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Abstract. If k > Ng then k — (k, Top K,.g)z7 i.e., every graph on k vertices
contains either an independent set of k vertices, or a topological K., iff k is reg-
ular and there is no k-Suslin tree. Concerning the statement w» — (Top Ko, )2,
i.e., in every coloring of the edges of K., with countably many colors, there is a
monochromatic topological K., both the statement and its negation are consis-
tent with the Generalized Continuum Hypothesis.

The natural generalization of Ramsey’s theorem Ny — (NO,N0)2 fails
strongly for most cardinals, as it is well known. If s is uncountable, then s
— (K, k)? holds if and only if  is weakly compact. Erdés and Hajnal in [2]
gave a short, elegant proof (applying ultrafilters) of x — (Top K, Top K)?
for k > N, that is, if the pairs of k are colored with 2 colors, then one of
them contains a topological K. The same argument gives x — (Top K,)?
for any finite n.

Erdés and Hajnal asked if the asymmetric variant £ — (&, Top K. )? holds
for kK > Np. A moment’s reflection shows that this implies the above k —
(Top K,.)2. Here we answer this question by showing that x 4 (k, Top K,)?
for « is singular and if x > Vg is regular, x — (x, Top K,)? holds if and only
if there is no k-Suslin tree.

Next we address the following natural extension of the FKrdos—Hajnal
result: does x — (Top K, )2 hold? As the edges of the complete graph K,
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can be covered by countably many circuit-free graphs (Erdés—Kakutani [3]),
x must be at least No. Our interest is therefore in wy — (Top K,,)2.

In order to show the positive relation, we introduce the following princi-
ple.

(+) For every F: [ws]? — w there exist i < w and A € [wy]*? such that
if o, f € A, o < 3, then thereis v >  with F(«,v) = F(8,v) = i.

We show that (%) implies wy — (Top K, ). (x) follows from the existence
of an N;-dense ideal on wsy, whose consistency was deduced from the consis-
tency of a huge cardinal by Foreman [4]. Next we give two forcing models
for the negation of (x), one without, one with CH. Finally we give a forc-
ing model of GCH in which [ws]? is the union of countably many ws-Suslin
trees, from which we deduce wy 4 (Top K,,,)>.

We notice that both results lift to larger cardinals: if g > w is regular
then both p*+ 4 (Top K++)2 and pt+ — (Top K4+ )2 are consistent (the
latter relative to the consistency of a huge cardinal).

Notation. Definitions. We use the notation and definitions of ax-
iomatic set theory. In particular, ordinals are von Neumann ordinals, and
each cardinal is identified with the least ordinal of that cardinality.

If S is a set, k a cardinal, we define [S]" ={z C S: |z| = K}, [S]*" =
{zx C S :|z| < k}. If Aissome set of ordinals, then tp(A) is the order type
of A. If A, B are sets of ordinals, then A < B denotes that x < y holds for
x € A,y € B. H(0) denotes the set of all sets with transitive closure of size
< 0. <, always denotes some well order on it.

In a partially ordered set (P,<) we define pt ={q€ P:p<q} and
pl={qeP:q<p}. A tree (T,<) is a partially ordered set in which
each t| is well ordered. Define T, = {t € T : tp(t}) = a}, the height of
(T,<) is K(T) =min{a: T, =0}. If « <h(T) is limit, an a-branch is a
set b C (J{Tp: 8 < a} such that (b,<) is totally ordered and [bNTp| =1
(B < a). Aset ACT is an antichain if its elements are pairwise incompa-
rable in (7', <). A tree (T, <) with h(T) = k is a k-Suslin-tree if it contains
neither x-branches, nor antichains of size k. It is easy to see that if x is
weakly compact, then there is no k-Suslin tree. If the axiom of constructibil-
ity holds, then the reverse implication holds—for every non-weakly compact
strongly inaccessible k there exists a k-Suslin tree, as shown by Jensen (cf.
[5] and also in [1]).

