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Abstract

Using creature technology, we construct families of Suslin ccc non-sweet forcing notions
Q such that ZF C is equiconsistent with ZF +”Every set of reals equals a Borel set

modulo the (≤ ℵ1)-closure of the null ideal associated with Q”+”There is an ω1-sequence
of distinct reals”.1

1. Introduction
Some history
The study of the consistency strength of regularity properties originated in Solovay’s
celebrated work [So2], where he proved the following result:
Theorem ([So2]): Suppose there is an inaccessible cardinal, then after forcing
(by Levy collapse) there is an inner model of ZF +DC where all sets of reals are
Lebesgue measurable and have the Baire property.
Following Solovay’s result, it was natural to ask whether the existence of an inac-
cessible cardinal is necessary for the above theorem. This problem was settled by
Shelah ([Sh176]) who proved the following theorems:
Theorem ([Sh176]): 1. If every Σ1

3 set of reals is Lebesgue measurable, then ℵ1
is inaccessible in L.
2. ZF + DC + ”all sets of reals have the Baire property” is equiconsistent with
ZFC.
A central concept in the proof of the second theorem is the amalgamation of forcing
notions, which allows the construction of a suitably homogeneous forcing notion,
thus allowing the use of an argument similar to the one used by Solovay, in which
we have “universal amalgamation” (for years it was a quite well known problem).
As the problem was that the countable chain condition is not necessarily preserved
by amalgamation, Shelah isolated a property known as “sweetness”, which implies
ccc and is preserved under amalgamation. See more on the history of the subject
in [RoSh672].
2. General regularity properties
Given an ideal I on the reals, we say that a set of reals X is I−measurable if
X∆B ∈ I for some Borel set B, this is a straightforward generalization of Lebesgue
measurability and the Baire property.
Given a definable forcing notion Q adding a generic real η

∼
(we may write Q instead

of (Q, η
∼

)) and a cardinal ℵ0 ≤ κ, there is a natural ideal on the reals IQ,κ associated

to (Q, κ) (see definition 18), such that, for example, ICohen,ℵ0 and IRandom,ℵ0 are
the meagre and null ideals, respectively. Hence in many cases the study of ideals on
the reals corresponds to the study of definable forcing notions adding a generic real.
On the study of ideals from the point of view of classical descriptive set theory, see
[KeSo] and [So1]. For a forcing theoretic point of view, see [RoSh672]. Another
approach to the subject can be found in [Za].
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We are now ready to formulate the first approximation for our general problem:
Problem: Classify the definable ccc forcing notions according to the consistency
strength of ZF +DC + ”all sets of reals are IQ,κ−measurable”.
Towards this we may ask: Given a definable ccc forcing notion Q, is it possible to get
a model where all sets of reals are IQ,κ−measurable without using an inaccessible
cardinal and for non-sweet forcing notions?
3. Saccharinity
A positive answer to the last question was given by Kellner and Shelah in [KrSh859]
for a proper non-ccc (very non-homogeneous) forcing notion Q, where the ideal is
IQ,ℵ1 .
In this paper we shall prove a similar result for a ccc forcing notion, omitting the
DC but getting an ω1-sequence of distinct reals. By [Sh176], the existence of such
sequence is inconsistent with the Lebesgue measurability of all sets of reals, hence
our forcing notions are, in a sense, closer to Cohen forcing than to Random real
forcing.
Our construction will involve the creature forcing techniques of [RoSh470] and
[RoSh628], and will result in definable forcing notionsQin which are non-homogeneous
in a strong sense: Given a finite-length iteration of the forcing, the only generic
reals are those given explicitly by the union of trunks of the conditions that belong
to the generic set.
The homogeneity will be achieved by iterating along a very homogeneous (thus
non-wellfounded) linear order. By moving to a model where all sets of reals are
definable from a finite sequence of generic reals, we shall obtain the consistency of
ZF + ”all sets of reals are IQin,ℵ1−measurable” + ”There exists an ω1-sequence of
distinct reals”.
It’s interesting to note that our model doesn’t satisfy ACℵ0 , thus leading to a finer
version of the problem presented earlier:
Problem: Classify the definable ccc forcing notions according to the consistency
strength of T + ”all sets of reals are IQ,κ−measurable” where T ∈ {ZF,ZF +
ACℵ0 , ZF +DC,ZF +DC(ℵ1), ZFC}, and similarly for T ′ = T +WOω1 where T
is as above and WOω1 is the statement ”There is an ω1-sequence of distinct reals”.
Remark: Note that for some choices of T , Q and κ, the above statement might be
inconsistent.
We intend to address this problem in [F1424] and other continuations.
A remark on notation: 1. Given a tree T ⊆ ω<ω and a node η ∈ T , we shall denote
by T [η≤] the subtree of T consisting of the nodes {ν : ν ≤ η ∨ η ≤ ν}.
2. For T as above, if η ∈ T is the trunk of T , let T+ := {ν ∈ T : η ≤ ν}.

2. Norms, Q1
n and Q2

n

In this section we shall define a collection N of parameters. Each parameter n ∈ N
consists of a subtree with finite branching of ω<ω with a rapid growth of splitting
and a norm on the set of successors of each node in the tree.
From each parameter n ∈ N we shall define two forcing notions, Q1

n and Q2
n. We

shall prove that they’re nicely definable ccc. We will show additional nice properties
in the case of Q2

n, such as a certain compactness property and the fact that being
a maximal antichain is a Borel property. We refer the reader to [RoSh470] and
[RoSh628] for more information on creature forcing.
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Definition 1: 1. A norm on a set A is a function assigning to each X ∈ P (A)\{∅}
a non-negative real number such that X1 ⊆ X2 → nor(X1) ≤ nor(X2).
2. Let M be the collection of pairs (Q, η

∼
) such that Q is a Suslin ccc forcing notion

and η
∼
is a Q-name of a real.

