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ABSTRACT. Building off of recent results on Keisler’s order, we show that
consistently, <gp has infinitely many classes. In particular, we define the
property of < k-type amalgamation for simple theories, for each 2 < k <
w. If we let T}, , be the theory of the random k-ary, n-clique free random
hyper-graph, then T, ; has < k — 1-type amalgamation but not < k-type
amalgamation. We show that consistently, if T' has < k-type amalgamation
then Thy1 ;(_Sp T, thus producing infinitely many <gp-classes. The same
construction gives a simplified proof of the theorem from [10] that consistently,
the maximal <gp-class is exactly the class of unsimple theories. Finally, we
show that consistently, if 7" has < No-type amalgamation, then T'" <gp Tig,
the theory of the random graph.
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§ 0. INTRODUCTION

Convention 0.1. T is always a complete theory in a countable language. We will
fix a monster model € = T and work within it so € = € but if T is clear from
the content we do not mention it (this to make 1.4(A) applicable, if the singular
cardinal hypothesis is assumed, not needed.

The first author introduced the following definition in [10], although he had
previously investigated the phenomenon in [8] (without giving it a name):

Definition 0.2. Suppose A > 6. Define SPr(),#) to mean: for every M = T of
size A, there is a #-saturated N |= T of size A extending M.

In this paper, we will restrict to the following special case:

Definition 0.3. 1) Say that (6, \) is a nice pair if 6 is a regular cardinal > 3, and
A > 6 has A = \No,

2) Given Ty, T complete first order theories, say that Ty <gp T3 if whenever (6, \)
is a nice pair, if SPp, (A, 8) then SPp, (A, 0).

Thus, <gp is a pre-ordering of theories which measures how difficult it is to build
saturated models. The main case of interest is when cof () < 6.

In [8], the first author proves: the stable theories are the minimal SP-class, and
unsimple theories are always maximal. In [10], the first author additionally proves
that consistently, unsimple theories are exactly the maximal class.

Recently, there has been substantial progress on Keisler’s order <, another pre-
ordering of theories which measures how difficult it is to build saturated models;
see for instance [6] and [7] by the first author and Malliaris. In particular, in [7]
it is shown that Keisler’s order has infinitely many classes, these being seperated
by certain amalgamation properties. In this paper we use similar ideas to continue
investigation of <gp.

In §2 we summarize what is already known on <gp.

In §3, we introduce several amalgamation-related properties of forcing notions
(Definition 2.2), and show that it is preserved under iterations in a suitable sense
(Theorem 2.5). In light of this, we define a class of forcing axioms (Definition 2.7);
these are closely related to the forcing axiom Ax,,, defined by the first author in
[9] and used to demonstrate the consistent maximality of unsimple theories under
<gp in [10]. However, the forcing axioms we develop are designed specifically for
what we want and have been simplified somewhat.

In §4, we define and prove some helpful facts about non-forking diagrams of
models.

In §5, we introduce, for each 3 < k < w, a property of simple theories called
< k-type amalgamation (Definition 4.1), and discuss some of its properties. For
example, if for n > k we let T}, , be the theory of the k-ary, n-clique free hypergraph,
then if £ > 3, T}, 1, has < k-type amalgamation but not < k+ 1-type amalgamation.
We also show that if T has < Np-type amalgamation (i.e., < k-type amalgamation
for all k), then SPr(A,6) holds whenever we have that there is some 6 < p < A
with ,u<9 < A and 2* > X (Theorem 4.6). This implies that if the singular cardinals
hypothesis holds, then whenever T' has < No-type amalgamation, then T <gp T},
where T}, is the theory of the random graph.

In §6, we put everything together to show that consistently, for all £ > 3, if
T has the < k-type amalgamation property, then Ty x—1 %sp 7' (Theorem 5.2).
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In particular, for k < k', Tyt1,5 £sp Th4+1,%; this is similar to the situation for
Kiesler’s order in [7].

By a forcing notion, we mean a pre-ordered set (P, <?) such that P has a least
element 0F (pre-order means that <? is transitive); we are using the convention
where p < g means ¢ is a stronger condition than p. That is, when we force by P we
add a generic ideal, rather than a generic filter. Thus, a finite sequence (p; : ¢ < k)
from P is compatible if it has an upper bound in P.
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§ 1. BACKGROUND

The following theorem is closely related to the classical Hewitt-Marczewski-
Pondiczery theorem of topology; it is proved in [1]. It will be central for our
investigations.

Theorem 1.1. Suppose 8 < p < X\ are infinite cardinals such that 0 is regular,
pw=p<% and X < 2". Then there is a sequence (£, : v < ) from *p such that for
all partial functions f from A to p of cardinality less than 0, there is some v < p
such that £, extends f. Additionally, if X > 2" then this fails.

We will also want the following technical device, which will allow us to apply
Theorem 1.1 to conclude SPr (A, ) holds. Here is the idea: suppose M = T with
|M| < A, and we want to find some @-saturated N = M with |[N| < A. To do this,
we will always first find some Ny = M with |Ng| < A which realizes every type over
M of cardinality less than 6, and then we iterate #-many times. The key step is to
find Ny, and the following definitions capture when this is possible.

Definition 1.2. 1) Suppose T is a simple theory, 6 is a regular uncountable cardi-
nal, and M, < M {=T. then let 'y, ,, be forcing notion of all partial types p(z)
over M of cardinality less than 6 which do not fork over M, ordered by inclusion.
Also, if p.(z) is a complete type over M,, then let F?W,p* - F?\/[JVI* be the set of all
p(z) which extend p.(z). '

2) Given (f,)) a nice pair and given g with § < pu < X, define SPL(\, i, 0) to
mean: for every M | T of size < X\ and for every countable M, < M, there
are complete types p,(x) : v < p over M which do not fork over M,, such that
whenever p(z) € F%LM*, then p(z) C p,(z) for some v < p.

3) Given in addition a fixed countable M, = T and type p.(z) over M,, define
SPlT’p*()\,u,Q) similarly: whenever M > M, has size at most A, there are are
complete, non-forking extensions p(x) : v < p of p.(z) to M, such that whenever
p(z) € F?V[)p*, then p(x) C p,(x) for some v < p.

Note that if g > 280, then SPL(\, i, ) if and only if SPlT,p* (A, 1, ) for every
complete type p.(z) over a countable model M, (the forward direction is uncondi-
tional in u, but for the reverse direction, we need to concatenate witnesses for each
p«(2), of which there are 2%0-many). In particular this holds when p = A, since
ARo = )\,

The following is an important example.

Example 1.3. Suppose (6,)) is a nice pair and suppose p is a cardinal with
p=p<%and § < pu < \. Then SPlTrg(/\, i, 0) holds if and only if A < 2#; and this is
equivalent to SPlTrgyp* (A, i, 0) holding for some or any nonalgebraic complete type
p«(x) over a countable model M.,.

