THE COFINALITY OF THE SYMMETRIC GROUP AND THE COFINALITY OF ULTRAPOWERS

BY
Heike Mildenberger*
Abteilung für Mathematische Logik, Mathematisches Institut Universität Freiburg, Ernst-Zermelo-Str. 1, 79104 Freiburg im Breisgau, Germany e-mail: heike.mildenberger@math.uni-freiburg.de
AND
Saharon Shelah**
Einstein Institute of Mathematics, The Hebrew University of Jerusalem
Edmond Safra Campus, Givat Ram, Jerusalem 9190401, Israel
e-mail: shelah@math.huji.ac.il

ABSTRACT

We prove that $\mathfrak{m c f}<\operatorname{cf}(\operatorname{Sym}(\omega)))$ and $\mathfrak{m c f}>\operatorname{cf}(\operatorname{Sym}(\omega))=\mathfrak{b}$ are both consistent relative to ZFC. This answers a question by Banakh, Repovš and Zdomskyy and a question from [MS11].

1. Introduction

We compare the cardinal $\mathfrak{m c f}$, the minimal cofinality of the ultrapower $(\omega,<)$ by a non-principal ultrafilter on ω, and the cofinality of the symmetric group on $\omega, \operatorname{cf}(\operatorname{Sym}(\omega))$. These two cardinal invariants are closely related: Both are

[^0]Received February 17, 2019 and in revised form December 31, 2019
cofinalities and hence regular. In ZFC, both cardinals have value in the interval $[\mathfrak{g}, \mathfrak{d}]$, namely Blass and Mildenberger [BM99] showed $\mathfrak{m c f} \geq \mathfrak{g}$, Brendle and Losada [BL03] showed $\operatorname{cf}(\operatorname{Sym}(\omega)) \geq \mathfrak{g}$, and Simon Thomas [Tho95] showed $\operatorname{cf}(\operatorname{Sym}(\omega)) \leq \mathfrak{d}$. In their relations to \mathfrak{b} the two cardinals behave differently: Obviously $\mathfrak{b} \leq \mathfrak{m c f}$, whereas Sharp and Thomas [ST95, Theorem 1.6] showed that $\operatorname{cf}(\operatorname{Sym}(\omega))<\mathfrak{b}$ is consistent relative to ZFC. Before our research, in all investigated forcing extensions we have had $\operatorname{cf}(\operatorname{Sym}(\omega)) \leq \mathfrak{m c f}$ and in the forcing extensions in which both $\operatorname{cf}(\operatorname{Sym}(\omega)) \geq \mathfrak{b}$ and $\mathfrak{m c f} \geq \mathfrak{b}$, the two cardinal characteristics $\operatorname{cf}(\operatorname{Sym}(\omega))$ and $\mathfrak{m c f}$ coincide. The inequality $\operatorname{cf}(\operatorname{Sym}(\omega)) \leq \mathfrak{m c f}$ is partially due to a mathematical reason: Banakh, Repovš and Zdomskyy showed [BRZ11, Theorem 1.3]: If D is not nearly coherent to a Q-point then

$$
\operatorname{cf}(\operatorname{Sym}(\omega)) \leq \operatorname{cf}\left((\omega,<)^{\omega} / D\right)
$$

In particular, if there is no Q-point then

$$
\operatorname{cf}(\operatorname{Sym}(\omega)) \leq \mathfrak{m c f}
$$

Here we show that indeed an extra assumption is necessary. Our first forcing shows the relative consistency of $\aleph_{1}=\mathfrak{b}=\mathfrak{m c f}<\aleph_{2}=\operatorname{cf}(\operatorname{Sym}(\omega))$.

In our second forcing we show how to separate the two cardinals in the second direction above $\mathfrak{b}: \aleph_{1}=\mathfrak{b}=\operatorname{cf}(\operatorname{Sym}(\omega))<\mathfrak{m} \mathfrak{c f}$ is consistent. We use versions of the oracle-c.c. in the $\aleph_{1}-\aleph_{2}$-scenario.

There are some known forcings establishing the relative consistency of $\mathfrak{b}<\mathfrak{m c f}$: Three interesting forcings for $\aleph_{1}=\mathfrak{b}<\mathfrak{m c f}$ are given in [SS93, SS94]. Since $\mathfrak{b} \leq \mathfrak{u}$ [PS87] and since NCF is equivalent to $\mathfrak{u}<\mathfrak{m c f}$ [Mil01] the NCFmodels show the relative consistency of $\mathfrak{b}<\mathfrak{m c f}$. In [MS11] we showed that also $\mathfrak{b}^{+}<\mathfrak{m c f}$ is possible. In the second forcing extension of that work we arranged $\mathfrak{b}^{+}<\mathfrak{m c f}=\operatorname{cf}(\operatorname{Sym}(\omega))$. In the other forcing extensions for $\mathfrak{b}<\mathfrak{m c f}$ the value of $\operatorname{cf}(\operatorname{Sym}(\omega))$ has not yet been computed or is possibly not determined by the forcing or by NCF.

We recall the definitions: We denote by ${ }^{\omega} \omega$ the set of functions from ω to ω. For $f, g \in{ }^{\omega} \omega$ we write $f \leq^{*} g$ and say g eventually dominates f if

$$
(\exists n)(\forall k \geq n)(f(k) \leq g(k))
$$

A set $B \subseteq{ }^{\omega} \omega$ is called unbounded if there is no g that dominates all members of B. The bounding number \mathfrak{b} is the minimal cardinality of an unbounded set.

Definition 1.1: Let D be a non-principal ultrafilter over ω. By ultrapower we mean the usual modeltheoretic ultrapower: The structure $(\omega,<)^{\omega} / D$ is defined on the domain $\left\{[f]_{D}: f \in{ }^{\omega} \omega\right\}$ where

$$
[f]_{D}=\left\{g \in^{\omega} \omega:\{n: f(n)=g(n)\} \in D\right\}
$$

The order relation is $[f]_{D} \leq_{D}[g]_{D}$ iff $\{n: f(n) \leq g(n)\} \in D$. We write $\operatorname{cf}\left((\omega,<)^{\omega} / D\right)$ for the minimal size of a set that is cofinal in \leq_{D}. The minimal cofinality of an ultrapower of $\omega, \mathfrak{m c f}$, is defined as the

$$
\mathfrak{m c f}=\min \left\{\operatorname{cf}\left((\omega,<)^{\omega} / D\right): D \text { non-principal ultrafilter over } \omega\right\}
$$

We define the relation \leq_{D} also on the space ${ }^{\omega} \omega$ by letting $f \leq_{D} g$ iff $\{n: f(n) \leq g(n)\} \in D$.

Definition 1.2: The group of permutations of ω is denoted by $\operatorname{Sym}(\omega)$. If $\operatorname{Sym}(\omega)=\bigcup_{i<\kappa} G_{i}, \kappa=\operatorname{cf}(\kappa)>\aleph_{0},\left\langle G_{i}: i<\kappa\right\rangle$ is strictly increasing, and each G_{i} is a proper subgroup of $\operatorname{Sym}(\omega)$, we call $\left\langle G_{i}: i<\kappa\right\rangle$ an increasing decomposition. We call the minimal κ such that an increasing decomposition of length κ exists the cofinality of the symmetric group, and denote it $\operatorname{cf}(\operatorname{Sym}(\omega))$.

Definition 1.3: A subset \mathcal{G} of $[\omega]^{\omega}$ is called groupwise dense if
(1) $(\forall X \in \mathcal{G})\left(\forall Y \subseteq^{*} X\right)(Y$ infinite $\rightarrow Y \in \mathcal{G})$, and
(2) for every partition of ω into finite intervals $\Pi=\left\{\left[\pi_{i}, \pi_{i+1}\right): i \in \omega\right\}$ there is an infinite set A such that $\bigcup\left\{\left[\pi_{i}, \pi_{i+1}\right): i \in A\right\} \in \mathcal{G}$.

The groupwise density number, \mathfrak{g}, is the smallest number of groupwise dense families with empty intersection.

An ultrafilter U over ω is called a Q-point, if given any strictly increasing function $f: \omega \rightarrow \omega$ there is an $X \in U$ such that $\forall n, X \cap[f(n), f(n+1))$ has just one element. The existence of a Q-point is independent of ZFC; see, e.g., [Can90] for existence and [Mil80] for non-existence. An ultrafilter D is nearly coherent to an ultrafilter U if there is a finite-to-one function $f: \omega \rightarrow \omega$ such that $f(D)=f(U)$. Here

$$
f(D)=\left\{E: f^{-1}[E] \in D\right\}
$$

Throughout we write $g[X]$ for the set $\{g(x): x \in X\}$ and $g^{-1}[Y]=\{x: g(x) \in Y\}$. The principle NCF says that any two non-principal ultrafilters over ω are nearly
coherent. Its consistency is established in [BS87, BS89, Bla89]. A base for an ultrafilter is a subset \mathcal{B} of \mathscr{U} such that $(\forall Y \in \mathscr{U})(\exists X \in \mathcal{B})(X \subseteq Y)$. The character of an ultrafilter is the smallest size of a base. The ultrafilter characteristic \mathfrak{u} is the smallest character of a non-principal ultrafilter.

In forcing the stronger condition is the larger one. For a forcing order \mathbb{P} and a formula φ, we say \mathbb{P} forces φ if the weakest condition in \mathbb{P} forces φ.
2. $\operatorname{Con}\left(\mathfrak{b}=\operatorname{cf}\left(\omega^{\omega} / D\right)<\operatorname{cf}(\operatorname{Sym}(\omega))\right)$

In this section we prove
Theorem 2.1: The constellation $\aleph_{1}=\mathfrak{b}=\mathfrak{m c f}<\operatorname{cf}(\operatorname{Sym}(\omega))$ is consistent relative to ZFC .

We essentially use oracle c.c. [She98, Ch. 4], but in addition to the oracle sequence we construct a sequence $\left\langle\underset{\sim}{\underset{\sim}{D}}: \alpha<\omega_{1}\right\rangle$ which approximates a name $\underset{\sim}{D}$ for an ultrafilter. We construct a notion of forcing \mathbb{P} such that for a \mathbb{P}-generic filter $\mathbf{G}, \underset{\sim}{D}[\mathbf{G}]$ will be an ultrafilter witnessing $\mathfrak{m c f}=\aleph_{1}$. The construction of \mathbb{P} is done via an approximation forcing $A P$, so that $\mathbb{P}=A P * \underset{\sim}{\mathbb{Q}}$, where $\underset{\sim}{\mathbb{Q}}$ is an $A P$-name for the $A P$-generic object.

We recall some oracle technique of [She98, Chapter IV]. Let S be a stationary subset of ω_{1}. We fix S throughout this section. A set $\mathscr{D} \subseteq \mathcal{P}(S)$ is called a filter over S if $\emptyset \notin \mathscr{D}, S \in \mathscr{D}, \mathscr{D}$ is closed under finite intersections and closed under supersets. A filter \mathscr{D} over S is called normal if it contains all sets of the form $\left[\alpha, \omega_{1}\right) \cap S, \alpha<\omega_{1}$, and is closed under diagonal intersections. We recall, given a sequence $\left\langle D_{\delta}: \delta \in S\right\rangle$, that its diagonal intersection is the following set

$$
\triangle_{\delta \in S} D_{\delta}=\left\{\gamma \in S: \gamma \in \bigcap_{\delta \in \gamma \cap S} D_{\delta}\right\}
$$

For a filter \mathscr{D} over ω_{1} and $X, Y \subseteq \omega_{1}$ we let $X=Y \bmod \mathscr{D}$ if

$$
(X \cap Y) \cup\left(\left(\omega_{1} \backslash X\right) \cap\left(\omega_{1} \backslash Y\right)\right) \in \mathscr{D}
$$

and $X \subseteq Y \bmod \mathscr{D}$ if $X \backslash Y=\emptyset \bmod \mathscr{D}$.
We recall the notion of a \diamond_{S}^{-}-sequence. A sequence $\bar{P}=\left\langle P_{\delta}: \delta \in S\right\rangle$ is called a \diamond_{S}^{-}-sequence if $P_{\delta} \subseteq \mathcal{P}(\delta)$ is countable and for any $X \subseteq \aleph_{1}$

$$
\left\{\delta \in S: X \cap \delta \in P_{\delta}\right\} \text { is a stationary subset of } S
$$

It is well known that \diamond_{S}^{-}and \diamond_{S} are equivalent (see [Kun80, Ch. III]).

We fix a sufficiently large regular cardinal χ, indeed $\chi \geq\left(2^{\aleph_{2}}\right)^{+}$suffices. We fix a well-order $<_{\chi}$ on $H(\chi)$.

Definition 2.2: We assume that $S \subseteq \omega_{1}$ is stationary and \diamond_{S}.
(1) (See [She98, IV, Def. 1.1]) An S-oracle is a sequence $\bar{M}=\left\langle M_{\delta}: \delta \in S\right\rangle$ such that:
(a) M_{δ} is countable and transitive and $\delta+1 \subseteq M_{\delta}$.
(b) $i_{\delta}:\left(M_{\delta}, \in,\left(<_{\chi}\right)^{M_{\delta}}\right) \hookrightarrow_{\text {elem }}\left(H(\chi), \in,<_{\chi}\right)$ is elementary.
(c) $M_{\delta} \models \delta$ is countable.
(d) For $\delta<\varepsilon \in S, M_{\delta} \subseteq M_{\varepsilon}$.
(e) For any $A \subseteq \omega_{1}$ the set $\left\{\delta \in S: A \cap \delta \in M_{\delta}\right\}$ is stationary in ω_{1}.
(2) Let M be a countable elementary submodel of $H(\chi)$. A real $\eta \in \omega^{\omega}$ is called a Cohen real over M iff for any $D \in M$ that is dense in $\mathbb{C}=\{p:(\exists n)(p: n \rightarrow \omega)\}$ (ordered by end-extension) there is an n such that $\eta \upharpoonright n \in D$. Equivalently, for any meagre set $F \subseteq \omega^{\omega}$ that is coded in M, e.g., by a sequence of nowhere dense trees, we have $\eta \notin F$.
(3) We say that $\langle\bar{M}, \bar{N}, \bar{\eta}\rangle$ is an S-oracle triple if
(a) $\bar{M}=\left\langle M_{\delta}: \delta \in S\right\rangle$ is an S-oracle,
(b) $\bar{\eta}=\left\langle\eta_{\delta}: \delta \in S\right\rangle$,
(c) for $\delta \in S, \eta_{\delta}$ is Cohen over M_{δ},
(d) $\bar{N}=\left\langle N_{\delta}: \delta \in S\right\rangle$,
(e) $N_{\delta}=M_{\delta}\left[\eta_{\delta}\right]$.
(3) Let \bar{M} be an S-oracle sequence. For $A \subseteq H\left(\omega_{1}\right)$, we let

$$
I_{\bar{M}}(A)=\left\{\alpha \in S: A \cap \alpha \in M_{\alpha}\right\}
$$

and

$$
\mathscr{D}_{\bar{M}}=\left\{X \subseteq \omega_{1}:\left(\exists A \subseteq \omega_{1}\right)\left(X \supseteq I_{\bar{M}}(A)\right)\right\}
$$

From now on until the end of the section let $S \subseteq \omega_{1}$ be stationary and assume \diamond_{S}. For L-structures \mathcal{A}, \mathcal{M}, we write $\mathcal{A} \prec \mathcal{M}$ if \mathcal{A} is an elementary substructure of \mathcal{M}. Since for L-structures $\mathcal{A}, \mathcal{B}, \mathcal{M}$ with $\mathcal{A}, \mathcal{B} \prec \mathcal{M}$ and $\mathcal{A} \subseteq \mathcal{B}$ also $\mathcal{A} \prec \mathcal{B}$ holds, we have that the structures on any oracle sequence are \prec-increasing.

If $f: A \rightarrow B$ is a function and $C \subseteq A$, then we write $f[C]$ for $\{f(c): c \in C\}$. We recall the following important properties of $\mathscr{D}_{\bar{M}}$.

Lemma 2.3 ([She98, IV, Claim 1.4]): The set $\left\{I_{\bar{M}}(A): A \subseteq \omega_{1}\right\}$ is closed under finite intersections. The filter $\mathscr{D}_{\bar{M}}$ contains every end segment of ω_{1}, is normal, and contains any club subset of S, and for every $A \subseteq H\left(\aleph_{1}\right), I_{\bar{M}}(A) \in \mathscr{D}_{\bar{M}}$.

Proof. We prove only the very last statement; the others are proved in [She98, IV, Claim 1.4]. By $\diamond_{S},\left|H\left(\omega_{1}\right)\right|=\omega_{1}$. Let $f: H\left(\omega_{1}\right) \rightarrow \omega_{1}$ be the $<_{\chi \text {-least }}$ bijection. Let

$$
C=\left\{\delta \in \omega_{1}: \delta \text { limit and }(\forall \alpha<\delta)\left(f\left[M_{\alpha}\right] \subseteq \delta\right)\right\}
$$

The set $\operatorname{acc}(C)$ of accumulation points of C is club in ω_{1}. Now we consider $A \subseteq H\left(\omega_{1}\right)$. By definition, $I_{\bar{M}}(f[A]) \in \mathscr{D}_{\bar{M}}$. For any $\delta \in S \cap \operatorname{acc}(C)$ such that $f[A] \cap \delta \in M_{\delta}$ we have

$$
\begin{aligned}
M_{\delta} \ni\left(i_{\delta}^{-1}\left(f^{-1}\right)\right)[(f[A \cap \delta])] & =\bigcup_{\alpha<\delta}\left(f^{-1} \upharpoonright f\left[M_{\alpha}\right]\right)[(f[A] \cap \alpha)] \\
& =\bigcup_{\alpha<\delta} A \cap \alpha=A \cap \delta
\end{aligned}
$$

Thus we have $I_{\bar{M}}(A) \supseteq I_{\bar{M}}(f[A]) \cap \operatorname{acc}(C)$. By [Jec03, Lemma 14.4], for any club C^{\prime} in ω_{1}, any normal filter over S contains the set $S \cap C^{\prime}$. Since $\operatorname{acc}(C)$ is a club and $\mathscr{D}_{\bar{M}}$ is a normal filter, $\operatorname{acc}(C) \in \mathscr{D}_{\bar{M}}$ and thus $I_{\bar{M}}(A) \in \mathscr{D}_{\bar{M}}$.

