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§ 0. INTRODUCTION

Cardinal characteristics were defined, historically, over the continuum. See cele-
brated Van Dowen [vD84], for the general topologist perspective and the excellent
survey Blass [Bla], Bartoszynski [Bar10] for the set theoretic perspective. In recent
years there are mnay results concerning generalized cardinal characteristics. The
idea is to imitate the definition of a given characteristic over the continuum, by
translating it to uncountable cardinals.

It is reasonable to distinguish regular cardinals and singular cardinals. Among
the regular cardinals, it makes sense to distinguish limit cardinals from successor
cardinals. In this paper we focus on strongly inaccessible cardinals. These cardinals
and their characteristics behave, in many cases, much like Ry, but certainly not
always. See Landver [Lan92], Cummings-Shelah [CS95] and Matet-Shelah [MS].
Our main result is+ the consistency of covy(meagre) < 0, at a supercompact
cardinal A, and we begin with the following definitions:

We shall define three cardinal invariants (but the paper deals, actually, just with
two of them):

Definition 0.1. The bounding and dominating numbers.
Let X\ be an inaccessible cardinal.
For f,g € *\ let:

(a) f<rgif {a<A:fla)>gla)}] <A
() A C A\ is unbounded if there is no h € *) so that f € A= f <* h,
(¢) A C A\ is dominating when for every f € ) there exists g € A so that

f<rg,

(d) the bounding number for A, denoted by by, is min{|A| : A is unbounded in
)\)\}7

(e) the dominating number for A, denoted by 0, is min{|A| : A is dominating
in *\}.

Notice that the usual definitions of b and 9 are by, and 0y, according to Definition
0.1. The definition of covy(meagre) involves some topology.

Definition 0.2. The meagre covering number.
Let X\ be a regular cardinal.

(a) *2 is the space of functions from \ into 2,
(b) P2 ={ner2:van}, forver>2:= |J *2
a<
(¢) % C *2 is open in the topology (*2)<y, iff for every n € % there exists
i < \so that (*2)" C 7,
(d) covy(meagre) is the minimal cardinality of a family of meagre subsets of
(*2) <, which covers this space.

This paper deals with the relationship between 0, and covy(meagre). If A is a
successor cardinal then covy(meagre) < 0, is consistent (see (b) below). Matet
asked (a personal communication) whether 9 < covy(meagre) is provable in ZFC,
where ) is strongly inaccessible. We give here a negative answer.

For A a supercompact cardinal and A < k = cf(k) < pu = p*, we force large 0,
i.e., 0y = p and small covering number (i.e., covy(meagre) = k). A similar result
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should hold also for a wider class of cardinals and we intend to return elsewhere to
this subject.

Let us sketch some known results. These results are related to the unequality
number and the covering number for category. Recall:

Definition 0.3. The unequality number.

Let x be an infinite cardinal. The unequality number of &, ¢., is the minimal
cardinal A satisfying that there is a set % C "k of cardinality A such that there is
no g € "k satisfying (Vf € %) (3« < k)(f(a) = g(«)).

For k = Ng,e, = covy,(meagre); see Bartoszynski (in [Bar87]) and Miller (in
[Mil82]).

Now

(a) the statement ¢, = cov,(meagre) is valid for k > N, in the case that & is
strongly inaccessible, by [Lan92]. But if x is a successor cardinal, it may
fail,

(b) if kK < k<", then cov, (meagre) = x*. This is due to Landver (in [Lan92]).

We intend also to address:
Problem 0.4. Can we replace “supercompact” by “strongly inaccessible”?

Problem 0.5. 1) Can we prove the consistency of covy(meagre) < by?

2) For )\ strongly inaccessible (or just Laver indestructible supercompact) is there
a non-trivial AT-c.c. (< \)-strategically complete forcing notion Q which is *\-
bounding?

We thank the referee, Shimoni Garti and Haim Horowitz for helpful comments
and pressuring me to expand some proofs and Johannes Schiirz and Martin Gold-
stern for pointing several times problem with the connection to [She20], in particular
out in 2019 that an earlier version of the proof of [She20, 2.7=La32] the statement
@), was insufficient; and later pointing out a problem in earlier version of the end
of the proof of [Sheb, 3.24=Le67(1)] which require the addition of “specially solve”
additions to [Sheb] (sub-sections $3F, §3G) and allowing m € M to be non-simple)
and corresponding changes here. We say more in subsequent works [Shel7], [Shea]
and in preparation [Shec].

A point which in a previous version was just a step along the way, the referee
asked to justify fully, was analyzed to be serious. This was done but eventually is
separated to [Sheb]. A posteriori the point is that in the parallel case for A = Ry,
for full memory FS iteration such a claim is true. In fact, by Judah-Shelah [JS88],
if (Po,Qp: a < a(*),8 < a(x)) is FS iteration of Suslin-c.c.c. forcing notion, Qg
with the generic ng € “w and for notational transparency, its definition is with no
parameter and ¢ : B(x) — a(x) is increasing and P = (P, Q% s o < B(x), 8 < B(x))
is F'S iteration, but Q’ﬁ is defined exactly as Q¢(g) is but now in V5 rather then

in V¥ then Ibp, | “(n¢(s) : B < B(x)) is generic for Py over V7.

Now this is not clear to us for (< A)-support iteration of (< \)-strategically
complete forcing notions. The solution is essentially to change the iteration: to use
a “quite generic” (< A)-support iteration which “includes” the one we like and use
the complete sub-forcing it generates; see [Sheb].

We try to use standard notation. We use 0, k, A, u, x for cardinals and «, 3,7, d, €,

for ordinals. We use also 7 and j as ordinals. We adopt the Cohen convention that
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p < q means that ¢ gives more information, in forcing notions. The symbol < is
preserved for “being an initial segment”. Also recall 2A = {f : f a function from
B to A} and let ®>A = U{#A : B < a}, some prefer <*A, but *> A is used sys-
tematically in the author’s papers. Lastly, de denotes the ideal of the bounded
subsets of A.

For exact references to [Sheb] see the introduction there, just before Def 01.1.

The picture of cardinal invariants related to uncountable A is related but usually
quite different than the one for ¥, they are more similar if x is “large” enough,
mainly strongly inaccessible.
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¢ 1. PRELIMINARIES

Definition 1.1. Let A be supercompact. We say that h : A\ — #(\) is a Laver
diamond (for A) when for every « € V there are a normal fine ultrafilter D over
I = [ (x)]<?] for some x such that x € #(x) and the Mostowski collapse j on
VI/D maps (h(sup(un ) : u € I)/D to z; (we can use elementary embeddings
instead of an ultrafilter).

Notation 1.2. If P is a forcing notion in V then V¥ denotes V[G] for G C PP generic
over V; we may write V[P] instead.

The most straightforward way to increase by in the classical case of W, is Hechler
forcing = dominating real forcing. A condition is a function f, : w — w which is
separated into a finite stem 7, and the rest of the function. Formally, p = (1, fp)
where 1, < fp.