Proof. Suppose M =T has size < A. See 1.5(C) or recall that:

()1 Tvg, the model completion of the theory of graph has elimination of quan-
tifiers

(¥)2 if A,B C M and p(x) € S'(A, M) then p(z) forks over B (in M) iff some
a € AN B realizes p(x)
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(x)3 any algebraic type p(z) € S*(A4, M) is realized in M.

Then the non-algebraic types in (J{-#1(A) : A C M} correspond naturally to
partial functions from M to 2, and so this is just a restatement of Theorem 1.1. [

Theorem 1.4. Suppose T is a simple theory (in a countable language, as always
see 0.1).
Suppose (0, A) is a nice pair:

(A) SPr(\,0) if and only if SPL(X, A, 6).
(B) Suppose p.(x) is a complete type over a countable model M., and SP},p* (A A, 0)

holds, and cof(\) < 6. Then for some p with § < p < )\,SPlTvp*()\,u,G)
holds.

Proof. (A) forward direction: Suppose M |= T has size < A, and M, < M is
countable. Choose N = M, a f-saturated model of size \. Enumerate N = (a, :
a < A).

As A > 6 > 1, by [11], there is & = cf(x) < J,, such that A = A"l which means
that there is . C [A]" of cardinality A such that for every v € [A]" there is u € [u]”
such that u € .7. For u € 2 let p,(x) be {¢(x,b) : ¢ = (x,7) € L(T),b € 9O N
and for some w € [u]<"* we have a € u\h = N = plaq,b].

Clearly p,(x) is a type in N. Let %1 = {u € & : u € S and p,(z) extends p,(z)
and does not fork over M.} and for each u € .77 let q,(x) € S(M) extends p,(x)
and does not fork over M, }. Easily & = {q,(x) : u € S} is as required.

(A) reverse direction: Suppose M |= T has size < A. Using SP7(), ), ), we can
find N = M of size A, such that every partial type p(z) over M of cardinality less
than 0 is realized in N using every type in M does not fork over some countable
submodel of A (we are also using A = A®¢ so there are only A-many countable
elementary submodels M, of M). If we iterate this f-many times then we will get
a f-saturated model of T'.

(B): Suppose towards a contradiction that SP%IP* (A, 11, 0) failed for all @ < p < A.
Write k = cof()), and let (g : 8 < k) be a cofinal sequence of cardinals in A. For
each 8 < k, choose Mg = M, with |Mg| < X, witnessing that SP%% (A, g, 0) fails.
We can suppose that (Mg : 5 < k) is independent over M,.

Let N = T have size < A such that each Mg < N. Then by SPle*()\, A, 0), we
can find (go () : @ < A) such that each ¢, () extends p.(*), does not fork over M,
and whenever ¢(x) € F%7p*, then ¢(x) C ¢o(z) for some o < A.

For each 8 < k, we can by hypothesis choose pg(z) € F‘?W . such that pg(z) ¢
ga(x) for any o < pg note that still p(z) O p.(z). By the independence theorem

for simple theories, p(x) := |J pg(x) does not fork over M,. Hence p(z) C qo(x)
B<k

for some a < A. Choose 8 < k with @ < pg; then this implies that pg(x) C ¢o(z),

a contradiction. O

Finally, the following theorem is a collection of most of what has been previously
known on <gp.

Theorem 1.5. Suppose T is a complete first order theory in a countable language.
Suppose (0, \) is a nice pair:
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(A) If X = X\<Y, then SP1(\,0) holds; if T is unsimple then the converse is true
as well. Thus unsimple theories are all <gp-mazimal. (This is proved in
8].)

(B) Tyg is the <gp-minimal unstable theory. (This is implicit in [10].)

(C) If T is stable, then SPr(\,0) holds (this is proved in [8]).

(D) If A is a strong limit with cof(X\) < 0 (hence Xg < cof(N)), and if SPr(A,0)
holds, then T is stable. (This is implicit in [10].) Thus the stable theories
are exactly the minimal <gp-class. Also, under GCH, all unstable theories
are maximal.

(E) If 0 < p < X and p<% = p and X < 2#, then SPr,, (X, 0) holds. (This is an
exercise in [8].)

(F) It is consistent that there exists a nice pair (6,\) such that for all simple
T,SPr(0,\) holds. Hence, it is consistent that the unsimple theories are
exactly the <gp-maximal class. (This is proved in [10].)

For the reader’s convenience, we prove (A) through (E), making use of the lan-
guage of SP!. Theorem (F) will be a special case of our main theorem, namely
Theorem 5.2(B).

Proof. (A): By standard arguments, if A<¢ = X\ then SPr (), 6) holds. Suppose T is
unsimple, and SP7 (), #) holds, and suppose towards a contradiction that A<? > \.
Choose a formula ¢(x,y) with the tree property (possibly y is a tuple).

Let k£ < 6 be least such that A* > X. Choose M =T and (a, : n € <¥X) such

that for all n € "\, p,(x) := {¢(x,ay;,) : B < k} is consistent, and for all n € <"\
and for all o < B < A, é(x,ay, (o)) and @(z,a,—(3)) are inconsistent. Note that
each |p,(x)| < 0; but clearly if N > M realizes each p, () then |[N| > A" > A.
(B): Suppose T is unstable; we show Ty <gp T'. By (A), this is true if T" is unsimple,
so we can suppose that T' is simple, hence has the independence property via some
formula ¢(z,y). Now suppose (0, ) is a nice pair. By Theorem 1.4(A), it suffices
to show that if SP7(\, 6) holds, then SPlTrg(A, A, 0) holds. (Note we cannot apply
Example 1.3 because possibly A<¢ > \.) Choose some (a, : @ < ) from € such
that for all f : A — 2, {¢(x, a0)(® : @ < A} is consistent. By SP7()\,6) we can find
some f-saturated M < € with |M| < A and each a, € M.

Suppose N = Ty, has cardinality A say N = {a, : @ < A} without repetitions.
For each b € M, py(x) to be the complete nonalgebraic type over N, defined by
putting R(z,aq) € pp(z) if and only if M = ¢(b,aq). Then recalling the proof of

1.3 this witnesses SP, (A, A, 6) holds (since |[M] < \).
(C): Suppose T is stable. It suffices to show that SP7 (), ), ) holds. But this is
clear: given M = T of size < A and M, <= M countable, there are only < ALIES
AR = X many types over M that do not fork over M,, seeing as types over M, are
stationary.
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(D): Suppose towards a contradiction that SPr(A,#) holds for some unstable T
Then in particular SPr,, (A, ) holds. Let p.(x) be a complete non-algebraic type
over some countable M, = T.s. By Theorem 1.4 we can find § < p < A such that
SPlTrg,p* (A, i1, 0) holds. By possibly replacing u with 4<¢ we can suppose u = u<9.
Then this contradicts Example 1.3, since 2* < A.

