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Abstract

We show that the non-existence of mad families is equiconsistent with ZF C, answering
an old question of Mathias. We also consider the above result in the general context of
maximal independent sets in Borel graphs, and we construct a Borel graph G such that

ZF + DC + ”there is no maximal independent set in G” is equiconsistent with
ZF C + ”there exists an inaccessible cardinal”.1

1. Introduction

We study the possibility of the non-existence of mad families in models of ZF+DC.
Recall that F ⊆ [ω]ω is mad if A,B ∈ F → |A ∩ B| < ℵ0, and F is maximal with
respect to this property. Assuming the axiom of choice, it’s easy to construct mad
families, thus leading to natural investigations concerned with the definability of
mad families. By a classical result of Mathias [Ma], mad families can’t be analytic
(as opposed to the classical regularity properties, there might be Π1

1 mad families,
which is the case when V = L [Mi]). The possibility of the non-existence of mad
families was demonstrated by Mathias who proved the following result:
Theorem [Ma]: Suppose there is a Mahlo cardinal, then there is a model of
ZF +DC + ”There are no mad families”.
The following natural question was asked by Mathias in [Ma]:
Question [Ma]: What’s the consistency strength of ZF + DC + ”there are no
mad families”?
For almost four decades, no progress was made on that problem. In 2015, Asger
Toernquist was able to reduce the upper bound on the consistency strength with
the following result:
Theorem [To]: There are no mad families in Solovay’s model.
We shall settle the above problem in this paper by proving the following result:
Theorem 1: ZF +DC+”There are no mad families” is equiconsistent with ZFC.
In [HwSh:1089] we prove the existence of a Borel maximal eventually different
family2 in ZF , which is quite surprising when contrasted with the above mentioned
results. One possible approach to explaining the surprising difference between mad
and maximal eventually different families is via Borel combinatorics. It’s easy to
see that there are Borel graphs GMAD and HMED such that there exists a mad
(maximal eventually different) family iff there exists a maximal independent set in
GMAD (HMED). Therefore, we may view the above problems and results as private
cases of the more general problem of understanding maximal independent sets in
Borel graphs.
We shall prove that large cardinals are necessarily involved in the understanding of
the general problem, suggesting a much more complicated picture:
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large enough n. F is a maximal eventually different (MED) family if F is an eventually different
family and is not strictly contained in another eventually different family.
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Theorem 2: There exists a Borel graph G such that ZF + DC + ”there is no
maximal independent set in G” is equiconsistent with ZFC + ”there exists an
inaccessible cardinal”.
Theorem 1 will be the main result of Section 2, Theorem 2 will be the main result
of Section 3.

2. ZF +DC + ”there are no mad families” is equiconsistent with ZFC

Background and previous results
Results on the consistency strength of regularity properties go back to the works
of Solovay and Shelah ([So] and [Sh:176]), who proved that ZF + DC + ”all sets
of reals are Lebesgue measurable” is equiconsistent with ZFC + ”there exists an
inaccessible cardinal” while no large cardinals are needed for the Baire property.
As for the consistency strength of the non-existence of mad families, the problem,
which first appeared in [Ma] in 1977, is discussed in [Br] and [Kan]. We shall prove
in this section that the non-existence of mad families is equiconsistent with ZFC.
A discussion of the proof
In order to prove the theorem, we will construct a sufficiently saturated forcing
notion. We consider the class K of ccc forcing notions that force MAℵ1 . Using the
fact that ccc is equivalent to Knaster’s condition under MAℵ1 (and that Knaster’s
condition is preserved under products), we are able to prove that K has the amal-
gamation property. By a bookkeeping argument, using the amalgmation property
of K, we construct a forcing notion P ∈ K such that if P1,P2 ∈ K are of a “small”
cardinality, P1 l P2 and f1 : P1 → P is a complete embedding, then there exists a
complete embedding f2 : P2 → P such that f1 ⊆ f2.
We then force with P, and consider the inner model HOD(R<µ) inside the generic
extension (where µ is a cardinal that we fix in the beginning of the proof). In
order to prove that there are no mad families in our model, we assume towards
contradiction that F

∼
is a canonical P−name of a mad family, and we find a forcing

Q∗ lP of cardinality < µ such that F
∼

is defined using a canonical Q∗−name. The
next step is to find a pair (Q, D

∼
) such that:

1. Q∗ lQl P.
2. |Q| < µ.
3. F
∼

� Q := {a
∼

: a
∼
is a canonical Q-name of a subset of ω such that P ”a

∼
∈ F
∼

”}
is a canonical Q−name of a mad family in V Q.
4. D
∼

is a Q−name of a Ramsey ultrafilter on ω.

5. Q ”D
∼
∩ (F
∼

) = ∅”.

Next we consider a forcing notion Q1 ∈ K such that |Q1| < µ such that Q?MD
∼
lQ1,

where MD
∼

is the Mathias forcing restricted to the Ramsey ultrafilter D
∼
. Letting

A1
∼

be the name for the generic of MD
∼
, there is a name a

∼1
of a member of the mad

family restricted to Q1 (denoted by F1
∼
) witnessing the madness of the family with

respect to a1
∼
. Finally, a contradiction will be derived by considering an isomorphic

copy (Q2,MD
∼
, a2
∼
, A2
∼
,F2
∼

) of (Q1,MD
∼
, a1
∼
, A1
∼
,F1
∼

) and amalgamating over Q.