If p,q are conditions then p < ¢ iff 7, < ny and fy(n) > fp(n) for every n ¢
dom(n,) hence for every n. A generic object adds a function ¢ : w — w which
dominates the functions from the ground model. By iterating Hechler reals one
increases the bounding number b.

If A = A<* then one can define the generalized Hechler forcing Dy by replacing w
by A. The basic step is (< A)-complete and AT-c.c. and actually A-centered. Hence
one can iterate and increase by.

In [She92, §1,52] and then Goldstern-Shelah [GS93], Kellner-Shelah [KS12] con-
sider other invariants. Consider two functions f,g: w — (w\{0}) going to infinity
such that f > g and ask about:

¢ Gy = min{l 7] F C TP and (vn € TTF@)Eg € PIAnG) €
9(i)],

o ¢, =min{F : F C [[f(i) and for no g € H[f(i)}g(i) do we have (Vn €
F)(v>i) (n(i) € g(d))-

There are relevant forcing notions; we shall use a A*T-c.c. one as in c.c.c. creature
forcing (see [RS97],[HS]).

For transparency
Convention 1.3. Below \, 6 are as in 1.4 below.

Definition 1.4. Let A be inaccessible, § = (. : ¢ < A) be a sequence of regular
cardinals < \ satisfying 0. > e.
1) We define the forcing notion Q = Qg by:

(o) peQiff:
(@) p=(n,f) =" f?),

(b) n € [I 6¢ for some € < A, (n is called the trunk of p),
(<e

() fell b

¢<A

(d) n<af.
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(8) p <q ¢ iff:
(a) n* L,
(b) fP < f e (Ve <A)fP(e) < fi(e),
(c) if Lg(nP) < e < £g(n?) then n?(e) € [fP(e), A), actually follows.

2) The generic is n = U{n” : p € G, }-
The new forcing defined above is not (< \)-complete anymore. By fixing a stem
1 one can define a short increasing sequence of conditions which goes up to some

¢ at the (-th coordinate and hence has no upper bound in [] 6.. However, this
(<e
forcing is (< A)-strategically complete since the COM (= completeness) player can

increase the stem at each move.

Remark 1.5. The forcing is parallel to the creature forcing from [She92, §1,§2],
[KS12] but they are “w-bounding.

Recall

Definition 1.6. 1) We say that a forcing notion P is a-strategically complete when
for each p € P in the following game O, (p, P) between the players COM and INC,
the player COM has a winning strategy.

A play lasts o moves; in the S-th move, first the player COM chooses pg € P
such that p <p pg and v < 8 = ¢, <p ps and second the player INC chooses ¢z € P
such that pg <p g3.

The player COM wins a play if he has a legal move for every g < a.

2) We say that a forcing notion P is (< A)-strategically complete when it is a-
strategically complete for every o < A.
Basic properties of Qg are summarized and proved in [GS12, §2].

The following fact describes some immediate connections between various concepts
of completeness:

Fact 1.7.

(a) if Q = (Pa,Qp : a < 6,8 < §) is a (< A)-support iteration of (< A)-
strategically complete forcing notions, then Ps is also (< A)-strategically
complete; (see e.g. [She00]).

(b) IfPis (< A)-strategically complete forcing notion then (*>Ord)Y = (*>Ord)V",
and consequently ) is strongly inaccessible in V¥,

(c) like (a) replacing “(< A)-strategically complete” by “(< A)-complete”

(d) if P is (< A)-complete then P is (< A)-strategically complete.

Definition 1.8. For an ordinal a.. = a(x) let Q) g o(«) be the class of quintuple
a = (@, 2,P,Q, 1) consisting of (omitting o, means for some a, and {g(q) = g =
)

(a) = (Up : @ < @) and P = (P, : a < a,) where 2, C [ua]" uy C a,
without loss of generality &2, is closed under subsets (but is not necessarily
an ideal),

(b) (Po,a,Qop : @ < s, B < ay) is a (< \)-support iteration and let Pgo =

Pq.0.0(a):
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(c) each P, is (< \)-strategically complete and A*-c.c.,

(d) ng € [] 0: is the generic of Qg where 7g, the generic of Qg (defined in
N e<A - - -
clause (e) below) is U{n, : p € Gq, },

(e) if G C Pg is generic over V then no[G] in (][] -, <;va) dominates every
- e<A
ve [] 6. from V[(n, : v € u)] when u € &,; moreover, in V[GJ:
e<A -

() Qp[G] is the sub-forcing of Qg consisting of the p € Qg such that: for
some 3, f, 1, (so 1, =7, etc.) we have:

(@) p=(n,f) = (np, fp) son € ][ 0 for some ¢ <A,

e<¢
(B) 8= ((wi, fi) 1@ < ix),
(7) i <A,
(6) for each i < i, we have u; € Pg,n<fi € [] 6. and f; €

e<A
Vi(ny[G] iy € uyl,
() f=sup{fi i <i.},le e< A= fle) =U{fi(e) : i < is}; we
may add i < i, = 74 f; and even i, < fy(y).

f) notation: so Ugqa = Ua,Pq.a = Pa, etc., but when q is clear from the
q, q,
context we may omit it.

Definition 1.9. For q € Q) 5 o(+)-
1) We let o < o, P1 o = ]P"fﬁa be essentially the completion of P,; we express it by:

x)1 the elements of P1 o, = Pq 1.4 are of the form B(...,7n,,,...);<i+) Where:
, q,1, a7 (*)
(@) ix =i(x) < A,
(8) vi < afor i < iy,

(y) B is a A\-Borel function from ‘™) ( [] 6.) into {0,1} = {false, true}; B
e<A
is from V, of course, such that ¥p, “B(..., 7. )icit) = 0.
(%)2 the order is natural: Py o = “Bq(... Ty (i1)s - - Dici(y < Ba(. .. sy (i,2)s - - Di<i2)”
iff“_[Pa “f BQ( . 7377(2}2) [G], N ')i<i(2) is equal to 1 then so is Bl( . v:’]v(i,l)’ N ')i<7ﬁ(1)”'

2) For % C o, let Py, = P, be the sub-forcing of Py ,(q) consists of {B(... STy (i)s -+ +)i<i(x) €
P a(q) s i(¥) < XAand v; € % for every i < i(x)}.

Claim 1.10. 1) For any sequence (tuq, Po : @ < i) as above, i.e. as in clause (a)
of Definition 1.8, there is one and only one q € Q, 5 . With uga = Ua, Pga = Pa
for a < as.

1A) For o < «,, the forcing notions Pq.,Pq,2 s are well defined and are as de-
manded in Definition 1.9.