A graph is a pair (V,X), where V is an arbitrary set (the set of ver-
tices) and X C [V]? (the set of edges). We sometimes write simply X
rather than (V) X), i.e., identify the graph with its edge set. If (V,X) is
a graph, z € V a vertex, then N(z) ={y € V : {z,y} € X} is the neighbor-
hood of x. If V is ordered by <, then N~ (x) = {y < z: {z,y} € X} and
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Nt(z)={y>uxz:{z,y} € X}. A path is a sequence (v, v1,...,v,) of dis-
tinct vertices such that {v;,v;11} € X (i <n). A graph is connected if any
two vertices are connected by a path.

K, is the complete graph on x vertices: (k, [s]?).

A graph (V, X)) contains a topological K, if there exist distinct vertices
{va 1 @ < Kk} and paths {py s : @ < f < K} such that p, g is a path between
vo and vg, and the paths are vertex disjoint, except, of course, at their
extremities.

A similar notion is that the graph (V, X) contains K, as a minor. This
happens if there are disjoint vertex sets {W, : a < k} such that each W,
induces a connected subgraph, and there is an edge between W, and Wjy
(a < B < k). It is easy to see that if (V, X) contains a topological K, then
it also contains K, as a minor. The reverse implication is proved in [6] by
Jung if x is uncountable regular.

The comparison graph of a tree (T, <) is (T, X) where X consists of all
pairs {t,t'} where ¢t < t't.

The partition relation symbol x — (a, 3)? holds if the following state-
ment is true: for every f: [k]2 — {0, 1} either there is a homogeneous set of
size « in color 0, or else there is a homogeneous set of size § in color 1. Simi-
larly, k — (a)% abbreviates the statement that for every coloring f: [k]? — v

there is a homogeneous set of size . That is, the graph f~!(7) contains a
K, for some 7 < 7. We use the ad hoc modification x — (Top Ka)3 to de-
note that for each f: [k]?> — 7 for some 7 < v the graph f~1(7) contains a
topological K, and similarly for s — («, Top K)?. The negation of all these
statements is denoted by crossing the arrows.

LEMMA 1. Let s be reqular, T a tree of height k, X the comparison graph
of T. Then X contains a topological K iff there is a k-branch in T.

PROOF. One direction is obvious: if there is a x branch in 7', then this
isa K, in X.

For the other direction assume that {aq,pas: @ < f < k} is a topologi-
cal K, in X.

For each o < k, as |aql| < K, there are only < x many 3 such that p, g
has a vertex in a,l (apart from a,). For all other 3, all vertices of p, g,
specifically ag must be in a,T, that is, a, < ag. We obtained that there is a
U € [k]® such that aq < ag for o, 3 € U, a < 3, but this gives a x-branch.
O

LEMMA 2. If k is singular, then r / (r, Top K,)2.

PROOF. Set 1 = cf(k), sup{kq : @ < u} = k. Let V be the disjoint union
of the sets V,, (v < ), |Va| = ko and let X be the graph where two vertices
are joined iff they are in the same V,. Now clearly there is neither an inde-
pendent set of size u™, nor a topological K, or even a connected subgraph
of cardinality x. O
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THEOREM 3. If k > w is regular, then the following are equivalent.

(a) K # (K, Top Ky)*.
(b) There is a k-Suslin tree.

PrOOF. First, let (T,<) be a x-Suslin tree. Let X be the comparison
graph of T', i.e., {s,t} € X iff s,t are comparable. As (T, <) is Suslin, there
is no independent set or (by Lemma 1) a topological K, in X.

Assume finally that X is a graph on x with no independent set of car-
dinal k, neither a topological K. By Jung’s theorem, K, is not a minor
of X.

Claim 1. If W € [K]", then the number of connected components of X|W
18 < K.

PRrROOF. Otherwise, the choice of one vertex from each would give an
independent set of size k. [J

Claim 2. If W € [k]", then there is A € [W]<" such that X|(W — A)
contains at least 2 connected components of size k.

PRrROOF. Assume that the Claim fails. Then, for some W € []", the fol-
lowing holds. For every A € [W]<", all but one of the connected components
of X|(W — A) are of size < k. By Claim 1, the number of those components
is < Kk, as k is regular, their union still has size < k. We have therefore
obtained the following. For every A € [W]<" there is A C A" € [W]<* such
that X |(W — A’) is connected. Using this, we define the increasing sequence
{Aq - a < k} with |Ay| < k (a < k), such that (J{Ag: 5 < a} C A, with
|All <k and X|(W — A)) connected, D, € [W — A/ ]<" is maximal inde-
pendent and finally A/ U D, C A, is such that |4,| < k and B, = A, — A/,
is connected.