We recall when a notion of forcing \mathbb{P} has the \bar{M}-c.c.
Definition 2.4 ([She98, Ch. IV, Def. 1.5]): Let \bar{M} be an S-oracle sequence and let \mathbb{P} be a notion of forcing. We define when \mathbb{P} satisfies the \bar{M}-c.c. by cases:
(a) If $|\mathbb{P}| \leq \aleph_{0}$, always.
(b) If $|\mathbb{P}|=\aleph_{1}$ and if for every injective $\pi: \mathbb{P} \rightarrow \omega_{1}$ the set
$\left\{\delta \in S:\left(\forall A \in M_{\delta} \cap \mathcal{P}(\delta)\right)\right.$
$\left(\left(\left(\pi^{-1}\right)[A]\right.\right.$ is predense in $\left.\left(\pi^{-1}\right)[\delta]\right) \rightarrow\left(\left(\pi^{-1}\right)[A]\right.$ is predense in $\left.\left.\left.\mathbb{P}\right)\right)\right\}$ is an element of $\mathscr{D}_{\bar{M}}$.
(c) $\mathbb{P}^{\prime \prime} \subseteq_{\text {ic }} \mathbb{P}$ means that $\mathbb{P}^{\prime \prime}$ is an incompatibility preserving suborder of \mathbb{P}, i.e., for any $p, q \in \mathbb{P}^{\prime \prime}, p \leq_{\mathbb{P}^{\prime \prime}} q$ iff $p \leq_{\mathbb{P}} q$ and $p \perp_{\mathbb{P}^{\prime \prime}} q$ iff $p \perp_{\mathbb{P}} q$.
(d) If $|\mathbb{P}|>\aleph_{1}$, and for every $\mathbb{P}^{\dagger} \subseteq \mathbb{P}$ if $\left|\mathbb{P}^{\dagger}\right| \leq \aleph_{1}$, then there are $\mathbb{P}^{\prime \prime}$ such that $\left|\mathbb{P}^{\prime \prime}\right|=\aleph_{1}$ and $\mathbb{P}^{\dagger} \subseteq \mathbb{P}^{\prime \prime} \subseteq_{\text {ic }} \mathbb{P}$ and $\pi: \mathbb{P}^{\prime \prime} \rightarrow \omega_{1}$ as in (b).

Oracle sequences are not continuous. The requirement $\delta \in M_{\delta}$ precludes continuity.

Lemma 2.5: Assume S is stationary and \diamond_{S}.
(1) There is an oracle triple.
(2) Let $\langle\bar{M}, \bar{N}, \bar{\eta}\rangle$ be an oracle triple. Then

$$
I:=\left\{\delta \in S:\left\{\left(\varepsilon, \eta_{\varepsilon}\right): \varepsilon<\delta\right\} \in M_{\delta}\right\} \in \mathscr{D}_{\bar{M}}
$$

(3) If $\langle\bar{M}, \bar{N}, \bar{\eta}\rangle$ is an S-oracle triple then $\left\langle N_{\varepsilon}: \varepsilon \in I\right\rangle$ is an I-oracle, with the exception that $\left(N_{\varepsilon}, \in\right)$ is not necessarily an elementary substructure of $H(\chi) .{ }^{1}$

Proof. (1) Let $\left\langle P_{\delta}: \delta \in S\right\rangle$ be a \diamond_{S}^{-}-sequence. Again we fix the $<_{\chi}$-least bijection $f: H\left(\omega_{1}\right) \rightarrow \omega_{1}$. We choose M_{δ}, i_{δ} by induction on δ. Suppose that $M_{\gamma}, i_{\gamma}, \gamma<\delta$, have been chosen. Let $M_{\delta}^{\prime} \prec\left(H(\chi), \in,<_{\chi}\right)$ be a countable elementary substructure with $\left\langle M_{\gamma}, i_{\gamma}: \gamma<\delta\right\rangle, \delta, P_{\delta} \in M_{\delta}^{\prime}$. Then $\delta+1 \subseteq M_{\delta}^{\prime}$. We let M_{δ} be the Mostowski collapse of M_{δ}^{\prime}. The Mostowski collapse maps P_{δ} to itself. Moreover, since P_{δ} is countable, $P_{\delta} \subseteq M_{\delta}$, and hence $X \cap \delta \in P_{\delta}$ implies $X \cap \delta \in M_{\delta}$. By now, we have taken care of Definition 2.2.(2) (a). For being definite, we let the Cohen forcing \mathbb{C} be the set of finite partial functions from ω to 2 , ordered by extension. By the Rasiowa-Sikorski theorem (e.g., [Jec03, Lemma 14.4]) there is a Cohen-generic filter G_{δ} over M_{δ}. Then the function $\eta_{\delta}=\bigcup\left\{p: p \in G_{\delta}\right\} \in{ }^{\omega} 2$ is a Cohen real over M_{δ}. We let $M_{\delta}\left[G_{\delta}\right]=N_{\delta}$.
(2) The set $A=\left\{\left(\varepsilon, \eta_{\varepsilon}\right): \varepsilon \in S\right\} \subseteq H\left(\omega_{1}\right)$. We fix a club C such for $\delta \in C$,

$$
f\left[\left\{\left(\varepsilon, \eta_{\varepsilon}\right): \varepsilon<\delta\right\}\right] \subseteq \delta
$$

By Lemma 2.3 we have $I_{\bar{M}}(A) \in \mathscr{D}_{\bar{M}}$. By normality $C \cap I_{\bar{M}}(A) \in \mathscr{D}_{\bar{M}}$. By the choice of C,

$$
C \cap I_{\bar{M}}(A) \subseteq\left\{\delta:\left\{\left(\varepsilon, \eta_{\varepsilon}\right): \varepsilon<\delta\right\} \in M_{\delta}\right\}
$$

and thus the latter is in $\mathscr{D}_{\bar{M}}$.
(3) Since $\mathscr{D}_{\bar{M}}$ is a normal filter, by [Jec03, Lemma 811], its elements are stationary sets. Hence I is stationary. For $\delta<\varepsilon, \delta \in S, \varepsilon \in I$, we have $N_{\delta} \subseteq M_{\varepsilon} \subseteq N_{\varepsilon}$. Hence $\left\langle N_{\varepsilon}: \varepsilon \in I\right\rangle$ is increasing.

From now until the end of the section we fix an S-oracle triple $(\bar{M}, \bar{N}, \bar{\eta})$. Note that for $\delta \in I,(\forall \alpha<\delta)\left(M_{\alpha}\left[\eta_{\alpha}\right] \in M_{\delta}\right)$.

[^1]Oracle triples allow for the application of the "Omitting Types Theorem":
Lemma 2.6 (The Omitting Types Theorem, see [She98, Ch. IV, Lemma 2.1]): Assume \diamond_{S}. Suppose the $\psi_{i}(x), i<\omega_{1}$, are Π_{2}^{1} formulas on reals with a real parameter possibly. Suppose further that there is no solution to $\bigwedge_{i<\omega_{1}} \psi_{i}(x)$ in \mathbf{V} and even if we add a Cohen real to \mathbf{V} there will be none. Then there is an S-oracle \bar{M}^{\prime} such that for any forcing \mathbb{P},

$$
\text { if } \mathbb{P} \text { has the } \bar{M}^{\prime} \text {-c.c, then in } \mathbf{V}^{\mathbb{P}} \text { there is no solution to } \bigwedge_{i} \psi_{i}(x) \text {. }
$$

We let $\psi\left(x, \eta_{i}\right)$ say the following:

$$
\begin{align*}
& x=(y, h) \wedge y \in{ }^{\omega} 2 \text { and } h \in{ }^{\omega} \omega \text { is increasing and } \\
& \left(\forall^{\infty} n\right)\left(\eta_{i} \upharpoonright[h(n), h(n+1)) \neq y \upharpoonright[h(n), h(n+1))\right) . \tag{2.1}
\end{align*}
$$

By [BJ95, Theorem Ch. 2], any meagre subset of 2^{ω} has a superset of the form

$$
M_{(h, y)}=\left\{z \in{ }^{\omega} 2:\left(\forall^{\infty} n\right) z \upharpoonright[h(n), h(n+1)) \neq y \upharpoonright[h(n), h(n+1))\right\}
$$

for some strictly increasing function h and some $y \in{ }^{\omega} 2$. The formula $\psi\left(x, \eta_{i}\right)$ says that η_{i} is in the meagre set $M_{(h, y)}$. So the type Ψ to be omitted is

$$
\begin{equation*}
\bigwedge_{i \in I} \psi\left(x, \eta_{i}\right) \tag{2.2}
\end{equation*}
$$

Actually, we will have a strong form of omission: There is a set Y in a normal filter such that for each $i \in Y, x=(y, h) \in M_{i}[\mathbb{P}]$,

$$
\left(\exists^{\infty} n\right) \eta_{i} \upharpoonright[h(n), h(n+1))=\eta_{i} \upharpoonright[h(n), h(n+1)) .
$$

Since $\mathbb{P} \in M_{0}$ and $\mathbb{P} \subseteq \bigcup\left\{M_{i}: i<\omega\right\}$, thus $\left\{\eta_{i}: i \in Y\right\}$ is not meagre in $\mathbf{V}^{\mathbb{P}}$.
We check that premise of the omitting types theorem is fulfilled in a very local form.

Lemma 2.7: Let M be a countable transitive model that can be elementarily embedded into $H(\chi)$, and let $\eta \in \mathbf{V}$ be a Cohen real over M. Then there is no $p \in \mathbb{C}$ such that p forces in Cohen forcing over \mathbf{V} that η is not Cohen over $M[\mathbb{C}]$.

Proof. If $\eta \in \mathbf{V}$ is Cohen over M and c is Cohen over \mathbf{V} then c is also Cohen over $M[\eta]$. So $M[\eta][c]$ is an iterated Cohen extension and (η, c) is M-generic for $\mathbb{C} * \mathbb{C}$. Since $\mathbb{C} \times \mathbb{C}$ densely embeds into $\mathbb{C} * \mathbb{C}$, the order of the two Cohen reals does not matter. So c is forced to be Cohen over $M[\eta]$.

By Lemma 2.7, the omitting types theorem shows that there is an oracle \bar{N} for the preservation of $\eta_{i}{ }^{\prime}$ s Coheness over M_{i}. We review the proof of the omitting types theorem for the preservation of Coheness in order to show that $N_{i}=M\left[\eta_{i}\right]$ is a strong enough oracle. ${ }^{2}$

Theorem 2.8: Let \bar{M}, \bar{N}, S, I be as in Definition 2.2 and Lemma 2.5(2). For each \mathbb{P}^{\dagger} with the \bar{N}-c.c. there is a set $Y \in \mathscr{D}_{\bar{N}}$ such that for any $i \in Y, \eta_{i}$ is Cohen over $M_{i}\left[\mathbb{P}^{\dagger}\right]$.

Proof. We work with the type given in (2.2). We assume $\mathbb{P}^{\dagger}=\omega_{1}$. Then by the oracle-c.c.
$Y^{\prime}=\left\{\delta \in S:\left(\forall A \in N_{\delta} \cap \mathcal{P}(\delta)\right)(((A\right.$ is predense in $(\delta) \rightarrow((A$ is predense in $\mathbb{P}))\}$ is an element of $\mathscr{D}_{\bar{N}}$.

Let τ be a \mathbb{P}^{\dagger}-name for a real. Since $\mathbb{P}^{\dagger}=\omega_{1}$ has the c.c.c. we can assume that $\tau \in H\left(\omega_{1}\right)$. Let $p \in \mathbb{P}^{\dagger}$. Let Y be the set of $\delta \in Y^{\prime}$ such that
(a) $\tau \in M_{\delta}$,
(b) $\tau=\tau^{\left(N_{\delta}, \delta\right)}$,
(c) $\mathbb{P}^{\dagger} \cap \delta \subseteq_{i c} \mathbb{P}^{\dagger}$.

Then $Y \in \mathscr{D}_{\bar{N}}$. Let G be \mathbb{P}^{\dagger}-generic over \mathbf{V} and $\delta \in Y$. Then $G \cap \delta$ is $\mathbb{P}^{\dagger} \cap \delta$ generic over N_{δ}. Since $\mathbb{P}^{\dagger} \cap \delta$ is equivalent to Cohen forcing, by Lemma 2.7,

$$
N_{\delta}[G \cap \delta] \models \neg \psi\left(\tau[G \cap \delta], \eta_{\delta}\right)
$$

Since $\mathbb{P}^{\dagger} \cap \delta \subseteq_{i c} \mathbb{P}^{\dagger}$, we have $\tau[G \cap \delta]=\underset{\sim}{\tau}[G]$. By absoluteness,

$$
N_{\delta}[G] \models \neg \psi\left(\tau[G], \eta_{\delta}\right) .
$$

For building up a name for an ultrafilter witnessing $\mathfrak{m c f}=\aleph_{1}$ we introduce some notions for handling names.

Definition 2.9: Let \mathbb{P} be a c.c.c. forcing of size at most \aleph_{1}.
(1) A canonical \mathbb{P}-name for a subset of ω is a name of the form

$$
\left.\tau=\left\{\langle\check{n}, p\rangle: p \in A_{n}\right\rangle\right\}
$$

where the $A_{n} \subseteq \mathbb{P}$ are countable maximal antichains.

[^2](2) A canonical \mathbb{P}-name for a subset of $\mathcal{P}(\omega)$ is a name of the form
$$
\underset{\sim}{K}=\left\{\langle\tau, q\rangle: q \in A_{\tau}, \tau \in X\right\}
$$
where X is a set of canonical \mathbb{P}-names τ for subsets of ω, for maps π as in (3), and for each $\tau \in X$, the set A_{τ} is a countable antichain in \mathbb{P}.
(3) Let $\pi: \mathbb{P} \rightarrow \omega_{1}$ be injective. We let $\pi[\mathbb{P}]=\mathbb{P}^{\prime}$ and define a partial order (or a quasi order) on \mathbb{P}^{\prime} such that π is an isomorphism from $\left(\mathbb{P},<_{\mathbb{P}}\right)$ to $\left(\mathbb{P}^{\prime},<\mathbb{P}^{\prime}\right)$. Then we lift π to a map $\bar{\pi}: \mathbf{V}^{\mathbb{P}} \rightarrow \mathbf{V}^{\mathbb{P}^{\prime}}$-names by letting
$$
\bar{\pi}(\tau)=\{\langle\bar{\pi}(\sigma), \pi(p)\rangle:\langle\sigma, p\rangle \in \tau\}
$$

For canonical names $\tau, \underset{\sim}{K}$ as above, $\bar{\pi}(\tau) \in H\left(\omega_{1}\right), \bar{\pi}(\underset{\sim}{K}) \subseteq H\left(\omega_{1}\right)$. Thus according to Lemma 2.3, $I_{\bar{M}}(\bar{\pi}(\underset{\sim}{K})) \in \mathscr{D}_{\bar{M}}^{K}$. The names $\bar{\pi}(\underset{\sim}{K})$ and $\bar{\pi}(\tau)$ are canonical.

Definition 2.10: Let \bar{M} be an S-oracle sequence and $\mathbb{P}^{\prime} \subseteq \omega_{1}$.
(1) We let τ be a canonical \mathbb{P}^{\prime}-name of a subset of ω. We let for $\delta \in \omega_{1}$,

$$
\tau^{\left(M_{\delta}, \delta\right)}= \begin{cases}\tau ; & \text { if } \tau \text { is a } \mathbb{P}^{\prime} \cap \delta \text {-name, and } \tau \in M_{\delta} \\ \text { undefined; } & \text { otherwise }\end{cases}
$$

(2) For a canonical \mathbb{P}^{\prime}-name $\underset{\sim}{K}=\left\{(\tau, q): q \in A_{\tau}, \tau \in X\right\}$ for a subset of $\mathcal{P}(\omega)$ and $\delta<\omega_{1}$ we define the M_{δ}-part as follows:

$$
\begin{gathered}
\underset{\sim}{K}\left(M_{\delta}, \delta\right) \\
=\left\{(\tau, q):(\tau, q) \in \underset{\sim}{K}, q \in \mathbb{P}^{\prime} \cap \delta, \tau \text { is a } \mathbb{P}^{\prime} \cap \delta\right. \text {-name, } \\
\left.\tau \in M_{\delta}, A_{\tau} \subseteq \mathbb{P}^{\prime} \cap \delta, A_{\tau} \in M_{\delta}\right\} .
\end{gathered}
$$

 eral $\underset{\sim}{K}{ }^{\left(M_{\delta}, \delta\right)}$ is not an element of M_{δ}. By Lemma 2.3 we have though

$$
\left\{\delta \in S:\left\langle\left(\varepsilon, \underset{\sim}{K}{ }^{\left(M_{\varepsilon}, \varepsilon\right)}\right): \varepsilon<\delta\right\rangle \in M_{\delta}\right\} \in \mathscr{D}_{\bar{M}}
$$

Now we are ready to define the set K^{1} of pairs that serve as conditions in the first iterand of our final two-step forcing. The order on K^{1} will be defined in Definition 2.18.