Proof of Theorem 1
2
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Hypothesis 1: 1. λ = λ<µ, µ = cf(µ), α < µ → |α|ℵ1 < µ, ℵ0 < θ = θℵ1 < κ =
cf(κ) ≤ µ and α < κ→ |α|ℵ1 < κ.
For example, assuming GCH, the hypothesis holds for µ = ℵ3 = κ, λ = ℵ4 and
θ = ℵ2.
2. For transparency, we may assume CH.
Definition 2: 1. Let K = {P : P is a ccc forcing notion such that P ”MAℵ1”}.
2. Let ≤K be the partial order l on K.
3. We say that (Pα : α < α∗) is ≤K-increasing continuous if Pα ∈ K for every
α < α∗, α < β → Pα l Pβ and if β < α∗ is a limit ordinal then ∪

γ<β
Pγ l Pβ .

Claim 3: 1. (K,≤K) has the amalgamation property.
2. If P1 is a ccc forcing notion, then there is P2 ∈ K such that P1 l P2 and
|P2| ≤ |P1|ℵ1 + 2ℵ1 .
3. If (Pα : α < δ) is ≤K-increasing continuous and δ is a limit ordinal, then
∪
α<δ

Pα |= ccc, hence by (2) there is Pδ ∈ K such that (Pα : α < δ)̂(Pδ) is ≤K-
increasing continuous.
4. If P ∈ K and X ⊆ P such that |X| < µ, then there exists Q ∈ K such that
X ⊆ Q, Q ≤K P and |Q| ≤ 2ℵ1 + |X|ℵ1 .
Proof: 1. Suppose that P0,P1,P2 ∈ K and fl : P0 → Pl (l = 1, 2) are complete
embeddings. Let P1 ×f1,f2 P2 be the amalgamation of P1 and P2 over P0 (as in
[RoSh672]), i.e. {(p1, p2) ∈ P1 × P2 : (∃p ∈ P0)(p P ”p1 ∈ P1/f1(P0) ∧ p2 ∈
P2/f2(P0)”)}. As P0 l P1 ×f1,f2 P2, P0 ”MAℵ1” and MAℵ1 implies that every
ccc forcing notion is Knaster (and recalling that being Knaster is preserved under
products), it follows that P1 ×f1,f2 P2 |= ccc, and by (2) we’re done.
2. P2 is obtained as thee composition of P1 with the ccc forcing notion of cardinality
|P1|ℵ1 + 2ℵ1 forcing MAℵ1 .
4. As in the proof of subclaim 1 in claim 6 (see next page). �
Claim 4: There is a ccc forcing notion P of cardinality λ such that:
1. For every X ⊆ P, |X| < µ→ (∃Q ∈ K)(X ⊆ Ql P ∧ |Q| < µ).
2. If P1,P2 ∈ K have cardinality < µ, P1 l P2 and f1 is a complete embedding of
RO(P1) into RO(P), then there is f1 ⊆ f2 that is a complete embedding of RO(P2)
into RO(P).
Proof: We choose Pα ∈ K by induction on α < λ, such that the sequence is
≤K −increasing continuous and each Pα has cardinality λ, as follows:
1. For limit α we choose Pα ∈ K such that ∪

β<α
Pβ l Pα . We can do this by claim

3(2) and the induction hypothesis.
2. For α = β + 1, we let ((Pγ1 ,P

γ
2 , f

γ
1 ) : γ < λ) be an enumeration of all triples as

in 4(2) for Pβ . We construct a ≤K −increasing continuous sequence (P∗γ : γ ≤ λ)
by induction as follows: P∗0 = Pβ . P∗γ+1 is the result of a K−amalgamation for the
γth triple, and for limit γ we define P∗γ as in (1). Finally, we let Pα = P∗λ.
Note that by claim 3(4), requirement (1) is satisfied for every forcing notion from
K, hence it’s enough to guarantee that requirement (2) is satisfied. It’s now easy
to see that P = ∪

α<λ
Pα is as required. �

Definition/Claim 5: Let P be the forcing notion from claim 4 and let G ⊆ P be
generic over V . In V [G], let V1 = HOD(R<κ), then V1 |= ZF +DC<κ. �
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Main claim 6: There are no mad families in V1.
Proof: Let F

∼
be a canonical P-name of a mad family (i.e. a canonical P-name of a

family of subsets of ω), and let η̄
∼
be a sequence of length < κ of canonical P-names of

reals such that F
∼

is definable over V using η̄
∼
. Let KP = {Q ∈ K : QlP∧|Q| < κ}.

By claim 4(1), there is Q∗ ∈ KP such that η̄
∼
is a canonical Q∗-name. Let K+

P be
the set of Q ∈ KP such that Q∗ l Q and F

∼
� Q is a canonical Q-name of a mad

family in V Q, where F
∼

� Q = {a
∼

: a
∼
is a canonical Q-name of a subset of ω such

that P ”a
∼
∈ F
∼

”}.

Subclaim 1: K+
P is l-dense in KP.

Proof : Let Q ∈ KP and let σ = |Q∗ + 2|ℵ1 < κ. We choose Zi by induction on
i < ω2 such that:
a. Zi ⊆ P and |Zi| ≤ σ.
b. j < i→ Zj ⊆ Zi.
c. Z0 = Q∗ ∪Q.
d. If i = 3j + 1, then for every canonical name using members of Z3j of an “MAℵ1

problem” in Zi we have a name for a solution.
e. If i = 3j + 2, then Zi l P.
f. If i = 3j + 3, then for every canonical Z3j+2-name a

∼
of an infinite subset of ω,

there is a canonical Zi-name b
∼
such that P ”|a

∼
∩ b
∼
| = ℵ0 ∧ b∼ ∈ F∼”.