2) For every a < a the set P , of p € Pq .o satisfying the following is dense:

(x) if B € dom(p), then q = p(B) is a Pg-name of a member of Qp such that:
(a) Mgsiq, (Uq,i i < iq) are objects (not just Pg-names),

(b) fq=sup{f::i<iq}, each f; is a Pg-name of a member of [] 0.,
- - N e<A
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(c) each f; has the form By (..., 0G5y - - -)j<j(x)<x where {y(i,j) :j <
§(*)} C ug; and By is a Borel function from °*)(T] 6.) into I] 0.,

e<A e<A
(d) p(B) = (ﬁqqu)-

3) Above for every v C « and j. < X the set of p € P2, such that v C dom(p)A (V8 €
dom(p))(Lg(np(s)) > Jj«) is dense.
4) Pgo.0 <Pg1,a moreover Pq g o is dense in Py1, and % C U C aq = ]P’%/1 <
Po, <Paa 50 Py pp<ay = Pa.a ond [Pou| < | %[ . )
5) If a < o, and u € Py then 1y € [] 0. dominates every v e (] 6.)VIM,
- e<A e<A
6) Assume G C Pq is generic over V1, = 14[G] andnl, € (] 0-)VI€! fora < a.
- - e<A
and {(a,€) 1 @ < au, e < a and 1ny(g) # Nl (€)} has cardinality < X\. Then for some

(really unique) G’ we have G’ C Pq is generic over V and V[G'] = V[G] and
NalG] = ng, for a < a..

7) Like (6) for P,

Proof. See [Sheb, 1.11=Lc8, 1.13=Lc11]. 0110
Theorem 1.11. For any ordinal o, there is a quadruple (q, 6., %, h) such that:

(A) (a) a€Qyg and let 6. = Lg(q)
(b) . C 6. has order type .
(¢) h is the order preserving function from a.. onto %
(d) if a € U then U Na € Py
(e) ifcf(ow) > X then in VFa the set {nq : o € %} is cofinal in (<20, <Jba
)

(B) if % C U, U C U.,otp(?1) = otp(%) and g is the order preserving
function from % onto U, then g induces an isomorphism § from Py 4,
onto Pq a9, mapping ng to nys for B € %.

Proof. By [Sheb, 2.13=Lc52], in particular clause (A)(e) is justified by clause (E)
there. Alternatively use [Sheb, 3.43=Li37]. 04 11
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§ 2. THE FORCING
In this section we prove the main result of the paper, which reads as follows:

Theorem 2.1. Assume

(a) X is supercompact
(b) X\ < k=cf(k) < p=cf(p) = p.

Then for some forcing notion P not collapsing cardinals > X\, X\ is still supercompact
in VF and covy(meagre) = k,0) = p.

Proof. By Lemma 2.3(1) we force [J) while maintaining the supercompactness of \.
By Lemma 2.7 we force 0\ = p A covy(meagre) = k using a forcing notion P which
is AT-c.c. and (< \)-strategically complete. Notice that ) is still supercompact in
the generic extension, so we are done. Oy 1

Definition 2.2. For A supercompact we define [y by:

O, for any regular cardinal x > A and forcing notion P € 5#(x) which is
(< N)-strategically complete (see Definition 1.6(2)) the following set . =
Sp = S p is a stationary subset of [J7(x)]<*:
S =S =S, p is the set of N’s such that for some Ay, xn,j =
N, A=Axn, M = My,G = Gy we have (and we may say
(AN, xn.inv, An, My, Gy) is a witness for N € .7, p or for (N, P, x)):
(a) N < (s (x)V,€)and P € N,
(b) the Mostowski collapse of N is A and let jy : N — A be the unique
isomorphism,
(¢) NN = Ay and (AN)>N C N and Ay is strongly inaccessible,
(d) ACM :=(H(xn),€), M is transitive as well as A,
(e)
) M

e) GCj N(]P’) is generic over A for the forcing notion jy (P),
(f AlG].

Our first lemma is closed to Laver’s indestructibility. It consists of two parts. In
the first part we prove that one can force [y at a supercompact cardinal A\ while
preserving its supercompactness. In the second part, we prove that this can be
done in an indestructible manner. Namely, any further extension of the universe
by a (< A)-directed-closed forcing notion will preserve the principle [y.

Lemma 2.3. 1) If X is supercompact then after some preliminary forcing of car-
dinality X , getting a universe V, in V the cardinal \ is still supercompact and [y
from 2.2.

2) Moreover (in part (1)), the statement [Jy holds also in V¥ when V satisfies
Oa and P is a (< A)-strategically complete forcing notion and P is (< X)-directed
closed, but see 2.4(2).

Remark 2.4. 0) The following is a major point in 2.3 and has caused some confusion.

In 2.3 and [, we sometimes say a forcing notion is (< \)-strategically complete
and sometimes demand in addition that it is also (< A)-directed closed. To clarify
note:
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(A) Inside [y and the forcing used in 2.3(1) we demand only being (< \)-
complete; this is used in the proof of 1.8,

(B) For without loss of generality in the the proof of 2.6 we use the relevant
forcing being (< A)-directed closed.

1) Recall “P is a (< A)-directed closed” means:

(x) if J is a directed partial order of cardinality < A and ps € P for s € J and
s <jt= ps <p p: then the set {ps : s € J} has an upper bound in P.

2) In 2.3(2) we can weaken the assumption “Hy and P is (< A)-directed closed” to:

B if x > X and P € 5 (x) then we have (A) = (B) where:
(A) N < (J(x),€) and Ay, XN,in, G, Q satisfies:
(a) PLQe N,NNA= Ay <xn <A N[ CN,
(b) @
(c) j is the Mostowski Collapse of N, its range is A,
(d) G is a subset of j(P x Q), generic over A

(e) AlG] = 7(xn)-

(B) {p € PN N: for some (p',¢') € G we have j(p) = p'} has a common
upper bound in P.

is a P-name of (< A)-strategically, complete forcing notion

3) We can e.g. restrict y to be strong limit.

Proof. 1) This is similar to the proof in Laver [Lav78] using Laver’s diamond, see
Definition 1.1, but as requested we elaborate. By Laver [Lav78] without loss of
generality there is a Laver diamond h : A — J()\). Let E = {0 : 60 < X is a strong
limit cardinal and o < 6 = h(«) € H(0)}, clearly a club of A and let (k. : € < A)
list {0 € E : 0 is strongly inaccessible} in increasing order.

As requested, we now define q. and x° by induction on £ < A such that:

(x) (a) = = (P, Q¢ : ¢ < ¢,& <) is an Easton support iteration (so P¢, Q¢
do not depend on €),

(b) Pe C (k)
(€) Xx° = (x¢: ¢ <€) where each x¢ is a regular cardinal € [k¢, Ket1),

(d) Q¢ € H(xeq1) is a Pe-name of a (< k¢ )-strategically complete forcing
notion,

(e) if h(§) = (Q,x) and the pair (Q,x) satisfies the requirements on
(Qg, x<) in clauses (c),(d) then (Qg, xe) = h(é).

Concerning clause (b) which says “P¢ C J#(k¢)”, note that for ¢ a limit ordinal
letting k¢ = U{ke : £ < (} we have k¢ is strong limit and:

o if k. is regular, equivalently strongly inaccessible then ks = k¢ and
Pe = U{P¢ : £ < ¢} and so P C U{H(ke) : £ < (} = H(kee) = H(Ke),
o if K. is singular, then P, C %(K:C) C J(k¢) as k¢ is inaccessible > k<c.



