1. ThereforeBy
transitivity, Hy fh{&@%%%—l%%me&h%é@%&w&ﬁ—w
afe—Hmu—gjh < h Slnce h and hgu 1) are H -names
and Hoygz—<HorHoama—zytorees 'v\sm)/ < 'lb( tr UW
regular suborderm of ]HI ’ H _ forces R

statement of Lemma 4.12 with E/ A B, and D replaced w1th AUFEO))UF(EMn—1
AUF AU F(&(n—1)), and A respectively (sorry!). Since there is no
s-walk Whose endpoints are some x € F'(£(0)) and some y € F(&(n — 1)), we

have that © < y implies there is a € A such that x < a <y, and that y < x
imples there is a € A such that y < a < . This means that the assumptions

of Lemma 4.12 %&q&eﬂe&&%@%&&gﬁmm)%@%eﬂmfp%@gm
and that if G C Hy4 is a generic filter then the quotient H G is

forcing-equivalent to the product ef—th&qﬁetteﬂtb—Hqgg(UWLG—&ﬂd%m—miG

Most importantly, the names h and he(,, 1 are added by the two factors
of this product. By Lemma 4.11, there exists—a—p-cJH—exist a condition

pe € Hy and an Hj-name ¢-sueh-that-
pIF hey < 4 <* g1y
Thereforef X and-£{ b i OO find-&

ek t] 0y —¢. g’" 7 L) T i o .
stteh—that-ge (recall that £ = £(0)) such that

Pe I fehe(o) <" ge < hen-1)-

Since H, has—the—eee—seme—is _countable, there is ¢ € Hy ferees—that

the—set—of p—that—belong—to—the—generiefilter has—eardinality

Y ={¢ € X|pe = q} is a cofinal subset of X (and of k). Therefore ¢ forces
that H adds a strictly increasing k-chain g, for & < k, to (NN, <*). Since
A is countable, H4 cannot add more than ¢ reals; contradiction. [l

The robustness of the order property (Definition 1.1) is used in the followin
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Proposition 4.15.

Suppose_that _the pair (T’ p) has the mﬁwwmwmm
and E 1s_any poset. Then Hpg forces that-the following.
(1) The poset E embeds into [[gp,(An, <) for every sequence (Ay,) of
models of T'.
(2) For any nonprincipal ultrafilter U on N there is strictly increasin

map from E into A,.<,) whose range is linearly ordered by <.

Proof. Werking—in—theforeing—extension;note—that—sineeAz=FThe first
art is almost obvious, but proving it in some detail will also provide a
roof of the second part.

By Lemma 2.1, there are n € NY and @: JTp;, (0. <) = [ma(n(n), <%)
such that f <* g and * fimplies (V°n)®(f)(n) < ®(g)(n). Since A, i
amodel of T', there exists a <,-chain ), of length n(n) in A,,. Thereforethere
is-By identifying this chain with (n(n), <), we obtain ®: o (n, <*) = JIgin(Ap. <
such that f <* g and g £* f implies ®(f) (1) 9, ®(g)(n) and (g)(n) L. (f)(n)

for all but finitely many n. By composing the embedding of E into . (n, <*
rovided by Theorem 4.1 with ®, we obtain an Hp-name Sfora-striethy

an embeddin of = E% . (A, < this proves the ﬁrst art that]g
addition has the property that a <z b implies

(TIE)R) 1 Z(g)(n) and E(g)(n) Ay E(/) ().

Let U be a nonprincipal ultrafiter on N and let 7, denote the quotient
map from A, to A,. Then the displayed formula implies that the

restriction of my to E[F)] is strictly increasing. The range of this map is the
ultraproduct of the «,-chains C,,, and therefore linearly ordered by Lo$’s
Theorem. This proves the second part. |

5. PROOFS oF THEOREM C AND COROLLARY D

The proof of Theorem C will use the following result (see [9, Theorem 3.2
for a proof) .