It’s now easy to verify that Zω2 is as required: By (c) and (e), Q∗lZω2 lP, hence
also Zω2 |= ccc. By (a), |Zω2 | < κ. By (d), Zω2

”MAℵ1” (given names for ℵ1
dense sets, we have canonical names depending on ℵ1 conditions, hence there is
some j < ω2 such that they are Z3j+2-names), hence Zω2 ∈ K. By (f), F

∼
� Zω2 is

a canonical Zω2 -name of a mad family in V Zω2 .
We shall now prove that such Zi can be constructed for i ≤ ω2: For i = 0 it’s
given by (c) and for limit ordinals we simply take the union. For i = 3j + 1 and
i = 3j + 3 we enumerate the canonical names for either the MAℵ1 problem or the
infinite subsets of ω (depending on the stage of the induction), there are ≤ σ such
names. At stage 3j + 1 we use the fact that P forces MAℵ1 in order to extend
Z3j using P-names for the solutions of the MAℵ1-problems. At stage 3j + 3, we
extend the forcing similarly, using the fact that F

∼
is a name of a mad family. For

i = 3j + 2, we let Z3j+2 be the closure of Z3j+1 under the functions f1 : P×P→ P
and f2 : [P][≤ℵ0] → P where: f1(p, q) is a common upper bound of p and q if they’re
compatible, and f2(X) is incompatible with all members of X provided that X is
countable and not predense.
Subclaim 2: If Q ∈ K+

P and F : Q→ P is a complete embedding over Q∗, then F
maps F

∼
� Q to F

∼
� F (Q).

Proof : As F is the identity over Q∗ and F∼ is definable using a Q∗-name.

We now arrive at the two main subclaims:
Subclaim 3: There is a pair (Q, D

∼
) such that:

a. Q∗ lQ ∈ K+
P .
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b. D
∼

is a name of a Ramsey ultrafilter on ω.

c. Q ”D
∼
∩ (F
∼
� Q) = ∅”.

Subclaim 4: Subclaim 3 implies claim 6.

Proof of subclaim 4: Let MD
∼

be the Q-name for the Mathias forcing restricted
to the ultrafilter D

∼
. Let Q1 ∈ K such that Q?MD

∼
lQ1 and |Q1| < κ (such forcing

notion exists by 3(2)), and let A1
∼

be the Q1-name for the MD
∼
-generic real.

Let F1 : Q1 → P be a complete embedding such that F1 is the identity on Q (such
an embedding exists by claim 4(2). There is Q′1 ∈ K+

P such that F1(Q1) l Q′1 by
subclaim 1. There is a pair (Q′′1 , F ′1) such that Q1 l Q′′1 and F ′1 : Q′′1 → Q′1 is an
isomorphism extending F ′1. WLOG (Q′′1 , F ′1) = (Q1, F1), so F1(Q1) ∈ K+

P .

Let F1
∼

= F−1
1 (F

∼
� F1(Q1)).

As F1(Q1) ”F
∼

� F1(Q1) is mad”, it follows that Q1 ”F1
∼

is mad”, hence there is
some a1

∼
such that a1

∼
is a canonical Q1-name for a subset of ω, Q1 ”a1

∼
∈ F1
∼

” and
Q1 ”a1

∼
∩ A1
∼

is infinite”. Recalling the basic property of the forcing MD
∼
, every

infinite subset of A1
∼

is generic, therefore, by considering A1
∼
∩ a1
∼

instead of A1
∼
,

WLOG Q1 ”A1
∼
⊆ a1
∼

”.

Now let (Q2,MD
∼
, a2
∼
, A2
∼
,F2
∼

) be an isomorphic copy of (Q1,MD
∼
, a1
∼
, A1
∼
,F1
∼

) such
that the isomorphism is over Q. Consider the amalgamation Q3 = Q1 ×Q Q2. By
the basic properties of P, there is a complete embedding F3 : Q3 → P over Q. By
the density of K+

P , there is Q′4 ∈ K+
P such that F3(Q3) l Q′4. As before, choose

(Q4, F4) such that Q3 lQ4 and F4 : Q4 → Q′4 is an isomorphism extending F3.

Now observe that Q4 ”A1
∼
∩ A2
∼

is infinite”: Let G ⊆ Q be generic, then in V [G]
we have: Q3/G = (Q1/G)× (Q2/G)lQ4/G. As MD

∼
[G]lQl/Q (l = 1, 2), we have

MD
∼

[G]×MD
∼

[G]lQ3/G, so it’s enough to show that MD
∼

[G]×MD
∼

[G] ”|A1
∼
∩A2
∼
| = ℵ0”:

Let ((w1, B1), (w2, B2)) ∈ MD
∼

[G] × MD
∼

[G] and n < ω, so B1 ∩ B2 ∈ D
∼

[G] is
infinite, therefore, there is n1 > n, sup(w1 ∪ w2) such that n1 ∈ B1 ∩ B2. Let
q = ((w1∪{n1}, B1 \ (n1 +1)), (w2∪{n1}, B2 \ (n1 +1))), then p ≤ q and q  ”n1 ∈
A1
∼
∩A2
∼

”.

Therefore, Q4 ”a1
∼
∩ a2
∼

is infinite” (as the intersection contains A1
∼
∩A2
∼
).

