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Keisler’s order is a longstanding classification problem in model theory, introduced 
in 1967 [9] as a possible way of comparing the complexity of theories. Informally, say 
T1 � T2 if the regular ultrapowers of models of T1 are more likely to be saturated 
than those of T2. Keisler’s paper established that there was a minimum class, containing 
algebraically closed fields of fixed characteristic, and a maximum class, containing Peano 
arithmetic. By work of the second author in the seventies, see [33] Chapter VI, the union 
of the first two classes in Keisler’s order gives an independent characterization of the 
stable theories, which are fundamental to modern model theory. Recently there has been 
much progress; for an account of work in the last decade, and some applications, see e.g. 
[21] or [18].

Among the questions raised by Keisler (see e.g. [10] p. 13) were how many classes 
the order had, whether it was linear, and what were syntactic characterizations of the 
minimum and maximum classes.

As of 1978 [33], the number was at least four, linearly ordered. Several years ago we 
discovered infinitely many classes, in fact an infinite descending chain [26], using cer-
tain hypergraphs first studied by Hrushovski [7]. Building on that construction, one can 
find conditional instances of nonlinearity (i.e. assuming a supercompact cardinal), as 
observed independently by Ulrich [37] and the authors [22]. Recently, we found uncondi-
tional (ZFC) instances of nonlinearity [28]. It would be consistent with these papers to 
conjecture that instances of nonlinearity were few, and that the number of equivalence 
classes was countable.

In the present paper we prove, in ZFC, that Keisler’s order has the maximum number 
of classes (continuum many), by constructing a new family of simple unstable theories 
with no nontrivial forking which reflect growth rates of certain sequences of densities of 
finite graphs, and by developing new methods for building ultrafilters on Boolean algebras 
which carefully reflect these theories. (Both constructions seem quite flexible. Perhaps 
one reason some major structural conjectures about simple theories have remained stalled 
for decades is that simple unstable theories may have a much richer structure than 
previous examples suggest.)

The rough idea of our construction is as follows.
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We first build pairs of infinite, finitely branching trees with an edge relation between 
nodes of corresponding height which thins out in an appropriate way as the height grows. 
In our main case,1 whenever two nodes of height k connect, their sets of immediate 
successors form a bipartite graph which, depending on the level, is either complete, or 
sparse and random (with a size and edge probability which is a function of the height). 
Associated to each height is a notion of “small” and “large” and the sparse graphs in 
question have the property that every small set of vertices has a common neighbor and 
no large set of vertices does. These structures, called parameters, can be thought of as 
encoding reduced graphs for the models of simple theories we then construct. The level 
function of a parameter is the set of heights at which we use sparse random (as opposed 
to complete) graphs; these are our choice of a way to track growth rates. To any such 
parameter we then associate a simple theory, essentially a kind of bipartite random graph 
filtered through unary predicates, which is simple unstable with no nontrivial forking. 
We prove that as the sequences of finite densities in the parameters vary sufficiently, as 
measured by the level functions, the associated theories have wildly different saturation 
behavior (a fundamentally infinitary phenomenon).

What happens on the ultrafilter side? For κ regular and uncountable, we define a new 
chain condition to match the simple theories and which says, very roughly speaking, if 
we are given κ positive elements of our Boolean algebra, then after moving to a subset 
U also of size κ, for any finite n not in some ideal (of which more soon), any finite 
u ⊆ U which is “large” in the sense of level n has a subset v which is still “large” and 
whose elements are all compatible. The precise sense in which we choose our family of 
theories to be orthogonal to each other has to do with the fact that for any partition 
of our final set of parameters into M and N , the ideal of subsets of ω generated by 
the subsets where the level functions of elements of M are 1, does not contain (mod 
finite) the set where the level function of n is 1, for any n ∈ N . (The idea is that if we 
preserve the chain condition using the ideal coming from M, any future ultrafilter will 
omit at least one type in any theory from N , since given any purported solution, the 
ultrafilter can concentrate too many of its conditions at points where they cannot all be 
satisfied.) Essentially this allows us to build by induction a (non-free!) Boolean algebra 
and a filter (eventually an ultrafilter) on it, adding formal solutions to problems coming 
from theories from M at suitable inductive stages, while preserving the chain condition 
using the ideal coming from M which ensures omission of a type for any theory with a 
parameter from N . Previous model-theoretic constructions of ultrafilters were focused 
exclusively on free Boolean algebras; for details, see §8.

§11 contains the statements of the main theorems.
These results suggest that not only do model theoretic dividing lines predict jumps 

in the complexity of theorems in finite combinatorics (as e.g. in stable regularity [19], or 
stable arithmetic regularity [36]), but also densities in the sense of finite combinatorics 
can control behavior of infinite models tightly enough that the resulting changes in 

1 This sketch describes theories with additional input from §6; the frame in §2 is more basic.
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complexity are detected by ultrafilters, so are candidates for model theoretic dividing 
lines.

The model theoretic, set theoretic, and combinatorial aspects of these constructions 
admit natural variations and raise interesting open questions, see §13.

Is this the end of a certain line of work on this problem? We think inversely: it tells 
us where to look.

We are grateful to very helpful questions and discussions after talks on a first version of 
this manuscript in summer and fall 2019, which improved the presentation and inspired 
us to prove some substantial new theorems in §12. In particular, we thank M. Goldstern, 
I. Kaplan, M. Magidor, F. Parente, T. Scanlon, C. Terry, and M. Viale.

We are especially grateful to the anonymous referees for numerous, detailed, and 
extremely helpful comments on the manuscript. Thank you.

1. Notation and conventions

Convention 1.1. Unless otherwise stated, all graphs are simple graphs: no loops and no 
multiple edges.

Convention 1.2. We will often write bipartite graphs as triples (V, W, E), where V , W
are the sets of vertices and the E ⊆ V ×W is the edges. We will call a bipartite graph
complete if E = V ×W , so in this case E is asymmetric.

In this paper we will have both finite and infinite (possibly uncountable) random 
graphs; the infinite ones are random in the sense of model theory, which should not 
cause confusion. The next two definitions, ordinary 1.3 and bipartite 1.4, explain what 
this means.

Convention 1.3 (The model-theoretic random graph). “The theory of the random graph” 
means the set of first-order axioms in the language with a binary relation symbol E, 
and equality, which say that E is symmetric irreflexive, that there are infinitely many 
elements, and for any two finite disjoint sets v, w, there is a vertex a such that E(a, b)
for all b ∈ v and ¬E(a, c) for all c ∈ w.

Convention 1.4 (Infinite bipartite random graphs). If (A, B, E) is a bipartite graph and 
A, B are infinite, we may call it a bipartite random graph to mean that the following 
two conditions hold: for any two finite disjoint u, v ⊆ B, there is a ∈ A such that ∧

b∈u E(a, b) ∧
∧

b∈v ¬E(a, b), and conversely, for any two finite disjoint u, v ⊆ A, there 
is b ∈ B such that 

∧
a∈u E(a, b) ∧

∧
a∈v ¬E(a, b).

Convention 1.5 (Trees). Recall that a tree is a partially ordered set such that the set of 
predecessors of any given node is well ordered, so in particular linearly ordered. In this 
paper, the partial order will always be given by initial segment, denoted �. In this paper, 
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all trees will be finitely branching, and all nodes of all trees will have finite height, so 
any tree will be either of finite or countable height.

Remark 1.6. The symbol � is used in this paper to denote two unrelated kinds of partial 
orders: to denote the partial order on elements of a given tree and to denote Keisler’s 
ordering on theories. Since these two contexts never overlap, this should not cause any 
confusion.

Definition 1.7. As usual, we denote by B0
α,μ,ℵ0

the free Boolean algebra generated by α
independent partitions each of size μ, and B1

α,μ,ℵ0
is its completion.

The last subscript, ℵ0, in 1.7 refers to the fact that any intersection of < ℵ0 elements 
from distinct partitions is nonempty. Often it is understood and so not written. When it 
takes values other than ℵ0, we usually refer to it as θ – this was used, for instance, in [28]. 
On the existence of B0

2λ,μ, i.e. B0
2λ,μ,ℵ0

, when λ ≥ μ see e.g. Fichtenholz-Kantorovich, or 
Hausdorff, or [33] Appendix Theorem 1.5. When θ > ℵ0, the existence theorem requires 
λ = λ<θ ≥ μ. In this paper, to find D0, D∗, j as in 7.1 below, we use the completion.

Definition 1.8. Let

FIμ,θ(α) = {h : h is a function, dom(h) ⊆ α, range(h) ⊆ μ, |dom(h)| < θ.}

When θ = ℵ0, as is often our case in this paper, we usually omit it.

This notation recalls e.g. [33] Definition 3.6 p. 358; for a more detailed explanation, 
see [28] §1. In our context, the simple idea is as follows. We are dealing with, say, a 
Boolean algebra B1

α,μ,ℵ0
which is the completion of a Boolean algebra generated freely 

by α many independent partitions (=maximal antichains) each of size μ. Notice that if we 
enumerate the generators as 〈xβ,ε : β < α, ε < μ〉 then the intersection of finitely many 
[or in general, fewer than θ] elements xβi,εi (i < i∗ < ω) will be nonzero if and only if we 
haven’t chosen two distinct elements from the same antichain, that is, if {(βi, εi) : i < i∗}
is a function. Elements arising from such intersections will be dense in the completion 
and merit compact notation. So we shall specify elements arising as such intersections 
by functions f such that dom(f) ⊆ α, | dom(f)| < ℵ0, and range(α) ⊆ μ, where again, 
we think of such a function as selecting an element from each of a small number of 
antichains which are then intersected to form the nonzero element “xf”. Indeed, we 
could make “xβ,ε” a special case of this notation by specifying that when the domain of 
the function has size 1 we may drop the parentheses in x{(β,ε)}. Thus 1.8, and thus:

Convention 1.9. For g ∈ FIμ,θ(α), let xg denote the corresponding nonzero element of 
B.

As the generators are dense in the completion, we have:
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Remark 1.10. Let B = B1
α,μ,ℵ0

. Then, in our notation, the elements of the form xf for 
f ∈ FIℵ0(α) are dense in B.

Fact 1.11 (Δ-system lemma, see e.g. Kunen [12] III.6.15). Let ν and κ be regular cardi-
nals such that ℵ0 ≤ ν < κ. Assume that (∀α < κ)(α<ν < κ). Let A be a family of sets 
with |A| = κ, such that |A| < ν for all A ∈ A. Then there is a B ⊆ A of size κ such that 
B forms a Δ-system.

Note that the family of sets need not be subsets of κ; we place no restriction on their 
provenance, only restrictions on size of the family and size of the sets. We will mostly 
use the case ν = ℵ0:

Corollary 1.12. If κ is an uncountable regular cardinal and A is a family of κ sets, all of 
them finite, there is B ⊆ A of size κ which forms a Δ-system.

A central definition in this paper will be Keisler’s order. For more on the order, see 
[9], or for example the extended introduction to [25]. Some key points:

Definition 1.13 (Keisler’s order, [9]). Let T1, T2 be complete countable first-order theo-
ries. We say T1 � T2 if for every infinite λ, every regular ultrafilter D on λ, every model 
M1 |= T1, and every model M2 |= T2, if (M2)λ/D is λ+-saturated, then (M1)λ/D is 
λ+-saturated.

Recall that the ultrafilter D on λ is regular if there exists a regularizing family, meaning 
X = {Xα : α < λ} ⊆ D such that the intersection of any infinitely many elements of X
is empty. By a lemma of Keisler [9, 2.1], if D is regular, then the choice of M1, M2 in 
1.13 does not matter, up to elementary equivalence. For more on regular ultrafilters, see 
[2] §4.3 and §6.1.

Recall that a regular ultrafilter D on λ is λ+-good if every f : [λ]<ℵ0 → D which is 
monotonic has a multiplicative refinement, that is, if u ⊆ v implies f(u) ⊇ f(v) for all 
u, v ∈ [λ]<ℵ0 , then there exists g : [λ]<ℵ0 → D such that g(u) ⊆ f(u) for all u ∈ [λ]<ℵ0

and g(u) ∩ g(v) = g(u ∪ v) for all u, v ∈ [λ]<ℵ0 .
Keisler [9] proved that good ultrafilters characterize the maximum class in Keisler’s 

order: if D is a regular ultrafilter on λ, then D is λ+-good if and only if Mλ/D is λ+-
saturated for some, equivalently every, model of every complete countable theory T . By 
extension,

Convention 1.14. If D is a regular ultrafilter on λ and κ ≤ λ and T is a complete 
countable theory, we may say

D is (κ+, T )-good
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if for some, equivalently every, M |= T we have that Mλ/D is κ+-saturated. When 
κ = λ, we may just say “D is good for T .” Note that the negation, “D is not (κ+, T )-
good” means that for some, equivalently every, M |= T , the ultrapower Mλ/D is not 
κ+-saturated.

2. New theories

This section defines a new family of simple theories.
Here is a brief overview. First we define parameters, and from these, we define our new 

theories. A parameter is a kind of template. It is essentially a pair of finitely branching 
trees, of countable height, along with data about whether nodes in the left tree do or do 
not connect to nodes of the corresponding height (=level) in the right tree. There are a 
series of coherence conditions which say things like: the branching gradually increases; 
in order for two nodes to connect, all of their initial segments must have been connected, 
but this isn’t sufficient: two nodes at level n which connect may have many immediate 
successors which don’t connect, but at least a few must. There is also a level function, 
which is 0 or 1 at each level, and 1 infinitely often.

In our main case in the present paper, the connection patterns in our trees will have 
a particularly elegant form. We will first specify that all nodes at level n, in both trees, 
have the same number of successors. We shall then choose in advance a distinguished, 
growing sequence of bipartite (fairly random) graphs with the correct number of ver-
tices, and recall we have the given level function. At each level n, if the level function is 
1 (an “active level”), whenever two nodes are connected, we let the pattern of connec-
tions among their immediate successors be given by the distinguished bipartite graph 
for level n + 1. If the level function is 0 (a “lazy level,” the idea being there are no 
additional constraints introduced at this level), we let the pattern of connections among 
their immediate successors be given by a complete bipartite graph. Either way, if two 
nodes are not connected, there are no connections between their immediate successors. 
In such cases, we can reasonably say that the tree is built over a sequence of graphs. 
However, the construction is more flexible, and doesn’t require patterns of connections 
to be essentially invariants of the level; so in this section and the next, we work out the 
construction at a somewhat greater level of generality.

After defining parameters, we will continue these remarks (before 2.14) to motivate 
the theories built from given parameters. Recall convention 1.5 on trees.

Notation 2.1 (Notation for trees).

(1) In this section, a tree will always denote a subset of ω>ω, closed under initial seg-
ments, and partially ordered by initial segment, denoted �.

(2) For Ti a tree and k < ω, let Ti,k denote the kth level of Ti, i.e.

Ti,k = Ti ∩ kω.
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That is, that any η ∈ Ti,k has length k and2 is a function from {0, . . . , k − 1} to ω
(so if k = 0, then dom(η) = ∅). We may write η(t) for the value of η at t ∈ dom(η).

(3) Let Ti,≤k denote 
⋃

	≤k Ti,	.
(4) For Ti a tree and η ∈ Ti,k, denote the immediate successors of η in Ti by

imsTi
(η) = {η′ ∈ Ti,k+1 : η � η′}.

(5) For Ti a tree, denote the leaves of Ti by

lim(Ti) = {η ∈ ωω : ω � k ∈ Ti,k for all k < ω}.

Definition 2.2. Call ξ : ω → {0, 1} a level function if {i < ω : ξ(i) = 1} is infinite, and 
(for convenience) ξ(0) = 1.

The idea of a level function, 2.2, will be that level i of the tree is active if ξ(i) = 1, and 
not if ξ(i) = 0 (the “lazy levels”), explained presently.

The first main ingredient is that of a parameter (basic parameter 2.3, parameter 2.6) 
which will give us the blueprint on which a theory can be based.

Definition 2.3. A basic parameter m consists of a pair of trees T1, T2, a sequence of binary 
relations Rk for k < ω, and a level function ξ, all satisfying the following.

(1) T1 and T2 are subtrees of ω>ω with finite splitting and no maximal node.
(2) For k < ω, Rk ⊆ T1,k × T2,k, and for k = 0 we have equality.
(3) If (η1, η2) ∈ Rk+1 then (η1 � k, η2 � k) ∈ Rk.
(4) If (η1, η2) ∈ Rk, η′2 ∈ imsT2(η2), then for at least two distinct η′1, η′′1, ∈ imsT1(η1) we 

have (η′1, η′2) ∈ Rk+1 and (η′′1 , η′2) ∈ Rk+1, and the parallel for the trees reversed. [In-
formally, if two elements at one level are connected, then every immediate successor 
of one of them is connected to at least two immediate successors of the other.]

(5) If ξ(k) = 0, then (T1,k+1, T2,k+1, Rk+1) adds no new constraints meaning: if (η1, η2) ∈
T1,k+1 × T2,k+1 and (η1 � k, η2 � k) ∈ Rk then (η1, η2) ∈ Rk+1.

(6) Let R =
⋃

k<ω Rk.

Corollary 2.4. It follows from Definition 2.3(4) that we may add:

(7) Fullness: For every η ∈ lim(T1), there are continuum many ρ ∈ lim(T2) such that 
(η � k, ρ � k) ∈ Rk for all k < ω.
Likewise, for every ρ ∈ lim(T2), there are continuum many η ∈ lim(T1) such that 
(η � k, ρ � k) ∈ Rk for all k < ω.

(Of course, we could have just stated this as a separate axiom.)

2 Note that under this setup the “0th level” is a singleton, i.e. T1,0 = T2,0 = {∅}.
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Remark 2.5. On the level functions. Conditions 2.3(5)-(6) tell us essentially that if ξ(i) =
0, Ri+1 is set by (2.3)(5) and contributes no new constraints: if two elements connect 
in Ri, then Ri+1 is a complete bipartite graph on their immediate successors, whereas if 
two elements don’t connect in Ri, Ri+1 is an empty graph on their successors. We call i
a “lazy level” (we chose to say this about i, although we could have said this about i +1). 
In contrast if ξ(i) = 1, we will have a lot of freedom in choosing Ri+1, subject to 2.3(6) 
and 2.6. The usefulness of this feature, the level function, will be more apparent starting 
in §6 when we pattern the Ri’s on tailor-made sequences of bipartite random graphs, and 
start comparing theories whose level functions are in some natural sense independent.

Since we will be interested in varying the edge families Rk, the following conditions will 
ensure there are a minimum of edges and edge coherence to define a model completion. 
In the rest of this paper, we will always assume them to be true. We could have included 
them in 2.3.

Definition 2.6. We say the basic parameter m is a parameter when, in addition3:

(1) Left extension: if k < ω, ν ∈ T2,k, u ⊆ T1,k+1, |u| ≤ k satisfy

(∀η ∈ u)[(η � k, ν) ∈ Rk]

then there are ≥ k + 1 elements ρ ∈ imsT2(ν) such that

(∀η ∈ u)[(η, ρ) ∈ Rk+1].

(2) Right extension: if k < ω, ν ∈ T1,k, u ⊆ T2,k+1, |u| ≤ k satisfy

(∀ρ ∈ u)[(ν, ρ � k) ∈ Rk]

then there are ≥ k + 1 elements η ∈ imsT1(ν) such that

(∀ρ ∈ u)[(η, ρ) ∈ Rk+1].

Remark 2.7. Together, 2.3 and the extension axioms of 2.6 imply that the branching of 
each T	 at height k is at least k + 1.

Remark 2.8. Note that extension does not require the elements in the set u to have an 
immediate common predecessor.

As the results of this paper indicate it may be interesting to further investigate theories 
in this region, we include two comments on alternative definitions.

3 We repeat the conditions for both sides since Rk is not required to be symmetric.
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Discussion 2.9. We could have weakened left and right extension by asking, e.g.: for every 
k1 < ω there is k2 > k1 such that if k3 ≥ k2, ν ∈ T3−	, k3, u ⊆ T	,k3+1, |u| ≤ k1 satisfy, 
etc. With this we would gain a little in some places, e.g. 2.13, and lose a little in others, 
e.g. 2.19. The clean formulation in 2.6 is sufficient for our purposes here. Informally, 
rather than working with a fixed branching and letting the number of connections be 
arbitrarily slow-growing, we encode f(k) ≥ k + 1 in our extension axioms and in the 
construction allow branching to be arbitrarily large.

Discussion 2.10. Another variation we do not use here would be to say m is very nice when 
we may add a non-connection clause to the extension axioms, e.g. if k < ω, ν ∈ T2,k, 
u, v ⊆ T1,k+1, are disjoint, |u ∪ v| ≤ k satisfy

(∀η ∈ u)[(η � k, ν) ∈ Rk]

then there are ≥ k + 1 elements ρ ∈ imsT2(ν) such that (∀η ∈ u)[(η, ρ) ∈ Rk+1] and 
(∀η ∈ v)[(η, ρ) /∈ Rk+1] – and similarly for T1, T2 reversed.4

Returning to the main line of the construction, an important feature of this setup is 
its potential for symmetry, which will help in our proofs.

Definition 2.11. For any parameter m1, the dual m2 = dual(m1) is defined by:

(1) (T m2
2 , T m2

1 ) = (T m1
1 , T m1

2 ).
(2) Rm2

n = {(η2, η1) : (η1, η2) ∈ Rm1
n }.

Observation 2.12. If m is a basic parameter, so is dual(m), and dual(dual(m)) = m, and 
if m is a parameter, then so is dual(m).

It is worth noting that this definition extends the “new simple theory” from [28], used 
there to produce an example of incomparability in ZFC. That said, the present version is 
substantially more general and more flexible, both in its set-up and in its incorporation 
of symmetry, as the next sections will show. [The reader unfamiliar with [28] can safely 
skip Observation 2.13.]

Observation 2.13. For every f : ω → ω \ {0, 1, 2} which goes to infinity, Tf from [28] is 
equal, up to renaming, to Tm for some basic parameter m. If in addition f(k) ≥ k + 1, 
then in addition m is a parameter.

Proof. Using the notation of [28] Definition 2.4, let’s check Definitions 2.3 and 2.6.
Let T2,n =

∏
	<n f(
) and let T2 =

⋃
n T2,n.

4 One drawback is that this isn’t satisfied by the theories of [28].
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In order to define T1, recall that in [28] 2.4, there was a natural tree structure on the 
left-hand side given as follows. We called s ⊆ T1,≤k “k-maximal” if (a) it is a subtree, 
thus downward closed (closed under initial segment), and (b) it does not contain all 
immediate successors of any given node. The point is that an element of the left-hand 
side in a model of Tf determined some such s (by its connections on the right) and that 
⊆ gives a natural partial ordering on the set of all s that are k-maximal for some finite 
k, forming an infinite, finitely branching tree. So, we choose T1 ⊆ ω>ω to be equivalent 
to this tree (up to renaming) and choose R so that Rk holds between η ∈ T1,k and 
ρ ∈ T2,k if and only if η was (before renaming) the subtree s and s contains ρ. Let ξ
be the sequence constantly equal to 1. This completes the specification of m, so let us 
check 2.3. Clearly (1), (2), (3), (4), (6) hold. (5) is trivially satisfied as ξ is constantly 
1. Likewise, it is straightforward to check that as long as f(k) ≥ k + 1, the fullness and 
extension conditions of 2.6 follow easily from the use of k-maximal s’s. Thus, m is a 
parameter. �

Next we use our template m to produce a universal theory, and its model completion. 
Note that this theory is in a different signature, and a priori has no access to the trees 
and edges mentioned in m.

First let’s informally describe this universal theory. The signature consists of unary 
predicates, explained next, plus a binary relation R. The unary predicates are indexed 
by the nodes in the trees (Qη for the left, Pν for the right, along with “Q” for Q〈〉 and 
“P” for P〈〉) and these predicates in some sense “hard-code” the structure of the trees: 
Q and P partition the domain, the Qη’s are all subsets of Q, the Pν ’s are all subsets of 
P, if η � η′ then Qη ⊇ Qη′ , if ν1, ν2 are immediate successors of η then Qν1 ∩Qν2 = ∅
(indeed, the predicates corresponding to the immediate successors of η partition Qη), 
and the parallel for the P ’s. This can all be said with universal axioms. Finally, we need 
to address R, which is a binary relation which may hold between elements of Q and 
elements of P. We add universal axioms saying essentially that if η and ν were nodes of 
the same level in the left and right trees respectively which were not connected in the 
template, then R cannot hold between any element of Qη and Pν . (Now it should be 
clearer why we remarked that the “lazy level adds no new constraints.”)

It will be convenient to define and work with the finite approximations T 0
m,k where we 

only have unary predicates for nodes up to level k of the left and right trees. So T 0
m, the 

theory we’ve just sketched, will be a universal theory in an infinite language, defined as 
the union of T 0

m,k for all finite k.
§3 contains a more precise discussion of such theories and the model completions 

Tm, whose existence we will of course have to justify in the rest of this section. Very 
informally for now [this remark is made more precise in §3], the model completion may 
be thought of as a “bipartite random graph filtered through trees,” in the sense that if 
we are in a sufficiently saturated5 model of Tm, whenever we take a type-definable set on 

5 Some saturation is assumed just so that both type-definable sets are infinite.
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the left corresponding to a leaf in the left template tree, and likewise a type-definable set 
on the right corresponding to a leaf in the right template tree, then if these two leaves 
were “connected all the way up” in the template, the restriction of R to these two sets in 
our model will look like an infinite bipartite random graph, in the sense of model theory.

Remark 2.14. When the context is clear, below, we will write m = (T1, T2, R) instead of 
(Tm,1, Tm,2, Rm).

In the next definition, we informally think of Q as being on the left and P as being 
on the right.

Definition 2.15. Given a parameter m and k < ω, define T 0
m,k, a universal first order 

theory, as follows. Let τk = τm,k denote6

{Q,P, Qη, Pρ : η ∈ T1,≤k, ρ ∈ T2,≤k} ∪ {R}.

Then T 0
m,k is the universal theory in L(τm,k) such that a τk-model M is a model of T 0

m,k

if and only if:

(1) QM , PM is a partition of dom(M). We identify Q and Q〈〉, P and P〈〉.
(2) 〈QM

η : η ∈ T1,n〉 is a partition of QM for each n ≤ k and this partition satisfies

η � ν ∈ T1,≤k implies QM
η ⊇ QM

ν .

(3) 〈PM
ρ : ρ ∈ T2,n〉 is a partition of PM for each n ≤ k and this partition satisfies

ρ � ν ∈ T2,≤k implies PM
ρ ⊇ PM

ν .

(4) RM ⊆ {(b, a) : b ∈ QM , a ∈ PM and for every n ≤ k, there are η1 ∈ T1,n, η2 ∈ T2,n
such that (η1, η2) ∈ Rn and (b, a) ∈ QM

η1
× PM

η2
}.

Informally, condition 2.15(4) says there can only be R-edges in M between elements 
which belong to “leaves” all of whose initial segments of the same height were connected 
in the template R.

Observation 2.16. T 0
m,k ⊆ T 0

m,k+1.

Definition 2.17. Given a parameter m we define T 0
m, a universal first order theory, as fol-

lows. The vocabulary is τ = τm = {Q, P, Qη, Pν , R : η ∈ T1, ν ∈ T2} where Q, P, Qη, Pν

6 We could have used predicates P1, P2, P1,η, P2,ρ to emphasize the symmetry and to continue the notation 
of T1, T2, but chose P, Q for readability.
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are unary predicates and R is a binary predicate, and

T 0
m =

⋃
{T 0

m,k : k < ω}.

Claim 2.18. For each k < ω, the model completion Tm,k of T 0
m,k exists.

Proof. T 0
m,k is a universal theory in a finite relational language, and the class of its 

models has JEP and AP. Suppose we are given any two M1, M2 |= T 0
m,k. For JEP, we 

also assume M1 ∩ M2 = ∅; for AP, we also assume there is a model M0 |= T 0
m,k such 

that M0 ⊆ M	 for 
 = 1, 2, M1 ∩M2 = M0. Then consider the following model N . The 
domain of N is M1 ∪M2, for each unary predicate X ∈ τk, let XN = XM1 ∪XM2 , and 
let RN = RM1 ∪RM2 . Thus Tm,k exists. �
Claim 2.19. For every k∗ < ω the following holds: if M |= Tm,k1 , and N |= Tm,k2 , where 
k1, k2 ≥ k∗, and ψ is a sentence of τk∗ of length ≤ k∗ (or just such that any subformula 
has ≤ k∗ free variables), then M |= ψ ⇐⇒ N |= ψ.

Proof. Let F be defined by: f ∈ F = Fk∗ iff for some k ≤ k∗ and a0, . . . , ak−1 ∈ M , 
b0, . . . , bk−1 ∈ N , we have that f = {(a	, b	) : 
 < k}, and for every atomic 
ϕ(x0, . . . , xk−1) ∈ L(τk∗), we have that

M |= ϕ[a0, . . . , ak−1] ⇐⇒ N |= ϕ[b0, . . . , bk−1].

(We could just as well replace “atomic” by “quantifier free.”) Thus, F is a set of partial 
one to one functions f from M into N such that | dom(f)| ≤ k∗, and clearly if f ∈ F
and A ⊆ dom(f) then f � A ∈ F .