(E): By Example 1.3 and Theorem 1.4(A).

(F): See [10] or [3]. O
If the singular cardinals hypothesis holds, then we can say more. Recall that

Definition 1.6. The singular cardinals hypothesis states that if A is singular and
200N < X, then A\f(N) = X\T. (Note that 2°°f(Y) =£ X since cof(2") > & for all
cardinals x, by Konig’s theorem.)

The failure of the singular cardinals hypothesis is a large cardinal axiom; see
Chapter 5 of [5].

We want the following simple lemma.

Lemma 1.7. Suppose the singular cardinals hypothesis holds. Suppose 0 is reqular,
A> 60, X< >\ and 2< < \. Then for every p < \,u<% < \. Further, X\ is
singular of cofinality < 0.

Proof. First of all, note that 2<% < ), as otherwise A<¢ = \.

Now suppose towards a contradiction there were some p < A with p<¢ > X;
then necessarily u<? > \, as otherwise again A<? = X\. We can choose p least with
p<? > \. Let x < 6 be least such that u" > .

Note that 2% < p, as otherwise 2% = (2%)* > u® > A, contradicting 2<% < .
Thus, by a consequence of the singular cardinals hypothesis (Theorem 5.22(ii)(b),(c)
of [5]), u® < pT. But since p < A, p < A, so this is a contradiction.

To finish, suppose towards a contradiction that cof(\) > . Then A<¢ = X\ +
sup{pu<? : p < A} = A, a contradiction. O

This allows us to more intimately connect SP and SP*:

Theorem 1.8. Suppose the singular cardinals hypothesis holds, and suppose (0, \)
is a nice pair. Then SPr(\,0) holds if and only if either T is stable, or A\ = A\<?, or
else T is simple and for every complete type p.(x) over a countable model M, =T,
there is some 0 < u < X\ with p<% = p and 2" > X, such that SP%«’p* (A, 11, 0) holds.

Proof. If T is stable or A = A<%  then SPr (), ) holds, by Theorem 1.5(A),(C). If
T is unsimple, then SP7 (), ) fails by Theorem 1.5(A). Thus we can assume T is
unstable, simple (hence has the independence property) and A > A<?.

Note that SP7(), 6) iff SP7(), A, #) by Theorem 1.4(A), so it suffices to show that
SP.(\, A, ) holds if and only if for every complete type p, () over a countable model
M,, there is some 6 < p < X\ with £<¢ =y and 2* > \, such that SPlT,p* A\, 0)
holds.

Suppose first SP4(A, A, 6) holds, and p,(x) is given. Since T is unstable with
the independence property SPL(\, \,6), clearly implies that 2<¢ < . Hence, by
Lemma 1.7, A is singular with cof(\) < 6, and there are cofinally many p < A with
p<? = p. By Theorem 1.5(D), A is not a strong limit. Thus by Theorem 1.4(B),
we can find 6 < p < A such that g = 4<% and 2* > X\ and SPlT,p*()\,u, 6) holds.

Conversely, we have in particular that each SP%% (A, A, 0) holds; since A = A\No >
2% we get that SPT(\, A, #) holds. O
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§ 2. FORCING AXIOMS

In this section, we introduce the forcing axioms which will produce the desired
behavior in SP. It is well-known that the countable chain condition is preserved
under finite support iterations; we aim to find generalizations to the x-closed, -
c.c. context.

Definition 2.1. For a cardinal 6 and sets X, Y, define Pxyy to the forcing notion
of all partial functions from X to Y of cardinality less than @, ordered by inclusion.
Note that Pxys has the |[Y<¢|*-c.c. by the A-system lemma and is #-closed.

Definition 2.2. Suppose P, Q are forcing notions, and suppose k > 3 is a cardinal
(typically finite). Then say that P — @ if there is a dense subset Py of P and
amap F : Py — @ such that for all sequences (p; : i < iy) from Py with i, < k,
if (F(p;) : 1 < i4) is compatible in @ (that is, has a common upper bound), then
(pi : i < ix) has a least upper bound in P; we write F' : (P, Py) — Q. Say that
P —}¥ Q (where w stands for weak) if there is a map F' : P — @ such that whenever
(pi i < i) is a sequence from P with i, < k, if (F(p;) : ¢ < 4.) is compatible in
Q, then (p; : i < i,) is compatible in P.

Suppose P is a forcing notion, g < § < p are cardinals with 6 regular, and
3 < k < 0 is a cardinal (often finite). Then say that P has the (< k,u,0)-
amalgamation property if every ascending chain from P of length less than 6 has a
least upper bound in P, and for some set X, P —; Px¢.

For example, Px ¢ has the (< k, u1, 0)-amalgamation property.
The following lemma sums up several obvious facts.

Lemma 2.3. Suppose Ry < 0 < u are cardinals with 0 = cf(X) > Ny, and3 < k <6
is a cardinal.

(1) If P =1 Q and Q =) Q' then P —, Q.
(2) If P,Q have the (< k,u,0)-amalgamation property, then P forces that Q

has the (< k, |u|, 8)-amalgamation property. (We write |u| because possibly
P collapses p to 6.) (This is where we use k < 6.)

(3) Suppose P has the (< k, p, 0)-amalgamation property for some k > 3. Then
P is < 0-complete (hence < 0-distributive) and (u<%)*-c.c.

(4) If P is O-closed and has the least upper bound property, then P has the
(< k, p, 8)-amalgamation property if and only if P —}" Px.e for some .

We note the following;:

Lemma 2.4. Suppose Rg < 0 < p are cardinals with 0 regular, and 3 < k < 6.
Then P has the (< k,u,0)-amalgamation property if and only if P has the (<
k, u<Y,0)-amalgamation property.

Proof. Define p/ = p<?, and let X\ be a cardinal. It suffices to show there is a
cardinal X" such that Py, 9 —}" Pyue, by Lemma 2.3(1). Write Y’ = <Opu; it
suffices to find a set X’ such that Pxyrg =}’ Px/ue-

Let X' = XA x (0 +1). Define F : Pyxy/g — Pxs,9 as follows. Let f € Pyyry be
given. Let dom(F(f)) = {((7,9) : v € dom(f) and either 6 < dom(f(y)) or 6 = 0}.
Define F(f)(v,d) = f(v)(9) if 5 < 0, and otherwise F(f)(~,0) = dom(f(7)).
Clearly this works O
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The following is key; it states that the (< k, pu,#)-amalgamation property is pre-
served under < #-support iterations. Note that it follows that the (< k,u,6)-
amalgamation property is preserved under < #-support products.