Now, each X|B, is connected and if 5 < o < k, then there is an edge
between Bg and B,, namely if p € B, is arbitrary, then there is and edge
between p and Dg C Bg, as Dg is maximal independent. That is, {B, :
a < K} establishes K, as a minor in X |, a contradiction to our assumption
on X. U

Next we are going to build a tree T' and define the sets A(t) € []<",
V(t) € [k]" for t € T. We define T level by level. Let Tj contain the unique
root r with V(r) = k.

Assume that we have built 7" up to level a and ¢t € T,,. By Claim 2, there
isaset A € [V (¢)]<" such that V(¢) — A contains at least two connected com-
ponents of cardinality k. By adding those components with size < k to A
we obtain a set A(t) € [V(t)]<" such that all components of X|(V (t) — A(t))
have size k and @, their number, is at least 2. We add 6 immediate successors
{te : £ < 0} to t and arrange that {V(t¢) : £ < 0} are the above mentioned
components of X |(V(t) — A(t)).
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Assume that o < & is limit and we have constructed T, and the corre-
sponding sets A(t),V(t) (t € T<y). For each a-branch b C T, we place
a node s of T, atop b iff |(\{V(t):te€b} =~k. If this holds, we set

V(s)=({V(t):teb).

It is clear from the construction that if ¢ < ¢’ then V(t) D V(t').

Claim 3. If ', t" are incomparable, then V(') NV (t") = 0 and there is
no edge between V(t') and V(t").

PROOF. Let t be the largest common lower bound of ¢ and t”. t exists
by the way of constructing 7, for « limit. There are immediate successors
te # t, of t such that tg <t', t, <t”. Then V(t') CV(te), V(t") C V(ty)
and V(t¢) NV (t,) = 0 and there is no edge between V (t¢) and V (¢,) and so
this hold for V(¢), V(¢"). O

Claim 4. There is no antichain of size k in T.

Proor. If {t¢ : £ < k} were an antichain, then picking one vertex from
each V(t¢) would give an independent set of size £ by Claim 3, a contradic-
tion. [

Claim 5. |T,| < k (o < K).
Proor. As T, is an antichain. O
Claim 6. h(T) =

PROOF. Assume indirectly that T, = () for some o < k. Let a be min-
imal such. Then « is limit by the way T is constructed. If 8 < « is limit,
b is a B-branch, set H(b) = ({V(¢) : t € b},

= {b:|H(b)| </~£},
and

= {HO®) :beUB)}.

By assumption k£ = S’ U S” where
= U{A(t) :t€Ten} and S = U{R(ﬂ) : 8 <« limit} .

We have |S'| < k as A(t) < k (t € T<p) and a < k and [T < & (8 < «) by
Claim 5.

Further, by the argument in Claim 3, there are only < x S-branches b
for which H(b) # (). This implies that |R(8)| < k and eventually |S”| < k.
As we showed both |S’| < k and |S”| < k, we have reached a contradiction.
U

Claim 7. There is no x-branch in T.
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PRrROOF. Assume indirectly that b= {t,:a<k} is a k-branch with
bNT,={ta}. Pick sq € Ty41 such that t, < s, and s, # to41. This choice is
possible as each ¢, has at least two immediate successors. Now {s, : o < K}
is an antichain of size k, contradicting Claim 4. [J

By Claims 4, 6, and 7, (T, <) is a k-Suslin tree, and the proof of Theo-
rem 3 is finished. [J

A reasonable extension of the above mentioned Erdés—Hajnal theorem
2

wy — (Top Ky,)2 (n < w) would be wy — (Top K,,)2. In order to investigate
it, we consider the principle (x) defined in the Introduction.
LEMMA 4. (%) implies wy — (Top K,,)2.