Paper Sh:945, version 2021-09-17_2. See https://shelah.logic.at/papers/945/ for possible updates.

ON CON(d» > COV»(MEAGRE)) SH:945 11

Easily we can carry the induction so qy is well defined, Py = U{P. : ¢ < A} C
U{H(ke) 1 e < A} = J€(N) and “6 < X = Py /P¢ is (< ke)-strategically complete”
hence PPy /P¢ adds no new sequence of length < k¢ of ordinals. Clearly it is enough
to prove that in VF» we have .

Toward contradiction assume y,P,. = .%, p form a counter-example in V¥,
hence there are p, € Py and Py-names x,P,.#, E such that p. lkp, “x > Ais

regular, P € J#(x) is (< A)-strategically complete and .7, p is defined as in [y
and E C [(x)VIPA]<* is a club disjoint to .#”.

As we can increase p., without loss of generality x = x and let z = (x, P); and
as V = “\ is supercompact and h is a Laver diamond” for some (I, D, M, j, jo,j1)
we have:

(*)1 (a) M is a transitive class

g9) I =1[(x1)]** and x1 > x
h) D is a fine normal ultrafilter on I

)
)
)
)
)
) 3N = (x, P)
)
)
)
)
)

(1) j =19 Jo-
Moreover, by Definition 1.1
(*)2 z =j1({(sup(unA) :uw € I)/D).
Let g = j(an) so g = (P¢, Q¢ : ¢ < j(A),€ < j(N)) and ¢ < A = PZ =P, etc.
So
(¥)3 in M the pair x = (x, P) satisfies:
(a) x € (A, j(A)),j(N) is inaccessible
(b) PeZ(x)
(¢) Pis a Py-name of a (< A)-strategically complete forcing notion.
[Why? Because [M]X C M hence #(xT)V C M.]
Now
()4 the following sets belong to D:
(a) A ={uel:zecuand (H(x1)€)lu<(H(x1) €)}
(b) S ={u € S :unAis an inaccessible cardinal we call A\, }

(c) S = {u € S: the Mostowski Collapse N} of (#(x1),€)]u is iso-
morphic to some (H#(x1), €)}.

[Why? As D is a fine and normal ultrafilter on I.]

(x)5 for every formula ¢ = ¢(—) € L({€}) the following are equivalent:
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(a) (A (x1),€) = olz]
(b) (H#(x1).€)'/D E ¢[(h(unA) :u e I)/D]
(c) %lethereﬁ”lf{UGI x € u and (H(x1), €)lu | plz]}
(d)
)

w6

)l
d % €there%2—{u€1’ Dy, € u and (F(xu), €) FE [ju(x)]}

(e %36there 5{3—{uel x € u,xL = otp(xulu) and (H2(xL), €
) E eliu@)).

[Why? We have (a) < (c) as D is a fine normal ultrafilter on I = J#(x1); we have
(c) & (d) as j, is an isomorphism from (#(x1), €)[u onto H#(x1); we have (d) <
(e) by the choice of Dj lastly, (b) < (c) by Los theorem.]

Hence

(¥)6 there is N as required in VF.

[Why? Choose u € I which belongs to all the sets from D mentioned in (x)4+ ().
Let ¢ = w N A, so it is inaccessible, even measurable, and j,(z) = ju.(x,P) = h(()
so (by the choice of q) h(¢) = (x, Q¢) and Qc is a Py c-name.

Let G be a subset of Pq = Py to which px belongs, G¢ = G N Pqy ¢, hence is
a generic subset of Pq . over V hence a generic subset of j,(Pq) € J€(x¢) and
let N = (A (x1),€)u)[G], A = (A (xc)VIGd, €), M = A%I[CJ. Easily N is as
promised, contradiction to the choice of p,.]

So we are done proving part (1).

2) Let Q be a forcing notion in V¥ which is (< \)-strategically complete and (even)
(< M)-directed closed, ) € Q is the weakest condition, x; large enough so that
A, Q € (x1) and it suffices to prove that in V¥, the set %, g is stationary. So
let @, £ be P-names such that for some p € P we have p IFp “Q € J(x1) is (< A)-
strategically complete, (< \)-directed closed, forcing notion, E a club of [2#(x1)] <}
disjoint to .¥"y,.0”, no need to use a name for x; as we can increase p.

Let x> x1; now PxQ € H(x) is a (< A)-strategically complete forcing notion
and without loss of gene}ality codes (x1,FE). As [y holds in V we can apply it to
the forcing P>, * Q so we can find a tuple (N, Ay, xn,jn, An, My, Gy) witnessing
it, in particular, (p,0) € Gy, P * Q € N so x1,E € N. Let Gp be a subset of
P generic over V which extends {p’ : (p',q¢’) € Gn}, possible because Gy is in
V, a subset of P which has an upper bound, this is the only place we use “P is
(< A)-directed closed”.

Next, let Vi = V[Gp|, N1 = N[Gpl, E1 = E[Gp], A1 = Al (GpNN)] = A[{p :
(¥',¢') € Gn}, Gr = {gli"(GrNN)] : (p. g) € Gp}-

Note that here we may use “the forcing P is (< A)-directed closed” because we
are proving part (2).

Let Ny = Ny [ (x1)VICFl, 7 = #[Gpl, j1 = the lifting of (j[(N N s#(x))), to
mapping N onto A;. i

Now recalling p forces E is disjoint to . clearly

(*) Ny € Ej.
hence

(x) N1 ¢ 7.



Paper Sh:945, version 2021-09-17_2. See https://shelah.logic.at/papers/945/ for possible updates.

ON CON(d» > COV»(MEAGRE)) SH:945 13

But easily in V; we have: (An, xn,Jj1,A1, M1 = M,Gy) witnesses N1 € N Ej, a
contradiction to the choice of E. Oog

Discussion 2.5. Suppose that one wishes to force an inequality between two car-
dinal characteristics. There are two general approaches, which can be labeled as
Top-down and Bottom-up. In the Bottom-up strategy one begins with a universe in
which many characteristic are small, e.g. by assuming 2* = AT, and then increases
some of them while trying to keep the smallness of the rest. In the Top-down strat-
egy one begins with a universe in which many characteristics are large. The forcing
aims to decrease some of them while keeping the large value of the rest.

We shall use the Top-down approach, so we begin by increasing by (and 0))
to some p = cf(u) > A. Notice that by is a relatively small characteristics and,
in particular, always by < 0). The next step will be to decrease cov)(meagre) in
such a way that maintains the fact that 0, = u. We shall increase by by using the
generalization to A of Hechler forcing. This is a standard way to achieve this goal,
but we spell out the proof since it demonstrates the way that we employ Lemma
2.3.

Claim 2.6. Assume that:

(a) X is supercompact
(b) A < p=cf(p) = p.

Then one can force by = 0y = p while keeping the supercompactness of A and the
principle [y.