It now follows that Q4 ”a1
∼

= a2
∼

”: First note that F4(Q4) ”F4(a1
∼

), F4(a2
∼

) ∈ F
∼

�

F4(Q4)”. Now F4(Q4) = Q′4 ∈ K+
P , so F

∼
� F4(Q4) is a canonical F4(Q4)-name of a

mad family, therefore F4(Q4) ”F4(a1
∼

) = F4(a2
∼

)”, hence Q4 ”a
∼1

= a2
∼

”.

It’s now enough to show that Q4 ”a1
∼

= a2
∼
∈ V Q”: Work in V [G]. First note that

Ql/G ”Al
∼

is almost contained in every member of D
∼

[G], hence (by subclaim 3)

it’s almost disjoint to every member of F
∼

� Q”, and also Ql/G ”al
∼
∈ V Q, hence

al
∼
∈ F
∼

� Q”. Now recall that Ql ”Al
∼
⊆ al
∼

”, together we get a contradiction.

Therefore, it remains to show that Q4 ”a1
∼

= a2
∼
∈ V Q”: By the claim above, Q3
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”a1
∼

= a2
∼

”. Work in V [G], so al
∼

is a Ql/G-name (l = 1, 2). Suppose that the claim
doesn”t hold, then there are q1, r1 ∈ Q1/G and n < ω such that q1  ”n ∈ a1

∼
” and

r1  ”n /∈ a1
∼

”. Let q2, r2 ∈ Q2/G be the “conjugates” of (q1, r1) (i.e. their images
under the isomorphism that was previously mentioned), then (q1, r2) ∈ Q3/G forces
that n ∈ a1

∼
and n /∈ a2

∼
, contradicting the fact that Q3 ”a1

∼
= a2
∼

”. This completes
the proof of subclaim 4.
Proof of subclaim 3: Let σ = |Q∗|ℵ1 < κ. We choose (Qε, Aε

∼
) by induction on

ε < σ+ such that:
a. Qε ∈ K+

P and |Qε| ≤ σ.
b. Aε
∼

is a canonical Qε-name of a subset of ω.

c. Qε ”Aε
∼

is not almost included in a finite union of elements of F
∼
� Qε.

d. (Q0, A0
∼

) = (Q∗, ω). WLOG Q∗ ∈ K+
P , as K+

P is l-dense in KP.

e. (Qζ : ζ < ε) is l-increasing.
f. Qε ”(Aζ

∼
: ζ < ε) is ⊆∗-decreasing”.

g. If ε = 2ξ + 1 and Λε 6= ∅ where Λε = {(ζ, a
∼

) : ζ ≤ ξ, a
∼
is a canonical Qζ-name

of a subset of ω such that 1Q2ξ ”A2ξ
∼
⊆∗ a

∼
or A2ξ

∼
⊆∗ ω \ a

∼
”}, then letting Γε =

{ζ : (ζ, a
∼

) ∈ Λε} and ζε = min(Γ), for some aε
∼
, (ζε, aε

∼
) ∈ Λε and Qε ”Aε

∼
⊆∗ aε

∼
or

Aε
∼
⊆∗ (ω \ aε

∼
)”.

h. If ε = 2ξ+2 and Fε 6= ∅ where Fε = {(ζ, f
∼

) : ζ ≤ ξ and f
∼
is a canonical Qζ-name

of a function from [ω]2 to {0, 1} such that Q2ξ+1 ”¬(∃n)f
∼
� [Aξ
∼
\ n]2 is constant”,

∧
n<ω

∨
l<2

Aε−1
∼
⊆∗ {i : f

∼
(i, n) = l} and ∨

l<2
Aε−1
∼
⊆∗ {n : (∀∞i ∈ Aε−1

∼
)f
∼

(i, n) = l} },

then letting Γε = {ζ : (ζ, f
∼

) ∈ Fε} and ζε = min(Γε), for some fε
∼
, (ζε, fε

∼
) ∈ Fε and

Qε ”fε
∼

� [Aε
∼

]2 is constant”.

Subclaim 3a: The above induction can be carried for every ε < σ+.
Subclaim 3b: Subclaim 3 is implied by subclaim 3a.
Proof of Subclaim 3b: First we consider the case where σ+ < κ. Let Q =
∪

ε<σ+
Qε, note that as ℵ2 ≤ cf(σ+), Q ∈ K+

P . By the choice of Q0, Q∗ l Q. Now
define a Q-name D

∼
:= {B

∼
: B
∼

is a canonical Q-name of a subset of ω such that
Q ”(∃ε < σ+)(Aε

∼
⊆∗ B

∼
)”}. By (g), Q ”D

∼
is an ultrafilter”: For example, in order

to see that D
∼

is forced to be upwards closed, suppose that p1  ”B
∼
⊆∗ A
∼
⊆ ω and

B
∼
∈ D
∼

”, then there are p1 ≤ p2, n < ω and ε < σ+ such that p2  ”B
∼
\ n ⊆ A

∼
and

Aε
∼
\ n ⊆ B

∼
”. There is a condition p3 and a canonical name A3

∼
such that p2 ≤ p3

and p3  ”A
∼

= A3
∼

”. Let {p3,i : i < ω} be a maximal antichain in Q such that
p3 = p3,0 and let A4

∼
be the Q-name defined as:

1. A4
∼

[GQ] = A3
∼

[GQ] if p3,0 ∈ GQ

2. A4
∼

[GQ] = B
∼

[GQ] if p3,0 /∈ GQ.
6
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Therefore, A4
∼

is a canonical name for a subset of ω,  ”A4
∼
∈ D
∼

” and p3  ”A4
∼

= A
∼

”.