Theorem (Galvin). For every uncountable cardinal k there exists a partial
ordering Ey such that Ex_has no infinite chains but for every linear ordering
ancreasing map O: B = L. 0

Proof of Theorem C. Fix a theory T thathas-with the robust order property
—a—seqﬁeﬂee—&H—ef—eeﬂﬂﬁrb}e—fﬁeée}b—ef—Pand an ultrafilter «/ on N. We

will prove that the Levy collapse of the continuum to R; followed by Hpg
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for an-apprepriate-choice-of-a—poset—F provided by Galvin’s theorem forces
all three statements-assumptions of Theorem C. The-These proofs have a

common initial segment that we now present.

Q: (IL,n, <) = [Ty (B, dp).

In the extension by the Levy collapse of the continuum to Njechoose—the
ﬁesetﬁE—&s—feHews—Let— let kK > ¢ be a regular cardlnal —B{y’—&—l—@ﬁﬂ-}b

m-L—(x = N9 will do). Let E be the poset as guaranteed by Galvin’s

theorem stated at the beginning of this section. We will prove that the Lev

collapse followed by Hg is the forcing notion as promised in the statement
of Theorem C.

By—Theorem—414—Fix a sequence (A,) of countable structures in the

language of T" and a sequence (B,,) of countable models of T'. Proposition 4.15

implies that Hp adds a strictly increasing map ¥e+F——f <"
HU iS58 ﬂeﬂﬁﬁﬂﬁ.pa} lﬂEi&ﬁ}EEf onN &ﬂd ; : E{ LL ij(il}’ E*) Iln 7E 137 U

MMMW%%WM@HMM
is linearly ordered by < the choice of F—Byecomposing—with—Q—we
obtain—, there exists a r-<ged,-chain inf(Br<pjor a r-dy-chain in

e Buige)-
Hewever—On the other hand, by Theorem 4.1 imphes—thatthereareneo

there are neither r-chains nor £”-chains in []g;, (An, <p). Fherefore By
From this point on the proofs of (1)-(3) differ.

(1) and (2): Since elementary embeddings preserve < By, <) is not
isomorphic to [ g, (An. <) or to an elementary submodel of fpAn—"This
proves-partsand-of TheoremGC—thereof,

To-prove—(3) rrote—thatiftheformulalf ¢ is quantifier-free, then even

non-elementary embeddings preserve <, and | [;, B, cannot even-be isomor-

phic to a submodel of [[;, An O

Proof of Corollary D. Suppose that A is a separable C*-algebra and U is
an ultrafilter on N. If ¢/ is principal, then (A ® C(K)) is isomorphic to
A ® C(K) while A% is nonseparable. We may therefore assume that A is
infinite-dimensional and that U is nonprincipal.
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The theory of infinite-dimensional C*-algebras has the order property
witnessed by an atomic formula ([15, Lemma 5.3]). Therefore the theory of
A ® C(K) has the robust order property, and Theorem C (3) implies that
(A® C(K))“ does not embed into B® for any C*-algebra B. O

6. PROOFS OF THEOREM A AND THEOREM B: TIE POINTS
The contents of this section is rather accurately described by its title.

Definition 6.1. Suppose X is a compact Hausdorff space. A point x € X
is a tie point if there are closed subsets A and B of X such that AUB = X
and AN B = {z} (in symbols, A, B).

Two subsets Z and J of a Boolean algebra B are orthogonal if aANb = 0p
foralla € Z and all b € J. The following is proved by parsing the definitions.

Proposition 6.2. Suppose B is a Boolean algebra. The following are equiv-
alent for an ultrafilter U on B.

(1) The complement of U is equal to the union of two orthogonal ideals.
(2) U is a tie-point in the Stone space of B. O

Definition 6.3. By analogy with true P-points, an ultrafilter / in a Boolean
algebra is called a true tie point if the ideals as in Proposition 6.2 (2) can be
chosen so that each one of them is generated by a linearly ordered subset.

The salient point of the proof of the following is the observation that true
tie points are Y1-definable, but the reader may choose to ignore this remark
(at the risk of their own loss).

Lemma 6.4. Every ultraproduct of countable atomless Boolean algebras has
a true tie point.