Proof. Begin with the preparatory forcing of Lemma 2.3 to make A indestructible
and to force [y in such a way that it will be preserved by any further (< \)-
directed-closed forcing. By 2.3 as in the applications of Laver-indestructibility we
can assume that GCH holds above X after the preparatory forcing. In particular,
if g = cf(p) > A then p* = p follows.

Let Dy be the generalized Hechler forcing. A condition p € Dy is a pair (1, fp)
such that 7, € <’\)\,fp € *\ and np < fp. I p,g € Dy then p < ¢ iff n, <7y and
fpla) < fq(a) for every a € A.

Let q = (Po,Qp : a < p1, B < p) be a (< \)-support iteration of the generalized
Hechler forcing notions for A. Explicitly, Qq is the P,-name of Dy in VT« for
every a < p. Denote the generic A-Hechler for Q, by f7. So P, is the limit and
choose a generic G C P,. We claim that V]G] E “by = 0y = p” as witnessed by
(f*:a < p). Notice that 2* = p in V[G], so it is sufficient to prove that by = p
in V[G].

Since A is regular, each Q,, is (< A)-complete. By Fact 1.7, P, is (< A)-complete
as well, for every a < p. Likewise, each Q, is A-centered so P, is AT-c.c. (see [SheT8§]
or [Shed]). Tt follows that V[G] preserves cardinals and cofinalities. Moreover, no
new (< A)-sequences are introducted. Notice also that P, is (< A)-directed-closed
and hence V[G] | “) is supercompact and [y holds”.

The main point is that {f’ : a < p} is a cofinal family in (*X\)VIG]. For this,
assume that IFp, “f € *\”. For every a < A fix a maximal antichain Py 1 <
ia < A) of conditions which force a value to f(«). Let 6 = sup(U {dom(f,;):a <
A\i < ig}). Since A < p = cf(u) we see that § < p, and clearly f is a Ps-name.
We conclude, therefore, that f is dominated by f5,; and hence {fr:a< p}
exemplifies by = p. This fact completes the proof. Oog
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Our second lemma is the main burden of the proof. The statement of the theorem
requires A to be supercompact, in order to obtain the indestructibility properties
given by Lemma 2.3. The combinatorial part given in Lemma 2.7 below requires
only strong inaccessibility. However, we assume supercompactness in order to keep
Cy.

Lemma 2.7. Assume that:

(a) A is supercompact,
(b) Ey holds.

Then there exists a AT -c.c. (< \)-strategically complete forcing notion P such that
IFp “0x = p A covy(meagre) = k7.

Proof. By claim 2.6 without loss of generality by = 0, = p. In particular, X is
supercompact and [y holds in the generic extension. Let (f* : a < p) witness
by = 0, = p and without loss of generality o < 8 < pu = f < b I3

Recalling Definition 1.8, 1.9, Claim 1.10, Theorem 1.11, in 'V there are 8(x), q, @, %, - - -
such that:

)
b) &= (ug: B < B(x)), P =(Pp:B<B(x)),
(¢) ug C B, Ps C [up]=* is closed under subsets,
(d) Qo has generic g € [] b,

e<A
(e) Qo,p is as in 1.8(e) so is C ng[@a:aeuﬁ)]
= p:pB<pB(*),
(f) . C B(x) has order type y(x) = x and (5] : i < &) lists % U {B(x)}
in increasing order,
(g) if B € %, then
[%. 08 C ug and [% N BI1S* C Py and Ibp, ,,, “ifv e V[, :a e

%N BN 1 be then v <;jva ng”,
e<A -

(h) if a < B(x) then Pg, is (< A)-strategically complete and A™-c.c.,
(i) P1,4,P19 are as in 1.9.

and IFp,,, “ng € [] 0.” and
- e<A

(B) letting P} = Pg,1,(p1:j<iy for i < y(x) we have:
(a) The sequence (P : i < y(x)) of forcing notions is <-increasing, and is
continuous for ordinals ¢ < (%) of cofinality > X see [Sheb, 2.5(8)=Lz48(8)],
but the continuity will not be used,

(b) P} is (< A)-strategically complete for ¢ < y(x),

() (T1 0)VFel = U{(TT 0-)VFL i < (9},
e<A e<A

(d) The sequence (P15 : 8 < B(x)) is a sequence of forcing notions, <-
increasing and if 8 < B(x) then Py g <Py g, in fact is dense in it and
if 1 < ’}/(*) then ]P); < PLBZ'
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‘We shall mention more properties later.
[Why are there such objects? We apply 1.11 and 1.8 and 1.10, that is [Sheb].]
Also

(%)2 (a) recall (BF :i < y(x)) lists % U{B(x)} in increasing order,
(b) for i <~(*) =k let g; be ng- (to avoid excessive subscripts),
(

)
)
(c) let g' = (g} :i < k),
d) 1€t9af77af0r04<5( )and§:<gg'ﬂ<ﬂ( )
)

() Po = Pq,o and without loss of generality u, = U{u : u € F,} for
a< B( )-
(¥)3 ifu € Py, a < B(x) thenlbp, ., “ga € [] 0 dominates ( [] g.)Vligs:BEwl»

e<A e<A
the order being modulo J9.

[Why? By the choice of the forcing, see 1.4 or (x)1(A)(g) above.

(¥)4 we have
(a) Ikp, “g" = (gi : i < k) is < va-increasing and cofinal in (]]
)” .

(b) moreover this holds even in VFs(-)

e<A O, <Jl§d

[Why? Clause (a) holds by (%)3 noting that ( [] 6.)VFx = U{([] 0)VF :i < &}

e< e<
which holds by 1.11(A)(d).
Clause (b) holds by 1.11(A)(e).]

Now

b))

(¥)5 IFp, “covi(meagre) < k.

[Why? First, notice that we can look at [] 6. instead of *2.
e<A
Second, for each ¢ < A,i < & the set B.; = {n € [] b for every ( € [g, )
E<A

we have 7(¢) < g;(¢) < 0} is closed nowhere dense, and by (*)4 we have Ve =
“Tleanbe =U{Be; 1 e < Aji <k} Infact, (Bo; 1 i < k) suffice.

Alternatively we have (g} : i < k) is < Jra-increasing cofinal in Il.<0: and let
Wi = {n:n € 2 and for every € € [(,\) we have either 7 | [Se<cls, Ne<obs)
is constantly zero or min{a : Yec 0 + a € n7H({1})} < gi(e)} . So #i is a
closed nowhere dense subset of *2 and U{%#; ¢ : i < k,( < A} = *2 and  x \ has
cardinality A + x = & because if f € *2 then we define vy € Il.<40. as follows: for
e <A

(a) if f[[25<595,25<695) is not constantly zero then we let v¢(e) = min{o :
f(Becehe + ) =1}
(b) if otherwise then let v;(g) = 0.
So there are i < k and € < A such that: ¢ € [g,\) = v¢(() < ¢/(¢). Now it is easy
to check that f € #; . |.
Lastly,

b2

(*)6 IFp, “covy(meagre) > K”.
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[Why? For i < & let us define the P}, ;-name v/} of a member of *2 by vj(¢) = 0
iff g;(c) is even. Now clearly IFp = “v} is a A-Cohen sequence over VF . (But let
us elaborate; v; is also a Pg:1-name and Ibp,, , “v; is A-Cohen over V8 hence

Pl
over V':”; the last hence because P; <Py g-. As Pgry1 <Pgr, | and Pj, <Pg: |
we are done.)
Also every closed nowhere dense subset of *2 from VF» is from V¥ for some
i < y(x). Soif p Ik “covy(meagre) < x” then for some ¢ < x and A.(e < () we

have p I “A. is a closed no-where dense subset of *2 for ¢ < ¢” and p IF “ | A.
e<¢

is equal to the set of *2”. Without loss of generality each A. is a P;(c)-name,
i(e) < k and recall that x is regular. Hence ¢ = sup{i(¢) : ¢ < ¢} < & and 7} gives
a contradiction to the choice of (A, : & < (); so (x)e holds indeed.] )

The reader may look at some explanation in 2.9.