In order to see that for every Q-name a
∼
⊆ ω, it’s forced that a

∼
∈ D
∼
∨ω \ a

∼
∈ D
∼
, we

have to show that every such name is being handled by clause (g) at some stage of
the induction. Suppose that for some name a

∼
it’s not the case. Each such name is

a Qζ-name for some ζ < σ+, so pick a minimal ζ for which there is such a Qζ-name.
Therefore, for every ε = 2ξ + 1 such that ζ ≤ ξ, ζε ≤ ζ, so at each such stage we’re
handling a Qζ-name. As |Qζ |ℵ0 ≤ σ, the number of Qζ-names is at most σ and the
number of induction steps is larger, we get a contradiction. Similarly, it follows by
(h) that Q ”D

∼
is a Ramsey ultrafilter”: Let f

∼
be a Q−name of a function from

[ω]2 to {0, 1} (wlog f
∼
is a canonical name). As Q ”D

∼
is an ultrafilter”, for every

n < ω, {{i : f
∼

(i, n) = l} : l < 2} is a Q−name of a partition of ω in V Q, hence

for some lf
∼
,n

∼

, V Q |= ”{i : f
∼

(i, n) = lf
∼
,n

∼

} ∈ D
∼

”, and therefore, for some ξ
∼

= ξf
∼
,n

∼

,

V Q |= ”Aξ
∼
⊆∗ {i : f

∼
(i, n) = lf

∼
,n

∼

}”. Now {{n : lf
∼
,n

∼

= k} : k < 2} is a canonical

Q−name of a partition of ω, so again, there is kf
∼
∼

such that {n : lf
∼
,n

∼

= kf
∼
∼

} ∈ D
∼
, and

there is ξ1
∼

such that Aξ1
∼
⊆∗ {n : lf

∼
,n

∼

= kf
∼
∼

}. As Q |= ccc, there is ξ < σ+ such that

all of the above names are Qξ−names and Qξ ”ξ2
∼
, ξf
∼
,n

∼

≤ ξ for every n < ω”. As

the sequence of the Aζ
∼

is ⊆∗-decreasing, f
∼
has the form of the functions appearing

in requirement (h) of the induction, hence by (h) there is a large homogeneous set
for f
∼
.

By (c), it follows that Q ”D
∼
∩ F
∼
� Q = ∅”

We now consider the case where σ+ = κ. In this case we add a slight modification
to our inductive construction: The induction is now on ε < σ. We fix a partition
(Sξ : ξ < σ) of σ such that |Sξ| = σ and Sξ ∩ ξ = ∅ for each ξ < σ. At stage ξ of
the induction we fix enumertions (aξi

∼
: i ∈ Sξ) and (fξi

∼
: i ∈ Sξ) of the canonical

Qξ-names for the subsets of ω and the 2-colorings of [ω]2 such that for some ζ < ξ,
Aζ
∼

satisfies the condition from (h) with respect to fξi
∼
.

We now replace the original (g) and (h) by (g)’ and (h)’ as follows:

(g)’ If ε = 2i+ 1 and i ∈ Sξ then Qε ”A2ξ
∼
⊆∗ aξi

∼
∨A2ξ
∼
⊆∗ ω \ aξi

∼
”.

(h)’ If ε = 2i+ 2 and i ∈ Sξ then Qε ”fξi
∼

[Aε
∼

] is constant”.

Note that ξ ≤ i in the clauses above, as Sξ ∩ ξ = ∅, therefore, at stage ε = 2i + l

(l = 1, 2), the names aξi
∼

and fξi
∼

are well-defined when i ∈ Sξ.

As ℵ2 ≤ cf(σ), then as before, letting Q = ∪
ε<σ

Qε, Q∗lQ ∈ K+
P . As before, Q ”D

∼
is a filter”, and by clause (c), Q ”D

∼
∩ F
∼

� Q = ∅”, and by (g)’, Q ”D
∼

is an
ultrafilter”. By (h)’, Q ”D

∼
is a Ramsey ultrafilter” (the argument is the same as

in the case of σ+ < κ), so we’re done.
7
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Proof of subclaim 3a:
We give the argument for the case σ+ < κ. The case σ+ = κ is essentially the
same.
Case I (ε = 0): Trivial.
Case II (ε = 2ξ + 1): We let Qε = Q2ξ. Pick some (ζε, aε

∼
) ∈ Λε, the Qε-name

Aε
∼

will be defined as follows: If A2ξ
∼
∩ aε
∼

satisfies clause (c) of the induction, then

we let Aε
∼

= A2ξ
∼
∩ aε
∼
. Otherwise, let Aε

∼
= A2ξ

∼
\ aε
∼
. We need to show that Aε

∼
satifies clause (c). Suppose not, then both A2ξ

∼
∩aε
∼

and A2ξ
∼
\aε
∼

don’t satisfy clause

(c), but then A2ξ
∼

is almost included in a finite union of elements of F
∼

� Q2ξ, a

contradiction.
Case III (ε = 2ξ + 2): Pick some (ζε, fε

∼
) ∈ Fε. By the definition of Fε, in V Qε−1 ,

for every n < ω there are lεn < 2 and kεn < ω such that for every k ∈ Aε−1
∼

, if kεn ≤ k

then f(k, n) = lεn. In addition, there are kε, lε such that kε ≤ n ∈ Aε−1
∼
→ lεn = lε.