Definition 2.11:

(1) For an S-oracle triple $(\bar{M}, \bar{N}, \bar{\eta})$ as above we let K^{1} be the set of all $(\mathbb{P}, \underset{\sim}{D})$ with the following properties:
(a) \mathbb{P} is a c.c.c. forcing with a nonstationary domain $\mathbb{P} \subseteq \omega_{1}$.
(b) $\underset{\sim}{D}$ is a canonical \mathbb{P}-name of a non-principal ultrafilter over ω.
(c) $Y(\mathbb{P}, \underset{\sim}{D}) \in \mathscr{D}_{\bar{N}}$, where $Y(\mathbb{P}, \underset{\sim}{D})$ is the set of $\delta \in S$ such that items (α) to (ε) hold:
$(\alpha) \mathbb{P} \cap \delta \in M_{\delta}$.
(β) If $E \subseteq \mathbb{P} \cap \delta$ and $E \in N_{\delta}$ and E is predense in $\mathbb{P} \cap \delta$ then E is predense in \mathbb{P} (so we have that \mathbb{P} has the \bar{N}-oracle-c.c.).
$(\gamma) \underset{\sim}{D}{ }^{\left(M_{\delta}, \delta\right)} \in M_{\delta}$ and $M_{\delta} \models " \underset{\sim}{D}{ }^{\left(M_{\delta}, \delta\right)}$ is a canonical $\mathbb{P} \cap \delta$-name of an ultrafilter over $\omega^{\prime \prime}$.
(δ) $N_{\delta} \models\left(\mathbb{P} \cap \delta \Vdash\right.$ " η_{δ} is Cohen-generic over $M_{\delta}\left[\mathbf{G}_{\mathbb{P} \cap \delta}\right]$ ").
$(\varepsilon) \underset{\sim}{D}{ }^{\left(N_{\delta}, \delta\right)} \in N_{\delta}$ is a canonical $\mathbb{P} \cap \delta$-name of an ultrafilter over ω such that

$$
\mathbb{P} \cap \delta \Vdash\left(\forall f \in M_{\delta}\left[\mathbf{G}_{\mathbb{P} \cap \delta}\right] \cap \cap^{\omega} \omega\right)\left(f \leq_{D^{\left(N_{\delta}, \delta\right)}} \eta_{\delta}\right) .
$$

(2) For an oracle triple $(\bar{M}, \bar{N}, \bar{\eta})$ we let K^{2} be the set of $(\mathbb{P}, \underset{\sim}{D}) \in H\left(\aleph_{2}\right)$ such that there are a non-stationary $\mathbb{P}^{\prime} \subseteq \omega_{1}$ and a bijective $\pi: \mathbb{P}^{\prime} \rightarrow \mathbb{P}$ and $\left(\mathbb{P}^{\prime}, \underset{\sim}{D^{\prime}}\right) \in K^{1}, \pi$ is an isomorphism from \mathbb{P}^{\prime} onto \mathbb{P} with $\bar{\pi}(\underset{\sim}{D})=\underset{\sim}{D}$.

Remark 2.12: Since we do not add new types that have to be omitted in the course of the iteration, one fixed oracle $\bar{N} \in \mathbf{V}$ is sufficient.

We recall the successor step and the direct limit step for oracle-c.c.
Lemma 2.13 (Lemma [She98, IV 3.2]): If \mathbb{P} has the \bar{M}-c.c. and \mathbb{P} forces that \mathbb{Q} has the $\left\langle M_{\delta}[\mathbb{P}]: \delta \in S\right\rangle$-c.c., then $\mathbb{P} * \mathbb{Q}$ has the \bar{M}-c.c.

Lemma 2.14 (Lemma [She98, IV 3.10]): If $\left\langle\mathbb{P}_{\alpha}, \mathbb{Q}_{\alpha}: \alpha<\beta\right\rangle$ is a finite support iteration such that has the \bar{M}-c.c. and for $\alpha<\beta$ the forcing \mathbb{P}_{α} forces that \mathbb{Q}_{α} has the $\left\langle M_{\delta}\left[\mathbb{P}_{\alpha}\right]: \delta \in S\right\rangle$-c.c., then \mathbb{P}_{β} has the \bar{M}-c.c.

If $\pi: \mathbb{P}^{\prime} \rightarrow \mathbb{P}$ is an isomorphism between forcing orders, we use it also for its natural extension that maps \mathbb{P}-names to \mathbb{P}^{\prime}-names.

Lemma 2.15: Let $(\bar{M}, \bar{N}, \bar{\eta})$ be an S-oracle triple and let K^{1} be as in Definition 2.11(1). Assume
(1) $(\mathbb{P}, \underset{\sim}{D}) \in H\left(\aleph_{2}\right), \mathbb{P}$ is a forcing notion, $\mathbb{P} \in H\left(\omega_{2}\right)$ and $\underset{\sim}{D} \in H\left(\omega_{2}\right)$ is a canonical \mathbb{P}-name of an ultrafilter over ω.
(2) $\mathbb{P}_{\ell}^{\prime}$ is a notion of forcing whose domain is a non-stationary subset of ω_{1} for $\ell=1,2$.
(3) π_{ℓ} is an isomorphism from $\mathbb{P}_{\ell}^{\prime}$ onto \mathbb{P} for $\ell=1,2$,
(4) $\underset{\sim}{D}{ }_{\ell}^{\prime}$ is a $\mathbb{P}_{\ell}^{\prime}$-name of a subset of $\mathcal{P}(\omega)$ such that π_{ℓ} maps ${\underset{\sim}{~}}_{\ell}^{\prime}$ onto $\underset{\sim}{D}$. Then $\left(\mathbb{P}_{1}^{\prime},{\underset{\sim}{D}}_{\prime}^{\prime}\right) \in K^{1}$ iff $\left(\mathbb{P}_{2}^{\prime},{\underset{\sim}{D}}_{2}^{\prime}\right) \in K^{1}$.

Proof. The map $\pi=\pi_{2}^{-1} \circ \pi_{1}$ is an isomorphism from \mathbb{P}_{1}^{\prime} onto \mathbb{P}_{2}^{\prime}, and its lifting $\bar{\pi}$ maps ${\underset{\sim}{1}}_{1}^{\prime}$ to ${\underset{\sim}{D}}_{2}^{\prime}$. According to Lemma 2.3,

$$
Z=\left\{\delta \in S: \pi \upharpoonright \delta \text { is a one-to-one mapping from } \mathbb{P}_{1}^{\prime} \cap \delta \text { to } \mathbb{P}_{2}^{\prime} \cap \delta \text { and } \pi \upharpoonright \delta \in M_{\delta}\right\}
$$

belongs to $\mathscr{D}_{\bar{M}}$. If $\delta \in Z$ then $\delta \in Y\left(\mathbb{P}_{1}^{\prime},{\underset{\sim}{1}}_{\prime}^{\prime}\right)$ iff $\delta \in Y\left(\underset{\sim}{\mathbb{P}_{2}^{\prime}},{\underset{\sim}{2}}_{2}^{\prime}\right)$, since the defining properties of the sets $Y\left(\underset{\sim}{\mathbb{P}}{ }_{\ell}^{\prime}, \underset{\sim}{D}\right)$ are preserved by isomorphisms of forcing orders.

This shows that in Definition 2.11(2) the following is true: If the demand holds for some pair $\left(\mathbb{P}^{\prime}, \pi\right)$ then it holds for every such pair. The primed partial orders in Lemma 2.15 shall ensure that the domain is a non-stationary subset of ω_{1}. Canonical \mathbb{P}^{\prime}-names for reals and for filters over ω are actual subsets of $H\left(\omega_{1}\right)$. According to Lemma 2.15, their properties are invariant under bijections of ω_{1}. Since any property of the forcing is named modulo $\mathscr{D}_{\bar{N}}$ the particular choice of the injections does not matter. For the actual construction of forcing posets it is convenient to use non-stationary domains for the $\mathbb{P}^{\prime} \in K^{1}$, since non-stationarity is preserved by countable unions and by diagonal unions.

The property in Definition $2.11(1)(\mathrm{c})(\varepsilon)$ ensures that $\underset{\sim}{D}$ will be forced to be an ultrafilter such that the weakest condition in the two-step forcing forces $\operatorname{cf}\left(\omega^{\omega} / \underset{\sim}{D}\right)=\aleph_{1}$, as witnessed by $\left\langle\eta_{\delta}: \delta \in S\right\rangle$. Technically it is more convenient to prove property (δ) by induction and then derive property (ε) from property (δ), though property (ε) is more directly related to $\operatorname{cf}\left(\omega^{\omega} / \underset{\sim}{D}\right)=\aleph_{1}$. In the case of an \leq^{*}-increasing sequence $\left\langle\eta_{\delta}: \delta<S\right\rangle$ unboundedness is preserved in limits of finite support iterations if each initial segment preserves it [BJ95, Ch. $6, \S 4]$. So it might be possible to prove by induction property (ε) and the negation of (δ). We have not investigated this issue.

Concerning the preservation of (δ), we will frequently use [BJ95, Chapter 6 Section 4]:

Lemma 2.16: Let $\mathbb{P}_{n} \lessdot \mathbb{P}_{n+1}$ for $n \in \omega$ and let \mathbb{P} be the direct limit of $\left\langle\mathbb{P}_{n}: n \in \omega\right\rangle$. If $\mathbb{P}_{n} \Vdash$ " η_{δ} is Cohen generic over $M_{\delta}\left[G_{\mathbb{P}_{n}}\right]$ " for all n, then $\mathbb{P} \Vdash$ " η_{δ} is Cohen generic over $M_{\delta}\left[G_{\mathbb{P}}\right]$."

Let $\operatorname{unif}(\mathcal{M})$ denote the smallest cardinality of a non-meagre set. The following proposition gives the additional information that $\operatorname{unif}(\mathcal{M})=\aleph_{1}$ in our forcing extensions, as witnessed by $\left\{\eta_{\delta}: \delta \in S\right\}$.

Proposition 2.17: If $(\mathbb{P}, \underset{\sim}{D}) \in K^{2}$ then \mathbb{P} forces that $\left\{\eta_{\delta}: \delta \in S\right\}$ is a nonmeagre subset of ${ }^{\omega} 2$.

Proof. Let $p \in \mathbb{P}$ force that $\left\{\eta_{\delta}: \delta \in S\right\}$ is meagre. Let τ be a name for a meagre F_{σ}-set. By the c.c.c., there is a $\delta \in Y(\mathbb{P}, \underset{\sim}{D})$ such that $\tau, p \in M_{\delta}, p \in \mathbb{P} \cap \delta, \tau$ is a $\mathbb{P} \cap \delta$-name, and $p \Vdash\left\{\eta_{\varepsilon}: \varepsilon \in S\right\} \subseteq \tau$. Then $p \Vdash_{\mathbb{P}} \eta_{\delta} \in \tau$. Since $\delta \in Y(\mathbb{P}, \underset{\sim}{D})$, clause (β) in the definition of $Y(\mathbb{P}, \underset{\sim}{D})$ yields also $p \Vdash_{\mathbb{P} \cap \delta} \eta_{\delta} \in \tau$. This is a contradiction to Definition $2.11(1)(\mathrm{c})(\delta)$ of the definition of $Y(\mathbb{P}, \underset{\sim}{D})$.

Proposition 2.17 has a sort of an inverse direction for the class of Suslin forcings. A forcing $\mathbb{Q} \subseteq \omega^{\omega}$ is called Suslin if \mathbb{Q} is an analytic subset of ω^{ω} and the relations $\leq_{\mathbb{Q}}$ and $\perp_{\mathbb{Q}}$ are analytic sets in $\omega^{\omega} \times \omega^{\omega}$. For Suslin proper forcings, not making the ground model meagre is equivalent to preserving the genericity of a Cohen real over any countable model [Gol93, 6.21, 6.22], and then all non-meagre sets in the ground model stay non-meagre.

Now we introduce the approximation forcing $\left(A P,<_{A P}\right)$:
Definition 2.18: We let K^{2} be as above.
(A) Let $\mathbf{p}=\left(\mathbb{P}_{\mathbf{p}}, \underset{\sim}{D} \mathbf{p}\right), \mathbf{q}=\left(\mathbb{P}_{\mathbf{q}}, \underset{\sim}{D} \mathbf{q}\right) \in K^{2}$. We define $\mathbf{p} \leq_{A P} \mathbf{q}$, that is, \mathbf{q} is stronger than \mathbf{p}, if
(a) $\mathbb{P}_{\mathbf{p}} \lessdot \mathbb{P}_{\mathbf{q}}$,
(b) $\Vdash_{\mathbb{P}_{\mathbf{q}}}{\underset{\sim}{\mathbf{p}}}^{D_{\mathbf{p}}} \subseteq \underset{\sim}{D}$.
(B) For $i=1$, 2, we let forcing order of approximations be $A P^{i}=\left(K^{i}, \leq_{A P}\right)$. We let $A P=A P^{2}$.

The following is the parallel of the basic claim on oracle c.c. forcing, [She98, Ch. IV, Claim 3.2]. The forcing \mathbb{P}_{i} does not mean iteration up to stage i. The variable i, ranging over $\omega+1$ or $\omega_{1}+1$ or ω_{2}, is just an index for \mathbb{P}_{i} being a component of $\left(\mathbb{P}_{i},{\underset{\sim}{D}}_{i}\right) \in K^{2}$. \mathbb{P}_{i} is an \bar{N}-oracle c.c. forcing and $\left|\mathbb{P}_{i}\right| \leq \aleph_{1}$.

Lemma 2.19:
(A) The structure $\left(K^{2}, \leq_{A P}\right)$ is a partial order of cardinality $\left|H\left(\aleph_{2}\right)\right|$.
(B) $K^{2} \neq \emptyset$.
(C) If $\mathbf{p}_{n}=\left(\mathbb{P}_{n},{\underset{\sim}{D}}_{n}\right) \in K^{2}$ for $n \in \omega$ and $\mathbf{p}_{n} \leq_{A P} \mathbf{p}_{n+1}$, then the set has an upper bound $\mathbf{p}_{\omega}=\left(\mathbb{P}_{\omega},{\underset{\sim}{D}}_{\omega}\right)$ with $\mathbb{P}_{\omega}=\bigcup\left\{\mathbb{P}_{n}: n \in \omega\right\}$.
(D) $\left(K^{2}, \leq_{A P}\right)$ is $\left(\omega_{1}+1\right)$-strategically closed, that is, for every $\mathbf{p} \in A P$ the protagonist has a winning strategy in the following game $\partial(\mathbf{p})$: A play lasts $\omega_{1}+1$ moves. During the play the player COM, the protagonist,
chooses for each $i \leq \omega_{1}, \mathbf{p}_{i}=\left(\mathbb{P}_{i},{\underset{\sim}{~}}_{i}\right) \in K^{2}$, and INC, the antagonist, chooses $\mathbf{q}_{i} \in K^{2}$ such that
(a) $\mathbf{p}_{i} \leq_{A P} \mathbf{q}_{i}$,
(b) $(\forall j<i)\left(\mathbf{q}_{j} \leq_{A P} \mathbf{p}_{i}\right)$,
(c) $\mathbf{p}_{0}=\mathbf{p}$.

The protagonist COM wins the game if they can always move. The hard case is the choice of $\mathbf{p}_{\omega_{1}}$.

Proof. (A) and (B) are obvious.
(C) Let $\mathbf{p}_{n}=\left(\mathbb{P}_{n},{\underset{\sim}{D}}_{n}\right)$ and let $\left\langle\mathbf{p}_{n}: n \in \omega\right\rangle$ be $\leq_{A P \text {-increasing. We choose }}$ $\left(\mathbb{P}_{n}, \pi_{n}, \mathbb{P}_{n}^{\prime},{\underset{\sim}{D}}_{n}^{\prime}\right)$ by induction on n with the following properties:
(1) $\mathbb{P}_{n}^{\prime} \subseteq \omega_{1}$ is not stationary,
(2) $\pi_{n}: \mathbb{P}_{n}^{\prime} \rightarrow \mathbb{P}_{n}$ is an isomorphism of partial orders,
(3) $(\bar{\pi})^{-1}\left(\underset{\sim}{D}{ }_{n}\right)={\underset{\sim}{D}}_{n}^{\prime}$,
(4) $\pi_{n} \subseteq \pi_{n+1}$,
(5) $\left(\mathbb{P}_{n}^{\prime}, \underset{\sim}{D_{n}^{\prime}}\right) \in K^{1}$.

Then we let $\mathbb{P}_{\omega}^{\prime}=\bigcup_{n \in \omega} \mathbb{P}_{n}^{\prime}$, and the latter is not stationary. Moreover, we let $\pi_{\omega}=\bigcup_{n \in \omega} \pi_{n}$.

We fix for $n \in \omega$ a reduction $r_{\mathbb{P}_{\omega}^{\prime}, \mathbb{P}_{n}^{\prime}}: \mathbb{P}_{\omega}^{\prime} \rightarrow \mathbb{P}_{n}^{\prime}$ and we set

$$
C=\left\{\delta \in S: \delta \text { limit of } S \text { and }(\forall n) r_{\mathbb{P}_{\omega}^{\prime}, \mathbb{P}_{n}^{\prime}}\left[\mathbb{P}_{\omega}^{\prime} \cap \delta\right] \subseteq \delta\right\}
$$

Of course C is club in ω_{1}. We let

$$
\begin{equation*}
Y=\bigcap_{k \in \omega} Y\left(\mathbb{P}_{k}^{\prime},{\underset{\sim}{D}}_{k}^{\prime}\right) \cap C \tag{2.3}
\end{equation*}
$$

By [She98, Ch. IV, Claim 3.2], the poset $\mathbb{P}_{\omega}^{\prime}$ has the \bar{N}-oracle c.c., i.e., $\mathbb{P}_{\omega}^{\prime}$ satisfies clause $(\mathrm{c})(\beta)$ of Definition 2.11. By Lemma 2.16 the set Y is also a witness to clause $(\mathrm{c})(\delta)$ for $\mathbb{P}_{\omega}^{\prime} \in K^{1}$.

We show that there is $\underset{\sim}{D}{ }_{\omega}^{\prime}$ such that $\left(\mathbb{P}_{\omega}^{\prime},{\underset{\sim}{\omega}}^{\prime}\right)$ is an upper bound of $\left\langle\mathbf{p}_{n}^{\prime}: n<\omega\right\rangle$ in $\leq_{A P}$. To this end we define an $\mathbb{P}_{\omega}^{\prime}$-name $\underset{\sim}{D}{ }_{\omega}^{\prime}$ for an ultrafilter such that $\mathbf{p}_{\omega}=\left(\mathbb{P}_{\omega}^{\prime},{\underset{\sim}{\omega}}_{\omega}^{\prime}\right) \in K^{1}$ and $Y \subseteq Y\left(\mathbb{P}_{\omega}^{\prime},{\underset{\sim}{D}}_{\omega}^{\prime}\right)$. We let

$$
\mathbb{P}_{\omega}^{\prime} \Vdash{\underset{\sim}{E}}^{\prime}=\bigcup_{k \in \omega}{\underset{\sim}{c}}_{k}^{\prime}
$$

Since \mathbb{P}_{k}^{\prime} is a complete suborder of $\mathbb{P}_{\omega}^{\prime}$ the ${\underset{\sim}{~}}_{k}^{\prime}$ are names for filters and $0_{\mathbb{P}_{k+1}^{\prime}} \Vdash{\underset{\sim}{D}}_{k}^{\prime} \subseteq D_{\underset{\sim}{k+1}}^{\prime}$ the weakest element of $\mathbb{P}_{\omega}^{\prime}$ forces that $\underset{\sim}{E}$ is a $\mathbb{P}_{\omega}^{\prime}$-name for a filter.