Now we come to the main and last point recalling (f% : o < p) from Claim 2.6

“no f € (*\) dominates {f¥:a < u}”.

()7 e, 2

We shall show that it suffices to prove ()7 for proving Lemma 2.3(2), and that ()7
holds, thus finishing.

Why it suffices? As (fy : o < p) is <jva-increasing and cf(u) = p > A, this
implies Ikp, “05 > p7. Also in V,u* = > £k > X and |IP”W(*)| = k™ by (A)(g)
of 1.10(4) which is < p and P}, satisfies the A*-c.c. hence Ibp. “2* = 117, hence
together IFp; “0x = p”. Also by (%)1(B)(b), ‘P, is (< A)-strategically complete
and A*-c.c.” and by (*)5 + (*)g we know that “covy(meagre) = k” so we are done;
hence ()7 is really the last piece missing.

The rest of the proof is dedicated to proving that (x)7 holds.

We shall use further nice properties of P}, gi(j < ~v(*),7 < v(x)) which hold by
(%)1+ (%)2 (and (*)s3, (*)4) and their proof, i.e. 1.10, 1.11 and see [Sheb, 2.12=Lc51,
2.13=Lc52].

B (a) (a) (gy 7 <7(x)) is generic for P! ), i.e. if G is a subset of P/ )

generic over V and g; = g;[G] then V[G] = V[(g; : i < y(¥))]
(B) if in addition v € (*A)VIG] then for some p € (*y(*))V and
A-Borel function B € V we have v = B((g, ., : € < A))
(b) ifin V[G], g7 € ] 0¢ for v < y(x) and the set {(v,¢) : v < y(*) and
<A

¢
¢ < Xand ¢J(¢) # ¢,(Q)} has cardinality < A then g” = (¢ : v <

7(x)) is generic for P/ ) and V([g"] = V|[g']; similarly for Py,
(c) IFp; “g’, dominates (]] g)VIFl»
- e<A
(d) if (C(y) : v < y(x)) is an increasing sequence of ordinals < y(x) (from
V), then <g’<(7) :y < (%)) is generic for P’ ) (over V);

(e) if v < () then P/, is (< A)-strategically complete and satisfies the
At-c.c.

We shall use Hj freely, recalling H; (d) was the reason for [Sheb].
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To prove ()7 assume toward contradiction that this fails, and hence for some
condition p* € P/ ) and P, -name f and A-Borel function B and p, € Ay (%) we
have:

®o p* |Fp;(*) “f € *X and dominates {f% : & < p}, equivalently (*A)V” and
for some A-Borel function B from V we have f = B((g], ;) 1 <A)).

Now let ¥ be regular large enough and we choose N = (N, : ¢ < \) such that:

®1 (a) N is asin [y for the forcing notion Py g(.) (equivalently Py g(,), not
P}), that is Ne € S\ p, ,., see [y of 2.2,

(b) N | € € N. and otp(N: Nk) < O,y hence |J Ne € N, where A. :=
(<e
otp(N: NA) > A :=3{||N¢|| : ¢ <e} > E{A : ( <¢},

(C) §7 q, %*ap*v ~f7 Ba P belong to NE'
Next choose f* € )\, i.e. € (*A\)V, such that:

®9 for arbitrarily large ¢ < A for some ¢ € [AZ, ;) we have f*({) > A, (we
can demand more: for every € < \).

For e < Alet (A, Xe,je, Mc, Ao, GF) be a witness for (Ng, Py g(.), x) recalling [y
from Definition 2.2 so A: € (g, ) is strongly inaccessible and ¢ < { < A = A\ <
)\E < A¢, recalling ®; and noting (A : e < A) is an increasing and a continuous
sequence of cardinals below X\. Let G = G N ]P’:D(*).

Let (for e < A):

®3 (a) ve = Ne ﬂ'Y( )
(b) ke = k(e) = otp(ve) and so k(e) = jo(y(x)), ete.
(c) 7% = (yi(e) : i < k(e)) list v. in increasing order
(d) fori < otp(ve), equivalently i < jo(y(x)) = kxe)let nf = (jg(g;i(e)))AE[Gf] €
I 6c and let 7° = (05 : i < Ke).
C<>\€

Note that clearly

®4 (a) 7° is generic for (As,js(IP’fy(*))), moreover
(b) for each e < A, if we change 75 ({) (legally, i.e. to an ordinal < ) for
< A¢ pairs (i,() € otp(ve) X Ac and get 77, then also 77’ is generic for
(As’je(Pfy(*)))7 clearly N¢[ij°] = Ne[if],
(c) G;" is a subset of Py g,y N N. generic over N. such that J#(x.) =
Aclj" (G let G = GE NP, [Ge] =5,
(d) like B; with V, Py g(,), G, A there standing for A, j-(Py gs)), GIn
je(P 7(*) Ae here.

Hence we have

@) for e < A,
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(a) let 52 :={v: v = (v; : i <i(e)) and for some G~ C P NN generic
over N, we have v; € Il¢<)_0¢ satisfies { < A = some 1 € G~ forces
gﬁﬁ(s) P¢=uv; [ €} and let 2. = {¥ € = : there is a subset GT of
Py g(+) N N extending G~ generic over N such that the Mostowski
collapse of N.[G™T] is 7 (xe)};

(b) Let ZF be the set of pairs (7, GT) = (7, G(+)) such that: 7 € =, and
Gt C Py g NNV, is as in clause 9a).

We may write (7, G) or just 7 though actually 7 does not determined
G/ but of course it determine G, = G} N P (-
Note that 7° belongs to =. moreover (7°,G) € =F) when G = G

and of course, G6—; = G when v = 7.

in fact j.(GT) = Ge and j.(G) = Ge Nj- (P, ()

(c) we can choose p; = (pl , , 1 € ]P’;(*) N N.,p € P<>)(),)) such that:

(@) péup € Py, g(x) N Ne moreover, if j < k. and ¢ € IP”W(E) then
De v p € P’Yj(E)’ .