WLOG kεn < kεn+1 for every n < ω. By the induction hypothesis, as Qε−1 ”F
∼

�

Qε−1 is mad” and as Aε
∼

satisfies clause (c), there are pairwise distinct aε,n
∼
∈ F
∼

�

Qε−1 such that bε,n
∼

= aε,n
∼
∩Aε−1

∼
is infinite for every n < ω. We now choose ni by

induction on i such that:
a. ni ∈ Aε−1

∼
\ kε.

b. If i = j + 1 then ni > nj and ni > kεnj .

c. If i ∈ (j2, (j + 1)2) then ni ∈ bε,i−j2 .
This should suffice: By (a)+(b), f

∼
� {ni : i < ω} is constantly lε. By (c), {ni : i <

ω} is not almost included in a finite union of elements of F
∼

� Qε−1: This follows
from the fact that for each n < ω, {ni : i < ω} contains infinitely many members of
bε,n
∼

, hence of aε,n
∼

. As {ni : i < ω} has infinite intersection with an infinite number

of members of F
∼

� Qε−1, it can’t be covered by a finite number of members of
F
∼
� Qε−1.

Therefore, Qε := Qε−1 and Aε
∼

:= {ni : i < ω} are as required.

Why is it possible to carry the induction? As each bε,n
∼

is infinite, and requirements

(a)+(b) only exclude a finite number of elements, this is obviously possible.
Case IV (ε is a limit ordinal): We choose (Qε,n, aε,n

∼
, bε,n
∼

) by induction on n < ω

such that:
a. ∪

ξ<ε
Qξ ⊆ Qε,n ∈ K+

P .

b. If n = m+ 1 then Qε,m lQε,n.
If n > 0 then we also require:
c. aε,n

∼
is a Qε,n-name of a member of F

∼
� Qε,n.

d. bε,n
∼

is a Qε,n-name of an infinite subset of ω.
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e. Qε,n ”bε,n
∼
⊆ aε,n
∼
∧ ∧
ζ<ε

bε,n
∼
⊆∗ Aζ

∼
”.

f. Qε,n ”aε,l
∼
6= aε,n
∼

for l < n”.

Why can we carry the induction? By the properties of P, there is Qε,0 ∈ K+
P such

that ∪
ζ<ε

Qζ ⊆ Qε,0. LetDε,0
∼

be a Qε,0-name of an ultrafilter containing {Aε
∼

: ε < ζ},

let MDε,0
∼

be the Qε,0-name for the corresponding Mathias forcing and let w
∼
be the

name for the generic set of natural numbers added by it. By the properties of P,
there is Qε,1 ∈ K+

P such that Qε,0 lQε,1 and Qε,1 adds a pseudo-intersection w
∼

to
Dε,0
∼

.

There is a Qε,1-name aε,1
∼

such that Qε,1 ”aε,1
∼
∈ F
∼

� Qε,1 ∧ |aε,1
∼
∩ w
∼
| = ℵ0”. Let

bε,1
∼

= w
∼
∩ aε,1
∼

, then clearly (Qε,1, aε,1
∼
, bε,1
∼

) are as required. Suppose now that

(Qε,l, aε,l
∼
, bε,l
∼

) were chosen for l ≤ k. Note that Qε,k ”{ω \ ∪
l≤k

aε,l} ∪ {Aζ
∼

: ζ < ε}

have the FIP”. Suppose not, then there is ζ < ε such that  ”Aζ
∼
⊆∗ ∪

l≤k
aε,l”,

as P ” ∧
l≤k

aε,l
∼
∈ F
∼

”, this is a contradiction: It’s enough to show that P ”Aζ
∼

is not almost contained in a finite union of members of F
∼

”. Suppose that p P

”Aζ
∼
⊆∗ ∪

l≤k
bl
∼

” where bl
∼

are elements of F
∼
. Let G ⊆ P be a generic set containing

p, then V [G] |= ”Aζ
∼

[G] ⊆ ∪
l≤k

bl
∼

[G]”. G ∩ Qζ is generic, {b ∈ F
∼

� Qζ [G ∩ Qζ ] :

|b ∩ Aζ
∼

[G ∩ Qζ ]| = ℵ0} is infinite. Therefore, in V [G] there are bi ∈ F∼ [G] (i < ω)

such that |Aζ
∼

[G] ∩ bi| = ℵ0 for each i < ω, so Aζ
∼

[G] can’t be almost covered by a

finite number of members of F
∼

[G], which is a contradiction.

Let Dε,k
∼

be a Qε,k-name for a nonprincipal ultrafilter containing {ω\ ∪
l≤k

aε,l}∪{Aζ
∼

:

ζ < ε}, as before, let Qε,k+1 ∈ K+
P such that Qε,k l Qε,k+1 and Qε,k+1 adds a

pseudo-intersection wk+1
∼

to Dε,k
∼

. Again, Qε,k+1 ”There is aε,k+1
∼

∈ F
∼

� Qε,k+1

such that |wk+1
∼
∩ aε,k+1

∼
| = ℵ0”, now let bε,k+1

∼
= aε,k+1

∼
∩ wk+1

∼
. It’s easy to see

that (Qε,k+1, aε,k+1
∼

, bε,k+1
∼

) are as required.