We write $\operatorname{next}(Y, \varepsilon)$ for the next element in Y after ε, i.e.,

$$
\operatorname{next}(Y, \varepsilon)=\min \{\delta>\varepsilon: \delta \in Y\}
$$

By induction on $\delta \in Y$, we will define a canonical $\mathbb{P}_{\omega}^{\prime} \cap \delta$-name $D_{\sim}^{\prime}(\delta) \in M_{\delta}$ such that

$$
\begin{aligned}
\mathbb{P}_{\omega}^{\prime} \cap \delta \Vdash " & D_{\sim}^{\prime}(\delta) \supseteq \bigcup\left\{{\underset{\sim}{\omega}}_{\prime}^{\prime}(\gamma): \gamma \in Y \cap \delta\right\} \\
& \text { and } D_{\sim}^{\prime}(\delta) \text { is an ultrafilter in } M_{\delta}, "
\end{aligned}
$$

and

$$
\begin{aligned}
\mathbb{P}_{\omega}^{\prime} \cap \operatorname{next}(Y, \delta) \Vdash & \Vdash\left(\forall f \in M_{\delta}\left[\mathbb{P}_{\omega}^{\prime}\right]\right)\left(\eta_{\delta} \geq_{D_{\omega}^{\prime}(\operatorname{next}(Y, \delta))} f\right) \\
& \text { and }{\underset{\sim}{D}}_{\prime}^{\prime}(\operatorname{next}(Y, \delta)) \cap \mathcal{P}(\omega)^{N_{\varepsilon}} \text { is an ultrafilter in } N_{\varepsilon} . "
\end{aligned}
$$

The restriction of names, mapping each name X to a name $X^{\left(M_{\delta}, \delta\right)}$, was defined in Definition $2.10(2)$. We will often write $X^{M_{\delta}}$ instead of $X^{\left(M_{\delta}, \delta\right)}$. For $k \in \omega$ we let

$$
Y_{k}=\left\{\delta \in Y: \underset{\sim}{D_{k}^{\prime}}(\delta)={\underset{\sim}{D}}_{D_{k}^{\prime}}^{M_{\delta}}\right\}
$$

Then $Y_{k} \in \mathscr{D}_{\bar{N}}$ and thus also their intersection $Y^{\prime}=\bigcap_{k \in \omega} Y_{k}$ is in $\mathscr{D}_{\bar{N}}$. For simplicity, we write just Y for Y^{\prime}.

Assume that $\left\langle{\underset{\sim}{\omega}}_{\prime}^{\prime}(\gamma): \gamma \in Y \cap \delta\right\rangle$ has been defined. By the induction hypothesis on $\left(\mathbf{p}_{k}^{\prime}, \pi_{k}\right)$, the \mathbb{P}_{k}^{\prime}-names for ultrafilters D_{\sim}^{\prime} are defined and increasing in k.

We first consider the limit steps in the induction. Let $\delta \in Y$ be a limit of Y. First case: $\left\langle\underset{\sim}{D_{\omega}^{\prime}}(\gamma): \gamma<Y \cap \delta\right\rangle \notin M_{\delta}$. Then we let

$$
1_{\mathbb{P} \cap \delta} \Vdash D_{\sim}^{\prime}(\delta)=\bigcup\left\{{\underset{\sim}{\sim}}_{\prime}^{\prime}(\gamma): \gamma \in Y \cap \delta\right\} .
$$

Second case: $\left\langle D_{\sim}^{\prime}(\gamma): \gamma \in Y \cap \delta\right\rangle \in M_{\delta}$. We first show

$$
1 \Vdash_{\mathbb{P}_{\omega}^{\prime} \cap \delta}{\underset{\sim}{F}}^{\prime}(\delta):={\underset{\sim}{E}}^{\prime M_{\delta}} \cup \bigcup\left\{{\underset{\sim}{\omega}}_{\prime}^{\prime}(\gamma): \gamma \in Y \cap \delta\right\} \text { is a filter base." }
$$

We assume, for a contradiction, that there are a condition $p \in \mathbb{P}_{\omega}^{\prime}, k \in \omega$, and a $\gamma \in Y \cap \delta$ and there are names X, X^{\prime}, such that p forces that $X \in D_{\sim}^{\prime}{ }^{M_{\delta}}$ and $X^{\prime} \in{\underset{\sim}{E}}^{\prime M_{\delta}}, \gamma \in Y \cap \delta$ such that $X \cap X^{\prime}$ is empty. Then $p \upharpoonright \mathbb{P}_{k}^{\prime} \Vdash X \in{\underset{\sim}{\sim}}_{k}^{\prime} \upharpoonright \delta$. Let \mathbf{G}_{k} be \mathbb{P}_{k}^{\prime}-generic over N_{δ} with $p \upharpoonright \mathbb{P}_{k}^{\prime} \in \mathbf{G}_{k}$. We let

$$
Z\left[\mathbf{G}_{k}\right]=\left\{n:\left(\exists \tilde{q} \in \mathbb{P}_{\omega}^{\prime} \cap \delta / \mathbf{G}_{k}\right)\left(\tilde{q} \geq p\left[\mathbf{G}_{k}\right] \wedge \tilde{q} \Vdash n \in X^{\prime}\left[\mathbf{G}_{k}\right] \cap X\right)\right\}
$$

Since \mathbf{p}_{k} is a condition the name ${\underset{\sim}{\sim}}_{\prime}^{\prime}(\gamma) \mid \delta$ is an ultrafilter compatible with $D_{\sim}^{\prime}(\gamma)$. Therefore we have that $p \upharpoonright \mathbb{P}_{k}^{\prime} \Vdash_{\mathbb{P}_{k}^{\prime}} " Z\left[\mathbf{G}_{k}\right]$ is infinite." Now we take $n \in \omega, \tilde{q}$ as
in the definition of $Z\left[\mathbf{G}_{k}\right]$, so that $\tilde{q} \Vdash n \in X \cap X^{\prime}$. So we have a contradiction. Hence for any $\gamma \in Y \cap \delta$, the weakest condition forces that $\underset{\sim}{E} \upharpoonright \delta \cup \underset{\sim}{D_{\omega}^{\prime}}(\gamma)$ is a filter basis. Since the names ${\underset{\sim}{\sim}}_{\prime}^{\prime}(\gamma)$ are forced to be increasing with $\gamma \in Y \cap \delta$, also their union, $\underset{\sim}{F}{ }^{\prime}(\delta)$, is forced to be a filter basis. Now we choose a name ${\underset{\sim}{\sim}}_{\omega}^{\prime}(\delta) \in M_{\delta}$ for an ultrafilter that extends $\underset{\sim}{F}(\delta)$.

Now we consider the beginning and the successor steps of the induction. For the beginning, let $\gamma=-1, \underset{\sim}{D}{ }_{\omega}^{\prime}(-1)=\underset{\sim}{E}{ }^{\prime}$ and let $\delta=\min (Y)$, and for the successor let δ be the successor of $\gamma \in Y$, i.e., $\delta=\operatorname{next}(Y, \gamma)$. Then $N_{\gamma} \in M_{\delta}$. We extend $\underset{\sim}{D}{ }_{\omega}^{\prime}(\gamma)$ to $\underset{\sim}{D}{ }_{\omega}^{\prime}(\delta) \in M_{\delta}$ so that $\underset{\sim}{D}{ }_{\omega}^{\prime}(\delta)$ is a $\mathbb{P}^{\prime} \cap \delta$-name for an ultrafilter such that

$$
\begin{aligned}
& 1_{\mathbb{P} \cap \delta} \Vdash{\underset{\sim}{D}}_{\omega}^{\prime}(\delta) \supseteq \underset{\sim}{F}(\delta):=\left(\underset{\sim}{E}{\underset{\sim}{\prime}}^{\mid} \delta\right) \cup \underset{\sim}{D_{\omega}^{\prime}}(\gamma) \\
& \cup\left\{\left\{n \in \omega: \eta_{\gamma}(n) \geq \underset{\sim}{f}(n)\right\}: \underset{\sim}{f} \in M_{\gamma} \text { a } \mathbb{P}_{\omega}^{\prime} \cap \delta \text {-name for a function }\right\}
\end{aligned}
$$

Since $\gamma \in Y$, we can restrict the considerations to $\mathbb{P}_{\omega}^{\prime} \cap \gamma$ names $\underset{\sim}{f}$. Again we show that the weakest condition forces that $\underset{\sim}{F}(\delta)$ has the finite intersection property. Let $q_{0} \in \mathbb{P}_{\omega}^{\prime} \cap \delta$ be given. Let q_{0} force that ${\underset{\sim}{A}}_{1}$ be a name of a member of ${\underset{\sim}{\sim}}_{\prime}^{\prime} \upharpoonright \delta$ and $q_{0} \Vdash \underset{\sim}{A} A_{2} \in \underset{\sim}{D_{\sim}^{\prime}}(\delta)$ and $A_{3}=\left\{n: \eta_{\gamma}(n)>\underset{\sim}{f}(n)\right\}$. Now in M_{δ} we define a $\left(\mathbb{P}_{k}^{\prime} \cap \delta\right)$-name ${\underset{\sim}{A}}_{A_{23}}$ as follows: if $\mathbf{G}_{k} \subseteq \mathbb{P}_{\mathbf{p}_{k}}^{\prime}, q_{0} \upharpoonright \mathbb{P}_{k}^{\prime} \in G_{k}$ is \mathbb{P}_{k}^{\prime}-generic over M_{δ} we let

$$
\begin{aligned}
{\underset{\sim}{A}}_{23}\left[\mathbf{G}_{k}\right]=\{n: & \left(\exists \hat{q} \in\left(\mathbb{P}_{\omega}^{\prime} \cap \delta\right) / \mathbf{G}_{k}\right) \\
& \left.\left(\hat{q} \geq q_{0}\left[\mathbf{G}_{k}\right] \wedge \hat{q} \Vdash\left(n \in \underset{\sim}{A_{2}}\left[\mathbf{G}_{k}\right] \wedge \eta_{\gamma}(n) \geq \underset{\sim}{f}\left[\mathbf{G}_{\mathbf{p}_{k}}\right](n)\right)\right)\right\} .
\end{aligned}
$$

Then $q_{0} \upharpoonright \mathbb{P}_{k}^{\prime} \Vdash_{\mathbb{P}_{k}^{\prime}}{\underset{\sim}{c}}_{A_{1}}^{\cap}{\underset{\sim}{c}}_{23}\left[\mathbf{G}_{k}\right]$ is infinite, since \mathbb{P}_{k}^{\prime} is already an approximation and η_{γ} is Cohen generic also over $M_{\gamma}\left[\mathbb{P}_{k}^{\prime}\right]$, and hence $M_{\gamma}\left[\mathbb{P}_{k}^{\prime}\right] \models \eta_{\gamma} \not{\underset{Z}{D_{k}^{\prime}}} f$. We take $\hat{q} \in\left(\mathbb{P}_{\omega}^{\prime} \cap \delta\right) / \mathbf{G}_{k}$ and n as in the definition of $\underset{\sim}{A} A_{23}\left[\mathbf{G}_{k}\right]$. Since $\tilde{q_{0}} \upharpoonright \mathbb{P}_{k}^{\prime}$ is \mathbb{P}_{k}^{\prime}-generic over M_{δ}, we may assume that $\hat{q} \upharpoonright \mathbb{P}_{k}^{\prime} \geq q_{0}$ and $\hat{q} \Vdash " n \in \underset{\sim}{A_{1}} \cap \underset{\sim}{A} A_{23}$." Hence in M_{δ} there is a name for an ultrafilter ${\underset{\sim}{D}}_{\omega}^{\prime}(\delta)$ containing $\underset{\sim}{F}(\delta)$, and we choose and fix the $<_{\chi}$-least one and call it $\underset{\sim}{D}{ }_{\omega}^{\prime}(\delta)$. Since $N_{\gamma} \subseteq M_{\delta}$ and $N_{\gamma} \in M_{\delta}$, ${\underset{\sim}{D}}_{\omega}^{\prime}(\delta) \cap \mathcal{P}(\omega)^{N_{\gamma}}$ is an ultrafilter in N_{γ}.

Now the induction on $\delta \in Y$ is carried out. We choose a name ${\underset{\sim}{\sim}}_{\prime}^{\prime}$ such that

$$
\mathbb{P}_{\omega}^{\prime} \Vdash D_{\sim}^{\prime}=\bigcup\left\{D_{\sim}^{\prime}(\delta): \delta \in Y\right\} .
$$

We mirror the construction back to the class K^{2} : by letting $\underset{\sim}{D}{ }_{\omega}=\bar{\pi}\left(\underset{\sim}{D}{ }_{\omega}^{\prime}\right)$.
(D) Let $\mathbf{p} \in K^{2}$ be given. We write $\mathbf{p}_{i}=\left(\mathbb{P}_{i}, D_{i}\right), i<\omega_{1}$. The strategy of the protagonist is to choose in addition to $\mathbf{p}_{i} \geq_{A P} \mathbf{q}_{j}$ for $j<i$, on the side also $\mathbf{p}_{i}^{\prime}=\left(\mathbb{P}_{i}^{\prime}, D_{i}^{\prime}\right) \in K^{1}$ and $\pi_{i}: \mathbb{P}_{i}^{\prime} \rightarrow \mathbb{P}_{i}$ and $\xi_{i} \in \omega_{1}$ with the following properties:
(a) $\left\langle\xi_{i}: i<\omega_{1}\right\rangle$ is continuously increasing.
(b) $\left(\mathbb{P}_{i}^{\prime}, \underset{\sim}{D_{i}^{\prime}}\right) \in K^{1}, \mathbb{P}_{i}^{\prime} \backslash \bigcup\left\{\mathbb{P}_{j}^{\prime}: j<i\right\} \subseteq\left[\xi_{i}+1, \omega_{1}\right)$.
(c) π_{i} is a isomorphism from \mathbb{P}_{i}^{\prime} onto \mathbb{P}_{i} mapping ${\underset{\sim}{D}}_{i}^{\prime}$ onto ${\underset{\sim}{D}}_{i}$.
(d) For $j<i, \pi_{j} \subseteq \pi_{i}$ (so the \mathbb{P}_{i}^{\prime} are \subseteq-increasing in ω_{1}).
(e) For $j<i,\left(\mathbb{P}_{j}^{\prime}, \underset{\sim}{\underset{\sim}{D}}{ }_{j}^{\prime}\right) \leq_{A P^{1}}\left(\mathbb{P}_{i}^{\prime}, \underset{\sim}{D}{ }_{i}^{\prime}\right)$ and $\left(\mathbb{P}_{j}, \underset{\sim}{D}{ }_{j}\right) \leq_{A P}\left(\mathbb{P}_{i}, \underset{\sim}{D} i\right)$.
(f) If $k<j \leq i, p \in \mathbb{P}_{k}^{\prime}$ and $q \in \mathbb{P}_{j}^{\prime} \cap \xi_{i}$ and p and q are compatible in \mathbb{P}_{i}^{\prime}, then they are compatible with a witness in $\mathbb{P}_{i}^{\prime} \cap \xi_{i}$. (Then the proof of [She98, Claim 3.2] for showing that also \mathbb{P}_{i} has the \bar{N}-c.c. works.)
(g) If $i=j+1<\omega_{1}$ is a successor ordinal, then COM chooses $\mathbf{p}_{i}=\mathbf{q}_{j}$.
(h) If $i<\omega_{1}$ is a limit ordinal and if there is $j(*)<i$ such that

$$
H=\bigcap\left\{Y\left(\mathbb{P}_{j}^{\prime},{\underset{\sim}{D}}_{j}^{\prime}\right): j \in[j(*), i)\right\} \in \mathscr{D}_{\bar{N}}
$$

then player COM takes for \mathbf{p}_{i} the limit of a countable cofinal sequence of \mathbf{q}_{j} 's in the manner described in (C). Thus

$$
\begin{equation*}
H \subseteq Y\left(\mathbb{P}_{i}^{\prime}, D_{\sim}^{\prime}\right) \tag{2.4}
\end{equation*}
$$

If there is no such $j(*)$, then COM can play just any lower bound of the countable sequence $\mathbf{q}_{j}, j<i$. For a set of $i \in \mathscr{D}_{\bar{N}}$ there is such a $j(*)<i$ with Equation (2.4).

Now if $\mathbf{p}_{i}^{\prime}, i<\omega_{1}$, are defined, in the ω_{1}-limit COM chooses $\mathbb{P}_{\omega_{1}}^{\prime}$ as the direct limit. Then Equation (2.4) implies that

$$
Y\left(\mathbb{P}_{\omega_{1}}^{\prime},{\underset{\sim}{\omega_{1}}}_{\prime}^{\prime}\right) \supseteq \triangle_{i \in \omega_{1}} Y\left(\mathbb{P}_{i}^{\prime}, \underset{\sim}{D_{i}^{\prime}}\right) \cap\left\{i: \xi_{i}=i\right\},
$$

and hence $Y\left(\mathbb{P}_{\omega_{1}}^{\prime},{\underset{\sim}{\omega_{1}}}_{\prime}^{\prime}\right) \in \mathscr{D}_{\bar{N}}$. Hence

$$
1_{\mathbb{P}^{\prime}} \Vdash{\underset{\sim}{D}}_{\omega_{1}}^{\prime}=\bigcup_{i<\omega_{1}} \underset{\sim}{D_{i}^{\prime}} \text { is an ultrafilter extending } \underset{\sim}{D_{i}^{\prime}}, i<\omega_{1} .
$$

We mirror the primed objects via $\bigcup_{j<\omega_{1}} \pi_{j}$ back to K^{2} and thus we get a forcing $\mathbb{P}_{\omega_{1}}=\bigcup\left\{\mathbb{P}_{i}: i<\omega\right\}$ and a $\mathbb{P}_{\omega_{1}}$-name $\underset{\sim}{D} \omega_{\omega_{1}}$ for an ultrafilter over ω. The protagonist COM hence has won the play of the completeness game.