We claim that if f ∈ F , | dom(f)| < k∗ and a ∈ M, b ∈ N then there are a′ ∈ M , 
b′ ∈ N such that f ∪ {(a′, b)} ∈ F and f ∪ {(a, b′)} ∈ F . Suppose we are given f =
{(a	, b	) : 
 < k < k∗} along with a, b. Since k1, k2 ≥ k∗ in the definition of M , N
are arbitrary, it will suffice to find b′. Moreover, since either a ∈ PM or a ∈ QM , by 
symmetry (i.e. we can use dual(m)) it suffices to consider the case a ∈ QM .7

Consider the sequence {a	 : 
 < k} in M . Each a	 is either in QM or PM . Renumber-
ing, without loss of generality, there is 
∗ ≤ k such that a	 ∈ PM for 
 < 
∗ and a	 ∈ QM

7 Informally, here is the worry: M is a fortiori a model of Tm,k∗ , so the best quantifier-free τk∗ -information 
we have about the a�’s in M is to know which leaf at level k∗ each of them belongs to (i.e. which Qη or 
Pρ for η ∈ T1,k∗ or ρ ∈ T2,k∗ ) and whether or not they connect via R. In the model N , the corresponding 
b�’s have the same quantifier-free τk∗ -type as their counterparts in M , but when looking for b′ in N we 
must consider an additional level of resolution, namely the leaf of each b� at level k2 ≥ k∗. For example, 
if (QM

η , PM
ρ , RM ), lgn(η) = lgn(ρ) = k∗ form an infinite bipartite random graph in M , then for any finite 

set u of elements of QM
η there is a ∈ PM

ρ R-connecting to all of them. But suppose f had mapped the 
elements of u to elements of QN

η which happened to span QN
η�〈i〉 for i < | imsT1 (η)|. Then we could not find 

a corresponding b′ in N . We solve this by limiting the size of sets u in terms of k∗ and using the extension 
axioms.
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otherwise (so the corresponding fact is true for the b	’s in N). Also, without loss of gen-
erality, the sequence 〈a	 : 
 < 
∗〉 is without repetition, and a /∈ {a	 : 
 < 
∗}, otherwise 
it is trivial. Since we have assumed that a, our new element, is in QM , let η ∈ T1,k∗ be 
such that a ∈ QM

η . Looking now at N , recalling that k2 ≥ k∗, let ρ0, . . . , ρ	∗−1 ∈ T2,k2

be such that b	 ∈ PN
ρ�

for 
 < 
∗. (It follows by our definition of f ∈ F that a	 ∈ PN
ρ��k∗

for 
 < 
∗.) It will suffice to find b′ ∈ QN
η such that

(a, a	) ∈ RM ⇐⇒ (b′, b	) ∈ RN for 
 < 
∗. (a)

The inequalities are easy so we ignore them. Note that the axioms for T 0
m,k∗

⊆ Tm,k∗ ⊆
Tm,k1 ∩ Tm,k2 in 2.15(4) imply that

(a, a	) ∈ RM =⇒ (η, ρ	 � k∗) ∈ Rk∗ . (b)

Thus, for equation (a), it will suffice to show that there is some η′ ∈ T1,k2 such that 
η � η′ and

(a, a	) ∈ RM =⇒ (η′, ρ	) ∈ Rk2 .

(It doesn’t matter to us here whether the non-edges come from the randomness between 
leaves or from leaves with no edges between them.) Let us define by induction on t ≤
(k2 − k∗) a �-increasing sequence of elements ηt ∈ T1,k∗+t such that η0 = η, s ≤ t =⇒
ηs � ηt, and (a, a	) ∈ RM =⇒ (ηt, ρ	 �k∗+t) ∈ Rk∗+t. For t = 0, this follows from 
equation (b). For t ≥ 0, since 
∗ < k∗, we may apply the right extension Axiom 2.6 (using 
k∗ + t, ηt, {ρ	 �k∗+t: 
 < 
∗} here for k, η, {ρ � k : ρ ∈ u} there) and choose any one of 
the η’s returned by that axiom to be ηt+1. Let η′ = ηk2−k∗ ∈ T1,k2 , and this completes 
the proof. �
Corollary 2.20. When m is a parameter, the sequence 〈Tm,k : k < ω〉 converges. Moreover, 
for every formula ϕ(x̄) of τm, for some quantifier free ψ(x̄), for every k < ω large enough, 
we have

(∀x̄)( ψ(x̄) ≡ ϕ(x̄) ) ∈ Tm,k.

Conclusion 2.21. Let m be a parameter and T 0
m be the universal theory from 2.17. Then 

its model completion Tm is well defined, eliminates quantifiers, and is equal to the limit 
of 〈Tm,k : k < ω〉.

Lemma 2.22. Continuing in the context of Conclusion 2.21, the theory Tm is simple and 
the only dividing comes from equality.

Proof. Work in the monster model for Tm. Observe that this theory has trivial alge-
braicity (and quantifier elimination). Let ϕ(x̄; ̄a) be a formula realized by some b̄ with 
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b̄∩ ā = ∅. Without loss of generality, ϕ(x̄, ȳ) decides instances of R and equality between 
its variables, and implies that no two of its variables are equal. Suppose for a contra-
diction that ϕ(x̄; ̄a) divides, witnessed by the set of formulas {ϕ(x̄; ̄ai) : i < (2ℵ0)+}
being k-inconsistent, where 〈āi : i < (2ℵ0)+〉 is a (nontrivial) indiscernible sequence in 
the type of ā. Suppose lgn(x̄) = m and lgn(ā) = lgn(ȳ) = n. [In fact, by basic properties 
of nonforking, it would suffice to consider m = 1 and Tm,k for each k < k∗, where the 
picture is very much like the random graph; this simplifies the proof. However, we give 
the general picture.]

Fix a sequence 〈b̄i : i < (2ℵ0)+〉 of m-tuples such that |= ϕ[b̄i, ̄ai] and b̄i ∩ āi = ∅
for each i. Write b̄i = 〈bi0, . . . , bim−1〉 and āi = 〈ai0, . . . , ain−1〉. Since (2ℵ0)+ is regular, 
we may assume the type of bij over the empty set does not depend on i, and also (by 
definition of indiscernible) that the type of ait over the empty set does not depend on i. 
[The “leaf” to which the 
-th element of the tuple b̄i�āi belongs is constant as we vary 
i.] That is, for j < m:

• if |= Q(bij), then there is η∗ = η∗(j) ∈ lim(T1) such that |= Qη∗(j)�	 for all 
 < ω, 
where η∗(j) depends on j but not on i.

• if |= P(bij), then there is ν∗(j) ∈ lim(T2) such that |= Pν∗(j)�	 for all 
 < ω, where 
ν∗(j) depends on j but not on i.

Likewise, for t < n,

• if |= Q(ait), then there is η∗ = η∗(t) ∈ lim(T1) such that |= Qη∗(t)�	 for all 
 < ω, 
where η∗(t) depends on t but not on i.

• if |= P(ait), then there is ν∗(t) ∈ lim(T2) such that |= Pν∗(t)�	 for all 
 < ω, where 
ν∗(t) depends on t but not on i.

Recall that by quantifier elimination, the only information ϕ can specify about the 
relation of any given xj to the other x or y variables involves the unary predicates, the 
relation R, and equality.

Now we shall choose by induction on j < m elements b∗j such that the sequence 
〈b∗j : j < m〉 realizes {ϕ(x̄; ̄ai) : i < (2ℵ0)+}, and this contradiction will finish the proof. 
At stage j, we’ll want to keep track of which elements of {ait : i < (2ℵ0)+, t < n} ∪ {b∗s :
s < j} are in Q and which are in P (keeping in mind that the partition of the first set 
depends only on t). Let

Aj
Q = {ait : i < (2ℵ0)+, t < n, |= Q(ait)} ∪ {b∗s : s < j, |= Q(b∗s)}

and likewise let

Aj
P = {ait : i < (2ℵ0)+, t < n, |= P(ait)} ∪ {b∗s : s < j, |= P(b∗s)}.
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Thus, for each j < m, there are two cases. If |= Q(bij) (for some, equivalently every, 
i) then it suffices to choose b∗j such that:

• {b∗j} ∩ Aj
Q = ∅, i.e. b∗j is not equal to any other element in Q under consideration; 

and
• b∗j satisfies the appropriate pattern of R-edges and non-edges over the elements of 

Aj
P as specified by ϕ, i.e.

– if ait ∈ Aj
P and ϕ � R(xj , yt), then R(b∗j , ait)

– if air ∈ Aj
P and ϕ � ¬R(xj , yr), then R(b∗j , air)

– if s < j and b∗s ∈ Aj
P and ϕ � R(xs, xj), then R(b∗s , b∗j )

– if s < j and b∗s ∈ Aj
P and ϕ � ¬R(xs, xj), then ¬R(b∗s , b∗j ).

We know from the universal theory T 0
m that the consistency of these demands relies on 

the predicates of the elements and the equalities between them, and nothing else.8 Of 
course, ϕ need not decide all predicates a priori, but on our subsequence, we ensured 
this information is effectively decided, constant across i, and consistent with the pattern 
of edges implied by ϕ, as witnessed by the consistency of each ϕ(x̄, ̄ai); meanwhile, our 
choice of indiscernible sequence and inductive hypothesis ensure no trouble is provided 
by equality. So we can carry the inductive step.

If |= P(bij) (for some, equivalently every, i) then it suffices to choose b∗j satisfying the 
parallel conditions with Q and P reversed, and the justification is the same.

This completes the proof. �
Conclusion 2.23. Let m be a parameter and T 0

m be the universal theory from 2.17. Then 
its model completion Tm exists, eliminates quantifiers, is simple unstable, and the only 
dividing comes from equality.

We will continue with a description of the models and types of Tm in §4 after some 
discussion.

3. A dark woods

In this primarily expository section we make some motivating and organizing remarks 
about the new theories of §2.

Recall that “R acts as an (infinite, model theoretic) bipartite random graph between 
the sets A, B” is shorthand for: for any two disjoint finite subsets A0, A1 of A, there is 
an element b ∈ B which has an R-edge to all elements of A0 and to no elements of A1, 

8 To be clear, recall that if two nodes η, ν of finite height are connected in the template trees, then elements 
of Qη, Pν are free to be related or unrelated by R, whereas if η, ν are not connected, then all corresponding 
instances of R are forbidden. If η∗ ∈ lim(T1) and ν∗ ∈ lim(T2) and Qη∗��(a) for 	 < ω and Pν∗��(b) for 
	 < ω and (η∗ � 	, ν∗ � 	) ∈ R� for 	 < ω, then there are a priori no constraints on whether or not R holds 
between a and b.
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and for any two disjoint finite subsets B0, B1 of B, there is an element a ∈ A which has 
an R-edge to all elements of B0 and to no elements of B1.

Let’s begin with some very simple examples, which are too basic to satisfy the defini-
tions of §2 outright (the signatures are finite) but illustrative nonetheless.

Example 3.1. Suppose τ includes unary predicates Q and P, a binary relation R, and 
nothing else. Suppose T0 asserts that Q and P partition the domain, and that R ⊆ Q ×P. 
Then the model completion T of T0 exists. In models M of T , both PM and QM are 
infinite, and partition the domain. R acts as a model theoretic bipartite random graph 
between QM and PM . (There are no instances of R within PM or QM .)

Example 3.2. Suppose τ includes unary predicates Q, Q0, Q1, Q2, P, P0, P1, P2, a binary 
relation R, and nothing else. Suppose T0 asserts that Q and P partition the domain; 
that Q0, Q1, Q2 partition Q; that P0, P1, P2 partition P; and that R ⊆ Q × P. Suppose 
that in addition T0 asserts that:

• there are no R-edges between Q0 and P1, and
• there are no R-edges between Q1 and P2.

Then the model completion T of T0 exists. In a model M of T , we have that QM
0 , QM

1 , 
QM

2 , PM
0 , PM

1 , PM
2 are all infinite, and partition the domain. There are no instances of 

R between QM
0 and PM

1 , between QM
1 and PM

2 , or within QM or within PM . Notice 
that R acts as a model-theoretic bipartite random graph between QM

i and PM
j for 

(i, j) ∈ {0, 1, 2} × {0, 1, 2} \ {(0, 1), (1, 2)}. What’s more, R acts as a model-theoretic 
bipartite random graph between QM

0 ∪ QM
1 and PM

1 , and also between QM
1 ∪ QM

2 and 
PM

0 ∪PM
1 . Indeed, R acts as a model-theoretic bipartite random graph between 

⋃
i∈u Q

M
i

and 
⋃

j∈v P
M
j whenever u ⊆ {0, 1, 2}, v ⊆ {0, 1, 2} and none of the pairs Qi, Pj for 

(i, j) ∈ u × v have their R-edges forbidden by T0.

Observe that a simple way to encode the information at the end of Example 3.2 could 
be to consider a kind of bipartite “reduced graph” between the indices for “leaves,” here 
{0, 1, 2} and {0, 1, 2}, where we put a symbolic edge between i and j if and only if T0 does 
not forbid R-edges between Qi and Pj . Then we can summarize Example 3.2 (slightly 
abusing notation by not referencing a model) by saying R acts as a model-theoretic 
bipartite random graph between 

⋃
i∈u Qi and 

⋃
j∈v Pj precisely when the restriction of 

our bipartite reduced graph to the vertices in u and v is complete.9
We now point out that in the more general context of parameters and the larger 

signatures of §2, such “reduced graphs” on the “leaves” likewise give a nice picture of 
our theories Tm, and can be phrased naturally in terms of the template edges R. The 

9 Of course, the restriction to {i} and {j} when there is a symbolic edge between i and j is just a special 
case of a complete bipartite graph.
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next two definitions allow us to compare what we are calling the reduced graph to the 
R-graph in a model of the theory, starting with the case where we restrict to nodes of a 
fixed finite height k.

Definition 3.3. Suppose we are given a parameter m, a finite k, and nonempty sets V ⊆
T1,k and W ⊆ T2,k. Let

Hk(V,W ) = (V,W,Rk � V ×W ).

Definition 3.4. Suppose we are given a parameter m thus Tm, a finite k, a model M |= Tm, 
and nonempty sets V ⊆ T1,k and W ⊆ T2,k. Let

Gk(V,W ) = Gk(V,W )[M ] = (
⋃
η∈V

QM
η ,

⋃
η∈W

PM
ρ , R � (

⋃
η∈V

QM
η ×

⋃
η∈W

PM
ρ ) ).

Remark 3.5. The phrase “reduced graph” may bring to mind Szemerédi’s regularity 
lemma for graphs, where recall that a given finite graph is partitioned into clusters in 
such a way that between most pairs of clusters the edges are distributed ε-uniformly. 
There one may define a reduced graph (see [11] p. 306), for instance by taking one 
vertex for each cluster, and with an edge between two points whose associated clusters 
are ε-regular with density ε-bounded away from 0 (and if desired, 1). Such a reduced 
graph doesn’t only record the “generic interaction” of a given pair of clusters, but also 
entails that there is a certain further genericity in the interaction of more than two 
clusters, e.g. if three points in the reduced graph form a triangle, we should be able 
to get many triangles on three vertices spanning the associated clusters in the original 
graph. A certain analogue of this in our setting is in the comment after Example 3.2
about complete bipartite graphs.

The next definition gives the full analogue for the countable height trees we really 
use in m and Tm. The word virtual reflects that the objects are generally not definable, 
though they may be type-definable. Though what we call “R∞” is not definable in 3.6, 
the edge relation in 3.7 is simply RM .

Definition 3.6 (Virtual reduced graph). Let m = (T1, T2, R) be a parameter.

(1) Define R∞ = {(ρ, η) : (ρ, η) ∈ lim(T1) × lim(T2) and (ρ � k, η � k) ∈ Rk for all 
k < ω}.

(2) Then for any nonempty V ⊆ lim(T1) and W ⊆ lim(T2), define the virtual reduced 
graph

H∞(V,W )

to be the bipartite graph (V, W, R∞).
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That is, 3.6 defines a bipartite graph whose vertices are the leaves of T1 on the left and 
the leaves of T2 on the right and where (η, ν) is an edge if and only if (η � n, ν � n) ∈ Rn

for all n < ω. (2) gives various induced subgraphs.

Definition 3.7 (Virtual graph). Continuing in the notation of 3.6, suppose we are given 
any model M |= Tm.

(1) For any V ⊆ lim(T1), let the expression Q∞
V = Q∞

V [M ] denote

{a ∈ dom(M) : for some η ∈ V , M |= Qη�k(a) for all k < ω}.

In particular, for any η ∈ lim(T1), Q∞
{η} = Q∞

{η}[M ] denotes the subset of M realizing 
the type {Qη�k(x) : k < ω}.

(2) Likewise for any W ⊆ lim(T2), let the expression Q∞
W = Q∞

W [M ] denote

{b ∈ dom(M) : for some ρ ∈ W , M |= Pη�k(b) for all k < ω}.

In particular, for any ρ ∈ lim(T2), P∞
{ρ} = P∞

{ρ}[M ] denotes the subset of M realizing 
the type {Pρ�k(x) : k < ω}.

(3) For any nonempty V ⊆ lim(T1), W ⊆ lim(T2), let the virtual graph

G∞(V,W ) = G∞(V,W )[M ]

be the bipartite graph

(Q∞
V , P∞

W , RM � Q∞
V × P∞

W ).

That is, 3.7 defines a bipartite graph from M whose vertices are elements of Q belonging 
to certain “leaves” on the left and the elements of P belonging to certain other “leaves” 
on the right, along with the edge relation given by R.

Discussion 3.8. We defer to §§2, 4 for details. Given a parameter m:

a) The structure of models of Tm is in some sense simple: in the language of 3.6 and 3.7, 
in a sufficiently saturated10 model M |= Tm, given any nonempty V ⊆ lim(T1) and 
W ⊆ lim(T2), if H∞(V, W ) is a complete graph, then G∞(V, W )[M ] is an infinite 
bipartite random graph, and if H∞({η}, {ρ}) is empty, then so is G∞({η}, {ρ})[M ]. 
(Letting V, W vary, these two facts together are enough to put together the whole 
picture.)

10 For simplicity, to ensure all countable intersections of predicates are nonempty.
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b) In any ℵ1-saturated model M of Tm, e.g. in a regular ultrapower, for any leaves 
η ∈ lim(T1), ρ ∈ lim(T2), the sets Q∞

{η}, P∞
{ρ} will be infinite, and will have among 

them the infinite empty or random graph structure just mentioned. We will see in 
detail in §4 that for λ+-saturation, we will want each such Q∞

{η} and each such P∞
{ρ}

to have size at least λ+, and moreover, for every V ⊆ lim(T1) and W ⊆ lim(T2) such 
that H∞(V, W ) is a complete graph,11 G∞(V, W ) is λ+-saturated as a bipartite 
random graph, i.e.
(i) for any two disjoint subsets A, B of P∞

W of size λ, and any η ∈ V , there is 
c ∈ Q∞

{η} which R-connects to all a ∈ A, no b ∈ B.
(ii) the parallel reversing V, W and Q, P .
In what follows, we will focus on m such that m = dual(m); so by symmetry, it will 
be enough to handle one of (i), (ii), and as we will see in 4.8 and 5.6 below, it will 
generally be enough to realize partial positive R-types.

Where does the potential for widely differing complexity arise? The following informal 
discussion may help the reader anticipate or follow the proof.

Why might these theories interact with ultrapowers in an interesting way? In an ul-
trapower of a model of Tm, elements which are “on average” part of the same leaf may 
nonetheless appear, when projected to a given index model, to be in too many different 
predicates at a given height k, blocking realization of the type in that index model when 
splitting is constrained. Both the size of allowed splitting at a given height in a given 
tree (and, by extension, the level functions) come into play, which in turn reflect the 
degrees of the vertices in the reduced graphs Hk.

Why might different parameters m, n produce theories Tm, Tn which look different 
to ultrapowers? The structure of each theory Tm will reflect its sequence of “reduced 
graphs,” based on the finite bipartite graphs Ri = Ri(m), and the related level function 
ξ = ξ(m), which is active at infinitely many n ∈ ω. When ξ is not active, Ri+1 gives 
essentially no new information beyond Ri. A natural way to vary the Ri’s will be to 
consider a single fast-growing sequence of sparse graphs 〈Ei : i < ω〉, choose many level 
functions which are independent in a natural sense, and build for each such ξ a theory 
whose Ri essentially copies Ei at active levels and copies a complete bipartite graph of 
the right size at lazy levels. This allows us to vary the sequences of reduced graphs in a 
very clear way. Remarkably, these differences are detected in a very strong sense both 
by the theories themselves and by ultrafilters. To prove this will also require an advance 
in ultrafilter construction.

Remark 3.9. To make these suggestions precise will, of course, require the rest of the 
paper; but notice that the construction already suggests many further modifications and 
interesting future directions, some discussed at the end of the paper.

11 What about other W s? It can’t hurt, but won’t add anything: see last line of proof of 4.6.
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4. Models of Tm

In this section we analyze the types over a model M of Tm, which will help later in 
dealing with saturation.

Note that we use almost nothing about the level functions in this section; we just need 
the extension axioms to ensure a minimum increase in the edges. The level functions 
operate at a different scale in the sense that they control variations in the number of 
edges well beyond the minimum established by the extension axioms, and will mainly 
play a role in later sections, where we try to compare theories.

Convention 4.1. In this section, m is an arbitrary but fixed parameter, and M is a model 
of Tm.

For the purposes of our analysis, because of the symmetry of m, it will suffice to 
deal with types q(x) in one free variable x which describe an element on the left, i.e. 
q(x) � Q(x). Note that any such type, being complete, will specify that Qρ�n(x) for some 
ρ ∈ lim(T1) and all n < ω.

Here is some notation for the connections made along the way by a leaf ρ.

Definition 4.2. For ρ ∈ lim(T1), we define:

(1) Sρ = {ν : for some finite n, ν ∈ T2,n and (ρ � n, ν) ∈ Rn}.
(2) lim(Sρ) = {η ∈ lim(T2) : η � n ∈ Sρ for n < ω}

= {η ∈ lim(T2) : (ρ, η) ∈ R∞}.

Observation 4.3. Recalling 2.4, if ρ ∈ lim(T1), Sρ is a subtree of T2 with no maximal 
node.

Recall some notation from the previous section. For η ∈ lim(T2), P∞
{η} = P∞

{η}[M ]
denotes the elements of M which are “in the leaf” corresponding to η, and the corre-
sponding notation for ρ ∈ lim(T1) is Q∞

{ρ} = Q∞
{ρ}[M ]. We had likewise defined P∞

V , Q∞
W

in 3.7, which also depend on M . Recall the virtual reduced graph H∞(V, W ) from 3.6, 
and the virtual graph G∞(V, W ) = G∞(V, W )[M ] from 3.7.

Observation 4.4. For any ρ ∈ lim(T1) and W ⊆ lim(T2) such that H∞({ρ}, W ) is com-
plete, we have that lim(Sρ) ⊇ W , in other words, Sρ contains all proper initial segments 
of elements of W .

Claim 4.5. Suppose ρ ∈ lim(T1) and write W = lim(Sρ). For any

A,B ⊆ P∞
W [M ] with A ∩B = ∅

the following set of formulas is a non-algebraic partial type of M :
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{Qρ�n(x) : n < ω} ∪ {R(x, a) : a ∈ A} ∪ {¬R(x, b) : b ∈ B}.

Proof. Consider a finite subset, which without loss of generality is of the form:

{Qρ�n(x) : n < k} ∪ {R(x, a0), . . . , R(x, a	−1)} ∪ {¬R(x, b0), . . . ,¬R(x, br−1)}.

Each of the elements ai, bj has a leaf in M : let’s suppose that for each i < 
, ηi is such 
that M |= Pηi�n(ai) for n < ω and for each j < r, νj is such that M |= Pνj�n(bj) for 
n < ω, though these leaves need not necessarily be distinct. By our choice of A, B [that 
is, by the definition of W ], we have that for any finite level, and in particular for k,

(ρ � k, ηi � k) ∈ Rk and (ρ � k, νj � k) ∈ Rk

for i < 
, j < r. Thus the following sentence belongs to Tm,k:

(∃x)(
∧
i<	

R(x, ai) ∧
∧
j<r

R(x, bj)).

By 2.19, this remains true all the way to Tm. Since this shows an arbitrary finite subset 
is consistent, we finish the proof. �
Corollary 4.6. Suppose ρ ∈ lim(T1) and write W = lim(Sρ). For any A, B ⊆ M with 
A ∩B = ∅ we have that

r(x) = {Qρ�n(x) : n < ω} ∪ {R(x, a) : a ∈ A} ∪ {¬R(x, b) : b ∈ B}

is a non-algebraic partial type of M if and only if A ⊆ P∞
W [M ].

Proof. Suppose we denote A0 = A ∩ P∞
W and B0 = B ∩ P∞

W . Let

r0 = {Qρ�n(x) : n < ω} ∪ {R(x, a) : a ∈ A0 } ∪ {¬R(x, b) : b ∈ B0}.

Claim 4.5 tells us that r0 is a partial type.
First consider any element b ∈ B \B0. If b ∈ QM , then ¬R(x, b) follows by definition 

as RM ⊆ QM × PM . If b ∈ PM , then because M is a model, there is some η such 
that b ∈ PM

η�n for all n < ω. If (ρ, η) /∈ R∞, then there is some n < ω for which 
(η � n, ρ � n) /∈ Rn, which translates to

M |= (∀x)(∀y)(Qη�n(x) ∧ Pρ�n(y) =⇒ ¬R(x, y))

and so r0 � ¬R(x, b).
Finally, suppose that A \A0 is nonempty, and let a be any one of its elements. Let η

be such that a ∈ PM
η�n for all n < ω. By definition of A0, (ρ, η) /∈ R∞, so it follows from 

the previous paragraph that r0 � ¬R(x, a). Thus r is consistent if and only if A \A0 = ∅.
Note that this proof shows that if r is consistent, r0 � r. �
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The next claim justifies restricting our saturation arguments to considering types of 
a very simple form.

Definition 4.7. We say a model M of Tm is weakly λ+-saturated when:

(1) “the leaves are large”: for any η ∈ lim(T1), |{a ∈ M : QM
η�n(a) for all n < ω}| > λ, 

and likewise for ν ∈ lim(T2).
(2) if c ∈ QM then {b : (c, b) ∈ RM} ⊆ PM has cardinality > λ.
(3) the dual to the previous line: if b ∈ PM then {c : (c, b) ∈ RM} ⊆ QM has cardinality 

> λ.

Claim 4.8 (A basic form for non-algebraic types). Suppose M is weakly λ+-saturated. For 
any C ⊆ M , |C| ≤ λ, and q ∈ S1(C) such that q(x) � Q(x), there exist ρ, W ⊆ lim(Sρ), 
A ⊆ P∞

W [M ], B ⊆ PM with A ∩B = ∅ and |A| + |B| ≤ λ, such that writing

r(x) = {Qρ�n(x) : n < ω} ∪ {R(x, a) : a ∈ A} ∪ {¬R(x, b) : b ∈ B},

we have r(x) � q(x). We may also ask that |A|, |B| = λ.

Proof. By hypothesis, every “leaf” Q∞
{η}[M ] or P∞

{ρ}[M ] has size > λ.
To start, let ρ ∈ lim(T1) be such that q(x) � Qρ�n(x) for all n < ω, which exists as 

q is a complete type. Define W := lim(Sρ), A0 := {c ∈ C : q � R(x, c)} ∩ P∞
W [M ], and 

B0 := {c ∈ C : q � ¬R(x, c)} ∩ P∞
W [M ]. Let

r0(x) = {Qρ�n(x) : n < ω} ∪ {R(x, a) : a ∈ A0} ∪ {¬R(x, b) : b ∈ B0} ⊆ q(x).

Clearly r0 is consistent and implies at least the restriction of q(x) to the given unary 
predicates and to all positive and negative instances of R(x, y) on P∞

W [M ] ∩ dom(q). 
Since Tm = Th(M) eliminates quantifiers, it suffices to consider quantifier-free formulas. 
Let us check that by possibly increasing A0, B0 by no more than λ elements, we can 
ensure that any formulas of the following kinds which belong to our original q are also 
implied. Along the way, we remark on the consequences for this choice of larger partial 
type r, formally defined in (�) below.

(a) x �= c ∈ q

If c ∈ PM , then this follows from Q(x). Let 〈cα : α < κ〉 enumerate all elements of 
QM such that “x �= cα” is implied by q(x), or equivalently belongs to q(x). For each 
α < κ, choose some bα /∈ A0 such that M |= R(cα, bα). We can do this because each 
R(cα, x) defines an infinite subset of M which is by hypothesis and Definition 4.7 of 
size at least λ+. Adding {bα : α < κ} to B0 to form B1 will not raise its size above 
λ and will mean that r(x) � x �= cα for each α < κ. Let A1 := A0.
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(b) ¬Qν(x) ∈ q, for ν /∈ {ρ � n : n < ω}, or ¬Pη(x) ∈ q.

This follows from our assumption that {Qρ�n(x) : n < ω} ⊆ r0.

(c) ¬R(x, b), for any b ∈ B1 \ P∞
W [M ].

For any b /∈ P∞
W [M ], there is a finitary reason for the non-membership, i.e. 

there is k < ω and ν ∈ T2,k such that (ρ � k, ν) /∈ Rk and b ∈ PM
ν . Then 

Tm � (∀x)(∀y)(Qρ�k(x) ∧ Pν(y) =⇒ ¬R(x, y)). As r(x) � Qρ�k(x), necessarily 
r(x) � ¬R(x, b).

Define A = A1, B = B1, and define

(�) r(x) = {Qρ�n(x) : n < ω} ∪ {R(x, a) : a ∈ A} ∪ {¬R(x, b) : b ∈ B}.

This is a partial type of size ≤ λ and implies q(x) as desired.
At this point, if we would like to ensure |A| = |B| = λ, there is no harm in choosing 

disjoint sets A′, B′ of size λ from P∞
W [M ] \ (A1 ∪ B1) and defining A := A1 ∪ A′, B :=

B1 ∪B′. In this case the partial type r(x) will still imply q(x) but the reverse need not 
hold. �
Remark 4.9. By symmetry of m, the analogue of 4.8 is true for types p(y) such that 
p(y) � P(y), and since Q, P partition M , this covers all 1-types, which are sufficient for 
saturation.

5. Ultrapowers of models of Tm

Convention 5.1. In this section, m is an arbitrary but fixed parameter.

By 4.8, to ensure a model of Tm with large leaves is λ+-saturated, it suffices to realize 
R-types. In our main proofs, we focus on saturating regular ultrapowers. This section 
gives some basic additional features of the ultrapower case.

Fact 5.2. Suppose I is an infinite set and D is a regular ultrafilter on I, |I| = λ. Then 
for any infinite model M in a countable language, including but not limited to models of 
Tm, the ultrapower N = M I/D is ℵ1-saturated.

Proof. See for example Chang and Keisler [2] 6.1.1. �
Fact 5.3 (see [14]). Saturation of regular ultrapowers reduces to saturation of ϕ-types, 
that is, if M is a model in a countable language and D is a regular ultrafilter on λ, then 
Mλ/D is λ+-saturated if and only if it is λ+-saturated for ϕ-types, for every formula ϕ.
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Recall from Convention 1.14 that a regular ultrafilter D on a set I, |I| = λ is called 
“good for” a countable theory T if for some, equivalently every, M |= T , the ultrapower 
M I/D is λ+-saturated. (The equivalence is by regularity, see [9] 2.1a.)

Fact 5.4. Suppose I is an infinite set and D is a regular ultrafilter on I, |I| = λ. Then 
for any infinite model M in a countable language, including but not limited to models of 
Tm:

(1) Suppose in addition that D is good for every countable stable theory. Then any infinite 
definable subset of N = M I/D, and indeed any infinite internal predicate in N , has 
size at least λ+.

(2) Suppose in addition D is good for the theory of the random graph. Then:
(a) for any two disjoint A, B ⊆ M I/D, there is an internal predicate separating A

and B.
(b) D is good for every countable stable T .
(c) given any countable sequence 〈Xn : n < ω〉 of definable sets and any A ⊆ N

of size ≤ λ such that Xn � Xn+1 ⊇ A for all n < ω, there is an internal 
predicate X∞ such that Xn � X∞ � A for all n < ω. Thus, if A is infinite, the 
intersection 

⋂
n Xn has size ≥ λ+ in N .