Theorem 2.5. Suppose 0 is a reqular uncountable cardinal, > 6 and 3 < k < 6.
Suppose (Py : o0 < ), (Qa = @ < o) is a < O-support forcing iteration, such that
each Py forces that Qu has the (< k,|u|,0)-amalgamation property. Then Py, has
the (< k, u, 0)-amalgamation property.

Proof. Let X be large enough. .
Inductively, choose (P? : a < a., Q% : o < ) a < f-support forcing iteration,
and (F, : a < a), such that each P? is dense in P,, and each P, forces F, :

(Qav Qg) —k p)\,ua-

Claim 2.6. For each v, < 0, if (py : v < V) is an ascending chain from P,_; then
it has a least upper bound p in P,,, such that supp(p) € |J supp(p-).

F<Yx
Proof. By induction on o < v, we construct (g, : @ < «,) such that each ¢, € P,
with supp(ga) C U7<,y* supp(p) Na, and for a < f < ay,q3l, = ¢a, and for
each o < @, qq is a least upper bound to (py ot v < 7vs) in P,. At limit stages

there is nothing to do; so suppose we have defined ¢,. If « ¢ |J supp(p,) then
<Y

let gotr1 = o — (OQ“). Otherwise, since ¢, forces that (py(a) : v < 74) is an
ascending chain from @), we can find ¢, a P,-name for an element of ), such that
o forces ¢ is the least upper bound. Let ¢o11 = ¢o — (§). O

Now suppose p € P . Note that supp(p) € [av.]<".
It is easy to find, for each n < w, elements q,(p) € P2 with qo(p) = p, so that

for all n < w:

® dn+1(p) > an(p); .
e For all & < s, qnt1(p) [a decides Fu(qn(p)()). (This is automatic
whenever a € supp(a,, ), since then P forces that Fl,(qn(p)) = 0.)

mn So we can choose f,, o € Py,o such that each q,,1(p) [« forces that , (qn(p)(a)) =
Ina (p)-

Let qu,(p) € P be the least upper bound of (q,(p) : n < w), which is possible by
the claim. Let P° = {qu(p) : p € P }. For each ¢ € P°, choose p(q) € P2 such
that ¢ = q.,(p(¢)). For each n < w, let p,(q) = q,(pP(¢)), and for each o < v, let
frn.a(@) = fr.a(pP(2))-

Thus we have arranged that for all ¢ € P, ¢ is the least upper bound of (p,(q) :
n < w), and for all n < w and @ < @, Pni1(q) [o forces that Fi(pn(q)()) =
Jn.a(q).

Write X = w x a, x A. Choose F': P’ — Py ¢ so that for all ¢,¢' € P, if F(q)
and F'(¢") are compatible, then for all n < w and for all & < o, fn,a(q) and fr o (q")
are compatible. For instance, let the domain of F(q) be the set of all (n, «, §) such
that § is in the domain of f, o, and let F(q)(n, o, B) = fn.a(B).

Now suppose (g; : i < 4.) is a sequence from P? with i, < k, such that (F(g;) :
i < i) are compatible. Write I' = Ui<i*’n<w supp(pnr(g:))-
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By induction on « < v, we construct a least upper bound s, t0 (Pr(g;) [a: @ <
ix,n < w) in P,, such that supp(s,) CT'Na, and for a < &/, s/ [a= Sa-

Limit stages of the induction are clear. So suppose we have constructed sq.
If o ¢ T clearly we can let s411 = 54 (09%); so suppose instead o € I'. Let
n < w be given. Then (f,a(g) : @ < i) are compatible, and s, forces that
Fo(Pn(¢i)(@)) = fu.a(g) for each i < i, since ppy1(qi) lo does. Thus s, forces
that (pn(g:)(«) : ¢ < i4) has aleast upper bound 7,,. Now s, forces that (7, : n < w)
is an ascending chain in Qa, so let ¢ be such that s, forces ¢ is a least upper bound
to (7 1 n < w). Let sq41 = 84 ~(q).

Thus the induction goes through, and s,, is a least upper bound (g¢; : i < iy). O

The following class of forcing axioms, for k = 2, is related to Shelah’s Axpuyg
from [9] although the formulation is different. Although it is not relevant for the
current paper, we could have allowed 6§ = Xy with some minor changes to the proof
of Theorem 2.5; this would then give weakenings of Martin’s Axiom.

Definition 2.7. Suppose 8g < § = <¢ < X, and suppose 2 < k < w. Then say
that Ax(k,6, ) holds if for every forcing notion P such that |P| < A and P has
the (k, 0, 0)-amalgamation property, if (D, : a < \) is a sequence of dense subsets
of P, then there is an ideal of P meeting each D,. (By dense, we mean upwards
dense: for every p € P, there is ¢ € D, with ¢ > p.) Say that Ax(k,8) holds iff
Ax(k,0,)) holds for all A < 29.

By a typical downward Lowenheim-Skolem argument we could drop the condition
that |P| < X in Ax(k,8,)), but we won't need this. Note that Py, collapses p
to 0, so this is why there is not a parameter for u in Ax(k, ). Finally, note that
Ax(k,0,)\) implies that 2° > \, easily.

Theorem 2.8. Suppose Ng < 0 < p < X\ are cardinals such that 0 is reqular and
p = pu<? and suppose 3 < k < 6. Suppose k > 2* has k<" = k. Then there
is a forcing notion P with the (< k,pu,0)-amalgamation property (in particular,
0-closed and p*-c.c.), such that P forces that Ax(k,0) holds and that 2° = k. We
can arrange |P| = k.

Proof. Let (P, : a < /{),(Qa : @ < K) be a < @-support iteration, such that
(viewing P,-names as Pg-names in the natural way, for o < 8 < k):

e Each P, forces that Q, has the (< k, s, )-amalgamation property;

e Whenever a < k, and Q is a P,-name such that |Q| < k and P, forces Q
has the (< k, u, 8)-amalgamation property, then there is some 5 > a such
that Ps forces that Qﬁ is isomorphic to Q;

e Each |P,| < k.

This is possible by the yT-c.c., as in the proof of the consistency of Martin’s axiom,
and using Lemma 2.3(2). The point is that at each stage «, if P, forces that
|Q| = X < K, then we can choose a P,-name @’ such that P,-forces Q = Q" and
that Q' has universe X'; then there are only |P,|» * < k-many possibilities for Q’,
up to P,-equivalence. Thus we can eventually deal with all of them.