Definition 2.20: Let $\mathbf{G}_{A P}$ be an $A P$-generic filter. In $\mathbf{V}\left[\mathbf{G}_{A P}\right]$ we let

$$
\mathbb{Q}=\bigcup\left\{\mathbb{P}:(\underset{\sim}{D})(\mathbb{P}, \underset{\sim}{D}) \in{\underset{\sim}{\mathbf{G}}}_{A P}\right\}
$$

and let $\underset{\sim}{E}$ be a \mathbb{Q}-name such that

$$
\mathbb{Q} \Vdash \underset{\sim}{E}=\bigcup\left\{\underset{\sim}{D}:(\exists \mathbb{P})(\mathbb{P}, \underset{\sim}{D}) \in{\underset{\sim}{G}}_{A P}\right\}
$$

We let $\underset{\sim}{\mathbb{Q}}$ be an $A P$-name for \mathbb{Q} and we use the symbol $\underset{\sim}{E}$ also for an $A P$-name for $\underset{\sim}{E}$.

Lemma 2.21:
(a) $\Vdash_{A P} \underset{\sim}{\mathbb{Q}}$ is a c.c.c. forcing of cardinality \aleph_{2},
(b) $\vdash_{A P} \underset{\sim}{E}$ is a \mathbb{Q}-name of a non-principal ultrafilter and $\mathfrak{b}=\aleph_{1}$,
(c) if $(\mathbb{P}, \underset{\sim}{D}) \in A P$, then $(\mathbb{P}, \underset{\sim}{D}) \Vdash_{A P}\left(\underset{\sim}{\mathbb{Q}} \Vdash\left\langle\eta_{\delta}: \delta \in S\right\rangle\right.$ is a $\leq_{\underset{\sim}{E}}$-increasing sequence and cofinal in $\left.\omega^{\omega} / \underset{\sim}{E}\right)$.

Proof. For (a), see [She98, Ch. IV, Claim 1.6]. Now we prove (b). By the c.c.c. and the construction with direct limits, for every $A P * \mathbb{Q}$-name τ for a real there are a pair $\mathbf{p}=(\mathbb{P}, \underset{\sim}{D}) \in A P$ and a condition $p \in \mathbb{P}$, and a \mathbb{P}-name real τ^{\prime} for such that $(\mathbf{p}, p) \Vdash_{A P * \mathbb{Q}} \tau^{\prime}=\tau$.
(c) We work with the approximation forcing $A P^{1}$. Suppose for a contradiction that $((\mathbb{P}, \underset{\sim}{D}), p) \vdash_{A P^{1} * \underset{\sim}{\mathbb{Q}}}\left(\exists f \in{ }^{\omega} \omega\right)\left(f \geq_{\underset{\sim}{E}}\left\langle\eta_{\delta}: \delta \in S\right\rangle\right)$. Then there is $\left(\left(\mathbb{P}^{\prime}, \underset{\sim}{D}\right), p^{\prime}\right) \geq_{A P^{1}}((\mathbb{P}, \underset{\sim}{D}), p)$ and there is a canonical \mathbb{P}^{\prime}-name $\underset{\sim}{h}$ such that

$$
\begin{equation*}
\left(\left(\mathbb{P}^{\prime}, \underset{\sim}{D}\right), p^{\prime}\right) \vdash_{A P^{1} * \underset{\sim}{\mathbb{Q}}}^{\underset{\sim}{h}} \geq_{E}\left\langle\eta_{\delta}: \delta \in S\right\rangle . \tag{2.5}
\end{equation*}
$$

Since $\underset{\sim}{h}$ is a name of a real in the c.c.c. forcing \mathbb{P}^{\prime}, there are some $\delta_{0}<\omega_{1}$, $\underset{\sim}{h^{\prime}} \in M_{\delta_{0}}$ such that $\underset{\sim}{h^{\prime}}$ is a $\mathbb{P}^{\prime} \cap \delta_{0}$-name such that $\left(\left(\mathbb{P}^{\prime}, \underset{\sim}{D}\right), p^{\prime}\right) \vdash^{D_{A P^{1}} * \underset{\sim}{\mathbb{Q}}} \underset{\sim}{h}=\underset{\sim}{h}$. We fix such a $\delta_{0},{\underset{\sim}{h}}^{\prime}$. Since $\left(\mathbb{P}^{\prime},{\underset{\sim}{D}}^{\prime}\right) \in K^{1}$, by Lemma 2.8 there is $\delta \geq \delta_{0}$ such that

$$
N_{\delta} \models\left(\forall h \in M_{\delta}\left[G_{\mathbb{P}^{\prime} \cap \delta}\right]\right)\left(h \not ¥_{\mathcal{D}^{\prime}\left[G_{\mathbb{P}^{\prime} \cap \delta}\right]} \eta_{\delta}\right) .
$$

We take a condition $q \in \mathbb{P}^{\prime} \cap \delta, q \geq \mathbb{P}^{\prime} p^{\prime}$, forcing $\forall h \in M_{\delta}\left[G_{\mathbb{P}^{\prime}}\right] h \not \unlhd_{D_{\sim}^{\prime}} \eta_{\delta}$. Thus $\left(\left(\mathbb{P}^{\prime}, \underset{\sim}{D}\right), q^{\prime}\right) \geq\left(\left(\mathbb{P}^{\prime}, \underset{\sim}{D}\right), p^{\prime}\right)$ and this is a contradiction to Equation (2.5).

Now we show that the union of the generic filter of the approximation forcing, i.e., the $\underset{\sim}{\mathbb{Q}}$ as given in Lemma 2.21, fulfils $\Vdash_{A P * \mathbb{Q}} \operatorname{cf}(\operatorname{Sym}(\omega))=\aleph_{2}$. The conditions of the form $\left(\left(\mathbb{P}_{*},{\underset{\sim}{*}}_{*}\right), p\right)$ with $p \in \mathbb{P}_{*}$ are dense in $A P * \mathbb{Q}$.

A forcing destroying a given increasing cofinal chain of subgroups $\left\langle G_{i}: i<\omega_{1}\right\rangle$ of $\operatorname{Sym}(\omega)$ is written down in [MS11]. Such a forcing adds one particular real, a new permutation g that for cofinally many $i<\omega_{1}$ there is $f_{i} \in G_{i+1} \backslash G_{i}$ such that $g \circ f_{i} \circ g^{-1} \in G_{i}$. Thus in the extension we have $g \in \operatorname{Sym}(\omega) \backslash \bigcup\left\{G_{i}: i<\omega_{1}\right\}$ and the sequence $\left\langle G_{i}: i<\omega_{1}\right\rangle$ is not cofinal any more.

In the rest of this section we construct a variant of such a forcing that adds such a conjugator and at the same time has the \bar{N}-oracle c.c. We first show that we can work with convenient supports of permutations.

Lemma 2.22: Suppose that a chain of subgroups $\left\langle G_{i}: i<\omega_{1}\right\rangle$ is an increasing chain of subgroups of $\operatorname{Sym}(\omega)$ such that all permutations that move only finitely many elements are elements of G_{0}. Suppose that $U \subseteq \omega_{1}$ is uncountable and there are

$$
\left\langle\zeta_{i}^{1}, \zeta_{i}^{2}, f_{i}^{1}, f_{i}^{2}: i \in U\right\rangle \text { and } g
$$

with the following properties:
(1) for $i<j \in U, i \leq \zeta_{i}^{1}<\zeta_{i}^{2}<j$,
(2) for $i \in U, f_{i}^{1} \in G_{\zeta_{i}^{1}}$ and $f_{i}^{2} \in G_{\zeta_{i}^{2}} \backslash G_{\zeta_{i}^{1}}$, and
(3) for $i \in U,\left(\forall^{\infty} n\right)\left(\left(g \circ f_{i}^{1}\right)(n)=\left(f_{i}^{2} \circ g\right)(n)\right)$.

Then $g \in \operatorname{Sym}(\omega) \backslash \bigcup\left\{G_{i}: i \in \omega_{1}\right\}$.
Proof. If $g \in G_{\zeta_{i}^{1}}$ for some $i \in U$, then by (3) also $f_{i}^{2} \in G_{\zeta_{i}^{1}}$, contradiction.
For carrying this out we use some notions describing permutation groups.
Definition 2.23: Let $f: \omega \rightarrow \omega . \operatorname{supp}(f)=\{n: f(n) \neq n\}$.
Observation 2.24: If $f \in \operatorname{Sym}(\omega)$, then $f[\operatorname{supp}(f)]=\operatorname{supp}(f)$.
For $f \in \operatorname{Sym}(\omega)$, we say f has order 2 if $f \circ f$ is the identity.
For arguing with given supports, we use
LEMMA 2.25 ([MS11, Lemma 3.3]): If $\left\langle G_{i}: i<\omega_{1}\right\rangle$ is an increasing sequence of proper subgroups of $\operatorname{Sym}(\omega)$ with union $\operatorname{Sym}(\omega)$, and G_{0} contains all permutations with finite support, then for any $W \in[\omega]^{\aleph_{0}}$ the sequence

$$
\left\langle G_{i} \cap\{f \in \operatorname{Sym}(\omega): \operatorname{supp}(f) \subseteq W \wedge f \text { is of order } 2\}: i<\omega_{1}\right\rangle
$$

is not eventually constant.
Now we return to forcing.
Lemma 2.26: $\vdash_{A P * \mathbb{Q}} " \operatorname{cf}(\operatorname{Sym}(\omega))=\aleph_{2} "$.
Proof. Assume towards a contradiction:
$\oplus_{1}\left(\left(\mathbb{P}_{*}, \underset{\sim}{D}\right), p_{*}\right) \vdash_{A P * \underset{\sim}{\mathbb{Q}}}$ " $\left\langle{\underset{\sim}{\mid}}_{i}: i<\omega_{1}\right\rangle$ is an increasing sequence of proper subgroups of $\operatorname{Sym}(\tilde{\omega})$ with union $\operatorname{Sym}(\omega)$, and ${\underset{\sim}{0}}_{0}$ contains all permutations with finite support".
\oplus_{2} By Lemma 2.25, \oplus_{1} implies: $\left(\left(\mathbb{P}_{*}, \underset{\sim}{D}\right), p_{*}\right) \vdash_{A P * \mathbb{Q}}$ "if $W \in[\omega]^{\aleph_{0}}$ then $\left\langle{\underset{\sim}{G}}_{i} \cap\{f \in \operatorname{Sym}(\omega): \operatorname{supp}(f) \subseteq W \wedge f\right.$ is of order 2$\left.\}: i<\omega_{1}\right\rangle$ is not eventually constant".
\oplus_{3} We let $\left\langle m_{\eta}: \eta \in{ }^{\omega\rangle} \omega\right\rangle$ be a sequence of natural numbers without repetitions. For $\eta \in{ }^{\omega} \omega$ we let $W(\eta)=\left\{m_{\eta \upharpoonright n}: n \in \omega\right\}$. Then for $\eta \neq \eta^{\prime}$ and $k=\min \left\{n: \eta(n) \neq \eta^{\prime}(n)\right\}$ we have

$$
W(\eta) \cap W\left(\eta^{\prime}\right)=\left\{m_{\eta \upharpoonright n}: n<k\right\} .
$$

By induction on $i<\omega_{1}$ we choose $\mathbf{p}_{i}=\left(\mathbb{P}_{i},{\underset{\sim}{D}}_{i}\right) \in A P, \pi_{i}, \mathbf{p}_{i}^{\prime} \in A P^{1}$, $\xi_{i} \in \omega_{1}$, and $\left(\mathbf{p}_{i}, \pi_{i}, \mathbf{p}_{i}^{\prime}, \xi_{i}, \zeta_{i}^{1}, \zeta_{i}^{2},{\underset{\sim}{x}}_{i}^{1},{\underset{\sim}{f}}_{i}^{2}, \mathbb{R}_{i}^{\prime}, Y\left(\mathbb{P}_{i}^{\prime},{\underset{\sim}{D}}_{i}^{\prime}\right)\right)$ such that:
(a) $\mathbf{p}_{0}=\mathbf{p}_{*}, Y\left(\mathbb{P}_{0}^{\prime}, \underset{\sim}{D}\right)=Y\left(\mathbb{P}_{*}^{\prime}, \underset{\sim}{D}\right)$.
(b) $\mathbf{p}_{i}=\left(\left(\mathbb{P}_{i},{\underset{\sim}{D}}_{i}\right), p_{*}\right) \in A P * \mathbb{Q}$ and $j<i \rightarrow \mathbf{p}_{j} \leq_{A P} \mathbf{p}_{i}$.
(c) $\mathbf{p}_{i}^{\prime}=\left(\left(\mathbb{P}_{i}^{\prime},{\underset{\sim}{D}}_{i}^{\prime}\right), p_{*}\right) \in A P^{1} * \mathbb{Q}$ satisfies
$(\alpha) \mathbb{P}_{0}^{\prime} \cap\left\{\xi_{i}: i<\omega_{1}\right\}=\emptyset$, the set of members of

$$
\mathbb{P}_{i}^{\prime} \backslash \bigcup\left\{\mathbb{P}_{j}^{\prime}: j<i\right\} \subseteq\left[\xi_{i}+1, \omega_{1}\right)
$$

hence $\mathbb{P}_{i}^{\prime} \cap \xi_{i}=\mathbb{P}_{j}^{\prime} \cap \xi_{i}$ for any $j \geq i$,
(β) $\pi_{i}: \mathbb{P}_{i}^{\prime} \rightarrow \omega_{1}$ is a one-to-one function mapping \mathbb{P}_{i}^{\prime} onto \mathbb{P}_{i} and mapping $\underset{\sim}{D_{i}^{\prime}}$ onto ${\underset{\sim}{D}}_{i}$,
(γ) if $j<i$, then $\pi_{j} \subseteq \pi_{i}$,
(δ) $\left\langle\xi_{i}: i<\omega_{1}\right\rangle$ has the properties (a) to (d) of the proof of Lemma $2.19(\mathrm{D})$ with respect to the sequence $\left\langle\mathbf{p}_{i}^{\prime}, \pi_{i}: i<\omega_{1}\right\rangle$,
(ε) the set $Y\left(\mathbb{P}_{i}^{\prime}, \underset{\sim}{D}{ }_{i}^{\prime}\right)$ witnesses that $\left(\mathbb{P}_{i}^{\prime},{\underset{\sim}{1}}_{D_{1}^{\prime}}^{)}\right) \in K^{1}$ as in Definition 2.11(1)(c).
(d) At double successor steps of limit ordinals we add a new Cohen real: If $i=\omega j+1$ then $\mathbb{P}_{i+1}^{\prime}=\mathbb{P}_{i}^{\prime} *\left({ }^{\omega>} \omega, \triangleleft\right)$, we let ν_{i} be a name for a $(\omega>\omega, \triangleleft)$-generic real. So ν_{i} is a Cohen real over $\mathbf{V}^{\mathbb{P}_{\omega \cdot j}^{\prime}}$. Since $\mathbf{V}^{\mathbb{P}_{i}^{\prime}}$ is unbounded in $\mathbf{V}^{\mathbb{P}_{i+1}^{\prime}}$ by Lemma 2.7, there is a \mathbb{P}_{i+1}-name for an ultrafilter $\underset{\sim}{D}{ }_{i+1}$. The set

$$
Y\left(\mathbb{P}_{i+1}, \underset{\sim}{D} i+1\right)=Y\left(\mathbb{P}_{i},{\underset{\sim}{x}}_{i}\right) \cap[i+1, \omega) \in \mathscr{D}_{\bar{N}}
$$

witnesses that $\left(\mathbb{P}_{i+1}^{\prime}, \underset{\sim}{D}{ }_{i+1}^{\prime}\right) \in K^{1}$.
(e) Also, if $i=\omega j+1$ then we choose ${\underset{\sim}{D}}_{i+1}^{\prime}$ such that

$$
\left(\mathbb{P}_{i+1}^{\prime},{\underset{\sim}{D}}_{i+1}^{\prime}\right) \geq_{A P}\left(\mathbb{P}_{i}^{\prime},{\underset{\sim}{D}}_{i}^{\prime}\right) \quad \text { and } \quad\left\langle\underset{\sim}{G} \cap \mathcal{P}(\omega)^{\mathbb{P}_{j}^{\prime}}: \ell<\omega_{1}\right\rangle
$$

and even $\left\langle\underset{\sim}{G} \cap \mathcal{P}(\omega)^{\mathbb{P}_{i}^{\prime}}: \ell<\omega_{1}\right\rangle$ is a \mathbb{P}_{i}^{\prime}-name.
(f) Also at double successors to limit ordinals we fix witnessing functions with the new Cohen ν_{i} as information in their support, i.e., if $i=\omega \cdot j+1$ then
(α) for $\ell=1,2, \mathbf{p}_{i+1}^{\prime}$ forces that $i<\zeta_{i}^{1}<\zeta_{i}^{2}$,
(β) and for $\ell=1,2, \mathbf{p}_{i+1}^{\prime}$ forces that $\underset{\sim}{f} i_{i}^{2} \in G_{\zeta_{i}^{2}} \backslash G_{\zeta_{i}^{1}},{\underset{\sim}{i}}_{1}^{f} \in G_{\zeta_{i}^{1}}$ is a $\mathbb{P}_{i+1}^{\prime}$-name of a member of $\operatorname{Sym}(\omega)$ of order 2 such that

$$
\mathbb{P}_{i+1}^{\prime} \Vdash \operatorname{supp}\left(f_{i}^{\ell}\right) \subseteq{\underset{\sim}{w}}_{i}^{\ell}=W\left(\langle\ell\rangle{\underset{\sim}{\nu}}_{i}\right)
$$