Proof. (1) By [33] Theorem 5.1(1)-(2) p. 379, the minimum product of an unbounded 
sequence of finite or infinite cardinals modulo D must be at least κ+ in order to have 
that for any model M of any countable stable theory, M I/D is κ+-saturated. (In fact, 
this condition is both necessary and sufficient.)

(2)(a) In fact, this characterizes D being good for the theory of the random graph, 
see [17] §3 p. 1585.

(2)(b) The stable theories are below the unstable theories in Keisler’s order. See [33]
Theorem 4.8. p. 379, which says that any ultrafilter which is good for some unstable 
theory must have so-called lcf(ω, D) ≥ λ+, [33] Definition 3.5 p. 357. Thus, μ(D) ≥ λ+

(this is the quantity mentioned above, informally, the product of any unbounded sequence 
of finite cardinals modulo D; it is the μ defined in [33] Theorem 3.12 p. 357). It follows 
from the last line of the proof of (1) that the ultrafilter is good for any countable stable 
theory.

(2)(c) See [14] Lemma 9 p. 223. This is a consequence of the a priori weaker fact that 
lcf(ω, D) ≥ λ+. The last sentence then follows from (1) applied to X∞. �
Corollary 5.5. If M0 |= Tm, D is a regular ultrafilter on λ which is good for the ran-
dom graph, and M = (M0)λ/D, then M is weakly λ+-saturated in the sense of 4.7. In 
particular, the hypotheses of 4.8 hold for M .

Proof. Following the notation of 4.7, for (1), fix η ∈ lim(T1). By Fact 5.2, M is ℵ1-
saturated, so we can choose A ⊆ M which is countably infinite and which has the 
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property that QM
η�n(a) for all a ∈ A and n < ω. Apply 5.4(2)(c) using QM

η�n for Xn

and this A, and let X∞ be as given there. Then X∞ is contained in the “leaf” we are 
studying, and it is an infinite internal predicate, so by 5.4(1) it has size at least λ+, so 
the leaf does as well. The parallel fact for P is proved symmetrically.

For 4.7(2), let ρ ∈ lim(T1) be the leaf of c. It follows from the axioms, see e.g. Def-
inition 2.4 or Observation 4.3, that we can choose some η ∈ lim(Sρ) (since this set has 
size continuum, so in particular is nonempty). Then R behaves as a bipartite random 
graph between Q∞

{ρ}[M ] and P∞
{η}[M ], so as b belongs to the first of these sets, it follows 

by ℵ1-saturation (Fact 5.2) that {b : (c, b) ∈ RM} is an infinite definable set. Thus by 
5.4(1) this set has size at least λ+. �

Conclusion 5.6 gives a sufficient collection of types to realize in order to saturate 
regular ultrapowers for self-dual m (our main case following 6.16 below).

Conclusion 5.6. Suppose I is an infinite set, |I| = λ, and D is a regular ultrafilter on 
I which is good for the theory of the random graph. Suppose that m = dual(m). Let 
M0 |= Tm. Then in order to show that M = (M0)I/D is λ+-saturated, it is sufficient to 
show that:

(�)M0,I,D every partial type of M of the form

r(x) = {Qν(x)} ∪ {R(x, a) : a ∈ A}

is realized, where ν ∈ T1,n for some n < ω, A ⊆ M and |A| ≤ λ.

Proof. Case 1. For types including Q(x), by 5.4(2) and our present assumption, the 
conclusion of 5.4(2)(b) holds. Hence by 5.5, second sentence, the hypothesis of 4.8 holds. 
Hence, by Claim 4.8, it suffices to deal with partial types of the form

r(x) = {Qρ�n(x) : n < ω}∪{R(x, a) : a ∈ A} ∪ {¬R(x, b) : b ∈ B}

where ρ ∈ lim(T1) and for some W ⊆ lim(Sρ), we have A ⊆ P∞
W [M ] with |A| = λ, and 

B ∈ PM \A with |B| = λ.
As saturation of regular ultrapowers reduces to saturation of ϕ-types, it suffices to 

consider ν ∈ T1,n for some n < ω, and so to deal with a partial type of the form

r(x) = {Qν(x)}∪{R(x, a) : a ∈ A} ∪ {¬R(x, b) : b ∈ B}.

Note that the assertion that r(x) is a partial type means that for some ρ′ with ν � ρ ∈
lim(T1) and some W ⊆ lim(Sρ′), we have A ⊆ P∞

W [M ] with |A| = λ, and B ∈ PM \ A
with |B| = λ.

As we are assuming D is good for the theory of the random graph, by 5.4(2) we 
can assume there is an internal predicate X separating A and B, so let us justify that it 
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suffices to realize the positive part of the type. Enumerate r as 〈R(x, aα) : β < λ, α = 2β〉
and 〈¬R(x, bα) : β < λ, α = 2β +1〉. Let {Xα : α < λ} ⊆ D be a regularizing family. Let 
f : [λ]<ℵ0 → D be the “distribution” given by sending σ to

{t ∈ I : M |= (∃x)(Qν(x) ∧
∧

α∈σ even
R(x, aα[t]) ∧

∧
α∈σ odd

¬R(x, bα[t]))} ∩
⋂
α∈σ

Xα.

Then it is straightforward to see that r is realized if and only if f has a multiplicative 
refinement. Let g be the refinement of f given by

σ �→ f(σ) ∩ {t ∈ I : M |=
∧

α∈σ even
X(aα[t]) ∧

∧
α∈σ odd

¬(X(bα[t]))}.

Now let us verify: g is a function with domain [λ]<ℵ0 (trivial), range(g) ⊆ P(λ) (trivial), 
range(g) ⊆ D (by the choice of X), g is multiplicative (by its definition), and g refines f
(by choice of X and the properties of the random graph).

Case 2. For types including P (x), we use the fact that m is self-dual, so for any type 
on the left, there is a type on the right with an identical distribution. One will have a 
multiplicative refinement (i.e. be realized) if and only if the other does.

As M |= (∀x)(P(x) ∨Q(x)), this finishes the proof that M is λ+-saturated. �
Remark 5.7. Assume dual(m) = m, we have that dual(M0), defined naturally, is a model 
of Tm. If dual(M0) is isomorphic to M0, then the ultrapowers of the two models are 
isomorphic, and so they have the same saturation. But maybe dual(M0) � M0. How-
ever we know that Th(M0) = Th(dual(M0)) hence it is well known that (M0)λ/D, 
(dual(M0))λ/D are L∞,λ+-equivalent, hence the argument above holds. (Really what we 
need is just Keisler’s lemma that if M1 ≡ M2 in a language of size no more than λ and 
D is a regular ultrafilter on λ, then (M1)λ/D is λ+-saturated if and only if (M2)λ/D is 
λ+-saturated.)

Discussion 5.8. If we were not assuming m = dual(m), then we would just need to add 
the parallel for types containing P(x). We may do this in at least two ways: either we 
update (�)M0,I,D to include the parallel condition for P(x) replacing Q(x) (with the 
corresponding minor notational changes), or else, we add the condition (�)dual(M0),I,D, 
where dual(M0) is a model of Tdual(m), since Q in dual(M0) is the parallel of P in M0.

6. Sizes

In §2, we built theories Tm from templates m under quite general conditions on the 
template edge relation R. It was mentioned that for our main work below, we will want 
to choose our R’s carefully to reflect certain sequences of sparse random graphs. The 
construction of these sparse random graphs is the task of this section, leading to the 
definition of our continuum many parameters in 6.22 (building on 6.12). Claim 6.17
verifies any such parameter satisfies the axioms of §2.
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Some remarks on the problems this section must solve and how it solves them:
First of all, 6.22 must be able to output continuum many parameters which have a 

reasonable chance of being “very different” from each other, with no one of any pair 
obviously more or less complex than the other; more on this soon.

Second, the data of a parameter is essentially12 summarized by the data of a bipartite 
graph associated to every pair (ν, η) ∈ Rk for every k < ω (i.e., the bipartite graph 
corresponding to the pattern of Rk+1-edges on their immediate successors). For the 
parameters built here, this associated graph will be an invariant of the level k (i.e., 
branching at each level k is uniform, we specify for each level k a bipartite graph of 
the right size, and then for every Rk-edge (ν, η) the pattern of Rk+1-edges between the 
immediate successors of ν and η copies this fixed bipartite graph). So we may think of 
our theories as reflecting bipartite graph sequences.

In considering how to construct and compare bipartite graph sequences, remember 
that the resulting m should be self-dual. Random bipartite graphs may not have the 
needed symmetry. So we shall simply construct sequences of graphs, allowing self-loops 
(edges from a vertex to itself), and only at the last minute convert them to symmetric 
bipartite graphs by doubling the vertices (6.8).

The key point which will illuminate comparison is that we require our sequences of 
graphs 〈Ei : i < ω〉 to have a well-defined notion of large and small in the following 
sense. The i-th graph will have vertex set mi = {0, . . . , mi− 1}, and “small” and “large” 
will depend on i. We shall require that for every small subset u of mi, there is some 
vertex connected to all elements of u, whereas for every large subset v, there is no vertex 
connected to all elements of v. Briefly, all small subsets are covered and no large subsets 
are. A main aim of the section is showing this can be arranged for certain explicitly 
given growth rates by using fairly sparse random graphs. (A clear picture of these rates 
is essential as they will interface directly with the chain condition in 8.2, in a non-obvious 
interaction of finite and infinite.13)

Finally, to motivate incomparability, one may imagine that the “small” and “large” 
conditions could transmute in later sections into conditions on consistency of sets of 
formulas, and so hope to build sequences of graphs with orthogonal notions of small 
and large, meaning perhaps there would be many indices i for which “small” in the first 
sequence is larger than “large” in the second sequence, and vice versa.

Our solution is to start with a single sequence of graphs 〈Ei : i < ω〉 and a family of 
level functions which is independent in the sense of [5] (see 6.20). The correct variation 
in large and small is naturally produced by “turning off and on” the constraints of Ei in 
accordance with a level function; this is very robust, as summarized in 6.22. (This idea 
seems to have a certain naturalness; had we not introduced level functions in §2, at this 
point we might be obliged to define them.)

12 Set aside the level function for the moment.
13 and of genericity and randomness in the finite and in the infinite settings.
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We begin by laying out requirements on the sequence of integers which will specify 
the branching (and so the sizes of the vertex sets in our sequence of graphs).

Definition 6.1. Say that the countable sequence m̄ = 〈mi : i < ω〉 ∈ ω(ω \ {0}) is a fast 
sequence when for each i, m◦

i :=
∏

j<i mi satisfies

mi ≥
(
(m◦

i )i
i
)4(m◦

i )i
i

. (a)

Since the m◦
i ’s are uniquely determined by the mi’s, we may sometimes display m̄ as a 

sequence of pairs 〈(mi, m◦
i ) : i < ω〉, while referring to it as a sequence of singletons. To 

avoid triviality, we assume m0 > 1.

In the next definition, note the Ei are graphs, not bipartite graphs. We have chosen 
to allow self-loops (i.e. (a, a) can be an edge), but this is not crucial.

Definition 6.2. Let m̄ be a fast sequence.

(1) Ē will denote a sequence of graphs for m̄ when each Ei ⊆ [mi]2 ∪ {(a, a) : a ∈ [mi]}
and for i = 0 we have equality.

(2) Ē is a good sequence of graphs for m̄, or just good for m̄, when in addition, there is 
some finite i∗ such that for all i ≥ i∗,
(i) if u ⊆ mi,

|u| ≤ (m◦
i )i

i

then u is “Ē-small,” meaning that there is s such that

(∀t ∈ u)(Ei(s, t)).

(ii) if u ⊆ mi and

|u| ≥ mi

(m◦
i )i

i

then u is “Ē-large,” meaning that there is no s such that

(∀t ∈ u)(Ei(s, t)).

We shall omit Ē in “small” and “large” when it is clear from the context.

The definition of “small” is used in the proof of existence of a model completion and 
in the proof of 10.22 below, and the definition of “large” in the proof of non-saturation 
below.



30 M. Malliaris, S. Shelah / Advances in Mathematics 392 (2021) 108036

Sh:1167
Convention 6.3. For the next few lemmas, let g : N → N be the function given by

g(i) = 2(m◦
i )i

i

.

(of course, we could have called this g(mi).)

Fact 6.4 (see e.g. Bollobás [1] Corollary 3.14). Let G be a graph. Let Δ(G) denote the 
maximal degree of G and let Gp denote a graph from Gn,p, random graphs on n vertices 
with edge probability p = p(n). If pn/ logn → ∞, then a.e. Gp satisfies

Δ(Gp) = {1 + o(1)}pn.

In 6.4, note that p is a function of n.

Observation 6.5. Let g be from 6.3 and suppose

p = p(mi) = 1
(mi)

1
g(i)

.

Then p · mi/ logmi → ∞, so 6.4 applies. In particular, as i → ∞, the proportion of 
G ∈ Gmi,p which have no vertices of “large” degree goes to 1.

Proof. Recalling that g(i) from 6.3 is monotonic and strictly increasing and approaches 
∞, and recalling that p = 1

(mi)
1

g(i)
we have

lim
i→∞

(
1

(mi)
1

g(i)

)(
mi

logmi

)
= lim

i→∞

⎛
⎝m

1− 1
g(i)

i

logmi

⎞
⎠ = ∞. (b)

So Fact 6.4 applies (actually g(i) ≥ 2 suffices) and for some fixed constant c, in almost 
every Gp,mi

, every vertex has degree ≤ cpmi. Let us verify that this degree is eventually 
not “large” in the sense of 6.2. For this it would suffice to show that

mi

(m◦
i )i

i is quite a bit bigger than mi

mi
1/g(i) (c)

[the left-hand side is the threshold for “large” from 6.2 and the right-hand side is p ·mi] 
and for this it would suffice to show that

(m◦
i )i

i

is quite a bit smaller than mi
1/g(i), (d)

which is ensured by (a) of Definition 6.1 and the definition of g in 6.3. �
Observation 6.6. For each i, (m◦

i )i
i

< (mi)1/4.
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Proof. We verify that

(m◦
i )i

i

<

((
(m◦

i )i
i
)4(m◦

i )i
i
)1/4

≤ (mi)1/4 (e)

recalling 6.1(a). �
Lemma 6.7. Let Ei ⊆ [mi]2∪{(a, a) : a ∈ [mi]} be symmetric and random with probability 
p from 6.5 for each pair to be an edge. In such a graph, with probability close to 1 (for 
us nonzero probability is sufficient):

(1) for every u ⊆ mi, if

|u| ≤ (m◦
i )i

i

then there is s so that (∀t ∈ u)(Ei(s, t)).
(2) for every u ⊆ mi, if

|u| ≥ mi

(m◦
i )i

i

then there does not exist s so that (∀t ∈ u)(Ei(s, t)).

Remark 6.8. For now we will define a graph on mi vertices with edge relation Ei, allowing 
self loops. In the translation from Ei to Ri in 6.12 below, we will use this graph to 
make a bipartite graph, which will then be symmetric [ in the sense that the derived 
m = dual(m)] by construction.

Proof. Recall [n] denotes the n-element set {0, . . . , n − 1}. We define a probability mea-
sure μ = μi on {X : X ⊆ [mi]2 ∪ {(a, a) : a ∈ [mi]} } by flipping a coin c{a,b} for each 
potential edge14 with probability of heads (=yes) being

1
(mi)

1
g(i)

(f)

where g(i) is again from 6.3. Condition (2) will be handled by Observation 6.5, so let us 
address condition (1). Let us say that a set v ⊆ [mi] is “covered” if there exists b ∈ [mi]
such that (∀t ∈ v)(Ei(b, t)). Clearly it will suffice to show that all sets of size (m◦

i )i
i are 

covered.
Let E1

i be the probability that an arbitrary (given) v ⊆ [mi] of size x is not covered 
(x to be chosen later, in our main case (m◦

i )i
i .) Before bounding E1

i , note that the 
probability that some v ⊆ [mi] of size x is not covered is

14 note that this edge relation is by definition symmetric.
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(
mi

x

)(
E1
i

)
(g)

i.e. the number of ways to choose a v of size x times the probability that a given v is not 
covered. Now

E1
i =

(
1 − 1

(mi)x/g(i)

)mi

(h)

[the term in parentheses represents the chance that each particular b fails to cover v; 
there are mi choices for b]. Recalling that (1 − 1/n)n is well approximated by 1

e for large 
n, we may rewrite the right side of (h) as

((
1 − 1

(mi)x/g(i)

)(mi)x/g(i)) mi

mi
x/g(i)

(i)

and then (i) is well approximated by

1
e[(mi)1−x/g(i)] . (j)

We need equation (i) to be very small, so we need e[(mi)1−x/g(i)] to be very large, so we 
need [(mi)1−x/g(i)] to be very large, so we need 1 − x/g(i) to be not too small. For our 
present calculations, let us verify that it suffices to have x/g(i) = 1/2, which is satisfied 
in our main case when x = (m◦

i )i
i from 6.2 and g(i) is from 6.3. In this case, E1

i is well 
approximated by

1
e
√
mi

(k)

hence an upper bound for equation (g) is well approximated by

(mi)x(E1
i ) ≈

(
ex lnmi

)( 1
e
√
mi

)
= 1

e
√
mi−x lnmi

. (l)

It is sufficient for us that the exponent be nonnegative and growing; for instance, x <
(mi)1/4 suffices for us, and is indeed satisfied in our main case x = (m◦

i )i
i recalling 6.6. 

This completes the proof. �
Conclusion 6.9. If m̄ is a fast sequence, there exists Ē which is good for m̄.

Remark 6.10. The bounds in 6.2 are for definiteness, what we really use is 6.7-6.9: m̄
grows quickly enough to find a sequence of graphs Ē with a coherent and growing notion 
of “small” and “large” (every small set has an x connected to all of its elements, and 
no large set has an x connected to all of its elements). Zero-one laws [34] suggest much 
flexibility in choosing such bounds.
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Next, given the three key ingredients m̄, Ē, and a level function ξ (recall 2.2), we 
construct a parameter m whose sequence of reduced graphs naturally reflects Ē.

Notation 6.11. For m̄ a countable sequence of natural numbers and η ∈ ω>ω or η ∈ ωω, 
the notation η < m̄ means η(i) < mi for all i < lgn(η) (i.e. in dom(η)).

Definition 6.12 (The parameters we use). For any fast sequence m̄ = 〈mi : i < ω〉, any 
Ē = 〈Ei : i < ω〉 which is good for m̄, and any level function ξ ∈ ω2, we define a 
parameter m = par[m̄, Ē, ξ] as follows:

(1) if 
 = 1, 2, Tm,	 = {η : η ∈ ω>ω, η < m̄}.
In particular, for each ν ∈ T	, if ν ∈ T	,i then | imsT�

(ν)| = mi.
(2) for the next two items, for i < ω, let E1

i = Ei, and let E0
i be mi ×mi, the complete 

graph with self-loops.
(3) for i = 0, R0 = {(∅, ∅)}.
(4) for i + 1,

Ri+1 = {(η1, η2) : η	 ∈ T	,i+1, (η1 � i, η2 � i) ∈ Ri, (η1(i), η2(i)) ∈ E
ξ(i)
i }.

Convention 6.13. In what follows, we use the letters m and n, often with subscripts, for 
parameters. We will often write e.g.

m = m[m̄, Ē, ξ] or n = n[m̄, Ē, ξ] or m = par[m̄, Ē, ξ]

to indicate the dependence of a given parameter on the three inputs.

Observation 6.14. Suppose m̄, Ē are as above and ξ1, ξ2 ∈ ω{0, 1} and m	 = par[m̄, Ē, ξ	]. 
If we have ξ−1

2 {1} ⊆ ξ−1
1 {1}, then Rm1 ⊆ Rm2 .

(Observation 6.14 will be used in §12 below. Informally, if there are more active levels, 
there are more constraints, so R has fewer edges.)

Discussion 6.15 (Indexing). So that the key points of the construction in 6.12 are not 
hidden in the indexing, we review:

(a) T1,0 = T2,0 = {∅}, and R0 = {(∅, ∅)}.
(b) For i +1, recall that the elements of T	,i+1 are sequences of length i +1, i.e. functions 

η from {0, . . . , i} to ω subject to the constraint that η(j) < mj for each j ≤ i.
(c) T	,1 has m0 nodes; in general, for k > 0 T	,k has 

∏
j<k mj = m◦

k nodes. Also for 
k = 0, m◦

k = 1 =
∏

j<0 mj .
(d) If η ∈ T	,k then η has mk immediate successors in T	,k+1, so it follows that T	,k+1

has size (
∏

j<k mj) ·mk =
∏

j<k+1 mj = m◦
k+1, as desired.
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(e) If (η, ν) ∈ T1,k × T2,k and (η, ν) ∈ Rk, then letting A = imsT1,k+1(η), B =
imsT2,k+1(ν), if k + 1 is an active level, then (A, B, Rk+1 � A × B) is isomorphic 
as a bipartite graph to (mk, mk, Ek). If k+1 is a lazy level, it is a complete bipartite 
graph.

(f) In a slogan: given two elements of length k connected by Rk, Ek gives us the pattern 
of edges between their sets of successors, provided those successors are at an active 
level. Note to the reader: so there is no confusion, we repeat that ξ(k) affects edges 
at level k + 1, recalling 2.5.

Note that 6.12 establishes self-duality essentially for free. (The key point is that each of 
the Ri’s is symmetric as a bipartite graph; from each Ri+1 one can naturally recover 
E

ξ(i+1)
i by identifying each vertex on the left with its parallel on the right.)

Claim 6.16. If m is constructed from any m̄, Ē which is good for m̄ as in 6.12, and ξ
which satisfies ξ(i) = 0 for i < i∗ = i∗(Ē) (recalling 6.2(2)), then m = dual(m).

Proof. Immediate: this is the symmetry of the construction in 6.12. �
Claim 6.17. If m is constructed from any m̄, Ē, ξ as in 6.16, then m is a parameter. 
Moreover, for every k < ω,

(1) if {ρi : i < s} ⊆ T2,k+1 and s ≤ (m◦
k)k

k , and ν ∈ T1,k with (ν, ρi � k) ∈ Rk for each 
i < s, then there exists an immediate successor ν�〈t〉 of ν such that (ν�〈t〉, ρi) ∈
Rk+1 for each i < s.

(2) the parallel condition to (1) holds switching T2,k+1 and T1,k+1.

Proof. We check 2.3 and 2.6. 2.3(1), (2), (3) are obvious from our construction. (4) holds 
since the degree of a vertex in Ea

i is at least two. (5) is immediate from the construction 
and (6) does not require verification.

For 2.6, it will be helpful to first prove the “moreover” clauses of our Claim, which 
greatly strengthen Extension in one aspect. Note that as m = dual(m) it suffices to prove 
(1). Consider s ≤ (m◦

k)k
k and ν ∈ T1,k and ρ0, . . . ρs−1 ∈ T2,k+1 such that (ν, ρi � k) ∈ Rk

for i < s. Write ρi = (ρi � k)�〈
i〉 for each i < s. In the graph Ek, {
i : i < s} is a small 
subset of [mk], so there is some t ∈ [mi] such that (t, 
i) is an edge in Ek for every 
i < s. Recall that if ξ(k) = 1, for each i < s, to form Rk in 6.12 we simply put a 
bipartite copy of Ek [always the same Ek] between the immediate successors of ν and 
the immediate successors of ρi � k. As a result, for each i < s (we just look one by one), 
(ν�〈t〉, ρi � k�〈
i〉) ∈ Rk+1. In other words, ν�〈t〉 connects to each ρi (again note: even 
though they may not have an immediate common predecessor). If ξ(k) = 0, we use a 
complete graph instead of Ei, so this is all true a fortiori and there are even many such 
elements. This proves (1), and also (2).
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Finally, we check the extension conditions from 2.6, and as m is self-dual, it will suffice 
to prove one way. Applying the preceding paragraph in the case s = k tells us there is 
at least one successor of ν connecting to ρ0, . . . ρk−1. The additional point is to note 
that there is not just one t but at least k + 1. When ξ(k) = 0, as noted, there will 
be many such successors, actually all. To see that there are many when ξ(k) = 1, by 
induction on 
 ≤ k choose t	 ∈ [mk] \ {t0, . . . , t	−1} such that 

∧
i<k(ν�〈t	〉, ρi) ∈ Rk+1, 

as follows: note that we could choose ρ such that j < 
 =⇒ (ν�〈tj〉, ρ) /∈ Rk+1, possible 
as no vertex has large degree, and apply the previous paragraph to the still small set 
{ρi : i < k} ∪ {ρ} to find ν�〈s〉 which connects to ρ0, . . . , ρk−1, ρ, necessarily for s �= tj
for j < 
, so s can serve as t	. Continuing in this way, we find the k+ 1 elements for the 
extension axiom. �
Remark 6.18. In the proof of 6.17, it is worth observing the following helpful feature 
of using the same Ek across the entire level. Suppose we have ν ∈ T1,k, η, ρ ∈ T2,k, 
and (ν, η) ∈ Rk, (ν, ρ) ∈ Rk. Suppose (i, j) and (i, 
) are edges in Ek, and to avoid 
triviality, suppose that ξ(k) = 1. Then of course (ν�〈i〉, η�〈j〉) and (ν�〈i〉, η�〈
〉) are 
both in Rk+1, but also notice (ν�〈i〉, η�〈j〉) and (ν�〈i〉, ρ�〈
〉) are both in Rk+1, simply 
because we consulted the same Ek in both cases.

We may now invoke the level functions to build a family of parameters whose active 
levels are independent in the following precise sense.

Notation 6.19. Recall that A ⊆∗ B means that {a ∈ A : a /∈ B} is finite.

Fact 6.20. For any i∗ < ω, there is Ξ = {ξα : α < 2ℵ0} ⊆ ω{0, 1} of size continuum such 
that:

if u ⊆ 2ℵ0 is finite and β < 2ℵ0 is not from u, then

ξ−1
β {1} �∗

⋃
{ξ−1

α {1} : α ∈ u}

and moreover ξα(i) = 0 for all i < i∗ and all α < 2ℵ0 .

Proof. We can use e.g. the existence of a family G = {gα : α < 2ℵ0} ⊆ ωω of continuum 
many independent functions, see [5] or [3] or [33] Appendix, Theorem 1.5(1) p. 656. 
Recall that this means that each g ∈ G is a function from ω to ω and for any finite 
n, any distinct α0, . . . , αn−1 < 2ℵ0 , and any values t0, . . . , tn−1 < ω (not necessarily 
distinct), the set {i < ω : gα0(i) = t0 ∧ · · · ∧ gαn−1(i) = tn−1} �= ∅. In particular 
(as we can play with setting the values of any finitely many other functions) it follows 
from the definition of independent that for any distinct α0, . . . , αn−1, β < 2ℵ0 and any 
s0, . . . , sn−1, t < ω, the set

{i < ω : gα0(i) = s0 ∧ · · · ∧ gαn−1(i) = sn−1 ∧ gβ(i) = t}
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is infinite. For each gα in our family G, let ξα be the function i �→ (gα(i) mod 2). It 
follows that {ξα : α < 2ℵ0} is as desired.

Since changing the first i values for every gα in the family to be zero does not alter 
the independence, we can ensure the last line for any finite i∗ given in advance. �
Remark 6.21. We could have also demanded that the sets ξ−1

α {1} are infinite and pairwise 
almost disjoint.

Corollary 6.22. Thus, for any fast sequence m̄, any Ē which is good for m̄, and Ξ = 〈ξα :
α < 2ℵ0〉 from 6.20 with i∗ = i∗(Ē), we can define a set

M∗ = {mα = par[m̄, Ē, ξα] : α < 2ℵ0}

with no repetition. For any M ⊆ M∗, define

IM = {v ⊆ ω : for some mα0 , . . . ,mαn−1 ∈ M, v ⊆∗
⋃

{ξ−1
α�

{1} : 
 < n}}.

Then if N ⊆ M∗ \M, we will have that:

(a) if mα ∈ M, then ξ−1
α {1} ∈ IM.

(b) if mβ ∈ N , then ξ−1
β {1} �= ∅ mod IM.

Remark 6.23. Corollary 6.22 summarizes a natural sense in which any two elements, or 
indeed any two disjoint subsets, of M∗ are orthogonal.

7. Possibility patterns and ultrapowers

We will be interested in analyzing types in regular ultrapowers, and the following 
set-up is especially useful for this. To readers familiar with “separation of variables” in 
the sense of [20], there is nothing new here; we simply explain that framework and fix 
some notation.

The first idea is that a regular ultrafilter on λ can be “projected” onto any reasonable 
Boolean algebra (complete, of size ≤ 2λ, with the λ+-c.c.) and studied there. Let us give 
the definition, then discuss how it can be used.

Definition 7.1 (Regular ultrafilters built from tuples, from [20] Theorem 6.13). Suppose 
D is a regular ultrafilter on I, |I| = λ. We say that D is built from (D0, B, D∗, j) when:

(1) D0 is a regular, |I|+-good filter on I
(2) B is a Boolean algebra
(3) D∗ is an ultrafilter on B
(4) j : P(I) → B is a surjective homomorphism such that:
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(a) D0 = j−1({1B})
(b) D = {A ⊆ I : j(A) ∈ D∗}.

Since 7.1 is defined with an eye towards Keisler’s order, an important feature of this 
definition is that the problem of realizing types is naturally projected to the Boolean 
algebra, too, as 7.2 explains.15

Definition 7.2. Continuing in the notation of 7.1, suppose that D is built from 
(D0, B, D∗, j). Consider a complete countable T and M |= T . Suppose N = Mλ/D
and p is a partial type over κ ≤ λ parameters in N , so p = 〈ϕα(x, aα) : α < κ〉. We say 
that b̄ represents the type p when: for each finite u ⊆ κ, the Łoś map Ł sends u �→ Bu

where

Bu := {t ∈ I : M |= (∃x)
∧
α∈u

{ϕα(x, aα[t])},

and bu = j(Bu). We write B̄ = 〈Bu : u ∈ [κ]<ℵ0〉, and b̄ = 〈bu : u ∈ [κ]<ℵ0〉.

Continuing in the notation of 7.2, recall that 〈Bu : u ∈ [λ]<ℵ0〉 of elements of I is 
called multiplicative if Bu ∩ Bv = Bu∪v for every u, v ∈ [λ]<ℵ0 . To say that B̄ has a 
multiplicative refinement in D means that there is B̄′ = 〈B′

u : u ∈ [λ]<ℵ0〉 such that 
for each u, B′

u ∈ D and B′
u ⊆ Bu, and moreover, B̄′ is multiplicative. Likewise (just 

a little more briefly) b̄ has a multiplicative refinement in D∗ if there exists a sequence 
b̄′ = 〈b′

u : u ∈ [λ]<ℵ0〉 of elements of D∗ such that b′
u ⊆ bu for each u ∈ [λ]<ℵ0 , and 

b′
u ∩ b′

v = b′
u∪v for all u, v, ∈ [λ]<ℵ0 .