We shall now prove that there is a forcing notion Qε ∈ K+
P and a Qε-name Aε

∼
such

that ∪
n<ω

Qε,n ⊆ Qε and Qε ” ∧
ζ<ε

Aε
∼
⊆∗ Aζ

∼
∧ ( ∧

n<ω
|Aε
∼
∩ bε,n
∼
| = ℵ0)”:

Let Q′ = ∪
n<ω

Qε,n, we shall prove that there is a Q′-name for a ccc forcing Q
∼

′′ that

forces the existence of Aε
∼

as above, such that |Q′ ∗Q
∼

′′| < κ:

Let Q
∼

′′ be the Q′−name for the Mathias forcing MD′
∼
, restricted to the filter D′

∼
generated by {Aζ

∼
: ζ < ε}∪{[n, ω) : n < ω}, so there is a name Aε

∼
such that Q′∗Q′′

∼

”Aε
∼
∈ [ω]ω, ∧

ζ<ε
Aε
∼
⊆∗ Aζ

∼
and ∧

n<ω
|Aε
∼
∩ bε,n
∼
| = ℵ0”. Letting Aε

∼
be the generic set

added by MD′
∼
, in order to show that the last condition holds, we need to show that

(in V Q′) if p ∈MD′
∼

and k < ω, then there exists a stronger condition q forcing that
k′ ∈ Aε

∼
∩ bε,n
∼

for some k′ > k. Let p = (w, S), as S ∈ D′
∼
, there is ζ < ε and l∗ < ω
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such that Aζ
∼
\ l∗ ⊆ S. As bε,n

∼
⊆∗ Aζ

∼
, there is sup(w) + k < k′ ∈ bε,n

∼
∩Aζ
∼
\ l∗ ∩ S,

so we can obviously extend p to a condition q forcing that k′ ∈ Aε
∼
∩ bε,n
∼

.

By claim 3, there is Q3 ∈ K such that Q′ ∗Q
∼

′′lQ3 and |Q3| ≤ σ. By the properties

of P, there is a complete embedding f3 : Q3 → P such that f3 is the identity over
Qε,0 (hence over Q∗). Therefore, P ” ∧

n<ω
f3(aε,n

∼
) ∈ F

∼
”. By the (proof of the)

density of K+
P , there is Q4 ∈ K+

P such that f3(Q3) l Q4 and |Q4| ≤ σ. Let
Qε = Q4, Aε

∼
= f3(Aε

∼
), we shall prove that (Qε, Aε

∼
) are as required. Obviously,

Qε ”Aε
∼
∈ [ω]ω”, and as f3 is the identity over each Qζ (ζ < ε), Qε ” ∧

ζ<ε
Aε
∼
⊆∗

Aζ
∼

”. The other requirements for Qε and Aε
∼

are trivial. It remains to show that

Qε ”Aε
∼

is not almost covered by a finite union of elements of F
∼

� Qε”. As

Qε ” ∧
n<ω

f3(aε,n
∼

) ∈ F
∼

� Qε and ∧
n 6=m

f3(aε,n
∼

) 6= f3(aε,m
∼

), it’s enough to show

that Qε ” ∧
n<ω
|Aε
∼
∩ f3(aε,n

∼
)| = ℵ0”, which follows from the fact that Q′∗Q′′

” ∧
n<ω
|Aε
∼
∩ bε,n
∼
| = ℵ0” and the fact that Qε,n ”bε,n

∼
⊆ aε,n

∼
”. This completes the

proof of the induction.

Remark: By the proof of the density of K+
P in KP, whenever we have Q ∈ KP

of cardinality ≤ σ, we can construct Q′ ∈ K+
P such that Q l Q′ and |Q′| ≤ σ.

Therefore, at each of the steps in the limit case, it’s possible to guarantee that the
cardinality of the forcing is ≤ σ. �

3. Borel graphs and large cardinals

Background

The study of Borel and analytic graphs was initiated by Kechris, Solecki and Todor-
cevic in [KST], and has been a source of fruitful research ever since (see [KM] for
a survey of recent results). Following the result from the previous section and the
discussion in the introduction of the paper, one would hope to explain the discrep-
ancy between mad families and maximal eventually different families in a more
systematic manner. As mentioned in the introduction, mad and maximal even-
tually different families are simply maximal independent sets in the appropriate
Borel graphs. Therefore, one might hope to obtain a dichotomy result, e.g. a result
saying that for some Borel graphs it’s consistent relative to ZFC that no maximal
independent sets exist, while for the others, the existence of such sets is provable
in ZF +DC.

We shall prove in this section that there is a Borel graph G for which ZF +DC +
”there is no maximal independent set in G” is equiconsistent with ZFC + ”there
exists an inaccessible cardinal”, so large cardinals are necessarily involved in the
study of maximal independent sets in Borel graphs (and a dichotomy result as
above is impossible).

A discussion of the proof

Our goal is to construct a Borel graph such that the statement ”ω1 is inaccessible
by reals” will be translated to the non-existence of a maximal independent set in
the graph. The graph will consist of reals such that each real codes a linear order I
of ω and a sequence (ri : i ∈ I) of distinct reals. The edge relation will be defined
such that two reals are not connected by an edge iff one is embeddable into the
other as an initial segment in a natural way. We will show that if ω1 = ω