P, then works, easily. O

We now relate this to model theory.
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Definition 2.9. Suppose (6, ) is a nice pair, and § < p < A, and T is simple. Then
say that T has (< k, A, u, 0)-type amalgamation if whenever M |= T has size < A,
and whenever M, = M is countable, then F?VI,M* has the (< k, , 8)-amalgamation

property, or equivalently, F?W, v, — % Pxpe for some set X.
We prove some simple facts.

Lemma 2.10. Suppose T fails the (< k, A\, p, 0)-amalgamation property, and P has
the (< k, u, 0)-amalgamation property. Then P forces that T fails the (< k, A, u, 0)-
amalgamation property.

Proof. Tt suffices to show that if Q is a forcing notion and P forces that Q -
]55(”9, then @@ —Y Pxs,¢ for some X', by Lemma 2.3(4). (We then apply this to
Q= F?VI,M* witnessing the failure of (< k, i, #)-amalgamation.)

Choose some F : (P,Py) = Px. .9, and let G be a P-name so that P forces
F:Q =3 Py 9. For every ¢ € @Q, choose p(q) € Py such that p(q) decides F(q),
say p(q) forces that F((j) = f(q). Choose F : Q — Px g so that if F((q) and F(q’)
are compatible, then f(¢) and f(q') are compatible, and Fi(p(q)) and F.(p(¢))
are compatible.

Suppose (g; : i < i) is a sequence from @ with (F(g;) : ¢ < i) compatible in
Px 9. Then (F.(p(g:)) : ¢ < i) are all compatible in Px, .9, s0 (p(g;) : ¢ < ix) are
compatible in Py with the least upper bound p. Then p forces each F(G;) = f(g;).
But also (by choice of F'), (f(g;) : 4 < i4) are compatible in Py, ¢, so p forces that
(Gi : i < iy) is compatible in Q, i.e. (g; : i < i,) is compatible in Q. O

Theorem 2.11. Suppose T simple, and Ry < 6 = 0<0 < X\ = A\¥, and Ax(k,0)
holds. Suppose 2° > A<P and suppose 3 < k < No. Then the following are
equivalent:

(A) T has (< k, A, 0,0)-type amalgamation;
(B) SPA(A,0,0) holds.

Proof. (B) implies (A) is obvious. For (A) implies (B): let M |= T have size at
most A and let M, < M be countable. Let P be the < #-support product of
F?\/I,M*; then P has the (< k, #, §)-amalgamation property and |P| < §<%. For each
p(x) € T%, 5y, let Dy, be the dense subset of P consisting of all f € P such that for
some v € dom(f), f(v) extends p(z). By Ax(k,A<? 6) we can choose an ideal I of
P meeting each D,. This induces a sequence (p,(z) : v < 6) of partial types over
M that do not fork over M., such that for all p(x) € F?\/[,M* there is v < 6 with
p(z) C py(x). To finish, extend each p,(z) to a complete type over M not forking
over M.,.

The final claim follows from Theorem 1.4(A). O
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§ 3. NON-FORKING DIAGRAMS

Suppose T is a simple theory in a countable language. We wish to study various
type amalgamation properties of T; in particular we will be looking at systems of
types (ps(x) : s € P) over a system of models (M : s € P), for some P C P(I)
closed under subsets. For this to be interesting, we need (Ms : s € P) to be
independent in a suitable sense, which we define in this section.

The following definition is similar to the first author’s definition of independence
in [8] in the context of stable theories, see Section XII.2. In fact we are modeling
our definition after Fact 2.5 there (we cannot take the definition exactly from [8]
because we allow P to contain infinite subsets of I).

Definition 3.1. Let T be simple.

Suppose I is an index set and P C P([I) is downward closed. Say that (A, :s €
P) is a diagram (of subsets of €) if each A; C € and s C ¢ implies A; C A;. Say
that (A : s € P) is a non-forking diagram if for all s; : i < n,t € P, {J,_,, A, is
free from A; over |J,_, As;n¢.. Say that (A, : s € P) is a continuous diagram if
for every X C P, (,cx As = Anx. (If X is finite then this is a consequence of
non-forking.)

Note that (As : s € P) is continuous if and only if for every a € |J,.p As, there
is some least s € P with a € As. Also note that if (As; : s € P) is non-forking
(continuous) and @ C P is downward closed then (Ag : s € @) is non-forking
(continuous).

Lemma 3.2. Suppose (As : s € P) is a diagram of subsets of €. Then the following
are equivalent:

(A) For all downward-closed subsets S, T C P, |J,cq As is free from |, cp A

over U cgnr As-
(B) Forall s; :i <n,t;:j<m from P, U, As, is free from U, _,, A, over
Ui<n7j<m Asiﬂtj'

(C) (As : s € P) is non-forking.

Proof. (A) implies (B) implies (C) is trivial. For (B) implies (A), use local character
of nonforking and monotonicity.

We show (C) implies (B). So suppose (A4; : s € P) is non-forking. By induction
on m, we show that for all n, if s; : i < n,t; : j < m are from P, then |J,_, As,
is free from Uj<m Ag,; over Ui<n,j<m Ag,nt;- m = 11is the definition of non-forking
diagrams. Suppose true for all m’ < m and we show it holds at m + 1; so we have
s;ti<m,tj:j<m+1l. Let A, =J,_, 4s, and let B, =J;_,, A¢;. By inductive
hypothesis applies at (s; : ¢ < n,t,,),(t; : j < m), we get that A, U A, is free
from B, over (A, U A; )N B.. By monotonicity, A, is free from B, U A;  over
(A, N B,)UA; . By the inductive hypothesis applied at (s; : i < n),t,,, we get
that A, is free from A, over A, N A, , so by monotonicity we get that A, is free
from (A, N By)U A, over A, N (B, UA;,). O

The following lemma is similar to Lemma 2.3 from [8] Section XII.2.

Lemma 3.3. Suppose P C P(I) is downward closed and (A, : s € P) is a contin-
uous diagram of subsets of €. Suppose there is a well-ordering <, of |J, As such
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that for all a € |J, As, a is free from {b € |J, As : b <. a} over {b € sq: b <, a},
where s, is the least element of P with a € As,. Then (A, : s € P) is non-forking.

Proof. Let (aq : a < ay) be the <,-increasing enumeration of |J, As, and let s,
be the least element of P with a, € A, . For each a < a, and for each s € P
let Aso = AsN{ap : B < a}. We show by induction on « that (454 : s € P)
is non-forking. In fact we show (B) holds of Lemma 3.2 (due to symmetry it is
easier).