PROOF. Assume that F': [wy]? — w. Let
No <Ny <+ <Ny < <(H(O);€,F, <y)

be a continuous sequence of elementary submodels with 6 sufficiently
large regular and <, a well ordering of H(0), such that |N,| < Ny, 0, =
Ny Nwy < wy. Apply (%) to F|D where D = {6, : @ < wa}. This gives i < w
and A € [D]*? such that if §, < g are in A then there is v > f such that
F(6a,0y) = F(d3,0y) = 1. As 64,03 € N, < 6, we have

‘{f:F(éa,f) :F(55,£) :Z}‘ = No.

By transfinite recursion one can select A’ C A, |A’| =Yy and
B ={{6a}UuapU{ds}:a,8€ A a<p}
such that A’ N B =0, and F (04, ta,g) = F(0p,ua ) =1, i.c.,
{(5a o€ A’} U {ua,g o, fe A <ﬂ}

form a topological K, in color 7. [

LEMMA 5. If there is an wi-complete, Wy-dense ideal on wo, then (x)
holds.

PROOF. Let I be an wj-complete ideal on we with {A, : @ < w;} dense
in I't. Assume that F': [wy]? — w. For each o < wy there is i(a) < w such
that

Byo={a<pB<w:Fla,pB)=i(a)} €I".
There is U € [wy]* such that if & € U, then i(a)) =i and A; C B, for some
i <w,j <wi. Clearly U is as required in (). O

The consistency of the existence of an wi-complete Ni-dense ideal on wo
was established by Foreman in [4]. Notice that by a theorem of Woodin, the
existence of an wi-complete Ni-dense ideal on wo implies CH.
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LEMMA 6. It is consistent that 280 = Ry and (%) fails.

PrOOF. We force with the following notion of forcing. p = (s, h,
iff s € [wo]<Y, h, f: [s]?> = w, and there are no a < B < with f(
f(B,v) = he, B). (8", 1, f') < (s,h, f) it 8" D s, f'ls=f, W|s=h.
Claim 1. If £ < wo, then {(s,g, f) : £ € s} is dense.

flep
@,7) =

PROOF. If (s,h,f) € P and £ &€ s define s’ =sU{¢}, W, f : [§]> »w
such that b’ D h, f' O f and the values, i.e., the values h'(«, &) and f'(a, &)
for a € s are different from the range of h and f and from each other. Clearly,
(s',h', f") is a condition and (s, 1/, f') < (s,h, f). O

Claim 2. (P, <) is ccc.

PROOF. Assume that we are given the conditions {p¢:& < wi} with
pe = (8¢, he, f¢). By the A-system lemma we can assume that {s¢ : { < wi}
form a A-system. As there are finitely many isomorphism types of the struc-
tures (s¢; <, he, fe) (£ < wy), without loss of generality we can assume that
the order isomorphism between any (s¢; <) and (s,; <) gives an isomorphism
between (se; <. he, fe) and (sy; <, by, fa) (6,1 < w1).

We therefore need to show that if p = (AUa, h, f) and p’ = (AU, 1, f')
are isomorphic conditions, a Na’ = (), then p and p’ are compatible. Set

p"=(AUauUd, h* f),
where h* D hUN, f* D fU f" are such that the crossing values, i.e.,
{W(@8), /(0 B) e € a,B € a'}
are distinct and disjoint from
Ran(h) URan(h') URan(f) U Ran(f").

In order to show that p* is a condition, assume that o« < 8 < v and f*(a,v) =
f*(B,7) = h*(a,B). By the way p* was constructed, either {a, 5} C AUa
or {a, S} C AUd’ and the same holds for {a,~} and {8,~}. This is only
possible, if either {a, 8,7} C AUa or {a, 5,7} C AUd/, but then we cannot
have f*(a,v) = f*(8,7) = h*(a, 8) as p and p’ are conditions. [

If G is V-P-generic, set
H=|J{h:(sh, f)e G}, F=|J{f:(s,hf)eG}.

We show that F': [ws]? — w is a witness for the failure of (). Assume,
for the sake of contradiction, that i < w, and p forces that |A] = Ny and if
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a, € A, a < B then there exists a v > [ such that F(a,v) = F(8,7) = i.
There is a set B C wo, |B| =Ry, and pe < p for £ € B, such that p¢ IF £ € A.
With the usual arguments we can assume that pe = (A U ag, he, fe) where
A < ag < ay, €€ ag, hellAP = hy|[AR, fellAPR = fl[AP (€< 7€ B), and
£ € ag (£ € B). Pick £ <7 from B.