Proof. Every ultrafilter in a countable atomless Boolean algebra is a true tie
point, since the generating sets of order type w can be chosen by recursion.
Suppose [[;, Cy is an ultraproduct of countable atomless Boolean algebras.
If U is principal, then [[, C, is isomorphic to one of the C,’s and the
assertion follows from the first sentence of this proof.

Now assume U is nonprincipal. For every C), fix a true tie point p, and
linearly ordered generating sets A, and B, for the ideal C), \ p,. Then
(Chn, An,By) is an expansion of C, to the language with two additional
unary predicates. Each one of these structures satisfies the following: Both
A, and B,, are linearly ordered, AA B =) for all A € A,, and B € B,,, and
for every X € C, either X or its complement belongs to A, UB,. These are
all first-order statements, and they imply that the complement of A, U B,
is an ultrafilter.

The ultraproduct [[;,(Cy, An, By) is an expansion of [[,, C), and by Los’s
Theorem the sets A := [[;, A, and B := [[,, B, generate ideals of [],, C,
whose complement is a true tie point. ([
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Proof of Theorem A. We need to prove that PFA implies P(N)/ Fin is not
isomorphic to an ultraproduct of Boolean algebras associated with a non-
principal ultrafilter on N. By [43] (see [7, Corollary 1.9]), PFA implies that
there are no tie points in P(N)/ Fin, while there are tie points in an ultra-
product of countable atomless Boolean algebras by Lemma 6.4. (]

The following will be used in the proof of Theorem B.

Lemma 6.5. The poset for adding at least ¢ Cohen reals forces that every

rojectively definable atomless Boolean algebra B-definablefrom—ea—real*B has

no true tie points.

Proof. Fix an n € N and X!-formulas A and which define 8.
We will only need the Al | formula , that defines the relation a < b

in ‘B. By passing to an intermediate forcing extension, without a loss of
generality we may assume that B-is-the reals coding these formulas are in
the ground model. Let x > ¢* be the number of the Cohen reals added.
By genericity, no nonprincipal ultrafilter on N is generated by fewer than s
subsets of N. (After adding x Cohen reals, for every X C U of cardinality
less than k there is a Cohen real Y generic over V[X]. For every infinite
X C N, the set of all Y C N such that X NU and X \ Y are both infinite
is comeager. Therefore X does not ‘decide’ whether Y € U/ or N\'Y € U.)
Assume p is a true tie point in 5-8 and let A and B be the linearly ordered
(modulo Z) sets whose complements generate B \ p. By genericity, at least

one of A and B has cofinality greater than ¢. By interchanging A and B, we

may assume that the cofinality of A is k > ¢.
The proof is completed by Kunen’s isomorphism of names argument ([29])

%mphes—&h&t—B—e}ees—ﬂe{—eeﬁ%&m—a—x%H-eféefed—ﬁm

Let for £ < k, be names for the elements of a strictly increasing chain

cofinal in A. Since each fe is the name of a real, it is coded by a sequence of
antichains and the union of the supports of all conditions in these antichains
is a countable set, Ds C k. Since k > ¢t, by going to a cofinal subset we

may assume that the sets D¢ form a A-system with root R. Again usin
Kk > ¢ (this time with a counting argument) and going to a cofinal subset

we may assume that the restrictions of fe to R are equal, and that f and

are isomorphic for all £ and This means that for there is an
WMMK %mﬁeﬂ%mdfeﬂ%Cohen
reals that sends to for any two £ < n < k. However, since C, forces
that , and the real coding the asymmetric formula is in the

round model this is a contradiction that completes the proof. O

definable ﬁ/ ror—a—set-of-at-most EV reals

Proof of Theorem B. In the model obtained by adding at least ¢* Cohen

reals to a model of ZFC, suppose that B is a Beelean—algebra—definable
frem—a-—realprojectively definable Boolean algebra. By Lemma 6.5, there are
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no true tie points in B. By Lemma 6.4, in every model of ZFC there is a true
tie point in any ultraproduct of countable atomless Boolean algebras. ([