Limit stages are clear. So suppose we have shown (A, , : s € P) is non-forking.
Let (s; : 4 < n),(t; : j < m) € P be given. We wish to show that (J,_,, As, a+1
is free from Uj<m At;rat1 over Ui<n,j<n Asintjort- If ao € s and a, € t; for
each i < n then we conclude by the inductive hypothesis. If a, € s;, Nt;, for some
ix <M, jx« < m, then we conclude by the inductive hypothesis and the fact that a,,
is free from J,_,, As; .o U Uj<m At over Ag, i, a, since s;, Nt;, contains so. If
aq € s; for some ¢ < n and an € t; for any j < m, then reindex so that there is
0 < i, < nsothat ay € s; iff i < ix. Now a, is free from {ag : 8 < a} over s,
so by monotonicity, J,;.,, As; at+1 is free from Uj<m As; av1 over ;. As; o) use
transitivity and the inductive hypothesis to finish. (I

For the proof of the following, the reader may find it helpful to bear in mind the
special case when T is supersimple, so that every type does not fork over a finite
subset of its domain. In that case we can in fact get (M, : s € [\]<N0) to cover A.

Theorem 3.4. Suppose T is a simple theory in a countable language, and suppose
A is a set of cardinality X\, where A\ = XX, Then we can find o continuous, non-
forking diagram of models (Mj : s € [N|S®0) such that A C U, My, and such that
for all S C X, Usesyzro Ms has size at most |S| - No.

Proof. Enumerate A = (aq : @ < A).

We define (cl({a}) : a@ < A) inductively as follows, where each cl({a}) is a
countable subset a+1 with a € cl({a}). Suppose we have defined (cl({8}) : 8 < «).
Choose a countable set I' C o such that a, is free from {ag : 8 < a} over Ugcr agp;
put cl({a}) = {a} UUger cl({B}). (So, if T is supersimple, each I' can be chosen
to be finite.)

Now, for each s C A, let cl(s) := U, cl({a}). Say that A C A is closed if
cl(A) = A; this satisfies the usual properties of a set-theoretic closure operation,
that is cl(4) D A, and A C B implies cl(A) C cl(B), and cl*(4) = cl(A), and cl
is finitary: in fact cl(A) = J,c 4 cl({a}), which is even stronger. Finally, |cl(A)| <
|A| + No.

For each s € [\]<, let Ay = {a, : @ < X and cl({a}) C s}. Since each a, €
Acl({ay) Clearly U, As = A. I claim that (4, : s € [A\|5*) is a non-forking diagram
of sets. But this follows from Lemma 3.3, since each a, is free from {ag : 5 < o}
over Acl({a}) N{ag: B < a}.

For each o < A, let A, = {cl(s) : s € [a]<*}. I show by induction on o < A
that (A,, C) is well-founded. Note that since A = |J Ay, it will follow that (A; :
s € [A]=M0) is continuous. Since A, is an end extension of Ag for a > 3, the limit
stage is clear. So suppose we have shown (A, C) is well-founded.

Write X = cl({a}) Na; note that cl(X) = X. Now suppose s,t € [a]<%. I claim
that cl(s U {a}) C cl(t U {a}) iff cl(s U X) C cl(tUX). But this is clear, since
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cl(sU{a}) =cl(s) UX U{a}, and cl(tU{a}) =cl(t) UX U {a}, and cl(sU X) =
cl(s)UX, and cl(tUX) =cl(t) U X.

Thus it follows from the inductive hypothesis that ({cl(sU{a}) : s € [¢]<“}, Q)
is well-founded, and hence that A, is well-founded; hence A, is well-founded.

Let <, be a well-order of Ay refining C. Now by induction on <., choose
countable models (M(A) : A € Ay) so that M(A) D A and such that M(A) is free
from AUU{M(B) : B € Ay,B <, A} over AU J{M(B): B € A, B C A}. Finally,
given s € [\|<%, let M, := M(A,). This is a non-forking diagram of models, using
Lemma 3.3, and it is clearly continuous.

The final claim follows, since for all S C A\, {t € A : ¢ C S} has size at most
|S] - Ro. O
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§ 4. AMALGAMATION PROPERTIES

Suppose T is a simple theory in a countable language. We now explain what we
mean by T having type amalgamation.

Definition 4.1. Given A C "m, let Py be the set of all partial functions from n
to m which can be extended to an element of A; so Py is a downward-closed subset
of n x m, and A is the set of maximal elements of Py.

Suppose (M, : u C n) is a non-forking diagram of models. Then by a (A, M)-
array, we mean a non-forking diagram of models (N; : s € Py), together with maps
(ms : s € Pp) such that each each s : Mdom(s) =~ Ng, and such that s C ¢t implies
s C my.

Definition 4.2. Suppose A C "m. Then T has A-type amalgamation if, whenever
(M, : u C n) is a non-forking diagram of models, and whenever p(x) is a complete
type over M, in finitely many variables which does not fork over M, and whenever
(N, 2 s € Py) is a (A, M)-array, then U, ea T (p(z)) does not fork over No.

Suppose 3 < k < Ng; then say that T has < k-type amalgamation if whenever
|A| < k, then T has A-type amalgamation.

The following lemma is straightforward.

Lemma 4.3. Suppose A C "m. Then in the definition of A-type amalgamation,
the following changes would not matter:

(A) We could restrict to just countable models M,.

(B) We could allow p(x) to be any partial type, or insist it is a single formula.
Also, we could replace x by a tuple T of arbitrary cardinality.

Example 4.4. Every simple theory has < 3-type amalgamation. 7)., has < No-type
amalgamation.

Example 4.5. Suppose £ > k > 2. Let Ty be the theory of the random k-ary,
¢-clique free hypergraph; these examples were introduced by Hrushovski [4], where
he proved Ty, is simple if and only if £ > 3.

For k > 3, Ty i, has < k-type amalgamation but not < k+ 1-type amalgamation.

Proof. First suppose A C ™m with |A| < k, and (M, : v C n) are given, and
suppose p(T) is a complete type over M,,. Suppose towards a contradiction there
were a (A, M)-array (Ng,7s : s € Py) with U,ea m[p(Z)] inconsistent. Write
q(@) = U, en m[p(T)]; then ¢(Z) must create some (-clique (a; :< bo), (x5 : j < 1),
where ¢y + ¢; = ¢, and each a; € N,, for some n € A, and each z; € Z. Clearly we
have each ¢y, ¢ > 0.

For each i < {y, let h(i) be the least s € Py with a; € N,. The following must
hold:

(I) For every u € [(o]<*, h[u] € Py;
(IT) h[y] & Pa.

By (IT), for each each n € A we must have h[ly] Z n; thus we can choose i, < £y
such that h(i,) € n. Let u = {i, : n € A} € [{]<F. Clearly then hlu] & Py, but
this contradicts (I).
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Now we show that Ty fails < k + 1-type amalgamation. Indeed, let A C k9
be the set of all f : k — 2 for which there is exactly one i < k with f(i) = 1; so
|A| = k. Also, let (M, : u C k) be a non-forking diagram of models so that there
are a; € My, for i < k and there are b; € My for n < £ —k — 1, such that every
k-tuple of distinct elements from (a;,b; : @ < k,j < £ —k — 1) is in R except for
(a; : i < k). Let p(z) be the partial type over M}, which asserts that R(z,a) holds
for every k — 1-tuple of distinct elements from (a;,b; 14 < k,j <€ —k —1).