(B) Prpw Fo < pZ,, moreover, if P’W(*) =74 < ¢” then pf , ,, ¢
are compatible in P g(4),

(v) (U{dom(p; , )\ % : p € A=A}y € P’ ) is a sequence
of pairwise disjoint sets,

(6) Py ,(7) has trunk of length > Ig(p) when v € dom(p; , ,),

(¢) for each v € P/ ) and ¢ < A the sequence (pf , ,:p € C(Ae)) is
a maximal anti-chain above 1 in Py g, N N,

Q) ifprape ()\€>)(/\6) then p:yd,,pl < p:7¢7p-

(d) assume (v,G(+)) € =F

(o) for pf as in clause (c) and (7, G(+)) € EF let 0. (5.c(+)).w be
the unique o € <)(\.) such that ¢ < A\, = Pry.ore € Gos

) for p’ asin clause (c) there is ¢ € Pg(,) which is an upper bound

e B(x)
of {p:7’¢)7p cpe G(_177G(+))7p< 0c,(7,G(+)w )} 10 P1 p(a),

(v) if ¢ € Pg(y) is as above then ¢ is an upper bound of G and ¢ is
(NE,IP’;(*))—generic naturally and ¢ IFp, ,,, “je can be extended
naturally to an isomorphism from NE[GJP’;(*)] = N:[(g) : v € ve)]
onto A.[7]” note that A [7] is not necessarily equal to J#(x.).

e) Similarly to clause (d) for e < \,j < k(¢) and 7 = (v; : i < j) and

(e) y J j

GT.

[Why? See [Sheb, 3.28-3.32=Le53-Le67] |
By the assumption toward contradiction, ®g, and Pﬁ/ () Deing (< A)-strategically

complete, recalling By, there are ((*),p** and p* such that (recall p* € ]P”W(*) <
Py g(«) is from ®p):

®5 (a) p* <p*™* € IP”W(*) and pt € Py gy satisfies Py g, = “p™* < p™7; (we
may add that ]P)lv(*) E “p** < ¢” = ¢,p** are compatible in Py g(.)).
(b) ¢(x) <A
(c) p** H—p;(*) “f*(¢) < f(¢) whenever ((x) < ¢ <X\ where f* is from ®q
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(d) if v € Dom(pt) then 77 (" is an object (not just a Py ,-name) and
has length > ((x) (recall that nP" M is the trunk of the condition
pT (), see clause («)(b) of Definition 1.4(1)).

Note that possibly Dom(p™) € U{v. : € < A}. Choose £(x) < X such that A () >
(%) + |Dom(p™)| and v € Dom(pt) = e(x) > Lg(n?" ™M); recalling clause (d) of
®5 and [Dom(p™)| < X as pT € Py g(x) and Py g is the limit of a (< A)-support
iteration.

By ®2 we can add (30)[AJ,) < ¢ < As(x) < f*(¢)]. Our intention is to find ¢ €
Py, 5(+) above p* which (in Py g(.)) is above some ¢’ € P’ () which is (N, P ,)-
generic, that is forces G]p;(*) to include a generic subset of (IP’:/ (*))New hence is
induced by some 7 as in ®/, recalling ®4(b). Toward this in ®¢ below the intention
is that pzzs(*)) will serve as q.

Let k(x) = k(e(*)) and ~; for i < k() be such that! (vy; : i < i(x)) list {37 :
i € Ve(s)} € Ux = Ne(s) N %, in increasing order; recall %, = {3} :i < y(x)} and
i < j <) = B; < B and vy € y(x) has order type r(e(x)) so v; = 7i(e(*))
from ®;. Next let vy = () s0 {je)(7) © 7 € Ve = (%) = je(u) (v(%)).
Recall y(x) = k = cf(k) > X, 0tp(ve(x)) = otP(Ne(s) N Y(*)) = otp(Ne(x) N k) hence
N.(x) F “i(e(%)) is a regular cardinal > A.(,)” hence:

(*) k(%) is really a regular cardinal so call it o.

Now we define a game © as follows?:

Bs (A) each play lasts k(%) + 1 = o + 1 moves and in the i-th move:
(a) if ¢ = j + 1 the antagonist player chooses &; = £(j) < o such
that j1 < j = ((j1) < &0,
(b) then, if ¢ = j + 1 the protagonist chooses ¢; = ¢(j) € (£(j),0),
but there are more restrictions implicit in Hs below,
(c) in any case (that is, also in the case i = o) the protagonist also
chooses p;f, 7' such that B3 below holds.

(B) in the end of the play the protagonist wins the play iff he always has
a legal move and in the end:

(a) pt is (IF’;(*), N)-generic, note the condition is not a member of
the same forcing, so we mean that pJ forces that the intersection
of the generic with IP”W(*) N Ne(s) s generic over N (),

(b) {¢(i) i < o} € A(4); note that trivially it belongs to M) =
Ac[GE] = A (xe), see @4(c).

(c) note that we do not demand that 7’ = (v¢(;) : @ < o) belongs to
&, we demand only that it belongs to to 27, however it is still
true that it is cofinal in (I16, < va, because (((i) : i < o) belongs
to and is cofinal in 7o ’

where

IThis is used in B3 and the proof of (x)s. Not to be confused with 5¢ of ®3(c).
2The idea is to scatter the nig*)’s. Why not use the original places? as then we shall have a

problem in ®¢; the scattering is helpful because we are relying on 1.10 and 1.11.
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B3 (a) pf € Pon, and pf, 0" = (v, 1 j < i), G 4y © P4, N Ny are as in
®}(e) with p;” playing the role of g,
(b) if j < i then Py, = “p + <pf”,

(c) if v € U{Dom(pj ) :j < i} then p; [y IFp, . “17”?(7) has length > i
and > A.(4)” moreover npjm is an object, npzr”),

(d) Po, E “pT Iy <pi7, (pt is from ®;5(a)),

() ¥ =(vy, : j<iyand vy, € [] 6, and p} is an upper bound of

L<Ae (%)
Q)i = {pz,w,p [ 792 U € Eg(y satisfies ' < and ¢ € Gy},

/o

(f) for j <i we have v,, < np:r(“’f) so pf [ v, Ik vy, Qgh,” recalling H,

(g) for j < i we have (recall 7° from ®3(d)) («) or () where:
(a) vy, = 7772(])) recalling 777( ) is from ®3(d),

(B) v; € Dom(p*) and {v < Ay : 77@‘(])( t) # vy, (t)} is a bounded
subset of A.(4).

‘We shall prove

®¢ in the game o:
(a) the antagonist has no winning strategy,

(b) at stage i, if ((j) : j < i) € A, then the protagonist has a legal
move, moreover for any ((i) € (£(¢),0) large enough the protagonist
can choose it.

Why ®¢ suffice?