Here $\langle\ell\rangle \frown \nu$ is the concatenation of the singleton $\langle\ell\rangle$ and ν, i.e., $(\langle\ell\rangle \nu)(k)=\ell$ if $k=0$, and $=\nu(k-1)$ else. Recall that for $\eta \in^{\omega} \omega, W(\eta)$ has been defined in \oplus_{3}.
By Lemma 2.25, the desired names for countable ordinals $\zeta_{i}^{1}, \zeta_{i}^{2}$ and names $\underset{\sim}{f}{ }_{i}^{1},{\underset{\sim}{i}}_{i}^{2}$ exist. The triple $\mathbf{p}_{i}^{\prime} \in A P * \mathbb{Q}$ stays unchanged.
(g) At limit steps $i<\omega_{1}$, we let $\left(\mathbb{P}_{i}^{\prime}, \underset{\sim}{D_{i}^{\prime}}\right)$ be a lower bound of $\left(\mathbb{P}_{j}, \underset{\sim}{D}{ }_{j}\right)$, $j<i$, as in Lemma $2.19(\mathrm{C})$. We let $Y\left(\mathbb{P}_{i}^{\prime},{\underset{\sim}{\sim}}_{\prime}^{\prime}\right) \in \mathscr{D}_{\bar{N}}$ be a witness to $\left(\mathbb{P}_{i}^{\prime} D_{i}^{\prime}\right) \in K^{1}$.
(h) Now finally we explain the order \mathbb{P}_{i+1} for countable limit ordinals i. We let

$$
H=\bigcap\left\{Y\left(\mathbb{P}_{\varepsilon}^{\prime}, D_{\varepsilon}^{\prime}\right): \varepsilon<i\right\}
$$

Then $H \in \mathscr{D}_{\bar{N}}$. We let Y_{i}, ξ_{i} be as follows:

$$
\begin{aligned}
& Y_{i}=\{\delta \in H:(\forall j<i)\left(\xi_{j}<\delta\right) \wedge\left(\forall j_{1} \in i\right) \\
&\left(\left({\underset{\sim}{\zeta}}_{j_{1}}^{1}, \zeta_{j_{1}}^{2},{\underset{\sim}{j}}_{f_{1}}^{1},{\underset{\sim}{j}}_{j_{1}}^{2}\right) \in M_{\delta} \wedge N_{j_{1}} \in M_{\delta}\right. \\
&\left.\left.\wedge{\underset{\sim}{\zeta}}_{j_{1}}^{1}, \zeta_{j_{1}}^{2},{\underset{\sim}{j}}_{1}^{1},{\underset{\sim}{j}}_{j_{1}}^{2} \text { are } \mathbb{P}_{i}^{\prime} \cap \delta \text {-names }\right)\right\}, \\
& \xi_{i}=\min \left(Y_{i}\right) .
\end{aligned}
$$

Then $Y_{i} \in \mathscr{D}_{\bar{N}}$. Since any element of $\mathscr{D}_{\bar{N}}$ is unbounded in ω_{1}, the ordinal ξ_{i} is well-defined. We define $\underset{\sim}{\mathbb{R}_{i}^{\prime}} \in M_{\xi_{i}}: \mathbb{R}_{i}^{\prime}$ is a $\mathbb{P}_{i}^{\prime} \cap \xi_{i}$-name of a c.c.c. forcing notion. Recall that $w_{\varepsilon}^{1}, w_{\varepsilon}^{2}, \varepsilon<\xi_{i}, \varepsilon$ successor ordinal, are defined in $\oplus_{3}(\mathrm{f})(\beta)$. The key fact to the \bar{N}-c.c. is that these names are so faintly related to the Cohen reals $\left\langle\eta_{\delta}: \delta \in S\right\rangle$. The following is forced by $\mathbb{P}_{i}^{\prime} \cap \xi_{i}$: A member of \mathbb{R}_{i}^{\prime} has the form (u, g) such that:
$(\alpha) u \subseteq\left\{\omega \cdot j+1: \omega \cdot j+1 \in \xi_{i}\right\}$ is finite, g a finite partial permutation of order two, $\operatorname{dom}(g) \subseteq \bigcup_{\varepsilon \in u} w_{\varepsilon}^{2}$, such that $\varepsilon \in u$ implies range $(g) \subseteq w_{\varepsilon}^{1}$.
(β) Recall that for $\eta \in^{\omega>} \omega, m_{\eta}$ has been defined in \oplus_{3}. The sets dom (g) and range (g) are sufficiently large in the following sense:

- if $\delta \neq \varepsilon \in u$ then we fix n, such that $\nu_{\delta} \upharpoonright n \neq \nu_{\varepsilon} \upharpoonright n$ and then require that for $k=1,2$ the set

$$
\left\{m_{\langle k\rangle} \nu_{\delta} \mid \ell: \ell<n\right\} \subseteq \operatorname{dom}(g) \cap \operatorname{range}(g),
$$

- $\forall \varepsilon \in \operatorname{dom}(p)$, if ε is Cohen coordinate (as in $\left.\oplus_{3}(\mathrm{~d})\right)$ and $p(\varepsilon) \in 2^{n}, \ell \leq n, k=1,2$, then

$$
m_{\langle k\rangle-p(\varepsilon) \upharpoonright \ell} \in \operatorname{dom}(g) \cap \operatorname{range}(g) .
$$

(γ) If $\varepsilon \in u$ then $\operatorname{dom}(g) \cap w_{\varepsilon}^{2}$ is closed under f_{ε}^{1} and range $(g) \cap w_{\varepsilon}^{1}$ is closed under f_{ε}^{2}.
(δ) For $\left(u_{1}, g_{1}\right),\left(u_{2}, g_{2}\right) \in \mathbb{R}_{i}^{\prime}$ we let $\left(u_{1}, g_{1}\right) \leq\left(u_{2}, g_{2}\right)$ iff
(i) $u_{1} \subseteq u_{2}$,
(ii) $g_{1} \subseteq g_{2}$,
(iii) $\left(\forall \varepsilon \in u_{1}\right)\left(\forall n \in w_{\varepsilon}^{2} \cap\left(\operatorname{dom}\left(g_{2}\right) \backslash \operatorname{dom}\left(g_{1}\right)\right)\left(g_{2}(n) \in w_{\varepsilon}^{1} \wedge\right.\right.$ $\left.f_{\varepsilon}^{2}\left(g_{2}(n)\right)=g_{2}\left(f_{\varepsilon}^{1}(n)\right)\right)$.
We let $\mathbb{P}_{i+1}^{\prime}=\mathbb{P}_{i}^{\prime} * \mathbb{R}_{i}^{\prime}$.
Since \mathbb{R}_{i}^{\prime} is countable, $\mathbb{P}_{i+1}^{\prime}$ has the \bar{N}-c.c., and again by Lemma 2.7 we find $\underset{\sim}{D}{ }_{i+1}^{\prime}$ such that $\left(\mathbb{P}_{i+1}^{\prime}, \underset{\sim}{D}{ }_{i+1}^{\prime}\right) \in K^{1}$ with witness

$$
Y\left(\mathbb{P}_{i+1},{\underset{\sim}{D}}_{i+1}\right)=Y_{i} \cap\left[\xi_{i}, \omega_{1}\right)
$$

\oplus_{4} Once the induction is performed, we define $\mathbf{p}_{\omega_{1}}=\left(\mathbb{P}_{\omega_{1}},{\underset{\sim}{\omega_{1}}}^{D}\right)$ and $\mathbf{p}_{\omega_{1}}^{\prime} \in K^{1}$ and $\pi=\bigcup_{i<\omega_{1}} \pi_{i}$ which maps $\mathbf{p}_{\omega_{1}}^{\prime}$ onto $\mathbf{p}_{\omega_{1}}$ as follows:
(a) $\mathbb{P}_{\omega_{1}}^{\prime}=\bigcup\left\{\left(\mathbb{P}_{i}^{\prime} \cap \xi_{i}\right) * \mathbb{R}_{i}^{\prime}: i<\omega_{1}, i\right.$ limit $\}$.
(b) $\mathbb{P}_{\omega_{1}}^{\prime} \Vdash{\underset{\sim}{\omega_{1}}}_{\prime}^{\prime}=\bigcup\left\{\underset{\sim}{D_{i}^{\prime}}: i<\omega_{1}, i\right.$ limit $\}$.
(c) $\pi=\bigcup_{i<\omega_{1}} \pi_{i}$ is an isomorphism from $\mathbb{P}_{\omega_{1}}^{\prime}$ onto $\mathbb{P}_{\omega_{1}}$ mapping ${\underset{\sim}{\omega_{1}}}_{\prime}^{\prime}$ to $\underset{\sim}{D} \omega_{1}$.
(d) $\bigwedge_{i<\omega_{1}} \mathbf{p}_{i} \leq \mathbf{p}_{\omega_{1}} \in K^{2}, \bigwedge_{i<\omega_{1}} \mathbf{p}_{i}^{\prime} \leq \mathbf{p}_{\omega_{1}}^{\prime} \in K^{1}$.

We show that $\mathbf{p}_{\omega_{1}}^{\prime} \in K^{1}$. We let $Y\left(\mathbb{P}_{\omega_{1}}^{\prime},{\underset{\sim}{\omega}}_{\omega_{1}}^{\prime}\right)$ be the diagonal intersection of the $Y\left(\mathbb{P}_{i}^{\prime},{\underset{\sim}{D}}_{i}^{\prime}\right)$ intersected with the set of i such that for any $j<i, \xi_{j}<i$. Since $\mathscr{D}_{\bar{N}}$ is a normal filter, $Y\left(\mathbb{P}_{\omega_{1}}^{\prime},{\underset{\sim}{\omega_{1}}}_{\prime}^{\prime}\right) \in \mathscr{D}_{\bar{N}}$. We show that this set witnesses Definition $2.11(1)(c)$. To this end, we prove the following claim.

Claim: Suppose that $i \in Y\left(\mathbb{P}_{\omega_{1}}^{\prime},{\underset{\sim}{\omega_{1}}}_{\prime}^{\prime}\right)$. The forcing $\mathbb{P}_{i}^{\prime} \cap \xi_{i}$ forces the following: If $i_{1}<i, i_{1} \in Y\left(\mathbb{P}_{i}^{\prime}, \underset{\sim}{D_{i}}\right)$, then $\underset{\sim}{\mathbb{R}_{i_{1}}^{\prime}} \subseteq_{i c} \underset{\sim}{\mathbb{R}_{i}^{\prime}}$ and if $D_{0} \in N_{i_{1}}$ is a predense subset of $\mathbb{P}_{i_{1}}^{\prime} \cap \xi_{i_{1}} * \mathbb{R}_{i_{1}}^{\prime}$ then D_{0} is predense in $\mathbb{P}_{i}^{\prime} \cap \xi_{i} * \mathbb{R}_{\sim}^{\prime}$.

We prove this claim: $\mathbb{P}_{i}^{\prime} \cap \xi_{i} \Vdash{\underset{\sim}{\mathbb{R}}}_{i_{1}}^{\prime} \subseteq i c{\underset{\sim}{\mathbb{R}}}_{i}^{\prime}$ follows from the definition of the orders \mathbb{R}_{j}^{\prime}.

Assume that $D_{0} \in N_{i_{1}}$ is an open dense subset of $\mathbb{P}_{i_{1}}^{\prime} \cap \xi_{i_{1}} * \mathbb{R}_{i_{1}}$, and $p=\left(p \upharpoonright \xi_{i_{1}}, p\left(\xi_{i_{1}}\right)\right) \in\left(\mathbb{P}_{i}^{\prime} \cap i * \mathbb{R}_{i}^{\prime}\right)$. We have to find a condition in $q \in D_{0}$ that is compatible with p. Assume that $p \cap \xi_{i_{1}} \Vdash_{\mathbb{P}_{\xi_{i_{1}}}^{\prime}} p\left(i_{1}\right)=(u, g)$ and u, g are pinned down in \mathbf{V}, not names. After possibly strengthening p and g we can assume that g is so strong that it fulfils:
$\operatorname{dom}(g) \supseteq\left\{m_{p(\beta) \upharpoonright k}: \beta \in \operatorname{supp}(p), \beta\right.$ successor ordinal,

$$
\left.\beta \in u, k \leq|p(\beta)| \wedge \mathbb{P}_{\beta}^{\prime}=\mathbb{P}_{\beta-1}^{\prime} *\left({ }^{\omega>} \omega, \triangleleft\right)\right\}
$$

range $(g) \supseteq\left\{\left(f_{\beta}^{1}\right)\left(m_{p(\beta)}\right): \beta \in \operatorname{supp}(p), \beta\right.$ successor ordinal,

$$
\left.\beta \in u, k \leq|p(\beta)| \wedge \mathbb{P}_{\beta}^{\prime}=\mathbb{P}_{\beta-1}^{\prime} *\left({ }^{\omega>} \omega, \triangleleft\right)\right\}
$$

After possibly further strengthening p we can assume that $p \upharpoonright \xi_{i_{1}}$ determines ζ_{β}^{j} for $j=1,2$ and determines $\underset{\sim}{f}{ }_{\beta}^{2}$ restricted to the set on the right-hand side of the first eqution, and determines $\underset{\sim}{f}{ }_{\beta}^{1}$ on the right-hand side of the second equation for any $\beta \in u$. We assume the analogous strength of p^{\prime} for all triples $\left(p^{\prime},\left(u^{\prime}, g^{\prime}\right)\right)$ appearing later in the proof. We assume that $\operatorname{dom}(g) \in \omega$ and that $\operatorname{dom}(g)$ is larger than any $W_{\varepsilon}^{2} \cap W_{\zeta}^{2}$ for $\varepsilon \neq \zeta \in u$ and that range (g) is a superset of $W_{\varepsilon}^{1} \cap W_{\zeta}^{1}$ for $\varepsilon \neq \zeta \in u$.

Now we choose $p_{0}=\left(p \upharpoonright \xi_{i_{1}},\left(u \cap \xi_{i_{1}}, g\right)\right) \in M_{\xi_{i_{1}}}$. We choose $q_{0}=\left(q_{0} \upharpoonright \xi_{i_{1}},\left(u_{q_{0}}, g_{q_{0}}\right)\right) \geq p_{0}, q_{0} \in D \cap \xi_{i_{1}} \cap M_{\xi_{i_{1}}}$. Then q_{0} does not determine more of the Cohen real ν_{ε} for $\varepsilon \in u_{q_{0}}$ than p_{0} does. Then we take $q_{1} \geq q_{0}$ such that

$$
q_{1}=\left(q_{0} \upharpoonright \xi_{i_{1}} \cup\left\{\left(\varepsilon, q_{1}(\varepsilon)\right): \varepsilon \in u_{q_{0}} \backslash \xi_{i_{1}}\right\},\left(u_{q_{0}}, g_{q_{0}}\right)\right)
$$

where for each $\varepsilon \in u \backslash \xi_{i_{1}}$,

$$
\begin{aligned}
& q_{1}(\varepsilon) \Vdash W\left(0^{\frown}{\underset{\sim}{\nu}}\right) \cap\left(\operatorname{dom}\left(g_{q_{0}}\right) \backslash \operatorname{dom}(g)\right)=\emptyset \\
& \wedge W\left(1^{\wedge} \underset{\sim}{\nu_{\varepsilon}}\right) \cap\left(\operatorname{range}\left(g_{q_{0}}\right) \backslash \operatorname{range}(g)\right)=\emptyset .
\end{aligned}
$$

This special point (not in [She98, Ch. IV], [She06]) is that the $\underset{\sim}{\nu}, i$ sucessor of a countable limit ordinal, $\eta_{\delta}, \delta \in S$, are just Cohen reals: Defining relevant generic objects that have a Cohen real as domain allows us to carry on the oracle-c.c. and thus to preserve the Cohenness of the η_{δ}. This main trick is also used in the next section. Now q_{1} is compatible with p.

Thus $Y\left(\mathbb{P}_{\omega_{1}}^{\prime},{\underset{\sim}{\omega}}_{\omega_{1}}^{\prime}\right) \in \mathscr{D}_{\bar{N}}$ is a witness for the oracle-c.c. of $\mathbb{P}_{\omega_{1}}^{\prime}$, as required in Definition $2.11(1)(c)(\beta)$. The other properties in Definition 2.11(1)(c) follow now for $i \in Y\left(\mathbb{P}_{\omega_{1}}^{\prime},{\underset{\sim}{\omega_{1}}}_{\prime}^{\prime}\right)$ by the inductive definition of the \mathbb{P}_{i}^{\prime}.

This finishes the construction of a stronger member in $A P$-forcing.
\oplus_{5} Let

$$
\begin{aligned}
& \underset{\sim}{g}=\bigcup\left\{g: \exists p \exists u(p,(u, g)) \in \underset{\sim}{\left.\mathbf{G}_{\mathbb{P}_{\omega_{1}}^{\prime}}\right\},}\right. \\
& \underset{\sim}{U}=\bigcup\left\{u: \exists p \exists g(p,(u, g)) \in \underset{\sim}{\mathbf{G}_{\mathbb{P}_{1}^{\prime}}^{\prime}}\right\} .
\end{aligned}
$$

We show

$$
\left(\left(\mathbb{P}_{\omega_{1}}^{\prime},{\underset{\sim}{\omega_{1}}}_{\prime}^{\prime}\right), p_{*}\right) \vdash_{A P * \underset{\sim}{\mathbb{Q}}}{\underset{\sim}{U}}_{U}^{U}=\aleph_{1} \mid \wedge " \underset{\sim}{g} \notin \bigcup\left\{\underset{\sim}{G_{i}}: i<\omega_{1}\right\} "
$$

Proof. We fix a generic filter $\mathbf{G}_{\mathbb{P}_{\omega_{1}}}$. By the construction of $\mathbb{P}_{\omega_{1}}^{\prime}$ we have

$$
(\forall i<j \in S \cap C)\left(\underset{\sim}{f}{\underset{i}{l}}_{\ell} \in M_{j} \wedge{\underset{\sim}{f}}_{i}^{\ell} \text { is a } \mathbb{P}_{\omega_{1}}^{\prime} \cap j \text {-name }\right)
$$

The forcing $\mathbb{P}_{\omega_{1}}^{\prime}$ adds a $g: \bigcup_{\varepsilon \in U} w_{\varepsilon}^{2} \rightarrow \bigcup_{\varepsilon \in U} w_{\varepsilon}^{1}$ that conjugates for $i \in U, f_{i}^{1} \in G_{\zeta_{i}^{1}}$ and $f_{i}^{2} \in G_{\zeta_{i}^{2}} \backslash G_{\zeta_{i}^{1}}$. If $i \in U$ then

$$
\operatorname{dom}\left(f_{i}^{\ell}\right)=w_{i}^{\ell}=W_{\langle\ell\rangle-\nu_{i}}
$$

and g conjugates f_{i}^{1} and f_{i}^{2} up to a finite mistake, by \oplus_{3} item (i)(δ)(iii). So, for each $i \in U, g \circ f_{i}^{1} \circ g^{-1}=f_{i}^{2}$ up to finitely many arguments. But g is in some subgroup G_{j}. So for $\zeta_{i}^{1}>i>j, i \in X, f_{i}^{2} \in G_{\zeta_{i}^{1}}$, contradiction.