It is not hard to find a (A, M)-array (N, ms : s € Py) such that, if we write
T((i,0)}(ai) = ¢, then R(c; @ i < k) holds; but now we are done, since [J ;. 77 [p(z)]
is inconsistent. O

The following is the key consequence of < k-type amalgamation.

Theorem 4.6. Suppose T is a simple theory with < k-type amalgamation. Then
for all nice pairs (0,\), T has (< k, X\, 0,0)-type amalgamation.

Proof. By Theorem 3.4, it suffices to show that if (M : s € [A\]<?) is a continuous
non-forking diagram of countable models such that each |M;| < 6, then writing
M = Us M, we have that Ff\/I,MO —¥ Pxgg for some X. Let <, be a well-ordering
of M.

Given A € [M]<% let s4 be the C-minimal s € [\]<? with A C M,,, possible by
continuity.

Let P be the set of all p(z) € T%; 1y, such that for some s € [A<%, p(z) is a
complete type over My; we write p(x, My) to indicate this. P is dense in Fio\mMO,
so it suffices to show that P —}’ Pyg¢ for some .

Choose X large enough, and F': P — Pxgg so that if F(p(x), M) is compatible
with F(q(x), M;), then:

e s and ¢ have the same order-type, and if we let p : s — ¢ be the unique
order-preserving bijection, then p is the identity on s Nt;

M, and M, have the same <,-order-type, and the unique <,-preserving
bijection from My to M, is in fact an isomorphism 7 : My = M,

For each finite @ € M$¥, if we write s’ = sz and if we write t' = s,(g),
then: p[s'] =t and 7 [m,,: My = My.

7lp(x)] = g(2).

This is not hard to do. Note that it follows that for every s’ C s, p M, My =
M, s, since My = [J{M,, : @ € (My)<“} and similarly for M.

I claim that F' works.

So suppose p;(x,Ms,) : i < i, is a sequence from P for i, < k, such that
(F(pi(z)) : i < ix) is compatible in Pygg.

Let 7y, be the order-type of some or any s;. Enumerate each s; = {1 7 < Y4}
in increasing order. Let E be the equivalence relation on v, defined by: vE~ iff for
alli,7" <k, a; = oy  iff a; v = iy 4. Let (E; : j < n) enumerate the equivalence
classes of E. For each i < i,, and for each j < n, let X; ; = {a; : v € E;}. Thus
s; is the disjoint union of X;; for j < n. Moreover, X;; N Xy j = (0 unless
j=jand if X;; N X, ; # 0 then X;; = X; ;. For each j < n, enumerate
{Xi; i <i} = (Y : £ < my) without repetitions. Let m = max(m; : j < n);
and for each ¢ < i,, define n; € "m via: n;(j) = the unique ¢ < m; with X, ; =Y, ;.
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Let A = {n; : i <i.}. For each s € Py, let Ny = M, where t; = U(j,é)eS Ye .
Also, define (M, : v € n) := (N, : v € n). Then the hypotheses on F' give
commuting isomorphisms 7 : Mdom(s) & N; for each s € Py, in such a way that
(N,7) is a (A, M)-array, and each 7, (po(z)) = pi(x). It follows by hypothesis on
T that {J;; pi(x) does not fork over Ny, as desired.

U

Corollary 4.7. Suppose T is simple, with < RNy-type amalgamation.

(A) Suppose 0 is a regular uncountable cardinal. Then for any M =T and any
My = M countable, F?WJ\/[O has the (< N, 8,0)-amalgamation property.

(B) Suppose (0, )) is a nice pair, and suppose that 0 < p < X satisfies p = p<?
and 2" > X. Then SP}(\, p1,0) holds.

(C) If the singular cardinals hypothesis holds, then T <gp T4.

Proof. (A) follows immediately from Theorem 4.6, and (C) follows from (B) by
Theorem 1.4(A) and Theorem 1.8. So it suffices to verify (B).

Suppose M =T has |[M| < A, and suppose My < M is countable. Choose some
F: F?\LMO —1Y Pxgo. By Corollary 1.1, we can find (f, : v < p) such that whenever
f € Pygg then f C £, for some v < p; for each v < p, choose ¢,(x), a complete
type over M not forking over My, and extending |J{p(x) : F(p(x)) C f,}. Then
clearly (g4 (z) : v < p) witnesses SP}(, , 0). O
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§ 5. CONCLUSION

We begin to put everything together. We aim to produce a forcing extension in
which, whenever T" has < k-type amalgamation, then T}, 1,1 £sp T. We will choose
in advance nice pairs (g, A\;) to witness this. In order to arrange that SPr(\g, 0)
holds we will use Theorems 2.11 and 4.6. To arrange that SPr, ,_, (g, 0%) fails, we
will use the following.

Theorem 5.1. Suppose (6,\) is a nice pair such that § = 0<% and X > 0 is a
limit cardinal. Let 3 < k < w. Then Pygg forces that for all n < A, Ti41,5 fails
(< k+ 1, u,0)-type amalgamation.

Proof. Fix 6 < p < A, and write P = Pjyjrg9. We show that P forces Tk+1’k fails
(< k+ 1, u,0)-type amalgamation. Since P = Pygyp, this suffices.

We pass to a P-generic forcing extension V[G] of V. Let R C [A\]¥ be the set of
all v with {(v,0)} € G. Choose My = M |= Tk+1%, and (a; o : 7 < k,a < A) such
that, writing @, = {a;,o : (i,a) € s} for s Tk x A:

e My is countable, and |M| < A and each a; o € M\ My;

o ag;o=ajpifa=pFandi=j

e For every v, € [k x AJ*, if v, is not the graph of the increasing enumeration
of some v € [\]¥, then RM (@,,) fails. Otherwise, R (@,, ) holds if and only
ifveR.

For each v € [AJ*, let ¢, (z,@xxy) be the formula that asserts that R(z,a,) holds
for each u € [k x v]*~!. Note that ¢,(x,@xx,) is consistent exactly when v ¢ R.

It suffices to show that there is no cardinal A’ and function Fj : F?M’ My kil
Py ,9; so suppose towards a contradiction some such Fj existed. Then we can find
F : AJ*\R — Py, such that for all sequences (w; : i < k + 1) from [AJ*\R, if
(F(w;) : i < k) is compatible in P then A,_, ¢,(%,@kxy) is consistent. This is all
we will need, and so we can replace X by A (since |[A]*| = \).