Define p* = (AUag¢ Uay, h*, f*) such that h*|(AUa¢) = he, h*|(AUay,) =
hy, f*[(AUa¢) = fe, f*(AUay) = f,. Further, h*(§,n) = ¢, and the other

crossing values, i.e.,

{h*(a,ﬂ) ta€ag, B € ay {o, B} # {{,n}} U {f*(a,ﬂ) ra€agfBe an}

are different from ¢, each other, and from the elements of
Ran(he¢) URan(hy,) U Ran(fe) U Ran(f,).

Claim 3. p* is a condition.

PrOOF. The argument in Claim 2 works, except for the case when
h*(&,n) plays arole, i.e., when o = &, = n (in the condition on o < 5 < 7).
We have to show that we cannot have f*(&,v) = f*(n,v) = h*(§,n). But
h*(&,m) =i, and as a¢ < a,, we have v € a,, and f*(§,) # ¢ by construc-
tion. O

p* forces that there is no v > n with F(£,v) = F(n,v) =i, a contradic-
tion to &, n € A. This concludes the proof of Lemma 6. [

THEOREM 7. CH is consistent with the negation of (x).

PROOF. Let V be a model of CH.

We define the following notion of forcing. (S, f,H,h) € P if

(a) S € [wo] =N,

(b) f: S xS — [w] is symmetric, f(o,a) =w (a € 9),

(c) HC[S]Y, |H| <w, if HE€ H then tp(H) =w, if H+# H' € H, then
|HNH'| <w (H is almost disjoint), h: H — w,

(d)ifa€eS, HeH, a>min(H), then

|{BeH:hH)E fla,8)}] <1.

We define (S, f/, H',1/) < (S, f,H,h)iff S’ 28, f=f|(SxS),H DOH
with H € S for H € H' —H, and h = h'|H.

Claim 1. If o < wa, then D ={(S, f,H,h) : a € S} is dense in (P, <).

PRrROOF. Assume that (S, f,H,h) € P with a ¢ S. Define S' = S U {a}.
Let w=J{ue: £ €5’} be a partition of w into infinite parts. We de-
fine the symmetric f': §' x " — [w]“ such that ' D f, f'(a,a) = w and
f(a,B) =ug (B €5). Finally, set H' =H and ' = h. Now (5, f',H', h')
is a condition: (d) follows from ugNug =0 (B # ') and a ¢ H (H € H).
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Clearly, (S, f',H',1h') < (S, f,H,h) and (S, f/,H',h') e D. O
Claim 2. (P, <) is wy-closed.

PROOF. Assume that p, = (Sp, fn, Hn, hn) and (p, : n < w) is a decreas-
ing sequence of conditions. Define S = J{S, :n <w}, f=U{fn:n <w},
H=U{Hn:n<w}, and h = |J{hn :n <w}. Now p = (S, f,H,h) is a con-
dition as if H € H, o € S, @ > min(H), then there is n < w such that H
€ Hp, o € S,, and so (d) holds for « and H. Also, p <p, (n <w) as if
HeH—H, then HZS,. O

Claim 3. (P, <) is Ra-c.c.

ProOF. With the usual methods it suffices to show that py = (S U Sp,
fo, Ho, ho) and p1 = (SU Sy, f1,H1,h1) are compatible if S < Sy < S, tp(Sp)
=tp(S1), and the order isomorphism 7: SU Sy — SUS; is an isomor-
phism of pg and p;. We define S’ =SUSyU Sy, f'D foU f1 such that
f/(Oé,ﬂ'(,B)) - fO(awB) (aaﬂ € SO)7 H = HO U Hla h' = hO U hl' Furthera we
require that the sets {f'(a, ) : @« € Sy, 5 € S1} be pairwise disjoint. This
is possible, as countably many infinite sets have pairwise disjoint infinite
subsets.

We next show that H’ is almost disjoint. Assume that Hy, H; € H' and
|Ho N Hi| =w. Then Hy € Ho — H1, H1 € H1 — Ho (or vice versa). These
mean that Hy C SU Sy but Hy € S, as tp(Hp) = w, we have |[Hy N S| < w.
Similarly, |H; N S| < w, and these imply that |Hy N Hy| < w.