Fact 7.3 (Separation of variables theorem, special case, [20] Theorem 6.13). In the no-
tation of 7.2, 〈Bu : u ∈ [κ]<ℵ0〉 has a multiplicative refinement in D [so p is realized in 
N ] if and only if 〈bu : u ∈ [κ]<ℵ0〉 has a multiplicative refinement in D∗.

Given B and D, it can be useful to remember an ultrapower it came from.

Notation 7.4. Given some D∗ and B, and given a corresponding choice of D, D0, and M
as in 7.2, we may call Mλ/D an “enveloping ultrapower” for D∗ and B.

In light of 7.2, 7.1 allows us to build regular ultrafilters in interesting ways by focusing 
on the construction of ultrafilters on quite general Boolean algebras: such a D0 can always 
be built when B is complete, |B| ≤ 2λ and has the λ+-c.c. In earlier papers, B was often 
just the completion of some free Boolean algebra. In this paper we take this quite a bit 
further, building the Boolean algebras and the ultrafilters on them together, by induction.

15 The next definition seems to suggest that in ϕ(x, y), 	(y) = 1. This will be our main case in this paper, 
but it’s not a constraint.
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Possibility patterns. Definition 7.2 highlights sequences 〈bu : u ∈ [κ]<ℵ0〉 of elements 
of B+ which come directly from patterns of types in some enveloping ultrapower. In [20]
and subsequent papers, we use possibility pattern to mean any sequence b̄ that arises from 
some B̄ in this way. There is a combinatorial definition which doesn’t rely on specifying 
an enveloping ultrapower, see [20] Definition 6.1. In the present paper, we will only need 
to handle sequences b̄ which obviously come directly from types, so we won’t need the 
full generality of that definition. So while we will often call such sequences “possibility 
patterns,” the reader may substitute a phrase like “sequences b̄ which represent some 
ϕ-type p in some enveloping ultrapower of the theory in question, in the sense of 7.2.”

Convention 7.5. When building Boolean algebras by induction, possibility patterns will 
arise as part of the data of problems, and we will often refer to multiplicative refinements 
we add for them as solutions.

In the proofs below, we use 7.1 to repeatedly calibrate the building of a Boolean 
algebra B along with an ultrafilter D∗ on B, as follows. Suppose we are building D∗ and 
B together by induction, and at each stage in the construction we have some Boolean 
algebra Bα and some ultrafilter Dα on Bα, and we want to ensure by the time we 
get to D∗, B that all relevant possibility patterns b̄, for a given countable theory T
or set T of countable theories, have multiplicative refinements. At each stage in the 
construction we’ll be handling some such b̄, and at that point we may choose some 
enveloping ultrapower (for Bα, Dα) and work there with a choice of corresponding B̄, 
where the picture may be clearer. In this way we eventually construct B and D∗ to 
handle all relevant possibility patterns. At the end of the construction, one final use of 
7.1 connects it to Keisler’s order: any regular D built from this D∗ will be a regular 
ultrafilter on λ with the property that for any T ∈ T and any model M |= T , Mλ/D is 
λ+-saturated.

Convention 7.6. For Boolean algebras, write that B1 �B2 to mean that B1 is a complete 
subalgebra of B2.

Fact 7.7. If b̄ is a possibility pattern for T in a complete Boolean algebra B, and B �B′, 
then b̄ remains a possibility pattern for T in B′.

Notation 7.8. In the context of separation of variables:

(a) Let 〈Bu : u ∈ [λ]<ℵ0〉 be from the Łoś map, as usual, recalling 7.2.
(b) For ψ[ā] any formula, possibly with parameters, of M I/D, let A[ ψ[ā] ] be defined 

as

{t ∈ I : M |= ψ[ā[t]]}.
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(c) Given Bu or A[ ψ[ā] ] from (a) or (b), let bu or a[ ψ[ā] ] be their images under j, 
respectively.

Together, we might say that the bu’s and the a[ ψ ]’s transfer first-order information 
from the ultrapower to the index models (via Łos’ theorem) and thence to the Boolean 
algebra (via j). We conclude the section by restating 7.3 in this language:

Fact 7.9. Suppose N = Mλ/D is an “enveloping ultrapower” for D∗ and B, N |= T , and 
b̄ = 〈bu : u ∈ [κ]<ℵ0〉 is a possibility pattern for T in B which has no solution, i.e. no 
multiplicative refinement in D∗. Then N is not κ+-saturated (specifically, it omits a type 
over a set of size ≤ κ corresponding naturally to b̄).

8. The chain condition

This section begins work on the ultrafilters. To motivate the construction, consider 
the limitations of the example of [28], the one previous example of incomparability in 
ZFC. In that paper, as usual, we had considered completions of free Boolean algebras of 
the form

B = B1
2λ,μ,θ

where θ was not necessarily countable [recall the notation means: B is generated by 2λ
independent partitions each of size μ, where the intersection of fewer than θ elements 
from different partitions is nonzero]. It was shown there that theories called Tf , distant 
precursors of our theories here, could be handled by some ultrafilter on B when θ > ℵ0, 
and by no ultrafilter when θ = ℵ0. This suggests that if we want to handle theories of 
this general form while keeping θ = ℵ0, we should use Boolean algebras which are in 
a strong sense not free. In our present case, if we want to handle some Tm while not 
handling another Tn, for m, n orthogonal, perhaps we can start the induction with the 
completion of a free Boolean algebra and keep enough of the freeness for some failure 
of saturation for Tn to persist even as we build the Boolean algebra to be gradually less 
free in a sense relevant to Tm (adding formal solutions below). To successfully carry this 
out, the arbiter of the freeness we need will come in the form of a key chain condition 
8.2.16

Specifically, in this section, we first define and explain the new chain condition in 
8.2. Then, since in later sections we will build Boolean algebras by induction (as in 
8.17), we will need some tools for ensuring the chain condition is preserved under such 
constructions. We define a so-called pattern transfer property in 8.12; using this property 

16 Although this is not needed for reading the proof, readers who are set theorists may recognize in the 
chain condition some methods intimately connected to finite support iteration (and may also conjecture 
that there may be potential for very interesting further interaction here).
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and 8.18, we prove Lemma 8.19, which verifies we may preserve our chain condition along 
certain increasing continuous sequences of Boolean algebras.

We continue notation from Section §6. Recall:

Definition 8.1. Let κ be an uncountable regular cardinal. The Boolean algebra B has the 
κ-c.c. when: given 〈aα : α < κ〉 a sequence of elements of B+, we can find α �= β < κ

such that aα ∩ aβ > 0.

The following definition will be central for the next few sections.

Definition 8.2 (The (κ, I, m̄)-c.c.). Let κ be an uncountable regular cardinal. Let I be an 
ideal on ω extending [ω]<ℵ0 and m̄ a fast sequence. We say that the Boolean algebra B
has the (κ, I, m̄)-c.c. when: given 〈aα : α ∈ U2〉 with U2 ∈ [κ]κ a sequence17 of elements 
of B+, we can find j < ω, U1 ∈ [κ]κ and A ∈ I such that:

⊕ for every n ∈ ω \A and every finite u ⊆ U1 and every i < n − j, if

mn

(m◦
n)ni < |u| ≤ mn

then there is some v ⊆ u such that

|v| ≥ |u|
(m◦

n)ni+j and
⋂

{aα : α ∈ v} > 0B.

Observation 8.3. If B has the (κ, I, m̄)-c.c. for some I and m̄, then B has the κ-c.c. In 
particular, if κ = ℵ1, then B has the c.c.c.

Proof. Clearly, the condition in 8.2 implies that given any κ nonzero elements of the 
Boolean algebra, at least two of them must have nonzero intersection. �
Discussion 8.4. Informal discussion of the (κ, I, m̄)-c.c. For any n, remember from 6.2
that any u such that

|u| ≥ mn

(m◦
n)nn

is large, so if |u| ≥ mn/(m◦
n)ni+j for some i + j < n, then u is, by monotonicity, still 

large. In the statement of 8.2, we use U2 and U1 for easy quotation later on, but of 
course without loss of generality (after renumbering) U2 = κ. In this notation, given any 
sequence of κ nonzero elements, after possibly moving to a subsequence U of the same 
size, we can find a “shrinking factor” j so that (after possibly excluding a small set of 

17 or renaming, without loss of generality, U2 = κ.



M. Malliaris, S. Shelah / Advances in Mathematics 392 (2021) 108036 41

Sh:1167
n’s) whenever we have a really large u, i.e. |u| ≥ mn/(m◦
n)ni for some i such that i + j is 

still < n, then we can shrink it a little bit (in the denominator the exponent ni becomes 
ni+j) to find a subset v which is still large, and all consistent.

The next claim shows that our upgraded c.c. is sometimes easy to satisfy. Recall from 
1.7 that B0

α,μ,ℵ0
is the free Boolean algebra generated by α independent partitions each 

of size μ, and B1
α,μ,ℵ0

is its completion.

Claim 8.5. Suppose μ is any infinite cardinal, κ is regular and uncountable, α is an 
ordinal, and μ < κ ≤ α. Then for any ideal I on ω extending [ω]<ℵ0 , and any fast 
sequence m̄, B = B1

α,μ,ℵ0
has the (κ, I, m̄)-c.c.

Proof. Recall from 1.10 above that the elements of the form xf for f ∈ FIℵ0(α) are 
dense in B. Suppose we are given 〈aα : α < κ〉 a sequence of positive elements of B. 
First, for each α < κ, we may choose fα ∈ FIℵ0(α) such that xfα ≤ aα. For each α < κ, 
let uα = dom(fα), so uα is finite. By the Δ-system Lemma 1.12, there is some u∗ and 
V ∈ [κ]κ such that uα ∩ uβ = u∗ for α, β ∈ V. Since the range of each fα is a subset of 
μ < κ, there is U ∈ [V]κ such that fα � u∗ = fβ � u∗ for α, β ∈ U . Notice this tells us for 
any finitely many α0, . . . , αn−1 from U , f = ∪i<nfi is a function, thus xf > 0. In other 
words, for any finite v ⊆ U ,

⋂
{aα : α ∈ v} > 0B

so condition is trivially satisfied [indeed, taking A = ∅ and j = 0] for any n and u, simply 
by using v = u. �
Remark 8.6. We have stated 8.5 to be compliant with Definition 8.2, but notice the proof 
would go through for any ideal I including the trivial ideal ∅.

Starting with the next Discussion, we add asterisks to a few statements and definitions 
to indicate that they are useful variations.

� Discussion 8.7. In the next Definition 8.8 note we replace μ in the subscript by “< κ” 
(it will be explained what this means). This includes the natural case where κ is a regular 
limit cardinal, thus weakly inaccessible. This gives a natural alternate candidate for B∗
in 9.1(2), so we include it, but again, it is not our main case. For our main theorems, 
the case κ = μ+, and thus using as a base for our induction Boolean algebras of the form 
B1

α,μ,ℵ0
, or even B1

κ,ℵ0,ℵ0
, will suffice.

� Definition 8.8. Let θ = cof(θ) ≤ κ = cof(κ) and let α be an ordinal.

(1) Fα,<κ,ℵ0 = {f : dom(f) ∈ [α]<θ, and if β ∈ dom(f) then f(β) < rmκ(β)} where 
rmκ(β) = min{i :

∨
γ(β = κ · γ + i)} is the remainder of β mod κ.
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(2) B0
α,<κ,θ is the Boolean algebra generated by {xf : f ∈ Fα,<κ,θ} freely except:

(a) xf ≤ xg when g ⊆ f ∈ Fα,<κ,θ

(b) xf ∩ xg = 0 when (∃β ∈ dom(f) ∩ dom(g))[f(β) �= g(β)].
(3) Let Bα,<κ,θ = B1

α,<κ,θ be the completion of B0
α,<κ,θ.

We verify that Claim 8.5 likewise holds for Bα,<κ,θ.

� Claim 8.9. Suppose κ is regular and uncountable and α ∈ Ord. Suppose that in addition 
(∀α < κ)(α<θ < κ). Then B0

α,<κ,ℵ0
and B = B1

α,<κ,θ satisfy the κ-c.c., and indeed the 
(κ, I, m̄)-c.c. for any m̄ and I.

Proof. Similarly to 8.5, suppose we are given 〈aα : α < κ〉 a sequence of positive elements 
of B. For each α < κ, we may choose fα ∈ Fα,<κ,ℵ0 , so uα = dom(fα) ∈ [α]<θ, such 
that xfα ≤ aα. Assuming that (∀α < κ)(α<ν < κ), the hypotheses of the Δ-system 
Lemma 1.11 apply, and there is some u∗ and V ∈ [κ]κ such that uα ∩ uβ = u∗ for 
α, β ∈ V. Let γ = sup{rmκ(β) : β ∈ u∗}, so γ < κ as |u∗| < ℵ0. By Definition 8.8(1), 
each fα � u∗ has range ⊆ γ + 1 < κ, so there is U ∈ [V]κ such that fα � u∗ = fβ � u∗ for 
α, β ∈ U . So just as before, for any finite v ⊆ U ,

⋂
{aα : α ∈ v} > 0B

so condition for the (κ, I, m̄)-c.c. is trivially satisfied for any n and u, simply by using 
v = u. �

Recall from 7.6 that B1 � B2 means B1 is a complete subalgebra of B2.
In our inductive construction, the so-called “pattern transfer property” (Defini-

tion 8.12 below) will play a key role in ensuring that the (κ, I, m̄)-c.c. is preserved 
at limit stages. In some sense, it shows a close connection between a smaller and larger 
Boolean algebra which is enough to allow the (κ, I, m̄)-c.c. to transfer from the smaller 
to the larger one. We first need a definition.

Definition 8.10. Let B1�B2 and let b ∈ B
+
2 . We say that a ∈ B

+
1 is below the projection 

of b, in symbols

a ≤proj(B2,B1) b

when for every c ∈ B
+
1 such that B1 |= c ≤ a, we have that B2 |= c ∩ b > 0. When 

B2, B1 are clear from context, we may omit them from the subscript.

Observation 8.11. If B1 � B2 � B3, a ∈ B
+
1 , b ∈ B

+
2 , c ∈ B

+
3 ,

(
a ≤proj(B2,B1) b ≤proj(B3,B2) c

)
=⇒

(
a ≤proj(B3,B1) c

)
.
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Proof. Given c1 ∈ B
+
1 such that B1 |= c1 ≤ a, the first inequality ensures that B2 |=

c1 ∩ b > 0. Let c2 := c1 ∩ b ∈ B
+
2 , so B2 |= c2 ≤ b, and the second inequality ensures 

that B3 |= c2 ∩ c > 0, thus (since 0 < c2 ≤ c1) B3 |= c1 ∩ c > 0. �
Definition 8.12 (Pattern transfer property). Let κ be an uncountable cardinal, I an ideal 
on ω extending [ω]<ℵ0 , and m̄ a fast sequence. The pair (B1, B2) has the (κ, I, m̄)-
pattern transfer property when: (1) B1 and B2 are both complete Boolean algebras, (2)
B1 satisfies the κ-c.c.,18 (3) B1 �B2, and (4) whenever U2 ∈ [κ]κ and b̄ = 〈bα : α ∈ U2〉
is a sequence of elements of B+

2 , we can find a quadruple (j, U1, A, ̄a) such that:

(a) j < ω

(b) U1 ∈ [U2]κ
(c) A ∈ I
(d) ā = 〈aα : α ∈ U1〉 is a sequence of distinct elements of B+

1
(e) α ∈ U1 implies aα ≤proj bα

(f) (i) implies (ii) where:
(i) we are given n ∈ ω \A, i + j < n, u ⊆ U1, and a∗ ∈ B

+
1 such that mn/(m◦

n)ni

<

|u| < mn and

B1 |= a∗ ≤
⋂
α∈u

aα

(ii) there is v such that v ⊆ u and |v| ≥ |u|/(m◦
n)ni+j and

B2 |=
⋂
α∈v

bα ∩ a∗ > 0.

Remark 8.13. One reason 8.12(4)(f) is not trivial is that a1
α ≤proj a2

α does not imply 
a1
α ≤ a2

α.

Observation 8.14 (The pattern transfer property is transitive). Suppose

B1 � B2 � B3

are complete Boolean algebras and the pairs (B1, B2) and (B2, B3) have the (κ, I, m̄)-
pattern transfer property. Then so does (B1, B3).

Proof. We start with U3 ∈ [κ]κ and c̄ = 〈cα : α ∈ U3〉 in B+
3 . Applying the pattern 

transfer property for (B2, B3) to c̄, we find j2, U2, A2, and a sequence b̄ = 〈bα : α ∈ U2〉
of elements of B+

2 . Next, applying the pattern transfer property for (B1, B2) to b̄ [which, 

18 In this definition, we don’t ask that B1 have the (κ, I, m̄)-c.c., only the κ-c.c., though in every application 
in the paper, B1 will have the (κ, I, m̄)-c.c.
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note, is indexed by U2, so we will get U1 ⊆ U2] we find j1, U1, A1, and a sequence 
〈aα : α ∈ U1〉 of elements of B+

1 . In short,

〈cα : α ∈ U3〉 from B
+
3

↓ via (j2,U2, A2)

〈bα : α ∈ U2〉 from B
+
2

↓ via (j1,U1, A1)

〈aα : α ∈ U1〉 from B
+
1 .

Let j = j1 + j2 + 1 and A = A1 ∪A2 ∪ {0, 1}, and we shall verify that

〈cα : α ∈ U3〉 from B
+
3

↓ via (j,U1, A)

〈aα : α ∈ U1〉 from B
+
1

The point to check is 8.12(4). Conditions (a)-(d) are clear, condition (e) is by 8.11, so 
it remains to verify (f)(i) → (ii). Suppose we are given n, i, u, a∗ such that n ∈ ω \ A, 
i + j < n, u ⊆ U1, a∗ ∈ B

+
1 , mn/(m◦

n)ni

< |u| < mn, and B1 |= a∗ ≤
⋂

α∈u aα. Since 
i + j1 < i + j < n, we may apply the pattern transfer from B1 to B2 to this data to find 
v′ ⊆ u such that |v′| ≥ |u|/(m◦

n)ni+j1 and B2 |=
⋂

α∈v′ bα∩a∗ > 0. Choose a∗∗ to be any 

element of B+
2 below 

⋂
α∈v′ bα∩a∗. Note that |v′| ≥ |u|/(m◦

n)ni+j2 and |u| > mn/(m◦
n)ni

together imply

|v′| > mn

(m◦
n)ni(m◦

n)ni+j2
≥ mn

(m◦
n)ni+j1+1 .

So we may apply the pattern transfer from B2 to B3 using the same n and using 
i + j1 + 1, v′, and a∗∗ in place of i, u, a∗ respectively in (f)(i). [Note that we have 
(i + j1 + 1) + j2 ≤ i + j < n by our choice of j.] We obtain from (f)(ii) a subset 
v ⊆ v′ [thus, ⊆ u] with |v| ≥ |v′|/(m◦

n)n(i+j1+1)+j2 such that B3 |=
⋂

α∈v cα ∩ a∗∗ > 0, 
and since a∗∗ ≤ a∗, B3 |=

⋂
α∈v cα ∩ a∗ > 0. This shows that for c̄ the quadruple 

(j = j1 + j2 + 1, U , A, ̄a) works, which completes the verification. �
Claim 8.15 (The pattern transfer property indeed transfers our chain condition). Suppose 
B1 � B2, B1 has the (κ, I, m̄)-c.c., and (B1, B2) has the (κ, I, m̄)-pattern transfer 
property. Then B2 has the (κ, I, m̄)-c.c.

Proof. Suppose we are given 〈a2
α : α ∈ U2〉, U2 ∈ [κ]κ in B2. Applying the pattern 

transfer property, we find j1, U1, A1, and 〈a1
α : α ∈ U1〉 in B+

1 satisfying 8.12. Next, 
working in B1, we apply the (κ, I, m̄)-c.c. to the sequence 〈a1

α : α < κ〉 and find j0, U0, A0
satisfying 8.2. Now let us check that B2 satisfies the (κ, I, m̄)-c.c. using U = U0 ⊆ U1 ⊆
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U2, A = A1 ∪A0, and j = j1 + j0 +2. Suppose we are given n ∈ ω \A and a finite u ⊆ U . 
We know that if i + j < n and

mn

(m◦
n)ni < |u| ≤ mn

there is some v′ ⊆ u such that in B1,

|v′| ≥ |u|
(m◦

n)ni+j1
≥ mn

(m◦
n)ni+j1+1 and B1 |=

⋂
{a1

α : α ∈ v′} > 0.

Now 8.12(f)(i) holds, using v′, i + j1 + 1 here for u, i there. (Note: the identity of a∗
in that equation is not important here; we’ll use it later when we deal with omitting 
types.) So 8.12(f)(ii) tells us there is v ⊆ v′ such that |v| ≥ |v′|/(m◦

n)ni+j1+j0+1 and 
B2 |=

⋂
α∈v a2

α > 0. Checking the size,

|v| ≥ |v′|
(m◦

n)ni+j1+j0+1 ≥ |u|
(m◦

n)ni+j1 (m◦
n)ni+j1+j0+1 ≥ |u|

(m◦
n)ni+j1+j0+2 .

This completes the verification. �
We recall the following fact which we will upgrade to the case of our chain condition 

in 8.18.

Fact 8.16 (Jech, [8] Corollary 16.10). Let B0 ⊆ B1 ⊆ · · · ⊆ Bβ ⊆ · · · (β < α) be a 
sequence of complete Boolean algebras such that for all β < γ, Bβ � Bγ , and for each 
limit ordinal γ, 

⋃
β<γ Bβ is dense in Bγ . If every Bβ satisfies the κ-c.c. then 

⋃
β<α Bβ

satisfies the κ-c.c.

Definition 8.17. We say that B̄ = 〈Bγ : γ ≤ δ〉 is a �-increasing continuous sequence of 
complete Boolean algebras when:

(1) for γ < δ, Bγ � Bγ+1;
(2) at limit stages B̄ is continuous, meaning that if γ < δ is a limit ordinal then 

⋃
{Bγ :

γ < δ} is a dense subset of Bδ. (Requiring that the union is � Bδ is ok also.)

Our next Claim 8.18 will carry the induction for Lemma 8.19.

Claim 8.18. Suppose that B̄ = 〈Bγ : γ ≤ δ〉 is a �-increasing continuous sequence of 
complete Boolean algebras, where:

(1) Bγ satisfies the (κ, I, m̄)-c.c. for every γ < δ.
(2) if γ < δ then the pair (Bγ , Bγ+1) satisfies the (κ, I, m̄)-pattern transfer property.
(3) if γ < β < δ then the pair (Bγ , Bβ) satisfies the (κ, I, m̄)-pattern transfer property.
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Then Bδ satisfies the (κ, I, m̄)-c.c., and moreover, if γ < δ then the pair (Bγ , Bδ)-
satisfies the (κ, I, m̄)-pattern transfer property.

Proof. The case to consider is δ a nonzero limit. Fix γ∗ < δ, and we will show that 
(Bγ∗ , Bδ) has the (κ, I, m̄)-transfer property. We may then conclude by 8.15 that Bδ

has the (κ, I, m̄)-c.c.
Suppose we are given 〈aδ

α : α < κ〉 a sequence of elements of B+
δ . Without loss of 

generality (by the definition of continuous) each aδ
α is an element of 

⋃
γ<δ Bγ (i.e., each 

element is already a member of some Bγ).
Recall κ is regular. If cof(δ) �= κ, there is γ∗∗ < δ such that U = {α < κ : aδ

α ∈ Bγ∗∗}
has size κ. Since Bγ∗∗ has the (κ, I, m̄)-c.c. by hypothesis, Bδ will inherit it from the 
restriction to U . Since without loss of generality γ∗∗ > γ∗, and (Bγ∗ , Bγ∗∗) has the 
(κ, I, m̄)-pattern transfer property by hypothesis, we can similarly see that (Bγ∗ , Bδ)
has the (κ, I, m̄)-pattern transfer property too (by restricting to U).

Suppose then that cof(δ) = κ. In this case fix a strictly increasing continuous sequence 
〈iα : α < κ〉 of ordinals < δ but above γ∗, with limit δ. First we choose a sequence of 
elements 〈bα : α < κ〉, as follows. There is ζ(α) ∈ (α, κ) such that

aδ
α ∈ Biζ(α) . (a)

As α < ζ(α), by our assumption Biα � Biζ(α) . As aδ
α ∈ Biζ(α) , by definition of �, we 

may find a bα ∈ B
+
iα

such that

bα ≤proj(Biζ(α) ,Biα ) aδ
α. (b)

Let 〈bα : α < κ〉 be the sequence of nonzero elements defined in this way.
Next we choose a sequence of elements 〈cε : ε < κ is a limit 〉, as follows. For every 

limit ordinal ε < κ, recall that 
⋃

α<ε Biα is dense in Biε by definition of continuous. 
Recall that bε ∈ Biε by construction (b). So for every limit ordinal ε < κ, there is cε
such that cε ∈

⋃
α<ε Biα , Biε |= 0 < cε < bε, and (hence) cε ∈ B

+
iρ(ε)

for some ρ(ε) < ε. 
Now the function ε �→ ρ(ε) is defined and regressive on the limit ordinals < κ, so by 
Fodor’s lemma there is ρ∗ < κ such that U0 = {ε < κ : ε is a limit > ρ∗, and ρ(ε) < ρ∗}
is a stationary subset of κ, recalling that κ = cof(κ) > ℵ0 by 8.2. Recalling ζ from (a), 
let E be a club of κ such that ε < β ∈ E implies ζ(ε) < β. Then

U = E ∩ U0 (c)

is a stationary subset of κ, hence of size κ. [For orientation: for ε ∈ E, the cε’s all 
belong to Biρ∗ , while bε ∈ Biε , aδ

ε ∈ Biζ(ε) , and recall ρ∗ < ε < ζ(ε) < κ, while 
iρ∗ < iε < iζ(ε) < iκ = δ. Moreover, if γ < ε are from U , then Biζ(ε) already contains bγ

and aδ
γ .]

We will now show the following relationship between 〈cε : ε ∈ U〉 and 〈aδ
ε : ε ∈ U〉: for 

any finite u ⊆ U ,
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Biρ∗ |=
⋂
α∈u

cα > 0 =⇒ Bδ |=
⋂
α∈u

aδ
α > 0. (d)

Let n = |u|, and let ε(0) < · · · < ε(n −1) list u. By induction on m ≤ n, let us show that

(�)m if Biρ∗ |=
⋂

	<m cε(	) ≥ d > 0 [so d ∈ Biρ∗ ] then Bδ |=
⋂

	<m aδ
ε(	) ∩ d > 0.

Clearly for m = n this will imply equation (d). Note that for m = 0, the intersections ⋂
	<0 cε(	) and 

⋂
	<0 aδ

ε(	) are 1Bρ∗ and 1Bδ
respectively. For m = 1, we are assuming 

Biρ∗ |= 0 < d ≤ cε(0) thus Biε(0) |= 0 < d ≤ cε(0) ≤ bε(0), so by equation (b), 
Biζ(ε(0)) |= 0 < d ∩ aδ

ε(0), and thus Bδ |= 0 < d ∩ aδ
ε(0), proving (�)1. For the inductive 

step, assume m < n and that (�)m holds and we shall prove (�)m+1.
For (�)m+1, we are assuming Biρ∗ |=

⋂
	≤m cε(	) ≥ d > 0. By inductive hypothesis, 

Bδ |= d′ =
⋂

	<m aδ
ε(	)∩d > 0. Now {aδ

ε(	) : 
 < m} ∪{d} ⊆
⋃
{Biζ(ε(�)) : 
 < m} ∪Biρ∗ ⊆

Biε(m) , where the last inclusion is by the definition of E, recalling that B̄ is increasing. 
Thus, Biε(m) |= d′ =

⋂
	<m aδ

ε(	) ∩ d > 0, and at the same time (recall the phrase after 
“For (�)m+1”) we have Biε(m) |= 0 < d′ ≤ cε(m). Moreover, since bε(m) ∈ Biε(m) , we have 
Biε(m) |= 0 < d′ ≤ cε(m) ≤ bε(m). Then by equation (b), Biζ(ε(m)) |= 0 < d′ ∩ aδ

ε(m), and 

thus Bδ |= 0 < d′∩aδ
ε(m). But then the choice of d′ implies that Bδ |=

⋂
	≤m aδ

ε(m)∩d > 0, 
proving (�)m+1. This proves (d).

Clearly, this allows us to transfer the (κ, I, m̄)-c.c. from Biρ∗ to Bδ, and it also tells 
us that (Biρ∗ , Bδ) has the (κ, I, m̄)-pattern transfer property. By construction γ∗ < iρ∗ , 
and so by hypothesis (Bγ∗ , Biρ∗ ) has the (κ, I, m̄)-pattern transfer property, so recalling 
8.14, (Bγ∗ , Bδ) has the (κ, I, m̄)-pattern transfer property too, which completes the 
proof. �
Lemma 8.19. If 〈Bγ : γ ≤ δ〉 is �-increasing continuous and B0 satisfies the (κ, I, m̄)-
c.c. and (Bγ , Bγ+1) satisfies the (κ, I, m̄)-pattern transfer property for all γ < δ, then 
Bδ satisfies the (κ, I, m̄)-c.c. and for all γ < δ, the pair (Bγ , Bδ) satisfies the (κ, I, m̄)-
pattern transfer property.

Proof. By induction on δ; immediate from the previous claim and 8.14, 8.15. �
We shall use the property from the proof of 8.18 later on so we phrase it below. It 

is stronger than 8.12, so does not supercede that definition, but as we have seen it will 
imply it, and occasionally it will be simpler to show.

Corollary 8.20. B2 satisfies the (κ, I, m̄)-c.c., and even the pair (B1, B2) satisfies the 
(κ, I, m̄)-pattern transfer property, when:

(a) B1 � B2 are complete Boolean algebras
(b) B1 satisfies the (κ, I, m̄)-c.c.
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(c) given aα ∈ B
+
2 for α < κ, we can find U ∈ [κ]κ and xα ∈ B

+
1 for α ∈ U such that: 

if u ∈ [U ]<ℵ0 and B1 |= “
⋂

α∈u xα > 0” then B2 |= “
⋂

α∈u aα > 0.”

Remark 8.21. Note that 8.20 is superficial: we require no a priori connection between the 
aα’s and the xα’s other than a common enumeration. Occasionally, as for the random 
graph, this is enough. Still, it would be natural to add xα ≤proj aα.

9. The c.c. and omitting types

The main work of this section (Lemma 9.4) is to directly connect the chain condition 
from 8.2 to omitting types.

Convention 9.1. In this section we fix:

(1) μ, κ, λ infinite cardinals, with κ regular, and μ < κ ≤ λ.
(2) B∗ = B1

κ,μ,ℵ0
.