Pulling back to V, we can find p, € P, and P-names R, M, Mo, Qo F, such that
ps forces these behave as above.

Write X = A\ Jdom(p,); so | X| = A.

Suppose v € [X]*. Choose p, € P such that p, > p. U {(v,1)} (so p, forces
v ¢ R), and so that p, decides F(v), say p,, forces that F(’U) = fu € Puus-

Choose F, : [A]¥ — Py, so that for all v,v’, if F,(v) and F,(v') are compatible,
then p,, p,» are compatible, and f,, f,, are compatible.

Let B be the Boolean-algebra completion of Py,¢. For each u € [AJ*~L, let by,
be the least upper bound in B of (F.(v) : u C v € [A\]¥). Since B has the u*-
c.c., we can find S(u) € [A\|S# such that b, is also the least upper bound in B
of (Fu(v) : u C v € [S(u)]¥). By expanding S(u), we can suppose that for all
u C v e [AF, |Jdom(p,) C S(u).

By Theorem 46.1 of [2], we can find some v € [A\]¥ such that for all u € [v]*~!,
S(u)Nv = u. Now (b, : u € [v]¥~1) has an upper bound in B, namely F, (v); thus we
can find (v, : u € [v]*~!) such that each u C v, € [S(u)]¥, and (F,(vy) : u € [w]*71)
is compatible in B (i.e. in Py,g). Thus (py, : u € [v]¥7!) is compatible in P; write
P = Uyep]p—1 Pv, (vecall P = Pjyjrgg). Note that v ¢ dom(p), since if v € dom(py,, )
then v C |Jdom(p,,) C S(u), contradicting that S(u) Nv = u. Thus we can choose
p’ > pin P with p'(v) = 0.
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Now p’ forces that each F(vy) = fo,, and (f,, : u € [v]*~!) is compatible; thus
p’ forces that ¢(z) := A, cppe-1 Du., (@rxw,) is consistent. But this is impossible,
since if we let v, be the graph of the increasing enumeration of v, then p’ forces
that RM(a,,) holds, and ¢(z) in particular impliesthat R (z,@,.) holds for all
Uy € [4]F71, thus creating a k + 1-clique. O

Theorem 5.2. Suppose GCH holds. Then there is a forcing notion P, which
forces:
(A) For every k >3, if T is a simple theory with < k-type amalgamation, then
Ty x—1 Lsp T
(B) The maximal <gp-class is the class of simple theories;
(C) If T has < Ng-type amalgamation then T <gp T,.

Of course, we can also force to make GCH hold (via a proper-class forcing notion).
Thus, (A), (B), (C) can consistently hold.

Proof. Write 62 = Ay = Ng. Choose nice pairs ((0x, Ax) : 3 < k < w), such that
each 0, > )\Z'j'l, and each Ay, is singular with cof(A\x) < 6 (so each )\,fe’“ = )\;)

We will define a full-support forcing iteration (Py : 3 < k < w), (Qk :3<k<w);
for each 3 < k < w, we will have that |Pg| < )‘:jp and P, will force that Qj is
0j-closed and has the 9;—0.0.

Having defined Py, note that Py forces that (6, \x) remains a nice pair and
cof(M\;) < O and 9k<9k = 0, since Pj has the 92_1—(;.(:. Let Q% = P)\kgkgk. By
Theorem 2.8, we can choose a Py * Qg—name Q,lC for a forcing notion, such that
Py, % Q) forces Q} has the (< k, 0y, 0))-amalgamation property, and Ax(< k, 6}
holds, and 2% = Af ™, and |Q}| = A/ ". Let Qx be the Py-name for Q9 * Q}.

Let P, be the iteration of P : 3 < k < Wg with full supports. Also, for each
3 <k <w,write P, = Py * sz, where sz is the Pg-name for the forcing iteration
induced by (Qkf : k' > k). Note that each sz is Oj-closed, and each Pj is szl—c.c.

Given 3 < k < w, note that since Py forces that (0, Ax) is a nice pair, and Qk
is Og-closed and 0,:'—0.0., we have that Py forces that (6, \x) is a nice pair; since
P2k+1 is in particular )\:—closed, we have that P, forces that (0, Ax) is a nice pair.

Now Py forces that SPr(\g,0;) holds whenever T has < k-type amalgama-
tion by Theorem 4.6 and Theorem 2.11, and that SPr, , (A, 0k) fails by Theo-
rem 5.1 and Theorem 2.10. Since P>y is ()\,fe’“)“'—closed, it does not change this,
and so we have that P, forces that (0, \x) is a nice pair, SPr(\g, 0x) holds and
SPr, ,_,(Ak,0) fails. Thus we have verified that P, forces (A) to hold. (B) follows
from (A) in the case k = 3, since every simple theory has < 3-type amalgamation,
and by Theorem 1.5(A), unsimple theories are maximal in <gp.

To verify (C), it suffices to show that P,, forces the singular cardinals hypothesis
to hold. This is standard, but we give a full argument.

Claim. Suppose the singular cardinals hypothesis holds and P is x-closed, k™ -c.c.
Then P forces that the singular cardinals hypothesis holds.

Proof. Let V[G] be a P-generic forcing extension; we work in V[G]. Suppose X is
singular and 26°f%) < X Note that [AOIXN)| = |[x]cofV)| . gcofh) — |[xjcof(v) g0
it suffices to show that |[A\]°°fV| = A+, Note that |[\]°°f™) V| = AT since the
singular cardinals hypothesis holds in V (and A* = (AT)Y), and so |[)\]C0f()‘)| =
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At - 2¢0fN) | gince every X € NI can be covered some Y € ([A]°°N 0y,
using that P is k-closed if | X| < k, and that P is kT-c.c. if | X| > k. O

Write 8 = sup(dy, : 3 < k < w). Note that by a trivial induction together with
the claim, for all 3 < k < w, Py forces that the singular cardinals hypothesis holds.
Thus, given 3 < k < w, since sz is #-closed, we have that P,, forces that the
singular cardinals hypothesis holds at all singular cardinals A < . Since this holds
for all k, we get that P forces that the singular cardinal hypothesis holds for all
singular A < 6. Also, P,, is 7 T-c.c. (since |P,| = 6*). Thus to finish it suffices to
show that P, IF 2¢ = 0T, since then P,, forces that GCH holds above 6.

Let V[G] be a P,,-generic forcing extension of V. Easily, (2<?)VI¢] = ¢, also, since
P, is w-closed, (1)VI¢] = g* (as otherwise it would have countable cofinality) and
(|6<)VIE! = 9F. But then in V[G], 2¢ < (2<9)* = §*, since we can encode X C 6
by (X NO:3<k<w). O
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