7. THE EXISTENCE OF UNIVERSAL ULTRAPOWERS

58 : asy—obs —A_set_of questions
related to the questions resolved in our main results has rather easy answers,
collected in this section. Fix a complete first-order theory T"in a countable
(possibly metric) language. CH implies that all ultrapowers of countable (or
separable) models of T associated with nonprincipal ultrafilters on N'? are
isomorphic. This conclusion is by [16. Theorem 5.6] (also [19]) equivalent to
CH. In some applications it suffices to know that among the ultrapowers of
A there exists one which is injectively universal (i.e.. every other ultrapower
embeds into it elementarily). Is the existence of such ultrapower equivalent
to CH, and is it even consistent with the negation of CH? A partial answer
For T’ as in the previous paragraph let

My = {AY | A|=T, A is countable, and U € SN\ N}.

Since our ‘results’ are immediate consequences of known results, we do not
include the definitions of SOP, SOP,, and the olive property (references are
included below).

My = {AY | A}=T, Ais countable, and U € N\ N}.

Proposition 7.1. Suppose that T is a first-order theory with the order prop-
erty.

(1) Then T has a universal model of cardinality ¢ if and only it has a
universal model of cardinality ¢ in M.

(2) If T has the SOP, SOPy, or the olive property, and there exists a
cardinal k such that k < ¢ < 27, then T does not have a universal
model in M.

(3) If the assumptions of (2) are strengthened to k™ < ¢ < 2% and
¢ 1s regular’, then My does not contain a basis consisting of fewer
than 2% models.*t

10A1] utrafilters in this section are nonprincipal and on N.

11I.e., every X C My such that every element of My embeds into an element of X has
cardinality at least 2".
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Proof. (1) It is well-known that every model of T of cardinality ¢ is isomor-
phic to an elementary submodel of an ultrapower of a countable model of T.
This follows from the results of [34, Chapter VI.5] or [19].

(2) This was proved in [26] (when 7" has SOP), [38, §2] (when T has
SOPy4), and in [41] (when T" has the olive property).

(3) We will prove a stronger statement: For every family M, £ < 2%,
of elements of My there exists X C 2% of cardinality x and Ng such that
M¢ < N¢, |N¢| = ¢, and N¢ does not embed into N, for all £ # 7 in X.

Let ¢(Z,y) be such that (T, ¢) has the order property. By the methods
of [26], [38], and [41], there exists a function inv,, from the set

Mod((T)={A| AE=T and |A| = ¢}
into [P(k)]¢ such that
(1) If My € Mod(T') is embeddable into M; € Mod(T') then inv,, (M) C
invw(Ml).
(2) If My € Mod(T) and S C k then there exists M; € Mod(T) such
that MO < M; and S e inV§0<M1).
Fix Mg, for £ < 2%, in Mip. Let Sg, for £ < 2%, be pairwise distinct subsets
of k. By a realizing types argument and (1), there are N¢ € My such that
M¢ < N¢ and Se¢ € inv,(N¢). By Hajnal’s free subset theorem ([24]), there
exists X C 2" of cardinality 2" such that S¢ ¢ inv, (V) for all £ # 7 in X,
and therefore N¢, for £ € X, are as required. O

Corollary E. If T is a first-order theory with the SOP. SOPy, or the olive
property, and there exists a cardinal k such that k < ¢ < 27, then T’ does not
have_a universal model in My

If in _addition there_ezists a cardinal r_such that k¥ < ¢ < 2" and ¢_is

reqular, then Ml does not contain a basis consisting of fewer than 2" models.
O

8. CONCLUDING REMARKS AND QUESTIONS

The methods-of 405137 -and-[36}-mayberelevant-to-the-question-whether
7 is i o uestion that
initiated the research reported here remains open

Question 8.1. Suppose that A of-a—theory—with—is _a _nontrivial countable
or a separable) structure whose theory has the order property irn—ea—model-of

LHC—+—CH—and that A is isomorphic to A for someU € SN\ N.
Does it follow that the CH holds?

Qur main results show that in some models of ZEC in which CH fails the

remise of Question 8.1 fails as well. The methods of [40], [37], and [36
may be relevant to Question 8.1.