(3) m̄ a fast sequence.
(4) Ē a sequence of graphs which is good for m̄.
(5) I an ideal on ω extending [ω]<ℵ0 .

Discussion 9.2. In terms of the three cardinals in 9.1(1): μ is the size of maximal an-
tichains (partitions) in the completion of the free Boolean algebra B∗ we shall study in 
this section and use to begin our inductive construction in the next section; κ is the car-
dinal in our chain condition 8.2. The cardinal λ will ultimately be the level of saturation 
we are aiming for: the ultrafilter we build in later sections will realize all types over sets 
of size ≤ λ for theories it can handle. Lemma 9.4 will say something a priori stronger 
regarding non-saturation, however, since it will tell us that in certain theories, we already 
omit types over sets of size κ.

Discussion 9.3. Although we allow the generality of μ < κ with no constraints on their 
distance, for our main results on incomparability it would suffice to use μ = ℵ0 and 
κ = λ an uncountable successor, e.g. ℵ1. In other words, to see the differences between 
these theories we do not need to go out very far; however, it is not a phenomenon limited 
to small sizes, due to the freedom in the construction.

Historical note: the prototype for this lemma is [28] Lemma 3.2, which amounts to 
showing non-saturation in our base case, for B = B∗ and any nontrivial ultrafilter D∗
on B. We will use notation like a[ ψ[ā] ] from 7.8 above.

Lemma 9.4. Suppose B is a complete Boolean algebra, B∗ � B, and (B∗, B) has the 
(κ, I, m̄)-pattern transfer property. Let ξ be any level function such that ξ−1{1} �= ∅
mod I. Let T = Tn where n = par[m̄, Ē, ξ]. Let D be any ultrafilter on B. Then there is 
a possibility pattern 〈cu : u ∈ [κ]<ℵ0〉 for Tn which has no multiplicative refinement.



M. Malliaris, S. Shelah / Advances in Mathematics 392 (2021) 108036 49

Sh:1167
Remark 9.5. So, recalling 7.9, given any M |= Tn and any enveloping ultrapower N =
Mλ/D for D and B, N omits a type of Tn over a set of size κ.

Remark 9.6. The proof of 9.4 below will show that if we fix any nonprincipal ultrafilter 
D∗ on B∗ in advance, then for any such Tn, there is a specific possibility pattern in 
(B∗, D∗) [that is, in the initial Boolean algebra!] which fails to have a multiplicative 
refinement in (B, D) for any later B satisfying the hypotheses of the claim, and any 
ultrafilter D on B which extends D∗.

Proof of Lemma 9.4. Using the framework of separation of variables, we work in Tn, 
recalling that

n = par[m̄, Ē, ξn], (a)

and recalling that

m̄ = 〈mk : k < ω〉. (b)

For each ρ ∈ T2,k and α < κ, we define a[ Pρ(xα) ] ∈ B+
∗ by induction on k < ω:

• if k = 0, let a[ P〈 〉(xα) ] = 1B∗ .
• for k > 0, recalling α is also given, we first specify a finite partition of 1B∗ into mk

pieces 〈xα,k,i : i < mk〉 such that every element but one of this sequence is a member 
of the maximal antichain {x(ωα+k,j) : j < μ} (so necessarily the remaining element is 
the union of the remaining members of the antichain). So without loss of generality, 
we may assume xα,k,0 ∈ D∗. Then define: for i < mk,

a[ Pρ�〈i〉(xα) ] = a[ Pρ(xα) ] ∩ xα,k,i.

• for α < β < κ,

a[ xα �= xβ ] = 1B∗ .

• Note that 〈a[ Pρ(xα) ] : ρ ∈ T2,k〉 is a partition of 1B.

As xα,k,0 ∈ D∗, letting 〈0k〉 denote the constant 0 sequence of length k, we have that for 
each α < κ and each k < ω,

a[ P〈0k〉(xα) ] ∈ D∗.

For each u ∈ [κ]<ℵ0 , define

cu = a[ ∃x
∧

R(x, xα) ].

α∈u
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It follows from the construction that

c̄ = c̄[n] = 〈cu : u ∈ [κ]<ℵ0〉 = 〈cn,u : u ∈ [κ]<ℵ0〉 (c)

is a possibility pattern in (B∗, D∗), hence in (B, D) [thus, we could choose appropriate 
parameters cα to fill in for xα in any enveloping ultrapower].

Note to the reader : if we had run this construction for any other n′ ∈ M∗, the elements 
c{α} would be exactly the same (and equal to 1B); but the sets cu for |u| > 1 could differ 
depending on n′. So although this construction will work for any parameter in M∗, it 
does not necessarily give the same c̄.

Assume for a contradiction that ā2 = 〈a2
α : α < κ〉 is a multiplicative refinement of 

c̄ in B, where ā2 is a sequence of members of B+. We apply the definition of “(B∗, B)
satisfies the (κ, I, m̄)-pattern transfer property,” hence there is a quadruple (j, U0, A, ̄a1)
as there, noting ā1 is a sequence of elements of B+

∗ .
Now by the choice of B∗, for each α < κ there is fα ∈ FIμ,ℵ0(κ), i.e. fα is a finite 

function from κ to μ, such that

B∗ |= xfα ≤ a1
α [hence this holds also in B ].

Since each fα has finite domain, there is a smallest positive integer kα such that for 
every β ∈ dom(fα), the remainder of β mod ω is < kα. So there is U1 ∈ [U0]κ and 
n ∈ ω \ A so that kα = kβ < n for α, β ∈ U1. Without loss of generality j < n and 
ξn(n) = 1, possible as ξ−1

n {1} �= ∅ mod I, while A ∈ I. For each α ∈ U1, the elements 
{a[Pν(xα)] : ν ∈ T2,n} form a finite, maximal antichain of B∗. Let us justify that for 
some U2 ∈ [U1]κ and some ν∗ ∈ T2,n, for every α ∈ U2, we may extend fα to a possibly 
larger finite function f∗

α such that

0 < xf∗
α
≤ a[Pν∗(xα)] and moreover xf∗

α
≤ xfα . (d)

[Why? First, for each given α, we define f∗
α ⊇ fα so that for some να ∈ T2,n, 0 < xf∗

α
≤

a[Pνα
(xα)]. We do this by defining fk

α by induction on k < n. Let f−1
α = fα. For k ≥ 0, 

remember our finite partition 〈xα,k,i : i < mi〉 from the beginning of the proof. We 
want to choose fk

α ⊇ fk−1
α to remain a function and so that xfk

α
is below one of the 

elements of this finite partition. Remember that all but one element of this partition 
was of the form x(ωα+k,j), and the remaining element, call it the “overflow element,” 
was the union of the remaining elements of the antichain {x(ωα+k,j) : j < μ}. There are 
two cases. If xfk−1

α
is consistent with at least one of the elements of the partition of the 

form x(ωα+k,j), then choose one and define fk
α = fk−1

α ∪ {(ωα + k, j)}. If not, it must 
already be the case that xfk−1

α
is below the overflow element, so define fk

α = fk−1
α . This 

completes the induction. Let f∗
α := fn−1

α . The choice of f∗
α determines a unique να ∈ T2,n

so that 0 < xf∗
α
≤ a[Pνα

(xα)]. Since, again, T2,n is finite, we may choose U2 to be a set 
of size κ on which να is constant, call it ν∗. This completes the justification of (d).]
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Note that for every β ∈ dom(f∗
α) the remainder of β mod ω is still < n, and it is still 

the case that dom(f∗
α) is finite.

For each α < κ, let uα = dom(f∗
α). By the Δ-system Lemma 1.12, there is some u∗

and U3 ∈ [U2]κ such that uα∩uβ = u∗ for α, β ∈ U3. Since the range of each f∗
α is a finite 

subset of μ and μ+ ≤ κ, there is U4 ∈ [U3]κ such that f∗
α � u∗ = f∗

β � u∗ for α, β ∈ U4. 
Notice this tells us for any finitely many α0, . . . , αn−1 from U4, f = ∪i<nf

∗
i is a function 

thus xf > 0.
To summarize, for any finite u ⊆ U4, we have that in B∗,

0 <

(⋂
α∈u

xf∗
α

)
≤

⋂
α∈u

a[Pν∗(xα)]. (e)

Next, note that for every α ∈ U4, dom(f∗
α) ∩{ωα+n} = ∅, by the remark after equation 

(d). It follows that by our definition of c̄, for any 
 < mn [recalling m̄ from (a)] and any 
α ∈ U4, we have that in B∗,

xf∗
α
∩ a[Pν∗�〈	〉(xα)] > 0. (f)

Recall that we chose n so that ξn(n) = 1. Let w ⊆ U4 be such that |w| = mn − 1. By 
equation (e),

y0 :=
⋂
α∈w

xf∗
α
> 0

and also recall that for each α ∈ w,

y0 ≤ a[Pν∗(xα)].

Thus, if we enumerate w as α0, . . . , αmn−1, then in B∗ (hence also in B)
⋂

	<mn

xf∗
α�

∩
⋂

	<mn

a[Pν∗(xα�
)] ∩

⋂
	<mn

a[Pν∗�〈	〉(xα�
)] > 0. (g)

Call the quantity on the left side of this inequation “y1.” Now we use the choice of the 
quadruple (j, U0, A, ̄a1) for our given w.

In particular, we apply clause (4)(f) of 8.12 using n = n, i = 1, u = w, and a = y1 ∈
B∗. Then indeed

mn/(m◦
n) < |w| < mn

and (g) translates to tell us that 0 < y1 ≤
⋂

α∈w a1
α in B∗. So (i) of 8.12(f) holds, and 

by (ii) of that clause there is v such that v ⊆ w and |v| ≥ |w|/(m◦
n)n1+j and

B |=
⋂

a2
α ∩ y1 > 0.
α∈v
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Let us name this intersection:

y2 =
⋂
α∈v

a2
α ∩ y1.

Recall that ā2 is a solution to c̄, so by our definition of multiplicative refinement

B |=
⋂
α∈v

a2
α ≤ cv which tells us that y2 ≤ cv. (h)

However, since ξn(n) = 1, the definition of a type in Tn doesn’t allow “large” splitting 
at n, so necessarily in B

cv ∩
( ⋂

	<mn

a[Pν∗(xα�
)] ∩

⋂
	<mn

a[Pν∗�〈	〉(xα�
)]
)

= 0. (i)

Together (g), (h) and (i) are a contradiction. This shows that c̄ has no multiplicative 
refinement. �
Corollary 9.7. Recall from 8.5 that B∗ has the (κ, I, m̄)-c.c., so by Observation 8.15, it 
will follow that B has the (κ, I, m̄)-c.c.

Remark 9.8. Why in the present proof do we not use the weaker choice of the pattern 
transfer condition 8.20 above? We will see in the next section, and in the preservation 
in the inductive construction.

Discussion 9.9. We could apply the first part of the proof to any m ∈ M∗ and get a corre-
sponding ā1, but when we fix M∗, M, N the cases in M∗ \ N are not useful; we needed 
the active level for n to get a contradiction. In particular for them we will not necessarily 
have the failure of saturation, even though we can define the possibility pattern.

10. The inductive construction

Our construction problem naturally has two sides: we want to realize some types while 
omitting others.

Working in the framework of separation of variables, our strategy will be to build 
the Boolean algebra and the ultrafilter on it together, by induction. This is a significant 
advance over earlier approaches, so let us explain what makes it possible to carry it 
out. The rough idea will be to start with B∗ as in 9.1(2), and at stage α to extend Bα

and the ultrafilter on it to solve a single problem, say, a problem from a theory Tm, 
m ∈ M, see 10.1(3). The work of the previous section tells us that if we can do this while 
maintaining “(B∗, Bα+1) has the (κ, I, m̄)-pattern transfer property,” we will be able to 
preserve non-saturation for theories Tn, n ∈ N .
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How, then, might we add solutions for problems (i.e., add multiplicative refinements 
for possibility patterns) while leaving our chain condition undisturbed? The idea, which 
seems to have much in it beyond the present proof, is that we will add the solutions in as 
minimal a way as possible. A Boolean algebra has generators and equations19 they must 
satisfy. Roughly, given at some inductive step a possibility pattern 〈bu : u ∈ [λ]<ℵ0〉, we 
shall extend the given Boolean algebra by adding new elements 〈b1

α : α ∈ [λ]<ℵ0〉 to its 
generating set, to form the Boolean algebra generated freely by these elements, subject 
to any already given equations, along with the conditions saying b1

u :=
⋂

α∈u b1
α ≤ bu

which ensure b̄1 is indeed a multiplicative refinement of b. We then take any ultrafilter 
on this Boolean algebra which extends our previous ultrafilter and contains the elements 
of b̄1. (See 10.12.)

The proof will appeal directly to the theories involved to show that this process 
of adding “formal solutions” does indeed preserve our chain conditions, and the desired 
ultrafilters do exist. Perhaps they can be thought of as ultrafilters (and Boolean algebras) 
tailor-made for the theories at hand. There will be three main cases: problems coming 
from types over sets of size < κ in any theory (10.20), problems coming from types 
over sets of size λ in models of Tm for m ∈ M (10.22) and problems coming from types 
over sets of size λ in the random graph (10.24). Around this we set up the frame for 
the construction: the notion of general construction sequence, (θ, T )-extension, and the 
normal form of (10.19).

Notice that this section establishes something quite a bit stronger than pairwise in-
comparable theories: we are simultaneously separating all theories {Tm : m ∈ M} from 
all theories {Tn : n ∈ N} in the sense of 10.1(3).

Convention 10.1. For this section we fix:

(1) m̄, Ē, Ξ = {ξα : α < 2ℵ0} satisfying the hypotheses of 6.22,
(2) a set M∗ = {mα = par[m̄, Ē, ξα] : α < 2ℵ0} of parameters as in 6.22,
(3) M, N two nonempty disjoint subsets of M∗.
(4) ℵ0 ≤ μ < κ ≤ λ, and κ is regular (and uncountable). The intent of these cardinals 

was discussed in 9.2 above.
(5) IM the ideal corresponding to M.
(6) B∗ = B1

κ,μ,ℵ0
.

(7) D∗ an arbitrary but fixed nonprincipal ultrafilter on B∗.

Definition 10.2. Let AP0 be the class of objects a = (Ba, Da) where:

(1) Ba is a complete Boolean algebra and B∗ � Ba (note that this is satisfied by B∗
itself).

(2) Da is an ultrafilter on Ba extending D∗.

19 By “equations” we mean “conditions,” which can include inequalities. Also, b1
α ≡ b1

{α}.
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Definition 10.3. Let AP be the class of objects a = (Ba, Da) ∈ AP0 such that in addition 
Ba satisfies the (κ, I, m̄)-c.c.

Convention 10.4. For this section, let a∗ denote (B∗, D∗) from 10.1.

Remark 10.5. By definition a∗ ∈ AP0, and by 8.5, a∗ ∈ AP.

Definition 10.6.

(1) We define a partial order on the elements of AP0:

a ≤AP0 b

when Ba � Bb and Da ⊆ Db.
(2) ≤AP is the following partial order on AP:

a ≤AP b

if and only if:
(a) a ≤AP0 b

(b) a, b ∈ AP
(c) the pair (Ba, Bb) satisfies the (κ, I, m̄)-pattern transfer property.

Discussion 10.7. This is a partial order by 8.14 (transitivity for pattern transfer). Recall 
that to show a ≤AP b, by 8.15 it suffices to verify that a has the (κ, I, m̄)-c.c. (i.e., 
a ∈ AP) and (Ba, Bb) has the (κ, I, m̄)-pattern transfer property.

Definition 10.8. Call b̄ = 〈bγ : γ < γ∗〉 a general construction sequence when:

(A) b0 = a∗, so b0 ∈ AP.
(B) for γ < γ∗, bγ ∈ AP0.
(C) for γ < γ∗, bγ ≤AP0 bγ+1.
(D) for γ a nonzero limit ordinal, 

⋃
β<γ Bbβ

is a dense subset of Bbγ
and Dbγ

is an 
ultrafilter on Bbγ

which includes 
⋃

β<γ Dbβ
.

We say the length of b̄ is γ∗.

This definition is justified by:

Claim 10.9. Suppose b̄ = 〈bγ : γ ≤ γ∗〉 satisfies 10.8(A) + (C) + (D). Then for each 
γ ≤ γ∗, the ultrafilter Dbγ

exists, and for each β < γ ≤ γ∗, Bbβ
� Bbγ

. In particular, 
each bγ ∈ AP0, and for each β < γ ≤ γ∗,

bβ ≤AP0 bγ .
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Proof. Let us prove, by induction on γ ≤ γ∗, that each bγ ∈ AP0 and that δ < γ implies 
bδ ≤AP0 bγ . For the base case, we know b0 ∈ AP0, indeed b0 ∈ AP . For the successor 
case, apply 10.8(C), which implies membership in AP0.

Suppose we are at a limit ordinal.
For the ultrafilter: it suffices to check that for limit γ, 

⋃
β<γ Dbβ

has the finite inter-
section property, which follows from the fact that each Dbβ

is itself a filter.
For the Boolean algebras: suppose β < γ ≤ γ∗ and γ = β +α and argue by induction 

on α. If α = 0 this is immediate, if α is a successor also clear. Suppose α is a limit and 
let X ⊆ Bβ . Let aβ be the supremum of X in Bbβ

and let aγ be the supremum of X in 
Bbγ

. Suppose for a contradiction that in Bbγ
, aβ \ aγ = c > 0. By definition of general 

construction sequence, 
⋃

β<γ Bbβ
is dense in Bbγ

, so there is δ < γ and cδ ∈ B
+
bδ

such 
that cδ < c. Then in Bbδ

, (aβ \ cδ) ≥ x for all x ∈ X, contradicting the inductive 
hypothesis. �
Corollary 10.10. Suppose b̄ = 〈bγ : γ ≤ γ∗〉 is a general construction sequence. Sup-
pose that for every β < γ∗, the pair (Baβ

, Baβ+1) satisfies the (κ, I, m̄)-pattern transfer 
property. Then each bγ ∈ AP, and indeed for every β < δ ≤ δ∗,

bβ ≤AP bδ.

Proof. By Claim 8.5, Lemma 8.19, and Claim 10.9. �
Remark 10.11. Note to the reader: sometimes θ has a special meaning in Boolean al-
gebras, such as an upper bound on the intersections allowed in a free Boolean algebra 
under consideration. In the present paper, that role is always played by ℵ0, so θ is free 
to be used for other things, as in the next definition.

Our next definition expresses that we extend (Ba, Da) in a certain minimal way: by 
simply adding a formal solution to some possibility pattern b̄ = 〈bu : u ∈ [θ]<ℵ0〉 for 
some theory. For now, the definition is general, allowing the size θ and the theory to 
vary. We could think about such extensions as simply ensuring an instance of goodness, 
adding some multiplicative refinement to some monotonic function. The crucial point is 
that we do this as freely as possible, essentially only requiring that the equations in Ba

are still respected, and the new addition 〈b1
{α} : α < θ〉 is a formal solution to b̄, i.e., 

for each u ∈ [θ]<ℵ0 , 
⋂

α∈u b1
α ≤ bu. Since we are adding multiplicative refinements, it 

suffices to specify b1
u for |u| = 1. As noted there, in the rest of the paper, we will often 

drop parentheses when |u| = 1, writing b1
α instead of b1

{α}. Notice that by 10.12(3), we 
will need to check existence.

Definition 10.12. Suppose a ∈ AP0, T is a complete first-order theory, and θ ≤ λ is an 
infinite cardinal. Say that b = (Bb, Db) is a (θ, T )-extension of a when there exists a 
possibility pattern b̄ = {bu : u ∈ [θ]<ℵ0} in (Ba, Da) for the theory T and:
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(1) Bb is the completion of the Boolean algebra B generated by the set Ya,b which is 
Ba along with the set of new elements {b1

{α} : α < θ}, freely except for the set of 
equations Γa,b which are20:
(a) the equations already in Ba.
(b) for every nonempty finite u ⊆ θ,⋂

α∈u

b1
{α} ≤ bu.

(2) Notation: for |u| > 1, let b1
u :=

⋂
α∈u b1

{α}. Convention: b1
∅ = 1B.

(3) Convention: for readability, when u = {α} and it is unlikely to cause confusion, we 
may drop parentheses and write b1

α for b1
{α}, so the new elements are {b1

α : α < θ}.
(4) Db is an ultrafilter on Bb which agrees with Da on Ba, and such that b1

α ∈ Db for 
all α < θ, if such an ultrafilter exists; otherwise not defined.

We may say b is an (θ, T, b̄)-extension of a to emphasize that b̄ is the possibility pattern 
acquiring a solution.

Remark 10.13. Recalling 7.8, a possibility pattern for T comes naturally equipped with 
the data of a[ψ[x̄u]] ∈ Ba for ψ ∈ L(τT ); we will use these in some proofs.

We record the following here though it refers to upcoming proofs:

Observation 10.14. If b ∈ AP is a (θ, T, b̄)-extension of a ∈ AP, and:

(1) θ < κ, or
(2) T = Tm for m ∈ M and b̄ is a possibility pattern coming from a positive Pν(x) ∧

R(x, y)-type for some ν ∈ T1, or
(3) T = Trg and b̄ is a possibility pattern coming from a type in positive and negative 

instances of the graph edge relation,

then

|Bb| ≤ (|Ba| + λ)κ.

Proof. By the κ-c.c. which follows from “a, b ∈ AP”, and which is proved in Claim 10.20
for (1), Theorem 10.22 for (2) and Lemma 10.24 for (3). Alternately, we could use λ ≥ θ, κ
and conclude |Bb| ≤ (|Ba| + λ)λ, which suffices for our purposes. �
Corollary 10.15. Suppose 〈bγ : γ ≤ γ∗〉 is a general construction sequence with γ∗ ≤ 2λ, 
and for each γ < γ∗, bγ+1 is a (θ, T, b̄)-extension of bγ in the sense of 10.14(1), (2) or 
(3). Then |Bbγ

| ≤ 2λ for all γ ≤ γ∗.

20 i.e. freely except for the rules already in Ba and the new rules stating that b̄1 is a formal solution to b̄.
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Proof. By induction on γ. For γ = 0, |B∗| ≤ 2λ; for γ = β + 1, apply 10.14, and at 
nonzero limit stages, use the κ-c.c. and the fact that |γ| ≤ 2λ. �
Remark 10.16. In the definition we put no restrictions on the theory; only in the actual 
construction do we use Tn, Tm and Trg.

Claim 10.17. Suppose b is a (θ, T, b̄)-extension of a ∈ AP, for some theory T and some 
θ ≤ λ. Then:

(1) Ba ⊆ Bb,
(2) indeed, Ba � Bb.
(3) there exists an ultrafilter D on Bb which agrees with Da on Ba and contains b1

α for 
all α < θ, hence Db is such an ultrafilter.

Proof. Recall from 10.12 that Bb is the completion of the Boolean algebra generated 
by Y = Ba ∪ {b1

α : α < θ} freely except for the set of equations Γ, which include all 
equations already in Ba along with equations saying that for each finite u ∈ [θ]<ℵ0 , ⋂

α∈u b1
α ≤ bu.

For each u ∈ [θ]<ℵ0 , define hu : Y → Ba as follows: hu � Ba is the identity, hu(b1
α) =

bu if α ∈ u, and hu(b1
α) = 0Ba

if α ∈ θ \ u. Note that hu respects the equations in Γ.
To see that Ba ⊆ Bb, note that in the case u = ∅ (as the generators are dense in the 

completion) the map h∅ induces an endomorphism ĥ∅ from Bb onto Ba which extends 
the identity map on Ba. This proves (a).

Next we work towards showing that Ba is a complete subalgebra of Bb. Note that Bb

is by definition a complete Boolean algebra. Fix for awhile c ∈ B
+
b
. As the generators 

are dense in the completion, we may find

x ∈ B+
a , u, u0, . . . , un−1 ∈ [θ]<ℵ0 (a)

such that u	 � u for 
 < n and

Bb |= 0 < x ∩ b1
u ∩

⋂
	<n

(−b1
u�

) ≤ c.

[Note that {b1
α : α < θ} generates a multiplicative sequence: b1

u =
⋂

α∈u b1
α for any 

finite u ⊆ θ. So the positive intersection in the inset equation may be given by a single 
u. We could have taken the u	’s to be singletons, without loss of generality. Note that 
we could also have assumed, without loss of generality, that x ≤ bu.]

Thus, for c, x, u, u0, . . . , un−1 as in the previous paragraph, the map ĥu is constant 
on Ba, takes b1

α to bu for α ∈ u, and b1
α to 0Ba

for α ∈ θ \u, hence takes b1
u to bu, and 

each b1
u to 0Ba

(for 
 < n).

�
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It follows that for any d ∈ B
+
b
, if Ba |= 0 < d ≤ x ∩ bu then Bb |= 0 < d ∩ c [i.e., 

x ∩ bu is below the projection of c, or if we chose x ≤ bu, that already x is below the 
projection of c].

Since c was arbitrary, we have shown that any maximal antichain of Ba will remain 
a maximal antichain of Bb (if not, there is some nonzero c ∈ B

+
b

which does not have 
nonempty intersection with any element of the antichain; but its corresponding x ∩ bu

must, contradiction). This completes the proof of (b).
Finally, to verify (c), it suffices to show that Da ∪ {b1

α : α < θ} has the finite in-
tersection property in Bb, as then it can be extended to an ultrafilter. This follows 
from the existence of the ĥu’s. (Suppose that for some finite u and some set a ∈ Da, 
a∩

⋂
{b1

α : α ∈ u} = 0Bb
. Then ĥu(b1

α) = bu for each α ∈ u. Recall that 〈bu : u ∈ [θ]<ℵ0〉
was a possibility pattern for (Ba, Da), thus a sequence of elements of Da; in particular, 
bu ∈ Da, so Ba |= bu ∩ a > 0, contradiction.) �

We record a simple variant for future proofs:

� Observation 10.18. Suppose that a ∈ AP but instead of taking a (θ, T )-extension of Ba, 
we consider B which is generated from Ba along with up to θ new antichains each of 
cardinality < κ, as freely as possible: that is, for some h ∈ θκ, Ba ∪{cα,ε : ε < h(α), α <

θ} freely except for the equations already in Ba and the equations saying that for each 
α, {cα,ε : ε < h(α)} is an antichain. Let Bb be the completion of B. Then the proof that

(1) Ba ⊆ Bb

(2) indeed Ba � Bb

(3) Bb has the κ-c.c.

is easier than in 10.17, and just as in 10.15, we may conclude |Bb| ≤ (|Ba| + μ)<κ.

Keeping in mind 10.10, our main task now will be to show that we can preserve the 
pattern transfer property at successor stages realizing certain specific types for certain 
specific theories. We will make repeated use of the move in the proof of 10.17, equation 
(a), giving a useful “normal form” for elements, so we start by summarizing it here. Note 
in the next observation that we bound θ by λ, and in particular, it is possible for θ to 
be larger than κ (recalling the remark before 1.12).

Observation 10.19. Suppose a ∈ AP and b is a (θ, T, b̄)-extension of a for some θ ≤ λ. 
Suppose we are given a sequence 〈a2

α : α < κ〉 of elements of B+
b
. Then:

(1) for each α < κ, there is iα = (xα, uα, 〈uα,	 : 
 < nα〉) such that xα ∈ B+
a ; nα ∈ N; 

uα, uα,0, . . . , uα,nα−1 ∈ [θ]<ℵ0 ; uα � uα,	 for 
 < nα; xα ≤ buα
; and

Bb |= 0 < xα ∩ b1
uα

∩
⋂

(−b1
uα,�

) ≤ a2
α.
	<nα
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[i.e., since the generators are dense in the completion, we can find a positive element below a2
α

which is the intersection of an element from Ba, some number of new elements, and some number 
of negations of (intersections of) new elements.]

(2) Given iα for α < κ from (1), define wα = uα ∪
⋃
{uα,	 : 
 < nα}. Then there are 

U ∈ [κ]κ, w∗, u∗, n∗, 〈u∗
	 : 
 < n∗〉 such that for every α ∈ U , wα = w∗, nα = n∗, 

uα ∩ w∗ = u∗, uα,	 ∩ w∗ = u∗
	 .

[i.e., by applying the Δ-system lemma we can smooth this out on a large set.]
(3) For every α ∈ U and xα from iα, we have that xα ≤proj a2

α.
(4) Suppose U is from (2) and X ⊆ U is finite and a∗ ∈ B+

a . Suppose

Bb |= a∗ ∩
⋂
α∈X

(
xα ∩ b1

uα

)
> 0.

Then also

Bb |= a∗ ∩
⋂
α∈X

(
xα ∩ b1

uα
∩

⋂
	<nα

(−b1
uα,�

)
)

> 0

[i.e., when checking for positive intersections we may safely ignore complements.]

Proof. For part (1), the generators are dense in the completion, and as mentioned in the 
proof of 10.17, we can gather the intersection of elements of the form b1

β into a single 
b1
uα

. Since xα ∩ bu > 0 in Ba, there is no harm in assuming Ba |= xα ≤ bu.
For part (2), by the Δ-system lemma (recall that κ is regular) there is U ∈ [κ]κ such 

that 〈wα : α ∈ U〉 is a Δ-system with heart w∗. So we can assume for some u∗, n∗, 
〈u∗

	 : 
 < n〉, for every α ∈ U , we have that nα = n, uα ∩ w∗ = u∗, uα,	 ∩ w∗ = u∗
	 . Note 

we may ask for additional uniformity, e.g. that the uα’s have constant size.
To verify xα ≤proj a2

α for (c), it suffices to show that there is an endomorphism 
f from Bb onto Ba fixing Ba pointwise such that f(a2

α) ≥ xα. Consider the map 
ĥuα

: Bb → Ba defined in the proof of 10.17. Then ĥuα
(xα) = xα, ĥuα

(b1
uα

) = buα
, 

and by the disjointness conditions of the Δ-system, ĥuα
(b1

uα,�
) = 0Ba

for all 
 < n. So 

ĥuα
(a2

α) ≥ xα ∩ buα
= xα, recalling that we assumed xα ≤ buα

in part (1).
Part (4) is similar. First consider the simple case where a∗ = 1Ba

, so we may ignore 
it. Let

u =
⋃
α∈X

uα.