End of proof of Theorem 2.1. We assume that $S \subseteq \omega_{1}$ is stationary and $\mathbf{V} \models \diamond_{S}^{-}$. We extend \mathbf{V} with the forcing poset $A P * \mathbb{Q}$. By Lemma 2.21, $\mathfrak{m c f}=\aleph_{1}$ in the extension, and by Lemma 2.26, $\operatorname{cf}(\operatorname{Sym}(\omega))=\aleph_{2}$.

3. On $\operatorname{Con}(\mathfrak{b}=\operatorname{cf}(\operatorname{Sym}(\omega))<\mathfrak{m c f})$

Now we show that $\aleph_{1}=\mathfrak{b}=\operatorname{cf}(\operatorname{Sym}(\omega))<\aleph_{2}=\mathfrak{m c f}$ is consistent relative to ZFC. In [MST06] we established that it is consistent relative to ZFC that $\aleph_{1}=\mathfrak{b}=\mathfrak{g}<\aleph_{2}=\mathfrak{m c f}$. Brendle and Losada showed that $\mathfrak{g} \leq \operatorname{cf}(\operatorname{Sym}(\omega))$ in ZFC; see [BL03]. So the following theorem gives another consistency proof for $\aleph_{1}=\mathfrak{b}=\mathfrak{g}<\aleph_{2}=\mathfrak{m c f}$.

Theorem 3.1: It is consistent relative to ZFC that $\mathfrak{b}=\operatorname{cf}(\operatorname{Sym}(\omega))<\aleph_{2}=\mathfrak{m c f}$.

For the proof we will again work with oracle c.c.-forcing. Let $D \subseteq[\omega]^{\omega}$ be a filter over ω. Then we write D^{+}for the D-positive sets, i.e., $X \in D^{+}$iff $X \cap Y$ is infinite for any $Y \in D$.

Lemma 3.2: Let $\kappa \geq \aleph_{2}$ be a cardinal in \mathbf{V}. The $(\mathrm{A})_{\kappa}$ implies $(\mathrm{B})_{\kappa}$.
$(\mathrm{A})_{\kappa}$ For every filter $D \subseteq[\omega]^{\omega}$ over ω such that $\mathcal{P}(\omega) / D$ has the c.c.c. (that is: for every $A_{i}, i<\omega_{1}$, such that $A_{i} \in D^{+}$there are $i \neq j$ such that $A_{i} \cap A_{j} \in D^{+}$), for every regular $\kappa_{*}<\kappa$, for every sequence $\left\langle f_{i}: i<\kappa_{*}\right\rangle$ of functions $f_{i} \in{ }^{\omega} \omega$ there is $g \in{ }^{\omega} \omega$ such that for unboundedly many $i<\kappa_{*}, \neg g \leq_{D} f_{i}$.
$(B)_{\kappa}$ After forcing with a c.c.c. ${ }^{\omega} \omega$-bounding forcing \mathbb{Q}, in the extension $\mathbf{V}^{\mathbb{Q}}$ for every non-principal ultrafilter D on $\omega, \operatorname{cf}\left({ }^{\omega} \omega / D\right) \geq \kappa$, and $\mathfrak{b}^{\mathbf{V}}=\mathfrak{b}^{\mathbb{Q}}$.

Proof. Assume $(A)_{\kappa}$ and that $q_{0} \in \mathbb{Q}$ forces " $\underset{\sim}{D}$ is an ultrafilter over ω and $\left\langle\underset{\sim}{f} \alpha: \alpha<\kappa_{*}\right\rangle$ is increasing modulo $\underset{\sim}{D}$ and $\kappa_{*}<\kappa^{\prime \prime}$. So κ_{*} is regular and uncountable in $\mathbf{V}^{\mathbb{Q}}$ and hence regular and uncountable in \mathbf{V}. We shall show that there is $q_{*} \geq q_{0}$,

$$
\begin{equation*}
q_{*} \Vdash \exists f \in\left({ }^{\omega} \omega\right) \bigwedge_{\alpha<\kappa_{*}} \underset{\sim}{f}{ }_{\alpha}<_{\underset{D}{D}} f \tag{■}
\end{equation*}
$$

and thus we will have established $(B)_{\kappa}$.
Since \mathbb{Q} is ${ }^{\omega} \omega$-bounding and c.c.c., we can take $g_{\alpha} \in \mathbf{V}$ for $\alpha \in \kappa_{*}$ such that $q_{0} \Vdash_{\mathbb{Q}} " \underset{\sim}{f}{ }_{\alpha} \leq^{*} g_{\alpha} "$.

We let

$$
E=\left\{A \in \mathcal{P}(\omega)^{\mathbf{V}}:(\exists q \in \mathbb{Q})\left(q \geq q_{0} \wedge q \Vdash \check{A} \in \underset{\sim}{D}\right)\right\}
$$

and we let

$$
D^{\prime}=\left\{A \in \mathcal{P}(\omega)^{\mathbf{V}}: q_{0} \Vdash \check{A} \in \underset{\sim}{D}\right\}
$$

Then we have $E, D^{\prime} \in \mathbf{V}$ and the following holds:
(1) D^{\prime} is a filter over ω.
(2) $E \subseteq\left(D^{\prime}\right)^{+}$. Let $A \in E$, say $q \Vdash A \in \underset{\sim}{D}, q \geq q_{0}$ and let $B \in D^{\prime}$. Then $q \Vdash A \in \underset{\sim}{D} \wedge B \in \underset{\sim}{D}$, so $q \Vdash$ " $A \cap B$ is infinite." Since $A, B \in \mathbf{V}, A \cap B$ is infinite. Since this holds for every $B \in D^{\prime}$, item (2) is proved.
(3) $\left(D^{\prime}\right)^{+} \subseteq E$. Suppose that $X \notin E$. Then $\forall q \in \mathbb{Q}, q \geq q_{0}$ implies that $q \Vdash X \in \underset{\sim}{D}$, so $q_{0} \Vdash X \notin \underset{\sim}{D}$. Since $\underset{\sim}{D}$ is a name of an ultrafilter $q_{0} \Vdash X^{c} \in \underset{\sim}{D}$. So $X^{c} \in D^{\prime}$ and $X \notin\left(D^{\prime}\right)^{+}$.
(4) So together: $\left(D^{\prime}\right)^{+}=E$.
(5) q_{0} forces that D^{\prime} is a c.c.c. filter. Proof: Let $q_{0} \Vdash_{\mathbb{Q}} A_{\alpha} \in\left(D^{\prime}\right)^{+}=E$ for $\alpha \in \omega_{1}$, via $q_{\alpha} \geq q_{0}$. Since \mathbb{Q} is c.c.c. there are $\alpha \neq \beta$ such that $q_{\alpha} \not \perp q_{\beta}$. Then there is $r \in \mathbb{Q}, r \Vdash A_{\alpha} \in \underset{\sim}{D}, A_{\beta} \in \underset{\sim}{D}$, and hence $r \Vdash A_{\alpha} \cap A_{\beta} \in \underset{\sim}{D}$ since $\underset{\sim}{D}$ is forced to be a filter. So $A_{\alpha} \cap A_{\beta} \in D^{\prime+}$.
Let g be as in the condition $(A)_{\kappa}$, applied to D^{\prime} and $\left\langle g_{\alpha}: \alpha<\kappa\right\rangle$, so for some cofinal set $u \subseteq \kappa_{*}$ we have for $\alpha \in u \subseteq \kappa_{*}, \neg g \leq_{D^{\prime}} g_{\alpha}$. Hence for $\alpha \in u$, $q_{0} \| \vdash\left\{n: g(n) \leq g_{\alpha}(n)\right\} \in \underset{\sim}{D}$ and there is

$$
\tilde{q}_{\alpha} \geq q_{0}, \quad \tilde{q}_{\alpha} \Vdash\left\{n: g(n) \leq g_{\alpha}(n)\right\} \notin \underset{\sim}{D} .
$$

Thus $\tilde{q}_{\alpha} \Vdash\left\{n: g(n)>g_{\alpha}(n)\right\} \in \underset{\sim}{D}$ and the choice of g_{α} implies

$$
\tilde{q}_{\alpha} \Vdash\left\{n: g(n)>{\underset{\sim}{f}}_{\alpha}(n)\right\} \in \underset{\sim}{D} .
$$

Since \mathbb{Q} has the c.c.c., we have $\operatorname{cf}\left(\kappa_{*}\right)>\omega$. Therefore κ_{*}-many of the \tilde{q}_{α} are in the generic filter. So for any \mathbb{Q}-generic filter G with $q_{0} \in G$ we have ${\underset{\sim}{\alpha}}_{\alpha}[G] \leq_{D_{[G]}} g$ for cofinally many $\alpha \in u$. Hence a condition $q_{*} \geq q_{0}$ forces this. Since the sequence $\left\langle\underset{\sim}{f} f_{\alpha}: \alpha<\kappa_{*}\right\rangle$ is \leq_{D}-increasing, we get $q_{*} \Vdash$ " $\left(\forall \alpha<\kappa_{*}\right)\left(\underset{\sim}{f}{\underset{\sim}{x}}^{f_{D}} g\right)$." Thus Equation (\square) and the first statement of $(\mathrm{B})_{\kappa}$ are proved.
Since the forcing \mathbb{Q} is ${ }^{\omega} \omega$-bounding, we have $\mathfrak{b}^{\mathbf{V}}=\mathfrak{b}^{\mathbf{V}}$.
An example for such a \mathbb{Q} is the forcing adding \aleph_{1} random reals, in a countable support iteration or with the measure algebra over $2^{\omega_{1}}$. From now on, we let \mathbb{Q} be one of these forcing for adding \aleph_{1} random reals. In the extension $\mathbf{V}^{\mathbb{Q}}$ of Lemma 3.2 we have $\operatorname{cf}(\operatorname{Sym}(\omega))=\aleph_{1}$ by [ST95, Theorem 1.6]. So if we succeed to establish the condition (A) $)_{\kappa}$ of the lemma together with $\mathfrak{b}=\aleph_{1}$ for some $\kappa \geq \aleph_{2}$, Theorem 3.1 will be proved. We fix a stationary $S \subseteq \omega_{1}$ and take $\kappa=\aleph_{2}$ and we work again with oracle-c.c. forcings in order to establish the consistency of $(A)_{\aleph_{2}}$ and $\mathfrak{b}=\aleph_{1}$.

Lemma 3.3: We assume that in \mathbf{V}, the set S is stationary in ω_{1} and the two diamond principles \diamond_{S} and $\diamond_{\left\{\delta<\aleph_{2}: \operatorname{cf}(\delta)=\aleph_{1}\right\}}$ hold. Then there is an oracle c.c. forcing notion \mathbb{P} such that in $\mathbf{V}^{\mathbb{P}}$ we have $(A)_{\aleph_{2}}$ of the previous lemma, and $\mathfrak{b}=\omega_{1}$.

Proof. We fix in \mathbf{V} a \leq^{*}-increasing sequence $\left\langle g_{\delta}: \delta<\omega_{1}\right\rangle$ that is \leq^{*}-unbounded. We fix an oracle $\bar{M}=\left\langle M_{\varepsilon}: \varepsilon \in S\right\rangle$ such that the \bar{M}-c.c. ensures that the type $\bigwedge_{\delta<\omega_{1}} x \geq^{*} g_{\delta}$ is omitted. Indeed, $\left\langle g_{\delta}: \delta \in \omega_{1}\right\rangle \in M_{0}^{\prime} \prec H(\chi)$ and M_{0} being the Mostowski collapse of M_{0}^{\prime} suffices for this. In addition we fix a $\diamond_{\left\{\alpha<\aleph_{2}: \operatorname{cf}(\alpha)=\aleph_{1}\right\}^{-}}$ sequence $\left\langle T_{\alpha}: \alpha \in \omega_{2}, \operatorname{cf}(\alpha)=\aleph_{1}\right\rangle \in M_{0}^{\prime}$.

In the following α, α^{\prime} will range over $\omega_{2}, i, j, \varepsilon, \zeta, \xi$ over ω_{1}, and the letters β, γ, δ will denote particular functions with values in $\omega_{2}, \omega_{1}, \omega_{1}$. We fix a bijection $b: 2^{<\omega} \rightarrow \omega$, a bijection $c: 2^{\omega} \cap \mathbf{V} \rightarrow \omega_{1}$ and another bijection $b_{2}: \aleph_{2} \rightarrow\left(\mathcal{P}\left(H\left(\omega_{1}\right)\right)\right)^{2}$. By \diamond_{S} and $\diamond_{\left\{\alpha<\aleph_{2}: \operatorname{cf}(\alpha)=\aleph_{1}\right\}}$ such bijections exist.

A finite support iteration $\left\langle\mathbb{P}_{\alpha},{\underset{\sim}{Q}}_{\beta}: \beta<\omega_{2}, \alpha \leq \omega_{2}\right\rangle$ is constructed by induction on $\alpha \leq \omega_{2}$ with the following properties:
(1) $\left|\mathbb{P}_{\alpha}\right| \leq \aleph_{1}$ for $\alpha<\omega_{2}$,
(2) \mathbb{P}_{α} has the \bar{M}-c.c.

For an odd stage $\alpha \in \omega_{2}$ we force via $\mathbb{Q}_{\alpha}=\mathbb{C}$, and we conceive Cohen forcing \mathbb{C} in the form

$$
\left\{p: p \text { is a partial function from } 2^{<\omega} \text { to } 2,|p|<\omega\right\}
$$

and fix for $\eta \in 2^{\omega} \cap \mathbf{V}$ sets

$$
A_{\alpha, \eta}=\{b((p(\eta \upharpoonright 0), \ldots, p(\eta \upharpoonright n-1))): n \in \omega, p \in G\} \subseteq \omega
$$

in the extension by \mathbb{C}, where b is the bijection from above. Note that for $\eta \neq \eta^{\prime}$, $A_{\alpha, \eta} \cap A_{\alpha, \eta^{\prime}}$ is finite. We write $A_{\alpha, \varepsilon}^{\prime}=A_{\alpha, c^{-1}(\varepsilon)}$. Then $\left|\mathbb{P}_{\alpha+1}\right| \leq \aleph_{1}$.

For even $\alpha<\omega_{2}$ we define \mathbb{Q}_{α} as follows: If $\operatorname{cf}(\alpha)<\omega_{1}$, we let \mathbb{Q}_{α} be the trivial forcing, i.e., $\mathbb{Q}_{\alpha}=\{0\}$. Now let $\alpha>0$. We assume that $\mathbb{P}_{\alpha} \subseteq \omega_{1}$. Then every canonical \mathbb{P}_{α}-name $\left(\underset{\sim}{D},\left\langle\underset{\sim}{f} f_{i}: i<\omega_{1}\right\rangle\right)$ for a subset of $\mathcal{P}(\omega)$ and an ω_{1} sequence of reals is a subset of $H\left(\omega_{1}\right)$. We say that $T \subseteq \alpha$ codes the canonical name $\left(\underset{\sim}{D},\left\langle\underset{\sim}{f}{\underset{\sim}{e}}^{f}: i<\omega_{1}\right\rangle\right)$ if $b_{2}[T]=\left(\underset{\sim}{D},\left\langle\underset{\sim}{f}: i<\omega_{1}\right\rangle\right)$.

If $\operatorname{cf}(\alpha)=\omega_{1}$ and T_{α} is a canonical \mathbb{P}_{α}-name of a pair $\left(\underset{\sim}{D},\left\langle\underset{\sim}{f} f_{\alpha, i}: i<\omega_{1}\right\rangle\right)$ such that

$$
\mathbb{P}_{\alpha} \Vdash \text { " } \underset{\sim}{D} \text { contains the cofinite sets and } \mathcal{P}(\omega) / \underset{\sim}{D} \text { is c.c.c." }
$$

then we first fix in the ground model an increasing sequence $\left\langle\beta(\alpha, i): i<\omega_{1}\right\rangle$ that converges to α such that each $\beta(\alpha, i)$ is an odd member of ω_{2}.

Next we define by induction on $i<\omega$ countable ordinals as follows:

$$
\begin{align*}
& \gamma(\alpha, 0)=\min \left\{\varepsilon<\omega_{1}: \underset{\sim}{f} \underset{\sim}{f}, 0\right. \\
& \left.\in \mathbf{V}^{\mathbb{P}_{\beta(\alpha, \varepsilon)}}\right\} \tag{3.1}\\
& \gamma(\alpha, i)=\min \left\{\varepsilon<\omega_{1}: \underset{\sim}{f_{\alpha, i}} \in \mathbf{V}^{\mathbb{P}_{\beta(\alpha, \varepsilon)}} \wedge(\forall j<i)(\varepsilon>\gamma(\alpha, j))\right\}
\end{align*}
$$

Later it will be important that the $\gamma(\alpha, i), i<\omega_{1}$, are pairwise different.
Then for each $i<\omega_{1}$ we choose with the maximum principle a name $\delta(\alpha, i) \in \omega_{1}$ such that

$$
\begin{equation*}
\mathbb{P}_{\alpha} \Vdash\left(\omega \backslash A_{\beta(\alpha, \gamma(\alpha, i)), \delta(\alpha, i)}\right) \in \underset{\sim}{D} . \tag{3.2}
\end{equation*}
$$

We do not write the tildes under the names of the δ. For the existence of such $\delta(\alpha, i)$ we use the following claim.