L[a]
1 for
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some real a, then by picking in L[a] vertices that code the countable ordinals, we
get a maximal independent set in V . The other half of the equiconsistency result
will be obtained by showing that our graph has no maximal independent set in
Solovay’s model.
Proof of Theorem 2
Definition 1: We shall define a Borel graph G = (V,E) as follows:
a. V is the set of reals r that code the following objects:
1. A linear order Ir of the element of ω or some n < ω.
2. A sequence (sr,α : α ∈ Ir) of pairwise distinct reals.
b. Given r1 6= r2 ∈ V and b ∈ Ir2 , let Xr1,r2,b be the set of pairs (a1, a2) ∈
Ir1 × Ir2,<b such that sr1,a1 = sr2,a2 .
c. Given r1 6= r2 ∈ V , ¬(r1Er2) holds iff one of the following holds:
1. There exists b ∈ Ir2 such that Xr1,r2,b is an isomorphism from Ir1 to Ir2,<b.
2. There exists b ∈ Ir1 such that Xr2,r1,b is an isomorphism from Ir2 to Ir1,<b.
Definition 2: Given r1 6= r2 ∈ V , we say that r2 extends r1, and denote this by
r1 <G r2, when ¬(r1Er2) and clause (1) holds in definition 1(c).
Claim 3 (ZF +DC): Let X ⊆ V be an independent set.
a. X is linearly ordered by <G.
b. If X is countable then X is not a maximal independent set.
Proof: a. Obvious.
b. By clause (a), there is a linear order I such that X = {ri : i ∈ I} and i <I j
iff ri <G rj . For every i < j ∈ I, let Fi,j be the isomorphism from Iri to a proper
initial segment of Irj witnessing ri <G rj . Let Ir be the direct limit of the system
(Iri , Fj,k : i, j, k ∈ I, j < k). For a ∈ Ir, let sr,a be sri,a′ where a′ ∈ Iri is some
representative of a. Let r ∈ V be a real coding Ir and (sr,a : a ∈ Ir), then ¬(rEri)
for every ri ∈ X. �
Claim 4: ZF+DC+”There is no maximal independent set in G” is equiconsistent
with ZFC + ”There exists an inaccessible cardinal”.
Claim 4 will follow from the following claims:

Claim 5 (ZF +DC): If there exists a ∈ ωω such that ℵ1 = ℵL[a]
1 , then there exists

a maximal independent set in G.
Claim 6: There is no maximal independent set in G in Levy’s model (aka Solovay’s
model).
Remark: While the set of vertices of G is denoted by V , the set-theoretic universe
will be denoted by V.

Proof of claim 5: Let (sα : α < ω
L[a]
1 ) ∈ L[a] be a sequence of pairwise distinct

reals. For each α < ω
L[a]
1 , let rα ∈ (ωω)L[a] be the <L[a] −first real that codes

(α, (sβ : β < α)). The sequences (sα : α < ω
L[a]
1 ) and (rα : α < ω

L[a]
1 ) belong to V,

and as ω1 = ω
L[a]
1 , their length is ω1.

It’s easy to see that {rα : α < ω
L[a]
1 } is a well-defined set and is an independent

subset of V , we shall prove that it’s a maximal independent set. Let r ∈ V \ {rα :
α < ω

L[a]
1 } and suppose towards contradiction that ¬(rErα) for every α < ω

L[a]
1 .

There are two possible cases:
11
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Case I: rα <G r for every α < ω
L[a]
1 . In this case, Ir is a linear order, and each

α < ω
L[a]
1 embeds into Ir as an initial segment. Therefore, ω1 = ω

L[a]
1 embeds into

Ir as an initial segment, a contradiction.

Case II: r <G rα for some α < ω
L[a]
1 . Let α be the minimal ordinal with this

property, then α necessarily has the form β+1. If r = rβ , then we get a contradiction
to the choice of r. If r 6= rβ , then it’s easy to see that rErβ , contradicting our
assumption. �

Proof of claim 6: Let κ be an inaccessible cardinal and let P = Coll(ℵ0, < κ), we
shall prove that P ”There is no maximal independent set in G from HOD(R)”.
Suppose towards contradiction that p ∈ P forces that X

∼
is such a set. Let Q

be a forcing notion such that Q l P, |Q| < κ, p ∈ Q and X
∼

is definable using

a parameter from RVQ . By the properties of the Levy collapse, we may assume
wlog that Q = {0} and p = 0. If P ”X

∼
⊆ (ωω)V”, then P ”|X

∼
| = ℵ0”, and by

claim 3, X
∼

is not a maximal independent set in VP, a contradiction. Therefore,
there exist p1 ∈ P and r1

∼
such that p1 P ”r1

∼
∈ X
∼
∧ r1
∼
/∈ V”. Let Q1 l P be a

forcing of cardinality < κ such that p1 ∈ Q1 and r1
∼

is a Q1-name. For l = 2, 3 let
(Ql, pl, rl

∼
) be isomorphic copies of (Q1, p1, r1

∼
) such that Π

n=1,2,3
Qn l P (identifying

Q1 with its canonical image in the product). Choose (p1, p2) ≤ (q1, q2) such that
(q1, q2) Q1×Q2 ”r1

∼
6= r2
∼

”. As (q1, q2) Q1×Q2 ”r1
∼
, r2
∼
∈ X
∼

”, then wlog (q1, q2)
forces that r1

∼
<G r2

∼
as witnessed by an isomorphism from Ir1

∼
to Ir2

∼
,<s for some

s ∈ Ir2
∼
. Let q3 ∈ Q3 be the conjugate of q1, then (q2, q3) forces (in Q2 × Q3) that

r2
∼
, r3
∼
∈ X
∼

and r3
∼
<G r2

∼
as witnessed by an isomorphism from Ir3

∼
to Ir2

∼
,<s. Now

pick (q1, q2, q3) ≤ (q′1, q′2, q′3) that forces in addition that r1
∼
6= r3
∼
, then necessarily

it forces that r1
∼
Er3
∼
, a contradiction. �
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