Recall that B1
b |=

⋂
α∈X b1

uα
= b1

u, since b̄1 is multiplicative, and b1
u ≤ bu, since the 

sequence b̄1 refines the sequence b̄. Thus in B1
b, starting with our assumption,

0 <
⋂

(xα ∩ b1
uα

) =
⋂

xα ∩
⋂

b1
uα

=
⋂

xα ∩ b1
u ≤

⋂
xα ∩ bu. (a)
α∈X α∈X α∈X α∈X α∈X
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Let y =
⋂

α∈X(xα ∩b1
uα

). It suffices to show there is an endomorphism f from Bb onto 
Ba such that f(y) > 0 but f(b1

uα,�
) = 0Ba

for all α ∈ X, 
 < n. Recalling again the map 

from the proof of 10.17, ĥu : Bb → Ba. Then ĥu(xα) = xα for α ∈ X, and ĥu(b1
β) = bu

for all α ∈ X and β ∈ uα. Thus, ĥu(b1
uα

) = xα∩bu for α ∈ X, so remembering equation 
(a), ĥu(y) =

⋂
α∈X xα ∩ bu > 0. The effect of the Δ-system ensures that uα,	 ∩ u = ∅

for α ∈ X, 
 < n, so ĥu(b1
β) = 0Ba

for β ∈ uα,	, α ∈ X, 
 < n, as desired.
Now assume that a∗ ∈ B+

a is arbitrary but given. Equation (a), condensed for space 
reasons, becomes:

0 < a∗ ∩
⋂
α∈X

(xα ∩ b1
uα

) = · · · · · · ≤ a∗ ∩
⋂
α∈X

xα ∩ bu. (b)

Let z = a∗ ∩ y. Under the same map ĥu, note ĥu(a∗) = a∗ since it is an element of Ba. 
So by equation (b), ĥu(z) = a∗ ∩

⋂
α∈X xα ∩ bu > 0 as desired. �

Our next claim says essentially that if θ < κ then there is no problem realizing any 
(T, θ)-type for any T . Thus, we can arrange for our final ultrafilters to be κ-good, even 
though they will be far from κ+-good.

Claim 10.20 (Realizing small types). Assume a ∈ AP, b is a (θ, T, b̄)-extension of a, 
where θ < κ. Then (Ba, Bb) satisfies the (κ, I, m̄)-pattern transfer property.

Proof. This proof and the proof of 10.22 share a picture, so in this simpler case, we go 
slowly to motivate the second proof.

Let 〈a2
α : α < κ〉 be given, with each a2

α ∈ B
+
b
. First we appeal to the normal form of 

10.19(1): for all α < κ we can find iα = (xα, uα, 〈uα,	 : 
 < nα〉) as there, so xα ≤ buα
, 

and

Bb |= 0 < xα ∩ b1
uα

∩
⋂

	<nα

(−b1
uα,�

) ≤ a2
α.

In our present case, we don’t need to appeal to the Δ-system reduction of 10.19(2), since 
something stronger is true: we have assumed θ < κ, and note each uα, uα,	 is a finite 
subset of θ. So we may find U ∈ [κ]κ on which the sequence

〈(uα, 〈uα,	 : 
 < nα〉) : α ∈ U〉 (a)

is constant, and say equal to (u⊕, 〈u⊕,	 : 
 < n⊕〉). Set

a1
α = xα ∩ bu⊕ = xα for each α ∈ U . (b)

Then each a1
α ≤proj a2

α (by 10.19(3)). Let us verify 8.12(4)(f) holds for A = ∅, j = 0 to 
transfer from ā1 to ā2. Suppose we are given n ∈ ω \ A, a finite u ⊆ U , and a nonzero 
a∗ ∈ B+

a such that mn/(m◦
n)ni

< |u| < mn and
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Ba |= 0 < a∗ ≤
⋂
α∈u

a1
α. (c)

As j = 0, to fulfill the (κ, I, m̄)-pattern transfer we would like to find v such that v ⊆ u

and |v| ≥ |u|/(m◦
n)ni+0 and

B2 |=
⋂
α∈v

a2
α ∩ a∗ > 0. (d)

Remembering 10.19(4), to prove (d) it would suffice to show that for this v,

Bb |=
⋂
α∈v

(xα ∩ b1
uα

) ∩ a∗ > 0. (e)

Let us verify (e) holds already for v = u. [Clearly this choice of v has an acceptable size.] 
Let w =

⋃
α∈v uα. Observe that to prove (e), it would suffice to show that21

for some nonzero a∗∗ ∈ Ba with 0 < a∗∗ ≤ a∗, we have a∗∗ ≤ bw(v). (f)

[Why would this suffice? By the choice of a∗∗ and equation (c), we know that 0 < a∗∗ ≤
a∗ ≤

⋂
α∈v xα, since by (b) a1

α is just another name for xα. Now similarly to earlier 
proofs 10.17 and 10.19, ĥw is an endomorphism from Bb onto Ba which is the identity 
on Ba and for each α ∈ v takes xα ∩ b1

uα
= xα ∩

⋂
γ∈uα

b1
γ to xα ∩ bw. Equation (f)

would imply

ĥw

(
a∗∗ ∩

⋂
α∈v

(xα ∩ b1
uα

)
)

= a∗∗ ∩
⋂
α∈v

xα ∩ bw = a∗∗ > 0.

Equation (e) follows.]
It remains to prove (f). In fact a∗∗ = a∗ already works. Remember that we are in a very 

special case: v = u ⊆ U , so 〈uα : α ∈ v〉 is constantly equal to u⊕, so w =
⋃

α∈v uα = u⊕
(!). So bw = bu⊕ . Meanwhile, from 10.19(1) we have xα ≤ buα

for any α < κ, so 
a∗ ≤ xα ≤ bu⊕ for α ∈ u.

This completes the proof of the (κ, I, m̄)-pattern transfer, and so the proof of the 
Claim. �
Remark 10.21. Although 10.20 assumes θ < κ, the same proof will show another hy-
pothesis also works: κ ≤ θ ≤ λ but for some μ < κ we have (∀u ∈ [θ]<ℵ0)[ Ba |= bu =⋂
{b{α} : α ∈ (u \ μ)} ∩ bu∩μ ].

21 Presently, it would be both sufficient and possible to show just that ⋂α∈v xα ≤ bw, but this a priori 
more general criterion will be useful later.
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Proof. Suppose we are given such a μ. In equation (a) replace θ by μ and then let 
a1
α = xα ∩ bu⊕ ∩

⋂
α∈uα\μ bα for α ∈ U1, and verify that 〈a1

α : α ∈ U〉 is as required, for 
j = 1 (or 0). �
Theorem 10.22 (Realizing Tm-types). Assume a ∈ AP and b is a (θ, T, b̄)-extension of a
where θ ≤ λ, T = Tm for some m ∈ M, and b̄ is a possibility pattern arising from a type 
of the form

{Qρ∗(x)} ∪ {R(x, aβ) : β < θ}

for some ρ∗ ∈ T1. Then (Ba, Bb) satisfies the (κ, I, m̄)-pattern transfer property.

Proof. By hypothesis our Tm is given by some

m = m(m̄, Ē, ξ) ∈ M. (a)

This proof is similar to 10.20, so we will be lighter on motivation already given there. 
The main difference is that now we will have to handle the larger θ by leveraging an 
understanding of the type in our theory Tm.

Recall notation from 10.12: b̄ = 〈bu : u ∈ [θ]<ℵ0〉, a sequence of elements of Ba, 
is the problem which was solved in b, and was given along with the data of the form 
a[ψ] ∈ Ba; and b1

α, b1
u in Bb are from the formal solution.

We aim to prove the pattern transfer property, 8.12. Suppose we are given 〈a2
α :

α < κ〉 with each a2
α ∈ B

+
b
. First, following 10.19(1), for each α < κ we choose iα =

(xα, uα, nα, 〈uα,	 : 
 < nα〉) as there, so xα ≤ buα
for each α < κ, and

Bb |= 0 < xα ∩ b1
uα

∩
⋂

	<mα

(−b1
uα,�

) ≤ a2
α. (b)

By way of orientation: recall that each uα is a finite subset of θ, and buα
can be thought 

of as the j-image of Buα
= {t ∈ I : M [t] |= ∃x 

∧
β∈uα

Qρ∗(x) ∧ R(x, aβ [t])} in some 
enveloping ultrapower, as in §7. In this language, we can say

buα
≤ a[(∃x)

∧
{Qρ∗(x) ∧R(x, aγ) : γ ∈ uα}] (c)

noting that on different positive a∩buα
, different additional constraints may be in force 

on the aβ ’s, for instance as described by the a[ψ]’s.
Specifically, in our present context, we make the following upgrade to 10.19(1). For 

α < κ, for each of the finitely many atomic formulas ψ ∈ {aγ = aβ , Q(x), P(aβ): 
γ, β ∈ uα}, we may without loss of generality assume xα from (b) decides it, that is, 
without loss of generality

xα ≤ a[ψ] or xα ∩ a[ψ] = ∅ for each such ψ. (d)
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We can now be sure by (c) that

xα ≤ a[Qρ∗(x)], and also xα ≤ a[P(aγ)] for each γ ∈ uα. (e)

By 10.19(2), there are U ∈ [κ]κ, w∗, u∗, n∗, 〈u∗
	 : 
 < n∗〉, and let us add, m∗ such that 

for every α ∈ U : nα = n∗, uα ∩ w∗ = u∗, uα,	 ∩ w∗ = u∗
	 , and |uα| = m∗. Let

a1
α = xα for each α ∈ U . (f)

Then for each α we have a1
α ≤proj a2

α, by 10.19(3).
As a ∈ AP, the (κ, I, m̄)-c.c. holds for Ba, so, given the sequence of elements ā1 =

〈a1
α : α ∈ U〉 = 〈xα : α ∈ U〉, fix

j1 < ω, U1 ∈ [U ]κ, A1 ∈ I

such that ⊕ of 8.2 holds. (We will not really use this additional strength in the present 
proof, but it is natural to add.) We aim to show that the pattern transfers for

j = j1 + 2, U1, A = A1 ∪ {
 : 
 ≤ j + m∗ + n∗} ∪ ξ−1{1}, ā1 � U1

recalling ξ is the level function for Tm from (a), so adding ξ−1{1} to A amounts to 
ensuring n is not an active level for Tm. Fix, then, n, u, i, a∗ such that n ∈ ω \A, u is a 
finite subset of U1, and a∗ ∈ B+

a , and together they satisfy

mn/(m◦
n)ni

< |u| < mn and Ba |= 0 < a∗ ≤
⋂
α∈u

xα. (g)

Note that by definition of A, necessarily n > max{m∗, n∗}. We would like to find v ⊆ u of 
an “appropriate size” [i.e. satisfying 8.12(4)(f)(ii)] so that Bb |=

⋂
α∈v a2

α ∩a∗ > 0. First 
observe that by 10.19(4), it would suffice to show that for some v ⊆ u of an appropriate 
size,

Bb |=
⋂
α∈v

(xα ∩ b1
uα

) ∩ a∗ > 0 (h)

and for (h), just as in 10.20(f), it would suffice to show that for w(v) =
⋃

α∈v uα and 
some a∗∗ ∈ Ba with 0 < a∗∗ ≤ a∗, we have

a∗∗ ≤ bw(v). (i)

In search of a suitable v, we make the following additional reductions. First, since T2,n
is finite, we may replace a∗ by a smaller positive element a∗∗ ∈ Ba if necessary [i.e. by 
decreasing a∗ to a∗∗ to decide a finite partition of a[P(aβ)] for each of the finitely many 
α ∈ u and β ∈ uα, remembering by equation (e) that a∗ ≤ xα ≤ a[P(aβ)] for α ∈ u, 
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β ∈ uα] so that for each α ∈ u and each γ ∈ uα, there is one and only one ηγ ∈ T2,n such 
that

a∗∗ ≤ a[Pηγ
(aγ)]. (j)

Informally, for each relevant formula R(x, aγ), a∗∗ decides which branch aγ belongs to at 
level n. Next, we choose a subset of u on which this sequence of choices is constant. That 
is, for each α ∈ u, let 〈γ(α, 
) : 
 < m∗〉 list uα in strictly increasing order, necessarily 
without repetitions. Let 〈ηγ(α,	) : 
 < m∗〉 be the corresponding sequence of elements of 
T2,n chosen by a∗∗. Recalling 6.15(c), |T2,n| = m◦

n, so there are at most (m◦
n)m∗ possible 

such sequences, and so there are 〈ν	 : 
 < m∗〉 and v ⊆ u such that for every α ∈ v, 
〈ηγ(α,	) : 
 < m∗〉 = 〈ν	 : 
 < m∗〉 and

|v| ≥ |u|/(m◦
n)m∗ ≥ |u|/(m◦

n)n ≥ mn/(m◦
n)n

i·n = mn/(m◦
n)n

i+1
. (k)

Such a v therefore has an appropriate size. There is no harm (and there will be a later 
help) in replacing v by a subset if necessary so that we know its size exactly:

|v| = mn/(m◦
n)n

i+1
. (l)

Fix such a v for the rest of the proof, and let w = w(v). Note that, liberally,

|w| = m∗ ·
(
mn/(m◦

n)n
i+1

)
≤ mn. (m)

It remains to show equation (i) holds for our a∗∗ and this w.
When we ask whether a∗∗ ≤ bw, we are asking whether the decisions already made 

by a∗∗ are enough to guarantee consistency of

{Qρ∗(x) ∧ R(x, aγ) ∧ Pηγ
(aγ) : α ∈ u, γ ∈ uα} (n)

e.g. for any possible further choice of leaves that the aγ ’s may belong to. For each 
individual α ∈ u, we know a∗∗ ≤ buα

, so the answer is yes for the smaller set

{Qρ∗(x) ∧ R(x, aγ) ∧ Pηγ
(aγ) : γ ∈ uα}. (o)

Recalling the constant sequence 〈ν	 : 
 < m∗〉 from the definition of v, we may rewrite 
equation (o) to say also that the answer is yes for

{Qρ∗(x) ∧ R(x, aγ(α,	)) ∧ Pν�
(aγ(α,	)) : 
 < m}. (p)

Thus, for some ρ ∈ T1,n such that ρ∗ � ρ [recalling n > lgn(ρ∗) by the definition of A] 
we have that
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{ρ} × {ν	 : 
 < m∗} ⊆ Rn. (q)

[Note that α doesn’t really matter in the choice of ρ: the axioms of Tm imply that for ρ
from T1,n and 〈ν	 : 
 < m∗〉 a sequence of elements from T2,n, the set {Qρ(x) ∧R(x, y	) ∧
Pν�

(y	) : 
 < m∗} is consistent if and only if {ρ} × {ν	 : 
 < m∗} is a complete bipartite 
graph in Rn. Fix any ρ which has this property; there may be many to choose from.]

For each γ ∈ w, choose some η∗γ ∈ lim(T2) such that if γ = γ(α, 
) then ν	 � η∗γ [i.e., 
this leaf extends the choice made for aγ by a∗∗]. We shall prove

there is � ∈ lim(T1) such that ρ � � and (�, η∗γ) ∈ R∞ for every γ ∈ w. (r)

This will suffice for equation (i) and so will finish the proof.
To prove (r) we shall choose an increasing sequence �n+t ∈ T1,n+t by induction on 

t ≥ n. The case of t = 0 is immediate: let �n = ρ, and then (�n, η∗γ �n) ∈ Rn for each 
γ ∈ w by choice of ρ (and definition of v). For t = 1, recall the choice of n ∈ ω \A means 
ξ(n) = 0, so there are no new constraints (it is a “lazy level”). Let �n+1 be any element 
of T1,n+1 which extends �n, and it will remain true that (�n+1, η∗γ �n+1) ∈ Rn+1 for 
each γ ∈ w. [Note that the lazy level plays an essential role here: |w| ≤ mn, and elements 
of T2,n have mn immediate successors, recalling 6.15; improvements to the upper-bound 
calculation (m) won’t bring the size down to something small at this level.] For t > 1, the 
coast is now clear: whether ξ(t) = 0 or 1, recalling (m), the set w is now very comfortably 
small in the sense of 6.2:

|w| ≤ mn < m◦
n+1 ≤ (m◦

n+t−1)(n+t−1)(n+t−1)
. (s)

So we may apply Claim 6.17(1), which ensures (using n +t −1 here for k there) that given 
{η∗γ �n+t−1: γ ∈ w} ⊆ T2,n+t−1 along with equation (s) and our inductive hypothesis, 
there is �n+t ∈ T1,n+t extending �n+t−1 such that (�n+t, η∗γ �n+t) ∈ Rn+t for each 
γ ∈ w. So we can carry the induction. Let � ∈ lim(T1) be the unique element such that 
� � i = �i for all i < ω. This proves (r), so proves (i), and so finishes the proof of the 
theorem. �

For our third and final case of realizing types, in the case of the random graph, the 
theory is simple enough that we will construct the refinement directly. The proof is like 
[23] Theorem 3.2, though there are still many differences. The proof is mainly a matter 
of keeping track of equality.

Definition 10.23. For our purposes, “b̄ = 〈bu : u ∈ [θ]<ℵ0〉 is a problem for the theory 
of the random graph” in B means that b̄ arises from some partial type {R(x, aγ)t(γ) :
γ < θ, t : θ → {0, 1}} in some enveloping ultrapower,22 and so reflecting this, b̄ is given 

22 Here of course R(x, y) is the edge relation for the random graph, unlike elsewhere.
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along with {a[aβ �= aγ ] : β, γ < θ} and the sequence of truth values {t(β) : β < θ}, and 
for each u ∈ [θ]<ℵ0 ,

bu =
⋂

{a[aβ �= aγ ] : β, γ ∈ u, t(β) �= t(γ)} (a)

translating the fact that in the enveloping ultrapower, at a given index i ∈ I, a subset 
{R(x, aγ [i])t(γ) : γ ∈ u} of the background type is consistent if for all γ, β ∈ u, t(γ) �=
t(β) =⇒ aγ [i] �= aβ [i]. In keeping with our earlier notation, we will drop parentheses 
on singletons, and so write bγ for b{γ}. Note that each bγ = 1B.

Lemma 10.24 (Realizing random graph types). Suppose a ∈ AP and let θ ≤ λ. Suppose 
b̄ = 〈bu : u ∈ [θ]<ℵ0〉 is a problem for the theory of the random graph, so a sequence of 
elements of B+

a , indeed of Da. Then there is b ∈ AP such that

(1) a ≤AP b, and
(2) there is a solution of b̄ in b, i.e. there are b1

α ∈ Db for α < θ

such that Bb |=
⋂
{b1

α : α ∈ u} ≤ bu for u ∈ [θ]<ℵ0 .

Proof. Suppose we are given b̄ along with the supporting data mentioned in 10.23. We 
start by defining some auxiliary objects, which aim to keep track of equalities. For each 
γ < θ, call x ∈ B+

a collapsed for γ if for some β ≤ γ,

0 < x ≤ a[aγ = aβ ] but for all δ < β , x ∩ a[aγ = aδ] = 0Ba
. (b)

Note that for every γ < θ and a ∈ B+
a there exists x with 0 < x ≤ a which is collapsed 

for γ, because the ordinals are well ordered. So we may try to choose for each γ < θ a 
maximal antichain [supporting bγ , though this is trivial as each bγ = 1Ba

] consisting of 
disjoint nonzero elements aγ,ε each of which is collapsed for γ, by induction on ε < κ. As 
Ba satisfies the κ-c.c. we stop at some ordinal below κ. Renumbering, we may assume 
this maximal antichain is indexed by a cardinal μγ < κ. Write the result as:

〈(aγ,ε, βγ,ε) : ε < μγ〉 (c)

where βγ,ε is the minimal β ≤ γ such that aγ,ε ≤ a[aγ = aβ ], in the sense of (b). Without 
loss of generality, we may assume that ε < ε′ implies βγ,ε �= βγ,ε′ : if not, combine all 
elements of the antichain with the same β and renumber.

On the relation of these antichains to each other: fixing γ < θ, suppose β = βγ,ε. 
Observe that there is one and only one δ < μβ such that aγ,ε ∩ aβ,δ > 0. [There is at 
least one such δ because 〈aβ,δ : δ < μβ〉 is a maximal antichain. So 0 < aγ,ε ∩ aβ,δ ≤
a[aγ = aβγ,ε

] ∩ a[aβ = aββ,δ
] but since βγ,ε is minimal and ββ,δ ≤ β ≤ βγ,ε, necessarily 

they are all equal. There is only one such δ by the last sentence of the previous paragraph.] 
So necessarily aγ,ε ≤ aβ,δ. For γ < θ, ε < μγ let us write ζγ,ε < μβγ,ε

for this unique 
value so that aγ,ε ≤ aβγ,ε,ζγ,ε

. Note moreover that
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if βγ1,ε1 = βγ2,ε2 = β (for γ1 not necessarily equal to γ2) then ζγ1,ε1 = ζγ2,ε2 (d)

by a similar argument, since there is at most one ζ < μβ such that ββ,ζ = β.
To summarize, we may write the elements of (c) as triples:

〈(aγ,ε, βγ,ε, ζγ,ε) : ε < μγ〉, (e)

where we can informally express this information as saying that on aγ,ε, aγ collapses to 
aβ where β = βγ,ε, and ζ = ζγ,ε tells us aγ,ε is below the ζ-th element of the antichain 
for β.

We now define the Boolean algebra Bb. Let {cγ,ε : γ < θ, ε < μγ} be new elements. Let 
Bb be the completion of the Boolean algebra B0

b generated by

X = Ba ∪ {cγ,ε : γ < θ, ε < μγ}

freely except:

(i) the equations in Ba

(ii) cγ,ε1 ∩ cγ,ε2 = 0 when ε1 < ε2 < μγ

(iii) cγ1,ε1 ∩ cγ2,ε2 = 0 when ε1 < μγ1 , ε2 < μγ2 , t(γ1) �= t(γ2) and βγ1,ε1 = βγ2,ε2 .

Let us verify that without loss of generality Ba ⊆ Bb. Let h be the identity on Ba and 
map cγ,ε (for γ < θ, ε < μγ) to 0Ba

. So h is a function from X onto Ba respecting the 
equations, hence has an extension ĥ which is a homomorphism from Bb into B0

a such 
that ĥ � Ba = idBa

, so we are done.
Let us verify that Ba � Bb. Let c ∈ B

+
b

and we shall find a projection from Bb

onto Ba mapping c to a positive element. We can replace c by any c′ ≤ c which is not 
zero. As the generators are dense in the completion,23 without loss of generality for some 
a ∈ B+

a , finite u, v ⊆ θ, a function f with finite domain u ⊆ θ such that f(γ) < μγ for 
γ ∈ u, and finite wβ ⊆ μβ for β ∈ v, we have

0 <
⋂

{cγ,f(γ) : γ ∈ u} ∩
⋂

{−cβ,ε : β ∈ v, ε ∈ wβ} ∩ a ≤ c (f)

where necessarily {(γ, f(γ)) : γ ∈ u} ∩{(β, ε) : β ∈ v, ε ∈ wβ} = ∅, and if γ1 �= γ2 ∈ u and 
t(γ1) �= t(γ2) then βγ1,f(γ1) �= βγ2,f(γ2). If not, cγ1,f(γ1)∩cγ2,f(γ2) = 0, which contradicts 
the intersection being positive.] Define h : X → Ba so that h is the identity on Ba, 
h(cγ,f(γ)) = a for γ ∈ u, and h(cγ,ε) = 0Ba

for (γ, ε) /∈ {(γ, f(γ)) : γ ∈ u}. By the note 

23 Informally, we can find a positive element below c which is the intersection of some a ∈ B
+
a , some number 

of cγ,ε’s which appear positively, and some number of cγ,ε’s which appear negatively, but remembering that 
each {cγ,ε : ε < μγ} is an antichain, among the elements which appear positively there can be no more 
than one from each antichain.
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after equation (f), h respects the equations in (iii). So h extends to a homomorphism ĥ
from Bb onto Ba which indeed is the identity on Ba and sends c to a positive element.

Now we define our multiplicative refinement. First, for γ < θ, ε < μγ let b1
γ,ε = aγ,ε∩cγ,ε. 

Then for every γ < θ let

b1
γ =

⋃
{b1

γ,ε : ε < μγ}. (g)

We have to check first that

u ∈ [θ]<ℵ0 =⇒
⋂
γ∈u

b1
γ ≤ bu (h)

and second that there is an ultrafilter D on Bb extending Da such that

b1
γ ∈ D for each γ < θ. (i)

First we check equation (h). It will suffice to consider u = {γ1, γ2}, γ1 �= γ2. [If u = {γ}
remember that bγ = 1B. If |u| > 2 remember that bu =

⋂
v⊆u,|v|=2 bv, since consistency 

of the corresponding formulas depends only on instances of equality.] So it suffices to 
prove that for (ε1, ε2) ∈ μγ1 × μγ2 ,

b1
γ1,ε1 ∩ b1

γ2,ε2 ≤ b{γ1,γ2}. (j)

There are three cases.24 Case 1. t(γ1) = t(γ2). Then b{γ1,γ2} = 1B, so the inequality 
holds trivially. Case 2. t(γ1) �= t(γ2), βγ1,ε1 �= βγ2,ε2 . Then aγ1,ε1 ∩ aγ2,ε2 ≤ a[aγ1 �= aγ2 ]
which suffices. Case 3. t(γ1) �= t(γ2), βγ1,ε1 = βγ2,ε2 (call it β). Then

b1
γ1,ε1 ∩ b1

γ2,ε2 ≤ cγ1,ε1 ∩ cγ2,ε2 = 0B

by clause (iii) in the definition of Bb. This completes the verification of (h).

Next we verify equation (i). For this we should show there is an ultrafilter D on Bb

extending Da ∪ {b1
γ : γ < θ}. As in 10.17, it suffices to prove that given a finite u ⊆ θ

and d ∈ Da,

b1
u =

⋂
{b1

γ : γ ∈ u} is not disjoint to d. (k)

As bu ∈ Da, bu ∩ d > 0 so we may assume without loss of generality that d ≤ bu. 
Enumerate u = 〈γi : i < |u|〉. Now as each 〈aγi,ε : ε < μγi

〉 is a maximal antichain of 

24 Case 1. We connect to both aγ1 and aγ2 or neither, so there is no conflict. Case 2. The truth values 
are different but they collapse to different elements, so there is no conflict. Case 3. The truth values are 
different, they collapse to the same β (and so, by (d), are contained in the same piece of the antichain for 
β). The c’s in this case do not intersect, so there is no conflict.
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Ba, we may choose by induction on i a function f with domain u such that for each 
i, f(i) < μγi

and aγi,f(i) ∩
⋂

j<i aγj ,f(j) ∩ d > 0. Let af denote 
⋂

i<|u| aγi,f(i). Since 
d ≤ bu, we know af ∩ bu > 0, thus, in fact, af ≤ bu. [Why? By definition, bu only 
depends on information about collisions, which remain constant on af by construction 
of our maximal antichains.]

Let d∗ = d ∩ af = d ∩ af ∩ bu > 0. Since d∗ ≤ af ≤ bu (and recall u = dom(f)) for 
any γ1, γ2 ∈ u we have that γ1 �= γ2 implies either t(γ1) = t(γ2) or βγ1,f(γ1) �= βγ2,f(γ2). 
It follows that the equations in the definition of B0

b permit

d∗ ∩ {cγ,f(γ) : γ ∈ u} > 0.

Now define h : X → Ba to be the identity on Ba, h(cγ,f(γ)) = d∗ for γ ∈ u, and 
h(cγ,ε) = 0Ba

for (γ, ε) /∈ {(γ, f(γ)) : γ ∈ u}. This h extends to a homomorphism ĥ
from Bb onto Ba which is the identity on Ba and sends d to a positive element. Thus, 
a suitable ultrafilter exists; fix one. This completes the construction of (Bb, Db) and the 
verification that 〈b1

γ : γ < θ〉 is a solution for b̄ there.

It remains to verify that the pair (Ba, Bb) satisfies the (κ, I, m̄)-pattern transfer 
property. Suppose we are given 〈a2

α : α < κ〉 a sequence of positive elements of Bb. 
Similarly to the earlier proof that Ba�Bb, as the generators are dense in the completion, 
we may find for each α < κ an iα = (xα, uα, fα, vα, wα = 〈wα,β : β ∈ vα〉) such that 
xα ∈ B+

a , uα, vα are finite subsets of θ, fα is a function with finite domain uα ⊆ θ such 
that fα(γ) < μγ for γ ∈ uα; wα,β is a finite subset of μβ for β ∈ vα; we have that 
{(γ, fα(γ)) : γ ∈ uα} ∩ {(δ, ε) : δ ∈ vα, ε ∈ wα,β} = ∅, and if γ1 �= γ2 ∈ uα, t(γ1) �= t(γ2), 
then βγ1,fα(γ1) �= βγ2,fα(γ2); and together they satisfy

Bb |= 0 < xα ∩
⋂

{cγ,fα(γ) : γ ∈ uα} ∩
⋂

{−cβ,ε : β ∈ vα, ε ∈ wα,β} ≤ a2
α (l)

Next we will want to use the Δ-system lemma to smooth out collisions. Towards this, 
define Bα = {βγ,f(γ) : γ ∈ uα}, and define gα : Bα → {0, 1} to be the function given by 
βγ,f(γ) �→ t(γ) for γ ∈ uα. [We have to justify why this is a function: if γ1 �= γ2 ∈ uα, 
t(γ1) �= t(γ2), then βγ1,fα(γ1) �= βγ2,fα(γ2) otherwise the intersection in equation (l) would 
be empty.]

Then, by the Δ-system lemma, we may find U ∈ [κ]κ along with u∗, f∗, B∗, g∗
satisfying:

• 〈uα : α ∈ U〉 is a Δ-system with heart u∗.
• for each α ∈ u, fα � u∗ = f∗ (recall fα(γ) can take fewer than κ values).
• 〈Bα : α ∈ U〉 is a Δ-system with heart B∗.
• for each α ∈ u, gα � B∗ = g∗.
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Let us show that for any finite u ⊆ U , letting w =
⋃

α∈u uα, we have that

⋂
γ∈w

cγ,fα(γ) =
⋂

{cγ,fα(γ) : α ∈ u, γ ∈ uα} > 0. (m)

Why? It suffices to show that if α1, α2 ∈ u, γ1 ∈ uα1 , γ2 ∈ uα2 , then cγ1,fα1
(γ1) ∩

cγ2,fα2
(γ2) > 0. First suppose α1 = α2; then this follows from equation (l). Next, suppose 

α1 �= α2 but γ1 = γ2. This can happen only if γ := γ1 = γ2 belongs to u∗, in which 
case fα1(γ) = f∗(γ) = fα2(γ) and there is no problem from equation (ii). Moreover, 
necessarily βγ,fα1

(γ) = βγ,fα2
(γ), so this value, call it β, must belong to B∗ and gα1(β) =

g∗(β) = gα2(β) thus t(γ1) = t(γ2) and there is no problem from (iii). Finally, suppose 
α1 �= α2 and γ1 �= γ2. Equation (ii) is irrelevant. As before, if βγ1,fα1

(γ1) = βγ2,fα2
(γ2), 

then this value, call it β, must belong to B∗ and gα1(β) = g∗(β) = gα2(β) thus t(γ1) =
t(γ2) and there is again no problem from equation (iii). This completes the proof of (m).