Claim: For any $i<\omega_{1}$ there are coboundedly many ε such that

$$
\mathbb{P}_{\alpha} \Vdash\left(\omega \backslash A_{\beta(\alpha, \gamma(\alpha, i)), \varepsilon}\right) \in \underset{\sim}{D}
$$

Proof. Assume for a contradiction that $i<\omega_{1}$ is a counterexample to the claim. Then there are unboundedly many $\varepsilon \in \omega_{1}$ such that there is $p_{\varepsilon} \in \mathbb{P}_{\alpha}$ such that $p_{\varepsilon} \Vdash A_{\beta(\alpha, \gamma(\alpha, i)), \varepsilon)} \in{\underset{\sim}{D}}^{+}$. Since \mathbb{P}_{α} has the c.c.c. there is a \mathbb{P}_{α}-generic G that contains \aleph_{1} many p_{ε} as above. Call this uncountable set of ε 's X. However, for $\varepsilon \neq \varepsilon^{\prime} \in X$,

$$
\mathbb{P}_{\alpha} \Vdash A_{\beta(\alpha, \gamma(\alpha, i)), \varepsilon} \cap A_{\beta(\alpha, \gamma(\alpha, i)), \varepsilon^{\prime}}
$$

is finite. This contradicts the fact that $\mathbb{P}_{\alpha} \Vdash \mathcal{P}(\omega) / \underset{\sim}{D}$ is c.c.c., and thus the claim is proved.

We use only one $\delta(\alpha, i)$ and its value in ω_{1} is not important. However, for the $\gamma(\alpha, i)$, the pairwise inequality $\beta(\alpha, \gamma(\alpha, i)) \neq \beta(\alpha, \gamma(\alpha, j))$ for $i \neq j$ is important, so that there are no conflicts between the various instances of condition (6) below.

Once the sequence $\left\langle\gamma(\alpha, i), \delta(\alpha, i): i<\omega_{1}\right\rangle$ is chosen, we define in $\mathbf{V}^{\mathbb{P}_{\alpha}}$ the forcing \mathbb{Q}_{α} as follows: $p \in \mathbb{Q}_{\alpha}$ iff
(1) $p=\left(u_{p}, h_{p}\right)$,
(2) $u_{p} \subseteq \omega_{1}$ is finite,
(3) $h_{p} \in{ }^{\omega>} \omega$.
$\mathbb{Q}_{\alpha} \models p \leq q$ if
(4) $u_{p} \subseteq u_{q}$ and
(5) $h_{p} \unlhd h_{q}$ and
(6) if $\xi \in u_{p}$ and

$$
m \in\left(\omega \backslash A_{\beta(\alpha, \gamma(\alpha, \xi)), \delta(\alpha, \xi)}\right) \cap\left(\operatorname{dom}\left(h_{q}\right) \backslash \operatorname{dom}\left(h_{p}\right)\right)
$$

then $f_{\alpha, \xi}(m)<h_{q}(m)$.
We show by induction on $\alpha \leq \omega_{2}$ that \mathbb{P}_{α} has the \bar{M}-c.c. and $\left|\mathbb{P}_{\alpha}\right| \leq \aleph_{1}$ for $\alpha<\omega_{1}$. Since we take direct limits, the limit steps are covered by [She98, Ch. IV, 3.2]. The start of the induction is trivial. Now we look at the successor steps $\mathbb{P}_{\alpha+1}=\mathbb{P}_{\alpha} * \mathbb{Q}_{\alpha}$.

Odd $\alpha: \mathbb{Q}_{\alpha}$ is the Cohen forcing. Any countable forcing has the $\bar{M}\left[\mathbb{P}_{\alpha}\right]$-c.c. Putting this together with the induction hypothesis, $\mathbb{P}_{\alpha+1}$ has the \bar{M}-c.c.

Even α : Since \mathbb{P}_{α} has the c.c.c., there is a set of representatives of \mathbb{P}_{α}-names of members of \mathbb{Q}_{α} of size at most \aleph_{1}. Hence we can assume that $\left|\mathbb{P}_{\alpha+1}\right| \leq \aleph_{1}$. To simplify notation, we assume that $\mathbb{P}_{\alpha} \subseteq \omega_{1}$ and we assume

$$
\mathbb{P}_{\alpha} \Vdash \mathbb{Q}_{\alpha} \cap \varepsilon=\left\{(u, p) \in \mathbb{Q}_{\alpha}: u \subseteq \varepsilon\right\}
$$

We fix a witness $Y\left(\mathbb{P}_{\alpha}\right) \in \mathscr{D}_{\bar{M}}$ for the \bar{M}-c.c. of \mathbb{P}_{α}, i.e., for every $\varepsilon \in Y\left(\mathbb{P}_{\alpha}\right)$ for every $I \in M_{\varepsilon}$ that is a dense subset of $\mathbb{P}_{\alpha} \cap \varepsilon, I$ is dense in \mathbb{P}_{α}.

We intersect $Y\left(\mathbb{P}_{\alpha}\right)$ with the club $C \subseteq \omega_{1}$ of countable limit ordinals that are closed under the functions $\gamma(\alpha, \cdot)$ and $\delta(\alpha, \cdot)$ that are defined as in Equations (3.1), (3.2). Since \mathbb{P}_{α} is c.c.c., such a club can be found in the ground model although $\delta(\alpha, \cdot)$ is a name.

Next we prove that $Y\left(\mathbb{P}_{\alpha}\right) \cap C$ witnesses that $\mathbb{P}_{\alpha+1}$ has the \bar{M}-c.c. Let $\varepsilon \in Y\left(\mathbb{P}_{\alpha}\right) \cap C, D \in M_{\varepsilon}$ be an open and dense subset of $\left(\mathbb{P}_{\alpha} \cap \varepsilon\right) *(\mathbb{Q} \cap \varepsilon)$. Let $p \in \mathbb{P}_{\alpha+1}$. We have to show that there is $q \in D$ that is compatible with p.

We write $p=\left(p \upharpoonright \alpha,\left(u_{p(\alpha)}, h_{p(\alpha)}\right)\right)$ and we assume that $p \upharpoonright \alpha$ determines the finite sets $u_{p(\alpha)}$ and $h_{p(\alpha)}$ so that they are elements of $\left[\omega_{1}\right]^{<\omega}$ and ${ }^{\omega>} \omega$ and that it also determines $\gamma(\alpha, \xi)$ and $\delta(\alpha, \xi)$ for any $\xi \in u_{p(\alpha)}$.

The search for q proceeds in four steps:
First step: We apply the induction hypothesis. We let $D^{\prime}=D \cap \mathbb{P}_{\alpha} ; D^{\prime} \in M_{\varepsilon}$ is dense and open in $\mathbb{P}_{\alpha} \cap \varepsilon$. Since \mathbb{P}_{α} has the \bar{M}-c.c. and $\varepsilon \in Y\left(\mathbb{P}_{\alpha}\right)$ there is $q^{\prime} \in D^{\prime} \cap M_{\varepsilon}$ that is compatible with $p \upharpoonright \alpha$. We fix a witness $r^{\prime} \in \mathbb{P}_{\alpha}$ for compatibility.

Second step: We choose $\left(h^{\prime}, u_{p(\alpha)}\right) \geq p(\alpha)$ to take a record of r^{\prime} on its finitely many Cohen coordinates by taking $n \in \omega$ so large such that

$$
\begin{align*}
&(\forall m)\left(\forall \xi \in u_{p(\alpha)}\right)(\forall \beta\left.=\beta(\alpha, \gamma(\alpha, \xi)) \in \operatorname{supp}\left(r^{\prime}\right)\right) \tag{3.3}\\
&\left(\left(r^{\prime} \Vdash\left(m \notin A_{\beta(\alpha, \gamma(\alpha, \xi)), \delta(\alpha, \xi)}\right)\right) \rightarrow m<n\right) .
\end{align*}
$$

Such an n exists since r^{\prime} pins down only a finite part of the name $A_{\beta(\alpha, \gamma(\beta, \xi)), \delta(\alpha, \xi)}$ for any $\xi \in u_{p(\alpha)}$ with $\beta(\alpha, \gamma(\alpha, \xi)) \in \operatorname{dom}\left(r^{\prime}\right)$. Now we let $\operatorname{dom}\left(h^{\prime}\right)=n$ and on $n \backslash \operatorname{dom}\left(h_{p(\alpha)}\right)$ we fix some $h^{\prime}(k) \geq f_{\alpha, \xi}(k)$ for all $\xi \in u_{p(\alpha)}$. We let $q^{\prime}=\left(h^{\prime}, u_{p(\alpha)}\right)$.

Third step: We go again into $D \cap M_{\varepsilon}$. With the maximum principle we choose $q(\alpha) \in M_{\varepsilon}$ such that $q^{\prime} \Vdash q(\underset{\sim}{\alpha}) \geq_{\mathbb{Q}_{\alpha}}\left(u_{p(\alpha)} \cap \varepsilon, h^{\prime}\right) \wedge q(\underset{\sim}{\alpha}) \in D_{\alpha}\left[\mathbb{P}_{\alpha}\right]$ and let $q=\left(q^{\prime}, q(\underset{\sim}{\alpha})\right)$. Then $q=\left(q^{\prime}, q(\underset{\sim}{\alpha})\right) \in M_{\varepsilon} \cap D$.

Fourth step: We show that p and q are compatible. For any $\xi \in u_{p(\alpha)} \backslash \varepsilon$ we choose $q_{1}(\beta(\alpha, \gamma(\alpha, \xi))) \geq q^{\prime}(\beta(\alpha, \gamma(\alpha, \xi)))$ such that

$$
\begin{align*}
q_{1}(\beta(\alpha, \gamma(\alpha, \xi))) & \Vdash_{\mathbb{Q}_{\beta(\alpha, \gamma(\alpha, \xi))}} \tag{3.4}\\
& \left(\forall n \in \operatorname{dom}\left(h_{q(\alpha)} \backslash \operatorname{dom}\left(h^{\prime}\right)\right)\right)\left(n \in A_{\beta(\alpha, \gamma(\alpha, \xi)), \delta(\alpha, \xi)}\right)
\end{align*}
$$

We let
$r=\left(q^{\prime} \cup\left\{\left(\beta(\alpha, \gamma(\alpha, \xi)), q_{1}(\beta(\alpha, \gamma(\alpha, \xi)))\right): \xi \in u_{p(\alpha)} \backslash \varepsilon\right\},\left(u_{p(\alpha)} \cup u_{q(\alpha)}, h_{q(\alpha)}\right)\right)$.
The condition r is well defined, since for any $\xi \in u_{p(\alpha} \backslash \varepsilon$, the condition $q_{1}\left(\beta(\alpha, \gamma(\alpha, \xi)) \in \mathbb{P}_{\alpha}\right.$ can be chosen to be compatible with $q^{\prime}(\beta(\alpha, \gamma(\alpha, \xi))$, by the choice of n as in Equation (3.3).

We show that $r \geq p, q$. First $r \upharpoonright \alpha \geq p \upharpoonright \alpha, q^{\prime}$ and $q^{\prime}=q \upharpoonright \alpha$. We show that

$$
r \upharpoonright \alpha \Vdash_{\mathbb{P}_{\alpha}}\left(u_{p(\alpha)} \cup u_{q(\alpha)}, h_{q(\alpha)}\right) \geq_{\mathbb{Q}_{\alpha}}\left(u_{q(\alpha)}, h_{q(\alpha)}\right),\left(u_{p(\alpha)}, h^{\prime}\right) .
$$

The first is trivial. For the latter, let $\xi \in u_{p(\alpha)}$. First case: $\xi \in M_{\delta}$. We chose (after Equation (3.3)) the function $h_{q(\alpha)}(k)$ such that it dominates $f_{\alpha, \xi}(k)$ on any coordinate k not in $\operatorname{dom}\left(h_{p(\alpha)}\right)$ such that $r^{\prime} \Vdash k \notin A_{\beta(\alpha, \gamma(\alpha, \xi)), \delta(\alpha, \xi)}$. Thus $r \upharpoonright \alpha$ forces the relevant instances of clause (6) of $r(\alpha) \geq p(\alpha)$.

Second case: $\xi \in u_{p(\alpha)} \backslash \varepsilon$. Since clause (6) speaks only about $m \in \omega \backslash A_{\beta(\alpha, \gamma(\alpha, \xi)), \delta(\alpha, \xi)}$, Équation (3.4) implies $r \upharpoonright \alpha \Vdash_{\mathbb{P}_{\alpha}} r(\underset{\sim}{\alpha}) \geq q(\alpha)$.

Remark: We work with the assumption $\diamond_{\left\{\delta<\aleph_{2}: c f(\delta)=\aleph_{1}\right\}}$. Alternatively, we could force as in the previous section by approximations of size \aleph_{1} in a first step and thereafter force with the generic filter of the first forcing. The diamond $\diamond_{\left\{\delta<\aleph_{2}: \operatorname{cf}(\delta)=\aleph_{1}\right\}}$ hands down at stage α a possible $\mathbb{P}_{\alpha-\text { name }}$ for objects D, $\left\langle g_{i}: i<\aleph_{1}\right\rangle$ as in property $(\mathrm{A})_{\aleph_{2}}$ of Lemma 3.2 and thus allows to construct a finite support iteration up to stage ω_{2} instead of using an approximation forcing in a first forcing step. So the partial order \mathbb{P} of the sketched alternative construction corresponds in the actually performed forcing $A P * \mathbb{Q}$ to the generic \mathbb{Q} of the approximation forcing $A P$.

Acknowledgement. We thank the referee for numerous valuable hints.

References

[BJ95] T. Bartoszyński and H. Judah, Set Theory, A K Peters, Wellesley, MA, 1995.
[BL03] J. Brendle and M. Losada, The cofinality of the inifinite symmetric group and groupwise density, Journal of Symbolic Logic 68 (2003), 1354-1361.
[Bla89] A. Blass, Applications of superperfect forcing and its relatives, inSet Theory and its Applications, Lecture Notes in Mathematics, Vol. 1401, Springer, Berlin, 1989, pp. 18-40.
[BM99] A. Blass and H. Mildenberger, On the cofinality of ultrapowers, Journal of Symbolic Logic 64 (1999), 727-736.
[BRZ11] T. Banakh, D. Repovš and L. Zdomskyy, On the length of chain of proper subgroups covering a topological group, Archive for Mathematical Logic 50 (2011), 411-421.
[BS87] A. Blass and S. Shelah, There may be simple $P_{\aleph_{1}}$ - and $P_{\aleph_{2}}$-points and the RudinKeisler ordering may be downward directed, Annals of Pure and Applied Logic 33 (1987), 213-243.
[BS89] A. Blass and S. Shelah, Near coherence of filters. III. A simplified consistency proof, Notre Dame Journal of Formal Logic 30 (1989), 530-538.
[Can90] R. M. Canjar, On the generic existence of special ultrafilters, Proceedings of the American Mathematical Society 110 (1990), 233-241.
[Gol93] M. Goldstern, Tools for your forcing construction, in Set Theory of the Reals (Ramat Gan, 1991), Israel Mathematical Conference Proceedings, Vol. 6, Bar-Ilan University, Ramat Gan, 1993, pp. 305-360.
[Jec03] T. Jech, Set Theory, Springer Monographs in Mathematics, Springer, Berlin, 2003.
[Kun80] K. Kunen, Set Theory, Studies in Logic and the Foundations of Mathematics, Vol. 102, North-Holland, Amsterdam-New York, 1980.
[Mil80] A. Miller, There are no Q-points in Laver's model for the Borel conjecture, Proceedings of the American Mathematical Society 78 (1980), 103-106.
[Mil01] H. Mildenberger, Groupwise dense families, Archive for Mathematical Logic 40 (2001), 93-112.
[MS11] H. Mildenberger and S. Shelah, The minimal cofinality of an ultrafilter of ω and the cofinality of the symmetric group can be larger than \mathfrak{b}^{+}, Journal of Symbolic Logic 76 (2011), 1322-1340.
[MST06] H. Mildenberger, S. Shelah and B. Tsaban, Covering the Baire space with meager sets, Annals of Pure and Applied Logic 140 (2006), 60-71.
[PS87] Z. Piotrowski and A. Szymański, Some remarks on category in topological spaces, Proceedings of the American Mathematical Society 101 (1987), 156-160.
[She98] S. Shelah, Proper and Improper Forcing, Perspectives in Mathematical Logic, Springer, Berlin, 1998.
[She06] S. Shelah, Non-Cohen oracle C.C.C,, Journal of Applied Analysis 12 (2006), 1-17.
[SS93] S. Shelah and J. Steprāns, Maximal chains in ${ }^{\omega} \omega$ and ultrapowers of the integers, Archive for Mathematical Logic 32 (1993), 305-319.
[SS94] S. Shelah and J. Steprāns, Erratum: "Maximal chains in ${ }^{\omega} \omega$ and ultrapowers of the integers" [Arch. Math. Logic 32 (1993), no. 5, 305-319; MR1223393 (94g:03094)], Archive for Mathematical Logic 33 (1994), 167-168.
[ST95] J. D. Sharp and S. Thomas, Unbounded families and the cofinality of the infinite symmetric group, Archive for Mathematical Logic 34 (1995), 33-45.
[Tho95] S. Thomas, Unbounded families and the cofinality of the infinite symmetric group, Archive for Mathematical Logic 34 (1995), 33-45.

[^0]: * The first author's research is supported by an Internal Senior Fellowship of the Freiburg Institute of Advanced Studies.
 ** The second author's research was partially supported by the United States-Israel Binational Science Foundation (Grant no. 2002323). This is the second authors publication no. 1021.

[^1]: ${ }^{1}$ In Theorem 2.8 below we will rework the proof of the omitting types theorem for the particular types that shall be omitted and see that the requirement that (N_{ε}, \in) fulfil sufficiently much of ZFC and be transitive suffices for our application.

[^2]: 2 The sequence of the N_{i} is not an oracle literally, since its entries are not necessarily elementary subsets of $H(\theta)$. However, they are transitive models of a sufficiently large fragment of ZFC. Theorem 2.8 shows that this is sufficient for our specific types. Henceforth we will also call \bar{N} an oracle sequence.