In order to conclude the proof that (S, f', H',h’) is a condition, we have
to show that if H € H', « € ', @ > min(H) then

[{BeH:NH)e f(a,f)}] <1.

holds.

Case 1: H € Hp and o« € SU Sy. The inequality holds as pg is a condi-
tion.

Case 2: H € Hy and o« € SU S7. The inequality holds as p; is a condi-
tion.

Case 3: H € Hy, a € S1, and HN S # (). Then 71 (a) > min(H) and
(d) holds for H, 7=*(a), i.e., at most one of the sets { fo(m— (), ) : B € H}
may contain h'(H) = ho(H), so this holds for the system {f'(«, 3) : € H},
as (e, B) C fo(n~(a),B) (8 € H).

Case 4: H € Hy, o € S1, and H C Sy. The inequality holds as {f/(3,«) :
f € H} are disjoint.

Case 5: H € Hy and a € Sy. By the condition aw > min(H) we neces-
sarily have m(a) > min(H), and, as (d) holds for H and 7(«), it holds for
7 1(H), a. Because for any v € Sy, n € S1, f'(7,n) C fla, 7 1(n)), (d) also
holds for H and o. [J
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From Claims 2, 3 we get that forcing with (P, <) does not collapse w;
or wy. If G is generic for (P, <), then let

F={J{f:(S.f.1neG}.

By the above, F': wy X wy — [w]* is a symmetric function. We define
F*(a, ) = min(F(a, f)) for a < f < ws.

Claim 4. For F*, (x) fails in V[G].

PROOF. Assume that
plE A€wa]“?, i <w, Va, €A Iy > max(a, ), F*(a,y) = F*(B,v)=1.

There exist an increasing sequence (x, < ws:a < ws) and (py : @ < ws)
with p, <p and p, IF x4 € A. Let po = (S, fas Ha, ha). Apply the A-
system lemma and CH to {S% :a < ws} to obtain B € [we]™* such that
{S!,: a € B} forms a head-tail-tail A-system with root S. Let S, =S/, — S.
With a further shrinking we can assume that the structures (SUS,;<
y S,y fas Ho has {xo}) are isomorphic for o € B. Let m,: SU Sy — SUS,
be the isomorphism between pg and pg.
Let {ay, : n < w} be the first w elements of B. We define

p*:(S*7f*7,H*7h*)
where
S*:SUU{San:n<w}, H* ={z,, :n <w},
H = U{Han n<wpU{H"}, h*D U{han in < w}

is such that h*(H*) =i, f*: S* x S* — [w]¥ is such that f* D (J{fa, : n < w}
and

{f*(ﬂ'am (), 70, (B)) :m <n, a, B € Sao}

are disjoint and do not contain 1.

In order to show that p* is a condition, we have to check (d). As-
sume that H € H*, a € S* and a > min(H). If H = H*, then o € S,,, for
some n < w (as a > xg), and therefore {8 € H* :i € f*(a,B)} C S,, and
|Sa, N H*| =1, we are done. If H # H*, we proceed as in Claim 3.

Once we obtained that p* is a condition, it is easy to see that p* < p,,
<p (n <w). By (d), it is immediate that in V[G], there is no v > z,, such
that

F*(wam/}/) = F($a1>7) = iv

a contradiction. [
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As Claims 2,3, and 4 give that (x) fails in V[G], we are finished. 0

THEOREM 8. It is consistent that GCH holds and [ws]? = J{T, : n < w}
where each T, is an wq-Suslin tree.

PrOOF. We force with the following notion of forcing. p = (S, f) € P if
S € [wo]=No, f: S x S — [w]“ is such that f(a,B) = f(B,a) (o, B € S) and
fla,0) =w (€ 5). Fora<ﬂ1n5wedeﬁnea< ﬁlffne f(a,B). (More
correctly, we should use the notation o <}, 3.)

We also assume that if @ < 8 < 7 are in S, then

(1) if « <, B <y 7, then a <, 7y, and

(2) if @ <, v, B <p 7y, then a <, 8.