Just as in 10.19(4), this tells us that for a finite u ⊆ U , if 
⋂

α∈u x > 0, then

0 <
⋂
α∈u

xα ∩
⋂

{cγ,fα(γ) : γ ∈ uα} ∩
⋂

{−cβ,ε : β ∈ vα, ε ∈ wα,β}.

Recall that by 8.20, this suffices for pattern transfer, so finishes the proof. �
Recall that κ is a regular uncountable cardinal and λ ≥ κ.

Conclusion 10.25. There exists a regular ultrafilter D on λ such that:

(1) D is κ-good, i.e. (N, <)λ/D is κ-saturated.25
(2) if m ∈ M then D is (λ+, Tm)-good.
(3) if n ∈ N then D is not (κ+, Tn)-good.

Proof. Let 〈Sγ : γ < 2λ〉 partition 2λ into sets each of cardinality 2λ with γ ≤ min(Sγ). 
We choose by induction on α ≤ 2λ not only bα but also f̄α such that:

(1) b̄ = 〈bα : α ≤ 2λ〉 is a ≤AP-increasing continuous general construction sequence, so 
by definition and our work above this will mean:
(a) b0 = a∗,
(b) each bα ∈ AP,
(c) α < β =⇒ (Ba, Bb) satisfies the (κ, I, m̄)-pattern transfer property,
(d) each |Bbα

| ≤ 2λ,
(e) each Bbα

satisfies the (κ, I, m̄)-c.c.
(2) f̄α = 〈fα,γ : γ ∈ Sα〉

25 Equivalently, for any model M with |τM | < κ, Mλ/D is κ-saturated.
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(3) f̄α lists Fα = {f : f is a function from [θ]<ℵ0 into Dbα
which is monotone for some 

θ = θf ≤ λ }.
(4) Now if α = γ + 1 and γ ∈ Sβ , so β ≤ γ, and range(fα,γ) ⊆ Dbγ

, and if maintaining 
the restriction in (1) we can choose bα such that fα,γ has a multiplicative refinement 
gγ with range ⊆ Dbα

, then there is such a refinement [i.e., then we do so]. Otherwise, 
we do nothing.
Alternately, in this step we could say that if fα,γ is a possibility pattern for a theory 
T = Tfα,γ

such that one of the following occurs:
• θfα,γ

< κ,
• Tfα,γ

is Tm for m ∈ M, and the possibility pattern in question comes from a 
positive R-type together with a single formula of the form Qν∗(x) for some ν∗ ∈ T1

(or: together with a single formula of the form Pη∗(y) for some η∗ ∈ T2)
• Tfα,γ

is Trg and the possibility pattern comes from a type in positive and negative 
instances of R.

Then we solve it using 10.20, 10.22, or 10.24, otherwise we do nothing. Note that 
10.20, 10.22, 10.24 show that at the very least, these three kinds of types will be 
handled if we take the first alternative.

Having built our Boolean algebra and ultrafilter, we choose the data of separation of 
variables D0, j to go with this Ba and Da in the sense of 7.1, which gives us the regular 
ultrafilter desired, recalling Theorem 7.3. Note that by our analysis of ultrapower types 
in 5.6, these R-types suffice for saturation for Tm, and by 9.4 the fact that our Boolean 
algebra Ba has the (κ, I, m̄)-c.c. suffices for non-saturation of Tn for n ∈ N . �
11. Main results and the big picture

In this section we summarize the main consequences of our construction for Keisler’s 
order.

Recall that we can easily form new countable theories as the “disjoint union,” or sum, 
of up to countably many countable theories. More formally:

Definition 11.1. Recall T =
∑

Tn when without loss of generality 〈τ(Tn) : n < ω〉 are 
pairwise disjoint and have only predicates, and we have countably many new unary 
predicates {Pn : n < ω} with {Pn : n < ω} ∩ τ(Tn) = ∅ for each n. Then M |= T iff 
〈PM

n : n < ω〉 are pairwise disjoint and (M � PM
n ) � τ(Tn) |= Tn, and if R ∈ τ(Tn) then 

RM ⊆ arity(R)(PM
n ).

In this notation:

Corollary 11.2. Continuing with the objects of 10.25, given any m	 ∈ M for 
 < ω, we 
have that T∗ =

∑
	<ω Tm�

is a complete countable simple theory, and D is (λ+, T∗)-good.
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Recall that u ∈ [X]≤ℵ0 means that u is an at most countable subset of X. Given any 
fast sequence and a family of independent level functions, our construction above gives 
a set of continuum many theories which can be thought of as Keisler-independent in 
the following strong sense. Suppose from the basic theories we form all possible “small 
composite theories” (countable, complete theories formed in the natural way as disjoint 
unions of at most countably many theories from our original set). Then our construction 
has shown that even the composite theories interact as freely as possible in the sense 
of Keisler’s order, reflecting only the interaction in their indices, as the next theorem 
makes precise.

Theorem 11.3. We can find T̄ such that:

(1) T̄ = 〈Tu : u ∈ [2ℵ0 ]≤ℵ0〉
(2) Tu is a complete first order countable simple theory with trivial forking
(3) Tu � Tv if and only if u ⊆ v, for u, v ∈ [2ℵ0 ]≤ℵ0 .
(4) if W ⊆ 2ℵ0 , ℵ0 ≤ μ < μ+ ≤ κ = cof(κ) ≤ λ then there is a regular ultrafilter D on 

λ such that:
(a) D is κ-good
(b) if u ∈ [W ]≤ℵ0 then D is (λ+, Tu)-good
(c) if u ∈ [2ℵ0 ]≤ℵ0 , u � W then D is not (κ+, Tu)-good.

Proof. Let m̄ be a fast sequence, let Ē and Ξ satisfy the hypotheses of 6.22, and let 
M∗ = {mα = par[m̄, Ē, ξα] : α < 2ℵ0} be as defined in 6.22. Let W play the role of 
M ⊆ M∗. Then by our construction there is a regular ultrafilter D on any infinite λ
as in (4), satisfying also (4)(a), such that D is good for every Tm, m ∈ M, and D is 
not good for any Tn, n ∈ M∗ \M. Note that any sum Tu of theories {Tmα

: α ∈ u} is 
complete and remains simple with trivial forking. Clearly (3) and (4)(b), (c) follow. �

As immediate consequences, we obtain several “more quotable” theorems.

Theorem 11.4. There exists a perfect set of incomparable theories in Keisler’s order, in 
ZFC, already within the class of countable simple unstable theories whose only forking 
comes from equality.

Proof. Use any set of countably many pairwise incomparable theories from Theorem 11.3
to label the nodes of an infinite binary branching tree, and consider the set of theories 
which correspond to disjoint unions of theories along a given branch. �
Theorem 11.5. In the (countable, complete) simple non low theories,

(1) there is a chain of cardinality continuum, and
(2) there is an antichain of cardinality continuum

in Keisler’s order.
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Proof. Enumerate a countable subset of the theories from Theorem 11.3 as 〈Tq : q ∈ Q〉. 
Let 〈Cβ = (C0

β , C
1
β) : β < 2ℵ0〉 enumerate the continuum many cuts of the rationals. Let 

Tβ be the theory which is the disjoint union of {Tq : q ∈ C0
β}. Then clearly α ≤ β implies 

Tα � Tβ . As the rationals are dense in the reals, and our family of theories are pairwise 
incomparable, if α < β then Tα � Tβ . This gives us a chain of cardinality continuum.

For an antichain of cardinality c, use all the theories from Theorem 11.3. �
Remark 11.6. Even in this frame the theories involved seem simple.

Theorem 11.7. There exist continuum many complete, countable, simple theories whose 
only forking comes from equality, and which are pairwise incomparable in Keisler’s order.

Proof. Consider all u of size 1 in Theorem 11.3, i.e., in the notation of that proof, consider 
{Tmα

: α < 2ℵ0}. �
Conclusion 11.8. Keisler’s order is not at all simple, indeed the partial order on the family 
of subsets of N is embeddable into it.

In fact, with more work we can upgrade 11.8 to the following a priori much stronger 
result. We include the proof in the next section.

Theorem 11.9. P(ω)/ fin embeds into Keisler’s order.

Proof. See page 86, below. �
The theorem whose proof concludes the next section explains:

Theorem 11.10. There is a family of parameters {m[A] : A ⊆ ω} such that each Tm[A] is 
countable, complete, simple, and low, and the following are equivalent for any λ ≥ 2ℵ0

and any set X ⊆ P(ω):

(1) There exists a regular ultrafilter D on λ such that X = {A ⊆ ω : D is (λ+, Tm[A])-
good }.

(2) X ⊇ [ω]<ℵ0 is an ideal.

Proof. See page 87, below. �
Discussion 11.11. In light of our main theorems, it would be natural to consider strength-
enings of Keisler’s order, for instance, by restricting consideration to ultrafilters on λ
which are λ-good [but of course not necessarily λ+-good]. However, our construction can 
be carried out even under such a definition, as we now spell out.
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Definition 11.12. Let the strong Keisler order mean that T1 �s T2 if and only if for every 
infinite λ, for every regular ultrafilter on λ which is λ-good, for every M1 |= T1, and every 
M2 |= T2, if (M2)λ/D is λ+-good, then (M1)λ/D is λ+-good.

Theorem 11.13. There exists a family {Tmα
: α < 2ℵ0} of continuum many complete 

countable simple theories, with forking coming only from equality, such that for any 
u, v ⊆ 2ℵ0 and u, v and most countable, letting Tu, Tv denote the “disjoint unions” of 
{Tmα

: α ∈ u}, {Tmβ
: β ∈ v} respectively, we have that Tu �s Tv in the strong Keisler 

order if and only if u ⊆ v.

Proof. This is a simplified version of Theorem 11.3 in the case μ < μ+ = κ = λ. �
Remark 11.14. Note that Theorem 11.13 deals with the case where we quantify over all 
λ. We could ask the analogous question �s

λ, restricting to ultrafilters on λ. The proof 
of 11.13 shows that 11.13 remains true for �s

λ when λ is any successor. If λ is a regular 
limit, the construction should likewise go through using λ = κ and Definition 8.8. If λ is 
a singular limit cardinal, then any λ-good ultrafilter is λ+-good. [This is a consequence 
of the fact that Th(Q, <) is maximal in Keisler’s order, see [33] IV.2.6. p. 337.] Hence 
there is only one class under �s

λ.

Since we know that Keisler’s order reduces to the study of ϕ-types, it was asked:

Earlier Problem. Determine whether there exists a function associating to each complete 
countable theory T a formula ϕT of the language of T such that for any infinite λ, any 
regular ultrafilter D on λ, and any model M |= T , the ultrapower Mλ/D is λ+-saturated 
if and only if it is λ+-saturated for ϕT -types.

Call such a function an assignment of formulas to theories witnessing Keisler’s order. 
The results of the present paper show no formula assignment can exist:

Corollary 11.15. There cannot exist an assignment of formulas to theories witnessing 
Keisler’s order.

Proof. Continuing in the notation of Theorem 11.3, let 〈mn : n < ω〉 be any countable 
sequence of distinct elements of M and let T =

∑
Tmn

be their disjoint union. Following 
11.1, we may assume that without loss of generality {τ(Tmn

) : n < ω} are pairwise 
disjoint and have only predicates. Assume for a contradiction that there exists a formula 
ϕT such that for any infinite λ, any regular ultrafilter D on λ, and any model M |= T , 
we would have Mλ/D is λ+-saturated if and only if it is λ+-saturated for ϕT -types. Fix 
M . The formula ϕT , being finite, is a formula of the language of 

⋃
{τTmn

: n ∈ v} for 
some finite v ⊆ ω. By Theorem 11.3, there is a regular ultrafilter D on any uncountable 
λ which is λ+-good for {Tmn

: n ∈ v} and not λ+-good for {Tm�
: 
 ∈ ω \v}. So in Mλ/D
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we realize all ϕT -types over sets of size λ, but omit some other ψ-type over some set of 
size λ. �
Discussion 11.16. However, it may be interesting to give a model-theoretic characteriza-
tion of the theories T for which such a ϕT exists. This includes all stable theories (choose 
any formula with the finite cover property if one exists, if not choose any formula [33]
VI.5.2), and all theories with SOP2 [21].

12. Embedding P(ω)/ fin

In this section we prove Theorem 11.9: Keisler’s order embeds P(ω)/ fin, and Theo-
rem 11.10.

Convention 12.1. For this section, fix some fast sequence m̄, and a sequence of graphs Ē
which is good for it, just as in 6.12 above.

Convention 12.2. In this section, for each A ⊆ ω, let m[A] be the parameter par[m̄, Ē, ξ]
where ξ : ω → {0, 1} satisfies ξ−1{1} = A. Let Tm[A] be its associated theory.

Our proof will show that Tm[A] � Tm[B] if and only if A ⊆∗ B. The proof will also show 
this for the interpretability order �∗, not only Keisler’s order �. [A recent introduction 
to �∗ is in [24], §1, or see [4]. The equivalence relation induced by �∗ is strictly finer 
than that induced by �, see [24] 2.12.]

It will be useful to make explicit a property of parameters which held in our main 
case above.26 Note that 12.3(1)(c) says that we can write, for each level k, a graph Sk

such that the connections in R depend only on these graphs.

Definition 12.3.

(1) We say m is forgetful when
(a) m is self-dual for transparency27

(b) for each i = 1, 2 and k there is mi
k such that for all η ∈ Ti,k,

(∀j)(η�〈j〉 ∈ Ti,k+1 ⇐⇒ j < mi
k)

(c) for each k there is Sk ⊆ m1
k×m2

k such that if (η, ν) ∈ T1,k×T2,k then (η, ν) ∈ Rm
k

if and only if (∀
 < k)(η(
), ν(
)) ∈ S	.
(2) So if m is forgetful and k < ω, then n = m �≥k satisfies:

mi
n[n] = mi

n+k[m], and this does not depend on i
Ti,n[n] =

∏
i<n mi

k+i[m], and
Sn[n] = Sk+n[m], which are each symmetric.

26 In Definition 12.3, whether (η�〈	1〉, ρ�〈	2〉) is an edge in R depends only on the fact that (η, ρ) ∈ R
and on 	1, 	2. There is no “memory” coming from the path in the tree which affects the graph used at this 
stage (just the level matters).
27 so we don’t really need m1 and m2 in item (b).
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Informally, all nodes at level k have the same number of immediate successors, and when 
extending edges to the next level (which recall only happens between elements whose 
restrictions are connected at all earlier levels) only the last value matters:

Remark 12.4. 12.3(1)(b) implies that if we are given η ∈ T1,k and ρ ∈ T2,k and η′ ∈ T1,k
and ρ′ ∈ T2,k, and (η, ρ) ∈ R and (η′, ρ′) ∈ R, then for any i < m1

k+1 and j < m2
k+1,

(η�〈i〉, ρ�〈j〉) ∈ R ⇐⇒ (η′�〈i〉, ρ′�〈j〉) ∈ R.

So the parameter depends in the natural way on a sequence of graphs. The param-
eters used in the main arguments above satisfied this definition. The following easy 
consequence will also be useful.

Claim 12.5. Suppose m is a forgetful parameter, η∗ = η0
�〈i〉�η∞ ∈ lim(T m

1 ), and ρ∗ =
ρ0

�〈j〉�ρ∞ ∈ lim(T m
2 ), where lgn(η0) = lgn(ρ0) < ω. Suppose that for every s < ω, (η∗ �

s, ρ∗ � s) ∈ Rm. If we replace i, j by i′, j′ respectively so that (η0
�〈i′〉, ρ0

�〈j′〉) ∈ Rm, 
then it remains true that for every s < ω,

( (η0
�〈i′〉�η∞) � s, (ρ0

�〈j′〉�ρ∞) � s) ∈ Rm.

Proof. By definition of forgetful. �
Next, let m be any forgetful parameter. We define a useful class of restricted models, 

starting with the simplest case.

Definition 12.6. For any m and M |= T 0
m, k < ω, and (η, ρ) ∈ T m

1,k × T m
2,k,

(A) we define n = m � (η, ρ) by:
(a) T n

1 = {ν : η�ν ∈ T m
1 }

(b) T n
2 = {ν : ρ�ν ∈ T m

2 }
(c) Rn

k = {(ν1, ν2) : (η�ν1, ρ�ν2) ∈ Rm
k }

(B) we define N = N [η, ρ, M ] as the following τ(Tn)-model:
(a) the universe is QM

η ∪ PM
ρ .

(b) QN
ν = QM

η�ν for η�ν ∈ T m
1

(c) PN
ν = PM

ρ�ν for ρ�ν ∈ T m
2

(d) RN = RM � (QM
η × PM

ρ ).

Claim 12.7. Assume n = m � (η, ρ) where (η, ρ) ∈ Rm
k , and N = N [η, ρ, M ]. Then:

(1) If M |= T 0
m, then N |= T 0

n .
(2) If M |= Tm, then:

(a) N |= Tn, and
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(b) if A ⊆ N and ā, ̄b ∈ nN then tp(ā, A, M) = tp(b̄, A, M) if and only if 
tp(ā, A, N) = tp(b̄, A, N).

(3) If M is a κ-saturated model of Tm, then N is a κ-saturated model of Tn.

Proof. (1) is by the definitions. (2) (a) is easy. (2)(b) is by the elimination of quantifiers. 
(3) follows from (2)(b). (Or see 12.12 below.) �
Claim 12.8. Assume m is forgetful and k < ω.

(Claim) If (η, ρ) ∈ Rm,k and (η′, ρ′) ∈ Rm,k then m � (η, ρ) = m � (η′, ρ′).
(Defn) Let n = m �≥k be m � (η, ρ) for any (some) (η, ρ) ∈ Rm,k.

Proof. By the definition of forgetful. �
Now we generalize 12.6, but there is a subtlety. Suppose we are given M |= Tn (or just 

M |= T 0
n ) and k < ω, and non-empty Λ1 ⊆ T1,k, Λ2 ⊆ T2,k such that Λ1 × Λ2 ⊆ R (i.e. 

a complete bipartite graph in the template at level k). We define N = N [Λ1, Λ2, M ] not
by looking at the multi-rooted subtrees of T1, T2 which start in Λ1 or Λ2 respectively, 
and then restricting M to predicates coming from these multi-rooted subtrees in the 
natural sense. Rather, we form a new model “by gluing” (or “by stacking on top of”) 
all the subtrees with roots in Λ1 to make the rooted tree on the left, and stacking up 
all the subtrees with roots in Λ2 to make the rooted tree on the right. So QN

〈〉 is the 
union 

⋃
{QM

η : η ∈ Λ1} and PN
〈〉 is the union 

⋃
{PM

ρ : ρ ∈ Λ2}. In general, QN
ν is the 

union of 
⋃
{QM

η�ν : η ∈ Λ1}, and PN
ν is the union of 

⋃
{PM

ρ�ν : ρ ∈ Λ2}. The edges in the 
model stay the same: RN = RM � QN

〈〉 × PN
〈〉 [note: roman R in the model, not R in the 

template; for more, see 12.12]. This works well because m is forgetful, so the subtrees sit 
exactly on top of each other, with the same branching and the same R-information.

We will be most interested in cases of the form N = N [{η}, Λ, M ] where η is a 
singleton and Λ = {ρ ∈ T2 : (η, ρ) ∈ R} is the set of all neighbors of η, or the parallel 
N = N [Λ, {ρ}, M ], though we give the general definition.

Definition 12.9. Assume m is forgetful, M |= Tm, k < ω, ∅ �= Λ	 ⊆ T m
	,k for 
 = 1, 2 and 

Λ1 × Λ2 ⊆ Rm
k .

We define N = N [Λ1, Λ2, M ] as the following τ(m �≥k)-model:

• universe: 
⋃
{QM

η ∪ PM
ρ : (η, ρ) ∈ Λ1 × Λ2}

• QN
ν =

⋃
{QM

η�ν : η ∈ Λ1}, so in particular, QN = QN
〈〉 .

• PN
ν =

⋃
{PM

η�ν : η ∈ Λ1}, so in particular, PN = PN
〈〉 .

• RN = RM � QN × PN .

Note that 12.9 gives an interpretation of N in M . Since we will mainly use the case 
where either Λ1 or Λ2 has cardinality 1, we spell out this special case.
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Observation 12.10. Let m be a forgetful parameter. For M |= Tm,

(1) if Λ1 = {η} and Λ2 ⊆ {ρ ∈ T2,k : (η, ρ) ∈ R}, then our model has
• universe: QM

η ∪
⋃
{PM

ρ : ρ ∈ Λ2}
• QN

ν = QM
η�ν .

• PN
ν =

⋃
{PM

ρ�ν : ρ ∈ Λ}.
• RN = RM � QN × PN , i.e. we retain all existing edges between elements which 

make it into the domain of the new model.
(2) We have the parallel in the case where Λ2 = {ρ} and Λ1 ⊆ {η ∈ T1,k : (η, ρ) ∈ R}.

Convention 12.11. We may write N [η, Λ, M ] instead of N [{η}, Λ, M ] and likewise we 
may write N [Λ, ρ, M ] instead of N [Λ, {ρ}, M ].

Comparing Definition 12.6 and Definition 12.9, the reader will notice that in 12.9 we 
don’t define a new parameter n = n � (Λ1, Λ2). This is because, by forgetfulness, we al-
ready have an appropriate parameter, namely: in 12.10, the structure N = N [Λ1, Λ2, M ]
is a model of T 0

n where n = m �≥k.

Claim 12.12. Assume m is forgetful. Assume (Λ1, Λ2) are as in 12.9, N = N [Λ1, Λ2, M ]
and n = m �≥k. Then:

(1) If M |= T 0
m, then N |= T 0

n .
(2) If M |= Tm, then:

(a) N |= Tn, and
(b) if ā, ̄b ∈ nN and tp(ā, ∅, M) = tp(b̄, ∅, M), then tp(ā, ∅, N) = tp(b̄, ∅, N).

(3) If M is a κ-saturated model of Tm, then N is a κ-saturated model of Tn.
(4) If M is a κ-special model of Tm, then N is a κ-special model of Tn.

Proof. Easy, but as this is central we elaborate.
(1) There are two parts to check: the unary predicates match the structure of the 

tree, and the edges R indeed reflect the instructions of Rn. Since Λ1 × Λ2 ⊆ Rm, and 
m is forgetful, n = m �≥k is well defined. Fix for a moment ν1 ∈ T n

1,	, ν2 ∈ T n
2,	. Then 

whenever (ν1, ν2) /∈ Rn, T 0
n implies (∀x ∈ Qν1)(∀y ∈ Pν2)(¬R(x, y)). So let us check: in 

the model N ,

QN
ν1

=
⋃

{QM
η�ν1

: η ∈ Λ1}

PN
ν2

=
⋃

{PM
η�ν1

: η ∈ Λ2}.

Suppose (ν1, ν2) /∈ Rn,	. Then (as m �≥k) is well defined) for any choice of (η, ρ) ∈ Λ1×Λ2, 
(η�ν1, ρ�ν2) /∈ Rm,k+	. Since for all a ∈ QN

ν1
, and all b ∈ PN

ν2
, there are η ∈ Λ1 and ρ ∈ Λ2

such that a ∈ QM
η�ν1

and b ∈ PM
ρ�ν2

, M |= ¬R(a, b), so as N changes no edges on its 
domain, also N |= ¬R(a, b). So (∀x ∈ Qν1)(∀y ∈ Pν2)(¬R(x, y)) holds in N . Thus we 
verify the universal axioms of T 0

n .
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(2), (3) are immediate from the fact that 12.9 gives an interpretation of N in M .
One could prove (2) directly: since Tn eliminates quantifiers, it suffices to check truth 

of relevant formulas as in the quantifier elimination argument 2.19.
For (3), we also sketch a direct proof as it will help for (4). Recall M is κ-saturated. 

Convention: given a leaf, say ρ ∈ lim(T n
2 ), let us write PM

ρ to abbreviate 
⋂
{PM

ρ�n : n <
ω}, and the parallel for lim(T n

1 ). Sometimes we will repeat this for emphasis. As Tn has 
elimination of quantifiers, it suffices to verify that:

(�)1 if ν ∈ lim(T n
1 ), X = {ρ ∈ lim(T n

2 ) :
∧

m(ν � m, ρ � m) ∈ Rn
m}, and A, B ⊆⋃

{PN
ρ : ρ ∈ X} are disjoint and |A| + |B| < κ, then for some c ∈ QN

ν =
⋂

n Q
N
ν�n we 

have that (c, a) ∈ RN for all a ∈ A, and (c, b) /∈ RN for all b ∈ B,

as well as (�)2 the dual reversing the trees. In the case where A, B are finite, this is the 
content of redoing the elimination of quantifiers as mentioned in (2).

As we are using Λ1, Λ2, symmetry holds and it suffices to prove (�)1. In particular 
it suffices to prove that for some η ∈ Λ1 there is c ∈

⋂
{QM

η�ν�n : n < ω} such that 
(c, a) ∈ RM for all a ∈ A, and (c, b) /∈ RM for all b ∈ B. Thus we move the problem to 
the model M .

In M , the sets A and B clearly remain disjoint. Let us locate the a’s and b’s. Since 
our N was a model of Tn, for each a ∈ A, there is νa ∈ lim(T n

2 ) such that a ∈ PN
νa

, and 
likewise for each b ∈ B, there is νb ∈ lim(T n

2 ) such that b ∈ PN
νb

. Therefore in M , for 
each a ∈ A there is ρa ∈ Λ2 such that a ∈ PM

ρa
�νa

, and likewise for each b ∈ B there 
is ρb ∈ Λ2 such that b ∈ PM

ρb
�νb

, though the positive part is what is most important. 
Choose any η ∈ Λ1. Since Λ1 × Λ2 ⊆ Rm, and by definition of X, we conclude that ∧

n(η�ν � n, ρa
�νa � n) ∈ Rm

n . So the type p(x) saying that {R(x, a) : a ∈ A} ∪
{¬R(x, b) : b ∈ B} ∪ {Pη�ν�n(x) : n < ω} is indeed a consistent partial type in M , and 
therefore there is such a c ∈ |M | satisfying (c, a) ∈ RM for all a ∈ A, and (c, b) /∈ RM for 
all b ∈ B, by saturation of M . Moreover, by definition of p(x), it must be that c ∈ PM

η , 
thus c ∈ |N | by construction. This completes the proof.

(4) Similarly to (3). �
Claim 12.13. Let D be a regular ultrafilter on I, |I| = λ. Suppose m is a forgetful param-
eter (thus self-dual) and k < ω. Suppose n = m �≥k. Then the following are equivalent:

(1) (Mm)I/D is λ+-saturated, for some, equivalently every, Mm |= Tm.
(2) (Mn)I/D is λ+-saturated, for some, equivalently every, Mn |= Tn.

In other words, Tm and Tn are equivalent in Keisler’s order.28

28 We pedantically avoid using the letter N for a model in this proof to avoid confusion with the operation 
N [Λ1, Λ2, M ].
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Proof. First note: for each given η, Λ, clearly we can interpret N [η, Λ, M ] in the model 
M . So as ultrapowers commute with reducts, (N [η, Λ, M ])I/D is canonically isomorphic 
to N [η, Λ, M I/D]. The parallel holds for N [Λ, η, M ], though since m is forgetful therefore 
symmetric, it suffices to consider the first case.

(1) implies (2): As the ultrafilter is regular, it won’t matter which model of Tm or 
Tn we choose (see Keisler [9] 2.1a), so we may as well choose η ∈ T m

1,k, ρ ∈ T m
2,k and 

Mn = N [η, ρ, Mm]. Now apply 12.12 and the fact that ultrapowers commute with reducts.
(2) implies (1): Suppose (2). Then D is good for the theory of the random graph, be-

cause the theory of Mn will be unstable and the theory of the random graph is minimum 
in Keisler’s order among the unstable theories (see [16] §5).

Let M∗
m = (Mm)I/D. By Conclusion 5.6, it suffices to show that every partial type of 

M∗
m of the form

r(x) = {Qν(x)} ∪ {R(x, a) : a ∈ A}

is realized, where ν ∈ T1, A ⊆ M∗
m and |A| ≤ λ. So ν has finite length, without loss of 

generality lgn(ν) ≥ k, though of course > k is allowed. Let η = ν � k.
Since r is consistent, we may choose η∗ such that:

(a) η�η∗ ∈ lim(T m
1 ), and also ν � η�η∗. [That is, we extend ν to a branch, but we write 

it as its restriction to k plus the continuation.]
(b) and moreover the larger type

r∗(x) = {Qη�η∗�	(x) : 
 < ω} ∪ {R(x, a) : a ∈ A}

is still consistent.

Moreover, for each a ∈ A, we may choose νa ∈ T2,k and ρa with νa�ρa ∈ lim(T n
2 ) such 

that for each a ∈ A, M∗
m |= {Pνa

�ρa�	(a) : 
 < ω}. [Again we identify the branch of each 
a ∈ A, and write it as its restriction to k plus the continuation.]

By the fact that r∗ is a [partial] type, note that

(c) if we write Λ = {ρ ∈ T m
2,k : (η, ρ) ∈ Rm}, then νa ∈ Λ for each a ∈ A.

(d) moreover, for each a ∈ A and each 
 < ω,

(η�η∗ � 
, νa
�ρa � 
) ∈ Rm.

Let Mn = N [η, Λ, Mm]. Then, recalling the beginning of the proof, we have that 
M∗

n = N [η, Λ, M∗
m] = ( N [η, Λ, Mm] )I/D.

By (c), we have that A ⊆ M∗
n [i.e. A ⊆ dom(M∗

n )].
By (d) and the definition of forgetful, we have that (η∗ � 
, ρa � 
) ∈ Rn for each a ∈ A

and 
 < ω.
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Thus q∗(x) = {Qη∗�	(x) : 
 < ω} ∪ {R(x, a) : a ∈ A} is a partial type in M∗
n . By 

our hypothesis (2), M∗
n is λ+-saturated, so q∗ is realized, say by b. By construction, 

dom(M∗
n ) ⊆ dom(M∗

m), so b ∈ M∗
m, indeed M∗

m |= Qη(b). Moreover, since ν (from the 
definition of r(x) above) is an initial segment of η�η∗, M∗

m |= Qν(b). This shows that b
realizes r(x) in M∗

m, which completes the proof. �
The proofs just given show:

Conclusion 12.14. Let m be a forgetful parameter.

(1) Suppose M = Tm. M is λ+-saturated if and only if for every pair (Λ1, Λ2) such that 
Λ1 × Λ2 ⊆ Rm and either |Λ1| = 1 or |Λ2| = 1, the model N = N [Λ1, Λ2, M ] is 
λ+-saturated.

(2) Let k < ω and let n = m �≥k. Then Tm, Tn are equivalent in Keisler’s order.