By clause (a) of ®¢ we can choose a play ((£(i),((i),p;,7*) : i < o) in which
the protagonist wins. Recalling Pfy(*) <Py g(+) and Py g(4) is a dense sub-forcing of
Py g(x), clearly

®7 there is p such that:
(a) pe Pl ),
(b) if IED’V(*) E “p < p” hence p’ € IE”’W(*) then p’,p} are compatible in
ISWIOL
(c) p is above p™* and it forces that g/ [A.(s) = vy, for i < k(x) and
Je() (G N Negwy) =G,

Bx) (v, 1<)

Then on the one hand

@7 p € P’( being above p** forces f* [ [((x),A) < f [ [((),A) hence f* |
)< A

[C(*); Aex)) < f 1 [C(*), Ae(x)) Tecalling that ((x <(x), see ®5 and the
choice of E( ) immediately after ®s.

On the other hand,

@Y pis (NE(*),]P’;(*))—generic.
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[Why? As it forces 1., [ Ao(x) = vy, for i < i(x) and (v, 14 <i(x)) is (see H3(g)
D < i)
which is a sub-sequence of the sequence from ®;3. That is {(i,¢) : ¢ < Ac(x)r b <
i(x) = o and vy, (1) £ 150 (0} © U{{(6,0) 1 < Aoy and vy, (1) # 02 (0} 5 3 €
Ve(x) N Dom(p*™)} so is the union of < |[Dom(pf)| < Ao sets each of cardinality
< Ae(x) hence is of cardinality < A.(,). Hence by ®4(d) + H1(d) the sequence 1)
is generic for (NE(*),IP’:{(*)). By Hs and the choice of pf above it is (Ng(*),]P’;(*))—
generic. By ®7(b) also p is.
As f € Ng(.) it follows from ®7 that

recalling Dom(p**) has cardinality < A.(,)) “almost equal” to (n

®7 pl “f T A(x) is a function from A,y to Agx)”.

Together ®% + @' gives a contradiction by the choice of f* in ®9 and of (x) above
which implies that f(¢) > f*(¢) > Ae(x) for some ¢ < A.(4) hence ®¢ is enough. In
Lemma 2.8 below we show that ®g is true; so we are done. Lo 7

Lemma 2.8. The statement ®¢ s true.

Proof. Let us prove ®g; first, assuming clause (b) which is proved below, for clause
(a) choose any strategy st for the antagonist and fix a partial strategy st’ for the
protagonist choosing (p;, 7*) depending on the previous choices and £(i) < ke(x)
such that it is a legal move if relevant and possible. So the only freedom left for the
protagonist is to choose the {(i). So (recalling Hy(A)(a)) we have in V a function
F:920 — o (so F depends on st and st’) such that:

(*)r playing the game such that the antagonist uses st and the protagonist uses
st’, arriving at the i-th move, ¢ = (((j) : j < %) is well defined and if
¢ € N4 then for the protagonist any choice ¢; € (F((),0) N % is legal.

Note that F belongs to (x.) unlike pt, v°.

Now we have to find an increasing sequence ( = (((i) : i < o) from A.(,) not
just from M. () = H(xe(x))V such that F((]i) < ((i) < ¢ and { € A.). Why
possible? As F' € %(Xa(*)) and %(XE(*)) = ME(*) = AE(*)[G:(*)] where G:(*) is
a subset of jo(.)(IP1 () € Ac(x) generic over A () and j.(.)(Po g(x)) satisfies the
)\:(*)—C.C. and o = cf(0) > A(,) this® is possible. That is, there is a jo(.)(Po g(x))-
name F. € A such that F' = F\, [G:(*)} and we define in A_(,) the function
F':720 — o by F'((C(J) 1 j <)) =sup{+1: £ € {((j)+1:j<i}or <o
and Wjp, ) “F((C(J) 17 <14)) # £} clearly this is O.K.
We are left with proving ®¢(b).

Case 1: 1 =0.
Let pg =p* [ 0.

Case 2: i limit.

By clauses (b) and (c) of Hs, there is p;” € Py ,, which is an upper bound (even
Lu.b.) of {pj' 1 J <1} USQ i and it is easily as required. Also vt is well defined
and as required.

3 In fact V = “P/, satisfies the k-c.c.” suffices.
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Case 3: i=j+1and v; ¢ Dom(p™).
Clearly v; is in %, the successor of v; and (3¢)(v; = B At € Vo). As in case
4 below but easier by the properties of the iteration and [Sheb, §3C].

Case 4: i=j+ 1 and v; € Dom(p™).
Again «; is in %, the successor of v; and (3¢)(vy; = B At € v(y))-
First we find p/; such that:

®g (a) pj_ < P; € PO,'ij
(b) if y € Dom(p;r) then p [ I+ “Eg(yp;(”’)) > i(x) = o7 (see H3(c)),
(c) p); forces 4 a value to the pair (771”+(W), ff (i) | Ac()); we call this pair
q; = (ijquj)-

[Why? This should be clear.]
Second

®9 p;r hence p}; is (Ne(x), P )-generic and (v, ,, : j(1) < j) induces the generic.

[Why? As in the proof of ®/ of Lemma 2.7 when we assume that we have carried
the induction, by Hs, clause (g) and @®y.]
Now

®10 (a) f9 € ([Tecn
®g.

(b) for every large enough ¢ € (£(7), o) we have
o fUi < nz(*) mod J{4.

- Gg)AE(”[G;*)]; recalling that F'% is from clause (c) of

[Why? Clause ®10(a) holds because f% € ( [] 6¢)V, hence belongs to #(xc(«))
C<Ae(x)
which is the universe of Me(*) so f¥ € ME(*). But Me(*) = Aa(*)[Ge(*)} and
i) = (e (my) = v € 7(¥) N N(4)); recalling 7°*) is a generic for jE(IP’fy(*)).
For clause ®19(b) recall (x)4(b). Hence N, satisfies the parallel statement,
80 N4 satisfies: if we force by P, then {n, : v € 7(*) N N4} is cofinal in

(H€<>\5<*)057 SJ;’d( ) )
This is a crucial point: this is justified by clause (A)(e) of 1.11.

Applying je(.) and recalling AE(*)[GQ*)] = J(X<(x)) We are done proving (*)10.
Now we choose ((j) > sup{((j1) : j1 < j} as in clause (b) of ®19 and v; = ¢ (;);
so here we obey the promise “for every large enough ((i).
Next choose pj” € IPQ/(*) such that pi v, = P}, npj('”) =v; and f”;r(“ﬁ) MAe, A) =
FPTOD A, N) and v < fPF 09,
We have carried the induction hence proved ®g(b) so we are done proving 2.8.
Uas

Discussion 2.9. 1) The reader may justly wonder why we use V' = VI[g'] =
V[g|%.] rather than simply V[g]. Of course, nothing is lost by it, but why the
extra complication?

4recall that anr(”J’) is an object, not a name and p;r is (NE<*), IP’A,j)-generic
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2) The answer is that during the proof we used: if ((i) € % is increasing with
i < (x) then also (g¢(;) : 7 < k) is generic over V for the sub-forcing of Py g,
generated by g[%.; see ®/ inside the proof of ®¢ inside 2.8. But using %, = B(x),
we do not know this.

3) Now in the parallel case for A = Rg with FS iteration with full memory, such
claim is true, see §0.

4) But we do not know the parallel of (3) for A, so we use a substitute using %,
ie PL.
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