Assumption (1) means that (S, <,) is a partially ordered set, (2) tells
that it is a tree.

We set (S, f') < (S, f)iff "2 S and f = f/|(S x S).
Claim 1. (P, <) is transitive.
PRrROOF. Straightforward. O
Claim 2. (P, <) is wy-closed.

PROOF. If pg > p1 > po > -+ where p,, = (Sp, fn), then we let p = (S, f)
where S = J{Sn :n <w}, f=U{fn:n <w}. It is easy to see that p is a
condition and p < p, (n <w). O

Claim 3. If & < wo, then {(S, f) : a € S} is dense.

PROOF. Assume that (5, f) is a condition, a ¢ S. We show that (S5, f)
has an extension (S’, f') such that S" = S U {a}.

Let {(ng,Br) : K < w} be an enumeration in which the ny’s are distinct
and each 8 € S occurs as [ for infinitely many k < w.

We extend (5, <,,,) to (5',<,,) as follows.

Case 1: B < a. Let b={z:xz <,, Br} be the (closed) branch deter-
mined by £ in (S,<,,). Define z <, a if z € b and no element will be
strictly above « in (S, <,,, ). Notice that S <,, « and so nj € (B, ).

In order to show (1), assume that = <, vy <, «a. Then x <,, y € b,
therefore x € b, and so = <,,, a. As there are no elements strictly above «,
there are no more cases.

In order to show (2), assume that = < y and x,y <,, o. Then z,y € b,
so x <,, y. Again, there are no more cases.

Case 2: o < By. Let u € S — a be minimal such that u <,, Si. Define
<y, aifr <, u(zeSNa),a<,, zifu<,, x(reS—a). Notice that
a <, Br and so n; € f'(«, B).

We first show (1). If x <,, y <p, a, then x <, vy <,,, u, consequently
x <p, uand sor <,, «

Ifz<,, a<, vy, thenx <, u<,, yandsox <,, y.
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If a<,, <, y,thenu<,, z<,, y, then u <,, y, and so a <,,, y.

We finally show (2). If z,y <,,, «, then z,y <,,, u, so z, y are compara-
ble by <,,.

Ifz,a <, y,z<a,thenz <, y,u<,, y,s0zx <,, vandthenz <,, a.

Ifoa,z<,, v, a <z, then u,z <, y, sou <,, z, and then o <,,, z. [

In order to investigate how conditions can be extended we make the fol-
lowing setup. Assume that py = (S U So, fo) and p; = (SU S, f1) are con-
ditions, S < Sy < S1, tp(Sp) = tp(S1), and 7: SU Sy — SUS; is the order
isomorphism. We assume that py and p; are isomorphic, i.e., if a,5 € S
U Sp, then fo(a, B) = fi(n(a),n(B)). We let <" <! be the tree orderings
corresponding to pg, p1. We notice that <% and <! agree on S.

Claim 4. Set o <, B iff either « S?L B or « S}L B. Then <, is a tree
ordering on S U Sy U Sy which restricts to < and <. on SU Sy, SU S,
respectively.

PrOOF. Straightforward. O

Claim 5. If a < B € Sy are <" -comparable, then there is a tree ordering
<p on SUSyU Sy with a <,, () which restricts to §2, <L on SUSy and
SUS.

PROOF. Let 7 be the <?-least element of Sy below 3. Notice that 7 §g «
holds also.

We define the relation <,, on SUSyUS; as follows. x <, y iff either
<Yy orz<ly orxeSy,yes, r<)aandn(r) <Ly

Subclaim 1. <,, satisfies (1).

PROOF. Assume that x <,, y <,, z. We have to prove that z <,, z. This
is immediate if either x,y,z € SU Sy or x,y,z € SUS7.

Case 1: x € SU Sy, y € So, 2 € S1. If z € Sp, then <V y <% a, conse-
quently z §2 a, and so x <, z.

If r € S, then, as # <% a and 7 <% «a, we have x <! 7, and so z <! 7(7)
<Lz

Case 2: x € Sy, y,z € S;. This holds if z <Y o, 7(7) <L y <! 2, but
then 7(7) <! z, and so x <,, z. [

Subclaim 2. <,, satisfies (2).