Recall that in the context of Convention 12.2 p. 75, our goal in this section is to 
compare theories of the form Tm[A] and Tm[B]. The above shows that without loss of 
generality A ⊆ B, so Claim 12.15, which we now state, will follow from 12.24 below.

Claim 12.15. Suppose A ⊆∗ B. Then Tm[A] � Tm[B].

Proof. This will follow from 12.24 below. �
Recall that Q = Q〈〉, P = P〈〉. Write T A

i for T m[A]
i , T B

i for T m[B]
i and i = 1, 2, and 

RA = Rm[A], RB = Rm[B].

Observation 12.16. As A ⊆ B, we have that:

• T A
i = T B

i for i = 1, 2.
• RB ⊆ RA.

Convention 12.17. Notation:

(1) If a ∈ PM , saying that “ρ is the leaf of a” means that ρ is the unique element 
of lim(T M

2 ) such that M |= Pρ�	(a) for 
 < ω, and similarly for a ∈ QM and 
η ∈ lim(T M

1 ).
(2) Write (η, ρ) ∈ RA

∞ to mean that η ∈ lim(T A
1 ), ρ ∈ lim(T A

2 ) and for all 
 < ω, 
(η � 
, ρ � 
) ∈ RA.

Observation 12.18. Suppose n < ω, Y ⊆ PMA is finite, η ∈ T A
1 . For a ∈ Y let ρa ∈

lim(T A
2 ) be the leaf of a. Let MA |= Tm[A]. The following are equivalent:

(1) MA |= (∃x) 
∧

a∈Y ( Qη(x) ∧R(x, a) )
(2) there is ν ∈ lim(T A

1 ), η � ν such that (ν, ρa) ∈ RA
∞ for each a ∈ Y .
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Observation 12.19 (Discussion/Observation). Suppose we are in a model MA |= TA, 
η ∈ T A

1 [so lgn(η) < ω], and we have a finite set of formulas [not necessarily a partial 
type] of the form

{Qη(x)} ∪ {R(x, a) : a ∈ X}

which we may write for uniformity as a sequence, possibly with repetitions:

p(x) = 〈Qη(x) ∧R(x, a) : a ∈ X〉.

For each a ∈ X, let ρa ∈ lim(T A
2 ) be the leaf of a. Then the “pattern” of this set of 

formulas in MA is captured by the data of: for which σ ⊆ X is it the case that there 
exists η∗ ∈ lim(T A

1 ) such that (i) η � η∗ and (ii) (η∗, ρa) ∈ RA
∞ for all a ∈ X.

Discussion 12.20. One obstruction to the natural try at A ⊆ B implies TA � TB is: 
Consider MA |= TA, MB |= TB, D a regular ultrafilter on I, M∗

A = (MA)I/D, M∗
B =

(MB)I/D. Now we might like to show that given a certain type of M∗
A, we can copy it to 

a type of M∗
B and apply saturation of the second to solve the first. A natural way to copy 

is to assign finitely many formulas of p to each index t ∈ I, using the regularizing family, 
and then copy this finite pattern from MA to MB. The natural way to copy patterns is 
to use the same leaves, but even though T A

i = T B
i , the same leaves may give a different 

pattern in MB as RA � RB.
Instead, we show that given MA and a finite pattern there, we can first modify the 

leaves involved a little without changing the pattern (informally, we make sure there is 
no ‘spreading out’ on k ∈ ω\A), and second, that any such modified set of leaves behaves 
as desired in RB. This allows the plan to go through.

Claim 12.21. Recalling that m[A] and m[B] are forgetful, suppose we are given 〈Qη(x) ∧
R(x, a) : a ∈ X〉 in MA where:

• η ∈ T A
1

• X finite,
• for each a ∈ X, MA |= (∃x)( Qη(x) ∧R(x, a) )
• thus we are given 〈ρa : a ∈ X〉 where ρa ∈ lim(T A

2 ) is the leaf of a.

Let 〈ρ∗a : a ∈ X〉 ∈ |X| lim(T B
2 ) satisfy the following two conditions:

(a) for k ∈ A and a ∈ X, ρ∗a(k) = ρa(k)
(b) for k ∈ ω \A, for all a ∈ X, ρ∗a(k) = 0

Then for some ν ∈ T B
1 with lgn(ν) = lgn(η), for every σ ⊆ X, the following are 

equivalent:
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(1) there exists ησ ∈ lim(T A
1 ), η � ησ and (ησ, ρa) ∈ RA

∞ for every a ∈ σ

(2) there exists νσ ∈ lim(T B
1 ), ν � νσ and (νσ, ρ∗a) ∈ RB

∞ for every a ∈ σ.

Informally, “the pattern remains unchanged and transfers to MB”.

Remark 12.22. Continuing in the notation of Claim 12.21, it will follow from that Claim 
and from Observation 12.18 that if we choose distinct elements ba ∈ |MB | for a ∈ X so 
that for each a ∈ X, ρ∗a is the leaf of ba in MB , then for any σ ⊆ X, the following are 
equivalent:

(�)1 MA |= (∃x) 
∧

a∈σ( Qη(x) ∧R(x, a) ).
(�)2 MB |= (∃x) 

∧
a∈σ( Qν(x) ∧R(x, ba) ).

Proof of Claim 12.21. Note: the construction in the proof will give a ν which depends 
only on η. In particular: for each k < lgn(η), define ν(k) by:

• if k ∈ A, ν(k) = η(k)
• if k ∈ ω \ A, ν(k) = min{i < mk : (i, 0) ∈ Ek} which exists by the definition of 

“small” in the construction of the graphs Ē.

Note that if lgn(η) ⊆ A, then this gives ν = η.
(1) implies (2). By (1) there is such an ησ. Define νσ ∈ lim(T B

1 ) [recalling T B
1 = T A

1 ] 
as follows: for each k < ω, define νσ(k) by:

(i) if k ∈ A, νσ(k) = ησ(k)
(ii) if k ∈ ω \ A, νσ(k) = min{i < mk : (i, 0) ∈ Ek} which exists by the definition of 

“small” in the construction of the graphs Ē.

Then recall η � ησ hence ν � νσ. For each a ∈ σ, we will prove by induction on 
 < ω

that

(�)	 (ησ � 
, ρa � 
) ∈ RA =⇒ (νσ � 
, ρ∗a � 
) ∈ RB .

For 
 = 0 this is trivially true as (〈〉, 〈〉) ∈ RA ∩ RB . Suppose (�)	 holds. If 
 ∈ A, then 
νσ(
) = ησ(
) and ρa(
) = ρ∗a(
), so by inductive hypothesis and forgetfulness, (�)	+1 is 
immediate. If 
 /∈ A, then by inductive hypothesis and (ii),

( (νσ � 
)�〈νσ(
)〉, (ρ∗a � 
)�〈0〉) ∈ RB

i.e. (νσ � 
 + 1, ρ∗a � 
 + 1) ∈ RB , so (�)	+1 holds.
This proves (�)	+1 and so proves this direction.
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(2) implies (1). Suppose there is such a νσ. Write νσ = ν�ν∞. Let ησ = η�ν∞. So clearly 
η � ησ. For each a ∈ σ, we will prove by induction on 
 < ω that

⊕	 (νσ � 
, ρ∗a � 
) ∈ RB =⇒ (ησ � 
, ρa � 
) ∈ RA.

For 
 ≤ lgn(η) this is trivially true as it follows from the assumptions of the Claim (third 
bullet point) that (η, ρa � lgn(η)) ∈ RA for each a ∈ X, so also for each a ∈ σ. Suppose 
⊕	 holds and 
 ≥ lgn(η). If 
 ∈ A, then ησ(
) = νσ(
) and ρa(
) = ρ∗a(
), so ⊕	+1 follows 
by inductive hypothesis and forgetfulness. If 
 ∈ ω\A, then 
 is a lazy level for A, so ⊕	+1
is immediate from ⊕	. This proves ⊕	+1, which finishes this direction and so finishes the 
proof. �
Lemma 12.23. Let D be a regular ultrafilter on I, |I| = λ. Let M∗

A = (MA)I/D. Let 
M∗

B = (MB)I/D. Suppose p(x) = {Qη(x)} ∪ {R(x, a) : a ∈ X} is a partial type of MA, 
with η ∈ T A

1 and |X| ≤ λ. There is a partial type q(x) = {Qη(x)} ∪ {R(x, ba) : a ∈ X}
of M∗

B, such that if q(x) is realized in M∗
B, then p(x) is realized in M∗

A.

Proof. Let {Xa : a ∈ X} ⊆ D be a regularizing family for D. Enumerate p as 〈Qη(x) ∧
R(x, a) : a ∈ X〉, so here X may be infinite. Let f : [X]<ℵ0 → D be the map given by

u �→ {t ∈ I : MA |= (∃x)
∧
a∈u

(Qη(x) ∧R(x, a))} ∩
⋂
a∈u

Xa.

In particular, for each t ∈ I, Xt = {a ∈ X : t ∈ f({a})} is finite.
We define the parameters for q (what will be the corresponding type in M∗

B) coor-
dinatewise. For each t ∈ I, apply Claim 12.21 to the following sequence of formulas of 
MA:

pt(x) = 〈Qη(x) ∧R(x, a[t]) : a ∈ Xt〉.

Let νt and 〈ρ∗t,a : a ∈ Xt〉 be as returned by that Claim. Observe that we have νt defined 
for every t ∈ I, but {νt : t ∈ I} is finite, so for some J ∈ D, 〈νt : t ∈ J〉 is constant. 
[Alternately, by the first sentence of the proof of Claim 12.21, νt depends only on η, so 
in fact we obtain the same νt for every t ∈ I.] So we call it ν.

For a ∈ Xt, choose bt,a to be pairwise distinct elements of PMB

ρ∗
t,a

. For a ∈ X \ Xt, 
choose bt,a to be any element of PMB

∅ . Recalling 12.22, we have that for any σ ⊆ X, the 
following are equivalent:

(1) MA |= (∃x) 
∧

a∈σ( Qη(x) ∧R(x, a[t]) )
(2) MB |= (∃x) 

∧
a∈σ( Qν(x) ∧R(x, bt,a) )

For each a ∈ X, define ba = 〈bt,a : t ∈ I〉/D, so ba ∈ M∗
B . Consider

q(x) = 〈Qη(x) ∧R(x, ba) : a ∈ X〉.
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Then, since q has the same ‘pattern’ as p at each index t ∈ I under the function f , and 
p is a partial type in M∗

A, we have that q(x) is also a partial type of M∗
B, and moreover, 

if q is realized in M∗
B then also p is realized in M∗

A. �
Corollary 12.24. If A ⊆ B, then TA � TB.

We include a slightly more general result for �∗, the interpretability order. For the 
reader interested in Keisler’s order, this is not essential to our main arguments.

Lemma 12.25. Suppose m1, m2 are forgetful and m1 �≥k= n = m2 �≥k. Then Tm1 , Tn, 
Tm2 are �∗-equivalent, thus �-equivalent.

Proof. Let M1, M, M2 be models of Tm1 , Tn, Tm2 respectively such that all three are 
special of cardinality μ = �δ, δ limit. Let χ be such that M1, M, M2 ∈ H(χ). Let B∗
be the model (H(χ), ∈, M1, M, M2) or an expansion of it. Note first that for Λ1 × Λ2 ⊆
Rm1

k , M is isomorphic to N [Λ1, Λ2, M1]. [Why? M1 is a special model of Tm1 , so by 
Claim 12.12(4), so is N [Λ1, Λ2, M1] |= Tn. By assumption M |= Tn is special. So by the 
uniqueness of special models, they must be isomorphic.] The parallel holds replacing M1
by M2. These isomorphisms are recorded by B∗. Hence they remain in any B ≡ B∗. 
That is,

B∗ |= M ∼= N [Λ1,Λ2,Mi]

for i = 1, 2, and Λ1, Λ2 as above. Moreover, for any B ≡ B∗,

B |= “M ∼= N [Λ1,Λ2,Mi]”

(as M, M1, M2 are definable elements). Note also that

(N [Λ1,Λ2,M ])B = N [Λ1,Λ2,M
B
i ], i = 1, 2

by absoluteness. (Pedantically, if B is not well-founded, the set {Pη : B |= Pη ∈ τ(Mi)}
may have non-standard elements, but no harm.) Thus, for i = 1, 2,

N [Λ1,Λ2,M
B
i ] is a special model of Tn of cardinality μ isomorphic to MB

and so by transitivity, as both are isomorphic to MB,

N [Λ1,Λ2,M
B
1 ] ∼= N [Λ1,Λ2,M

B
2 ].

So Th(B∗) witnesses that Tm1 , Tn, Tm2 are �∗-equivalent. Why? MB
i is κ-saturated if 

and only if all the models of the form N [Λ1, Λ2, MB
i ] for Λ1×Λ2 ⊆ Rmi

k are κ-saturated, 
if and only if MB is κ-saturated, which suffices. �
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Claim 12.26. Suppose B \A is infinite. Then ¬(Tm[B] � Tm[A]).

Proof. Just as in the main argument above: as long as B \A is infinite, we have enough 
“independence” between the parameters for this direction. That is, consider the chain 
condition Definition 8.2 with the cosmetic difference that we write A, B instead of using 
level functions: really, we could define ξm[A] to be 1 if n ∈ A and 0 otherwise, and ξm[B]
to be 1 if n ∈ B and 0 otherwise. Then if I is the ideal generated by {A} ∪ [ω]<ℵ0 , clearly 
B �= ∅ mod I so we may quote 9.4. Thus, it remains possible to construct an ultrafilter 
which is good for Tm[A] while preserving the fact that it is not good for Tm[B]. �

So we arrive at:

Theorem 12.27. We can find TA for A ⊆ ω such that TA � TB if and only if A ⊆ B mod 
finite.

Proof. We use the family {Tm[A] : A ⊆ ω} defined above. If A ⊆ B mod finite, apply 
12.15. On the other hand, if B \A is infinite, apply Lemma 12.26.

Thus for A, B ⊆ ω,

Tm[A] � Tm[B] if and only if A ⊆∗ B.

This is what we hoped to prove. �
In fact we have shown more:

Conclusion 12.28. Suppose we consider the family {m[A] : A ⊆ ω} of parameters defined 
at the beginning of this section. Then:

(1) A ⊆∗ B =⇒ Tm[A] � Tm[B], indeed Tm[A] �∗ Tm[B]
(2) |B \A| = ℵ0 =⇒ ¬(Tm[B] � Tm[A]), thus a fortiori ¬(Tm[A] �∗ Tm[B]).

This completes the proof of Theorem 11.9.

To motivate the second theorem of this section, remember that when we were par-
titioning M∗ into M and N in the previous section, we were essentially choosing a 
partition of independent subsets of ω. We may ask about which partitions are possible 
of all families of subsets of ω. The next theorem answers this question: it is 11.10 above, 
which we restate for convenience.

Theorem (Theorem 11.10). There is a family of parameters {m[A] : A ⊆ ω} such that 
each Tm[A] is countable, complete, simple, and low, and the following are equivalent for 
any λ ≥ 2ℵ0 and any set X ⊆ P(ω):
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(1) There exists a regular ultrafilter D on λ such that X = {A ⊆ ω : D is (λ+, Tm[A])-
good }.

(2) X ⊇ [ω]<ℵ0 is an ideal.

Proof of Theorem 11.10. Fix X ⊆ P(ω), and fix λ ≥ 2ℵ0 .
(2) → (1): Immediate from the earlier construction: simply choose the ideal I in the 

chain condition 8.2 to be our X .
(1) → (2): If A ∈ X and B ⊆∗ A, then D is (λ+, Tm[B])-good by 12.15 above. So to 

show that X is an ideal which extends the finite sets, it suffices to show that if A ∈ X and 
B ∈ X , then A ∪B is in X . In other words, we shall fix A, B ⊆ ω, and assume that D is a 
regular ultrafilter on |I|, |I| = λ ≥ 2ℵ0 which is (λ+, Tm[A])-good and (λ+, Tm[B])-good, 
and we shall show that D is (λ+, Tm[A∪B])-good.29

Since Tm[A] and Tm[B] are both simple unstable, it follows that D is good for the theory 
of the random graph. Choose MA, MB , MA∪B to be ℵ1-saturated models of Tm[A], Tm[B], 
and Tm[A∪B] respectively. Let M∗

A, M
∗
B , M

∗
A∪B be the respective ultrapowers using D. As 

usual, to show that M∗
A∪B is λ+-saturated, it suffices to prove that all partial types of 

the form

r(x) = {Qη(x) ∪ {R(x, c) : c ∈ C}

are realized, where η ∈ T m[A∪B]
1 and |C| ≤ λ. Fix such an r. Without loss of generality, 

we will assume |C| = λ.
Let {Yc : c ∈ C} ⊆ D be a regularizing family for D.30 Let

d : [C]<ℵ0 → D

be the map given by:

u �→ {t ∈ I : MA∪B |= ∃x
∧
c∈u

(Qη(x) ∧R(x, c[t])) } ∩
⋂
c∈u

Yc.

Note that d is monotonic (u ⊆ v implies d(u) ⊇ d(v)), and for each t ∈ I, the set 
Ct = {c ∈ C : t ∈ d({c})} is finite.

For each t and c ∈ C, there is a leaf ρc,t ∈ lim(T m[A]
2 ) = lim(T m[B]

2 ) such that 
M |= Pρc,t�	 (c[t]) for all 
 < ω. For each t ∈ I and each c ∈ C choose31 ac,t to be any 
element of MA such that MA |= Pρc,t�	 (ac,t) for all 
 < ω and choose bc,t to be any 
element of MB such that MB |= Pρc,t�	 (bc,t) for all 
 < ω. Let ac = 〈ac,t : t ∈ I〉/D ∈ M∗

A, 

29 Informally, if D can handle types coming from trees where the levels in A are active, and trees where 
the levels in B are active, then it can handle types coming from trees where the levels in A ∪B are active.
30 i.e. any element of the family belongs to D, but the intersection of any infinitely many elements of this 
family is empty – exists by definition of regular ultrafilter.
31 One may follow these instructions for t ∈ I and c ∈ Ct, and otherwise choose arbitrarily.
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and let bc = 〈bc,t : t ∈ I〉/D ∈ M∗/B. [Without loss of generality, ac[t] = ac,t and 
bc[t] = bc,t.] Consider

rA = {Qη(x)} ∪ {R(x, ac) : c ∈ C}

and consider

rB = {Qη(x)} ∪ {R(x, bc) : c ∈ C}.

Observe that rA(x) is a partial type in M∗
A since Rm[A] ⊇ Rm[A∪B], and likewise rB(x)

is a partial type in M∗
B since Rm[B] ⊇ Rm[A∪B]. By our assumption on D, rA is realized, 

say by a∗ ∈ M∗
A, and rB is also realized, say by b∗ ∈ M∗

B . Let us define d∗ : [C]<ℵ0 → D
to be the refinement of d given by:

d∗(u) = d(u) ∩ {t ∈ I : MA |= R(a∗[t], ac,t)} ∩ {t ∈ I : MB |= R(b∗[t], bc,t)}.

Thus, for each t ∈ I, we may define C∗
t = {c ∈ C : t ∈ d∗({c})}. It follows from the 

definition of d∗ that for each t ∈ I, C∗
t ⊆ Ct, thus C∗

t is finite; moreover, for each t ∈ I,

MA |= (∃x)

⎛
⎝Qη(x) ∧

∧
c∈C∗

t

R(x, ac,t)

⎞
⎠ (a)

[in particular a∗[t] is such a witness] and likewise

MB |= (∃x)

⎛
⎝Qη(x) ∧

∧
c∈C∗

t

R(x, bc,t)

⎞
⎠ (b)

[in particular b∗[t] is such a witness]. Fix t ∈ I. We now aim to prove:

MA∪B |= (∃x)

⎛
⎝Qη(x) ∧

∧
c∈C∗

t

R(x, c[t]))

⎞
⎠ . (c)

Recall that

(i) T m[A∪B]
1 = T m[A]

1 = T m[B]
1

(ii) Rm[A∪B] is contained in each of Rm[A] and Rm[B].
(iii) for each 
 < ω, for some, equivalently every, choice of32

(η, ρ) ∈ Rm[A∪B]
	 , (ηA, ρA) ∈ Rm[A]

	 , (ηB , ρB) ∈ Rm[B]
	

we have that: if 
 ∈ A, then for all i, j < m	,

32 Note there is always some such choice, by the extension axioms.
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(η�〈i〉, ρ�〈j〉) ∈ Rm[A∪B] if and only if (ηA�〈i〉, ρA�〈j〉) ∈ Rm[A]

and if 
 ∈ B, then for all i, j < m	,

(η�〈i〉, ρ�〈j〉) ∈ Rm[A∪B] if and only if (ηB�〈i〉, ρB�〈j〉) ∈ Rm[B]

and otherwise, if 
 ∈ ω \A ∪B, for all i, j < m	,

(η�〈i〉, ρ�〈j〉) ∈ Rm[A∪B].

[Of course if 
 ∈ A ∩B then the two relevant conditions hold simultaneously.]

Recall that for each c ∈ C∗
t we had defined its leaf ρc,t. It would suffice to prove that 

there is η∗ ∈ lim(T m[A∪B]
1 ) so that

(η∗ � s, ρc,t � s) ∈ Rm[A∪B] for all c ∈ C∗
t and all s < ω. (d)

Let ηa be the leaf of a∗, i.e. the unique element of lim(T m[A]
1 ) such that MA |=

Qηa�	(a∗[t]) for all 
 < ω, and let ηb be the leaf of b∗[t], i.e. the unique element of 
lim(T m[B]

1 ) such that MB |= Qηb�	(b∗[t]) for all 
 < ω. So necessarily η � ηa and η � ηb. 
Suppose first that ηa = ηb. Let η∗ ∈ lim(T m[A∪B]

1 ) be given by η∗ = ηa = ηb. This η∗
satisfies (d), as is easy to verify by inductively applying (iii) above.

If not, suppose that there is some i < ω minimal for the property that33 we have 
ηi
a ∈ lim(T m[A]

1 ), ηi
b ∈ lim(T m[B]

1 ) such that:

(1) ηi
a � i = ηi

b � i.
(2) (ηi

a � s, ρc,t � s) ∈ Rm[A] for each c ∈ C∗
t

(3) (ηi
b � s, ρc,t � s) ∈ Rm[B] for each c ∈ C∗

t

and let us prove that we can define ηi+1
a , ηi+1

b so that ηi
a � i � ηi+1

a , ηi
b � i � ηi+1

b , 
and properties (1), (2), (3) hold with i + 1 in place of i. (By continuing this process one 
therefore eventually obtains two equivalent sequences.)

Write ηa = ηa,0
�〈ia〉�ηa,∞, and ηb = ηb,0

�〈ib〉�ηb,∞, where lgn(ηa,0) = lgn(ηb,0) = i. 
By definition, ηa,0 = ηb,0 and for every c ∈ C∗

t ,

(ηa,0, ρc,t) ∈ Rm[A] ∩Rm[B].

There are three cases.

(Case 1) i /∈ B. In this case, i is not an active level for B, so we define ηi+1
a = ηi

a, 
and define ηi+1

b = ηb,0
�〈ia〉�ηb,∞, i.e. replace ib by ia. [Since we defined m[A], 

33 notice that ηa, ηb satisfy these conditions for i = 0.
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m[B] using the same background sequence of graphs, it doesn’t matter whether 
i ∈ A or not, recalling Remark 12.4. So applying Claim 12.5, we conclude that 
(ηi+1

b � s, ρc,t � s) ∈ Rm[B] for each c ∈ C∗
t .

(Case 2) i /∈ A. In this case, since i is not an active level for A, define ηi+1
b = ηb, and 

define ηi+1
a = ηa,0

�〈ib〉�ηa,∞, i.e. replace ia by ib, and again use Remark 12.4
(if necessary) and Claim 12.5.

(Case 3) i ∈ A ∩ B. If ia = ib, define ηi+1
a = ηi

a and ηi+1
b = ηi

b. If ia �= ib, then 
since we defined m[A], m[B] using the same background sequence of graphs, by 
Claim 12.5 we may without loss of generality use ia: that is, define ηi+1

a = ηa, 
and define ηi+1

b = ηb,0
�〈ia〉�ηb,∞.

In this way we eventually construct two equal sequences, so η∗ is well defined, so (d) is 
satisfied, and as this was sufficient to prove (c), we are done. �
13. Further discussion and open questions

In the late sixties when Keisler’s order was defined, it was natural to conjecture 
that it had a small finite number of classes (see the introduction to [26]). Though it 
was quickly understood that the order might give an interesting calibration of theories 
(see [9] and also [31]), it long remained reasonable to believe that the order’s power 
to give model theoretic information would be tied to its simplicity. We are now at a 
surprising mathematical juncture, where the order has become very complicated, but 
without losing its tight connection to and calibration of model-theoretic structure. To 
communicate some of our excitement, we include a broad list of questions.

A. Saturated models of simple theories Determining Keisler’s order on the stable theo-
ries required developing the stability theory to prove a characterization of the saturated 
models of stable theories (see [33] Theorem III.3.10 and [25] Question 10.4): essentially, 
that for a model of a complete countable stable theory to be λ+-saturated it suffices 
that it is ℵ1-saturated and that every maximal indiscernible set is large. [The theorem is 
stronger: ℵ1-saturated is really κ(T )-saturated and the theory need not be countable; for 
us, regular ultrapowers of models of countable theories are ℵ1-saturated, so this state-
ment suffices.] What, in simple unstable theories, are the right analogues of maximal 
indiscernible sets?

Problem 13.1. In light of the results of this paper, formulate a plausible conjecture of a 
characterization of λ+-saturated models of simple theories.

B. Variants of the construction

Discussion 13.2. Our main construction fixes m̄, Ē, and Ξ; varying these inputs one 
would have different theories.
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Discussion 13.3. We have written the present construction for a single fast sequence m̄
and a family of independent level functions. This was a decision to make the structure of 
the ideal clearer, among other things. But we might also have written the construction, 
without level functions, simply for continuum many sequences growing at very different 
rates (which is, in some sense, what the level functions were formally coding). Looking 
from this second point of view may give a different perspective on how growth rates of 
finite families affect model theoretic structure.

C. Interactions with forking

Question 13.4. For every low simple T , is there a “very simple” T equivalent to it, for 
example, a theory which is simple rank one?

Question 13.5. Can the continuum many incomparable classes be reproduced, in ZFC, 
within the simple non low theories? Within the non simple theories?

Discussion 13.6. For 13.5, it may be reasonable to consider set theoretic hypotheses such 
as a measurable or supercompact cardinal, recalling [25]. We may also ask the parallel 
question for �∗.

For computability theorists, a natural question may be:

Question 13.7. Is the structure of the Turing degrees embeddable into Keisler’s order?

E. Questions about ultrafilter construction An important part of the argument above 
is constructing ultrafilters, and it may be fruitful to further investigate methods from 
iterated forcing.

Discussion 13.8. Recall that one way of measuring “size” of a regularizing family {Xα :
α < λ} in an ultrafilter D on λ is to look at the sequence of integers {nt : t ∈ λ}
where nt = {α < λ : t ∈ Xα}. Say that a regularizing family is below a nonstandard 
integer if its size is. Flexible ultrafilters are those having a regularizing family below 
any nonstandard integer [17]. Each of the ultrafilters we build here, by virtue of its 
connection to certain integer sequences, has a certain amount of flexibility appropriate 
to those sequences. There remain very interesting open questions about the extent to 
which flexibility (which is equivalent to “OK”) may be separated from goodness, such 
as Dow’s 1985 question, for references and recent work see e.g. Problems 3.5 and 3.6 of 
[27]. It may be interesting to investigate whether the new family of filters built here, of 
apparently intermediate flexibility, sheds light on the landscape around these questions, 
as our methods suggest further ways of engineering the relation of “sizes” of filters and 
of sequences.
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F . The minimal simple class, and the maximal class Recall that the theory Trg of 
the random graph is minimum among the unstable theories in Keisler’s order. There 
is a set-theoretic characterization of its class (i.e., there is a necessary and sufficient 
condition for regular ultrafilters to be good for Trg), but to date there is no model-
theoretic characterization, indeed no model theoretic characterization of any unstable 
equivalence class. A natural place to begin is:

Problem 13.9. Give a model theoretic characterization of the class of the theory of the 
random graph in Keisler’s order.

Any reasonable list of open problems on Keisler’s order should recall the parallel of 13.9, 
one of the major questions on the table. (See [21].)

Problem 13.10. Give a model theoretic characterization of the maximal class in Keisler’s 
order, and under �∗ without instances of GCH.

G. Variants of Keisler’s order It is a very interesting and natural question to consider 
what less fine variants of Keisler’s order may show about the structure of simple theories, 
and whether such variants may be found whose number of equivalence classes is finite. 
We plan to say more about this in future papers.

H. Building blocks of simple theories

Discussion 13.11. These theories we have built appear quite different from the theories 
witnessing the infinite descending chain in Keisler’s order, which were sums of certain 
generic n-free k-hypergraphs, studied originally by Hrushovski [7] (for [26], we used the 
case n = k + 1). Such theories may be thought of as encoding “pure amalgamation 
problems.”

Indeed, we originally built the precursor to the present theories in [28] to witness 
Keisler-incomparability with the Tk+1,k’s. The role of the new theory in [28], this pre-
cursor of the Tm’s, was in some sense to replace a certain canonical non-low theory in the 
known, non-ZFC incomparability arguments [37], [22]. We might describe these theories 
as containing enough of a finite approximation to forking to retain incomparability, but 
without actually forking. We verified in 2.13 above that the theory of [28] fits in the 
present framework, though the background Boolean algebras in the two papers are quite 
different. What does this picture tell us about the building blocks of complexity in simple 
theories? What interesting non-trivial interactions may occur within simplicity between 
the weak avatars of forking (the uniform inconsistency along various finite quotient sets)
in the Tm’s, and the inconsistency arising from amalgamation in the Tn,k’s? Cf. [26], [13], 
[15], [29].
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I. Hypergraph regularity Not unrelated to Problem 13.1, the above discussion of graphs 
and hypergraphs suggests the following speculative question. The theories we have built 
in the present paper are really fundamentally graphs (layered across predicates). The key 
relation is a binary relation, and the key underlying densities are densities of bipartite 
graphs. Is uniform incomparability across a family necessarily a graph (binary) phe-
nomenon? Recalling that the hypergraph analogues of Szemerédi phenomena are known 
[6], [32], [35] we may ask34:

Question 13.12. Is there a true “hypergraph analogue” of our construction? For instance, 
can one construct a family of simple theories whose only forking comes from equality, by 
analogy to what we have done here, which reflect in some fundamental way the densities 
of certain families of finite 3-uniform hypergraphs, and which themselves form a higher 
layer of uniform incomparability phenomena in Keisler’s order which is not explained by 
their restrictions to graphs?

Understanding in either direction may significantly change our understanding of di-
viding lines in simple theories.
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