Our proof of Theorem B uses a variant of Kunen’s well-known proof that
after adding x > ¢ Cohen reals to a model of ZFC there are no x-chains in
(NN, p) for any Borel partial ordering p on NN, The proof of Theorem C uses



Paper Sh:1202, version 2021-08-10_2. See https://shelah.logic.at/papers/1202/ for possible updates.

26 ILIJAS FARAH AND SAHARON SHELAH

a related (i.e., semicohen; see [27]) forcing notion and a somewhat similar
analysis of names. These results are however different, since the forcing Hg
used in the proof of Theorem C can add an ws-chain to some Borel poset
(NN, p) without adding an wo-chain to (NN, <*) (see [9, Theorem 2.1]).

The argument of the proof of Theorem B works for many other forcings
that add more than ¢ reals, as long as one can uniformize the names and
in the extension there are no ultrafilters on N with small generating sets.
The latter does not apply to the Sacks forcing. As a matter of fact, after
adding ¢t Sacks reals to a model of CH with countable supports (by either
product or iteration), there exists a selective Nj-generated ultrafilter on N,
and it is a true tie point ([1]). It is therefore not clear whether in the Sacks
model(s) P(N)/ Fin is isomorphic to an ultraproduct of countable atomless
Boolean algebras.

If so, then this would have to be an Nj-generated ultrafilter. The most
obvious choice would be an ultrafilter generated by ground-model selective
ultrafilters (there are 2%t such ultrafilters by [1]). As all of these ultrafilters

‘look the same’ (see [47] for an interpretation of this assertion) this su

the following question.
Question 8.2. Suppose that in either one of the Sacks models (countable

support iteration or countable support product of reqular length k > ¢), U and

Y are Nq-generated. selective ultrafilters. Is it true that (N, <)Y = (N, <)V ?

One could ask an analogous question for countable models of other countable
first-order theories with the order property; (N, <) just appears to provide

the simplest interesting instance of this question. The ideas from [42, §2 and §4]
may be relevant to this problem in the case of Boolean algebras.
The question about the existence universal ultrapowers in the absence of
CH tackled in §7 also remains open.

We conclude with a few words on ‘definable’ reduced products [ Ay.
If F is an analytic filter on N (i.e., a filter that is analytic as a subset of
P(N), given its Cantor-set topology) that extends the Fréchet filter, then the
restriction of F to any F-positive set is not an ultrafilter. (This is because
all analytic sets have the universal property of Baire, unlike the nonprin-
cipal ultrafilters.) Therefore the Feferman—Vaught theorem ([21], and for
the metric case [22] or [12, §16.3]) implies that if all A, are elementarily
equivalent, and if F extends the Fréchet filter then [] A, is elementarily
equivalent to [ g, An. Many (but not all) of the reduced products [] A,
are countably saturated'? and therefore isomorphic to [ I, A if the-CH
holds. One ean-could ask for what analytic filters F is [[r Ay = [ g, An
provable in ZFC.

In the case when each A,, is the two-element Boolean algebra, of quotients
of the form P(N)/Z, the isomorphism is provable if and only if there is

12 sufficient condition for countable saturation of [1- An was isolated in [11, Defini-
tion 6.5].
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a continuous f: P(N) — P(N) that lifts such an isomorphism ([18]) and
in many (conjecturally, all) cases this is equivalent to the Rudin—Keisler

isomorphism of the underlying ideals ([10, Corollary 3.4.2] and [18, Corollary 3]
e

In the case when all A, are Boolean algebras, this is a question about
abelian C*-algebras. This is because the category of Boolean algebras is, via
the Stone duality, equivalent to the category of compact, zero-dimensional,
Hausdorff spacesand the latter category is, by the Gelfand—Naimark duality,
equivalent to the category of unital, abelian, C*-algebras (see [12, §1.3]).
By this observation and the main result of [17], PFA implies that two such
reduced products are isomorphic if and only if there is an (appropriately
defined) ‘trivial’ isomorphism between them. For example, PFA implies that
[Ipi, B 2 P(N)/Fin if B is the atomless countable Boolean algebra. The
ultimate extension of the result of [17] to the coronas of arbitrary separable
C*-algebras was proved in [32] and [45].
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