PROOF. Assume that z <, z, y <, z, and x < y. We have to prove that
x <, y. Again, we have no problem if either {z,y,z} C SU Sy or {z,y,z} C
S'U S1 so we ignore these possibilities.

Case 1: x €S, y€ Sy, z€ S1. Since z,7(7) <,, 2, so z <! «(7), by
the fact that 7 is an isomorphism, z <Y 7 <% a. Also, y <" «, so z,y are
comparable under <0.
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Case 2: T,y S SO, z € Sl. Now T,y <g « SO they are Comparable under
<0
=n

Case 3: x € Sy, y,z € S1. By the definition of <,, we have x S% « and
7(7) <! 2. The latter implies 7(7) <! y and so we get x <, y. [

As <, satisfies (1) and (2), we are done. [
Claim 6. (P, <) is Na-c.c.

PrOOF. Modulo standard arguments one has to show that pg and p; are
compatible, if pg = (SU Sy, fo), p1 = (SUS1, f1), S < Sp < S1 and py, py are
isomorphic with 7: SU Sy — S U S as the isomorphism.

Choose, for each a < 8 in Sy the natural numbers n;(«, 8) € fo(a, 3)
such that n;(«, B) # ny(o/, 8') for (i,a, B) # (', /')

If n=mn;(a, ), we apply Claim 5 and obtain a tree ordering <, on
SUSyUS; with a <, 7(8) and if n is not of the form n;(«, 3) we apply
Claim 4. This gives a structure p = (S U Sy U Sy, f) such that f'(«, 7(B)) 2
{ni(a, B) : i < w} and so it is infinite, so p is a condition and p < pg,p;. O

If G is generic, we define the tree T}, as the partial order <,, on wy where
a<, piff n e f(a,B) for some (S, f) € G. It is clear that <,, satisfies (1)
and (2) so T, is indeed a tree.

Claim 7. T,, does not contain an wa-branch (n < w).

PROOF. Assume p forces that B is an ws-branch of T;,. There are Ny dis-
tinct ordinals x, and conditions p, < p such that p, IF 2, € B. The usual
applications of the pigeon hole principle and the A-system lemma give two of
these conditions, we simply call them py and p; such that pg = (S U Sy, fo),
p1 = (SUS, f1), S < Sy < Si, the structures (SU Sy, <, S, zo, fo), (SUST, <,
S,x1, f1) are isomorphic under the order isomorphism 7: S U Sy — S U S;.
Notice that () = x1. We proceed as in the proof of Claim 6 except that we
choose all n;(«, 8) different from n. This way, we get an extension p’ < pg, p1
such that n & f'(z,x1) and so p’ forces that zy and x; are incomparable in
T, , a contradiction. [

Claim 8. T,, does not contain antichains of size Ny (n < w).

PROOF. Assume that p forces that A is an antichain of size Ny in T,.
There are Ny distinct ordinals =, and conditions p, < p such that p, IF z,
€ A. The usual applications of the pigeon hole principle and the A-system
lemma give two of these conditions, we simply call them pg and p1, such that
po = (SUSy, fo), 1 = (SUSL, f1), S < Sy < S1, the structures (S U Sy, <,
S, {zo}, fo), (SUST, <, S,{x1}, f1) are isomorphic under the order isomor-
phism 7: SU Sy — SUS;. Notice that m(zp) = z1 and so n € fo(xg,x0).
We proceed as in the proof of Claim 6 so that we choose ng(zg, z1) = n.

This way, we get an extension p’ < pg,p1 such that n € f’(xg,z1) and so
p’ forces that xg < z1 in T},, a contradiction. [J
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With Claims 2, 6 we get that the forcing is cardinal preserving, and with
Claims 7 and 8 that [wq]? = U{T},, : n < w} as required. [

COROLLARY 9. GCH is consistent with wy + (Top K,,)2.

PROOF. By Theorem 8, [ws]? = J{X, : n < w} where X,, is the com-
parison graph of a k-Suslin tree on ws. By Lemma 1, no X, contains a
topological K. If F(a, ) = min{n : {a, 8} € X,,}, then F: [w]? — w is a
coloring witnessing wy /4 (Top K,.)2. O
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