Definition 2: Let N be the set of tuples n = (T, nor, λ̄, µ̄) = (Tn, norn, λ̄n, µ̄n)
such that:
a. T is a subtree of ω<ω.
b. µ̄ = (µη : η ∈ T ) is a sequence of non-negative real numbers.

c. λ̄ = (λη : η ∈ T ) is a sequence of pairwise distinct non-zero natural numbers
such that:
1. λη = {m : η̂m ∈ T}, so T ∩ ωn is finite and non-empty for every n.
2. If lg(η) = lg(ν) and η <lex ν then λη � λν .
3. If lg(η) < lg(ν) then lg(η)� λη � λν .
4. lg(η)� µη � λη for η ∈ T .
d. For η ∈ T , norη is a function with domain P−(sucT (η)) = P(sucT (η)) \ ∅ and
range ⊆ R+ such that:
1. norη is a norm on sucT (η) (see definition 1).
2. (lg(η) + 1)2 ≤ µη ≤ norη(sucT (η)).
e. λ<η := Π{λν : λν < λη} � µη.
f. (Co-Bigness) If k ∈ R+, ai ⊆ sucTn(η) for i < i(∗) ≤ µη and k + 1

µη
≤ norη(ai)

for every i < i(∗), then k ≤ norη( ∩
i<i(∗)

ai).

g. If 1 ≤ norη(a) then 1
2 <

|a|
|sucTn (η)| .

h. If k + µη ≤ norη(a) and ρ ∈ a, then k ≤ norη(a \ {ρ}).

Definition 3: For n ∈ N we shall define the forcing notions Q1
n ⊆ Q

1
2
n ⊆ Q0

n as
follows:
1. p ∈ Q0

n iff for some tr(p) ∈ Tn we have:

a. p or Tp is a subtree of T [tr(p)≤]
n (so it’s closed under initial segments) with no

maximal node.
b. For η ∈ lim(Tp), lim(norη�l(sucTp(η � l)) : lg(tr(p)) ≤ l < ω) =∞.

c. 2− 1
µtr(p)

≤ nor(p) (where nor(p) is defined in C(b) below).

2. p ∈ Q
1
2
n if p ∈ Q0

n and norη(Sucp(η)) > 2 for every tr(p) ≤ η ∈ Tp.

We shall prove later that Q
1
2
n is dense in Q0

n.
3. p ∈ Q1

n if p ∈ Q0
n and for every n < ω, there exists kp(n) = k(n) > lg(tr(p))

such that for every η ∈ Tp, if k(n) ≤ lg(η) then n ≤ norη(Sucp(η)).
B. Qin |= p ≤ q (i ∈ {0, 1

2 , 1}) iff Tq ⊆ Tp.

C. a. For i ∈ {0, 1
2 , 1}, η

i
n
∼

is the Qin−name for ∪{tr(p) : p ∈ GQin
∼
}.

b. For i ∈ {0, 1
2 , 1} and p ∈ Q let nor(p) := sup{a ∈ R>0 : η ∈ T+

p → a ≤
norη(sucTp(η))} = inf{norη(sucTp(η)) : η ∈ Tp}.
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D. For i ∈ {0, 1
2 , 1} let mi

n = mi,n = (Qin, ηin
∼

) ∈ M where M denotes the set of

pairs of the form (Qin, ηin
∼

).

We shall now describe a concrete construction of some n ∈ N:
Definition 4: We say n ∈ N is special when:
a. For each η ∈ Tn the norm norη is defined as follows: for ∅ 6= a ⊆ sucT (η),
norη(a) = log∗(|sucT (η)|)

µ2
η

− log∗|sucT (η)\a|
µ2
η

where log∗(x) = max{n : in ≤ x} (i0 =
0).

a’. For each η ∈ Tn, the dual norm nor1
η is defined by nor1

η(a) = log∗(|a|)
µn

.

b. µη = norη(suctn(η)).
Observation 4A: There are Tn, (λη, µη : η ∈ Tn) and (norη : η ∈ Tn) satisfying
the requirements of definition 2, where the norm is defined as in definition 4 (hence
n ∈ N is special).
Proof: It’s easy to check that the following (Tn, (µη, λη : η ∈ Tn)) together with the
norm from deifnition 4 form a special n ∈ N where Tn ∩ ωn, (µη, λη : η ∈ Tn ∩ ωn)
are defined by induction on n < ω as follows:
a. Tn ∩ ω0 = {<>}.
b. At stage n+1, for η ∈ Tn∩ωn, by induction according to <lex, define µη = iλ<η ,
λη = iµη2 and the set of succesors of η in Tn is defined as {η(̂l) : l < λη}.
For example, we shall prove the co-bigness property:
Suppose that η ∈ Tn (ai : i < i(∗)) are as in definition 2(f). Denote k1 = |sucTn(η)|
and k2 = max{|sucTn(η) \ (ai)| : i < i(∗)}. Therefore, log∗(k1)

µ2
n
− log∗(k2)

µ2
n
≤ norη(ai)

(so necessarily k+ 1
µη
≤ log∗(k1)

µ2
n
− log∗(k2)

µ2
n

). Let a = ∪
i<i(∗)

ai and k3 = |sucTn(η)\a| ≤

i(∗)k2 ≤ µηk2. Therefore log∗(k1)
µ2
η
− log∗(µηk2)

µ2
n

≤ log∗(k1)
µ2
η
− log∗(k3)

µ2
η

= norη(a). We

have to show that k ≤ norη(a), so it’s enough to show that k ≤ log∗(k1)
µ2
η
− log∗(µηk2)

µ2
n

.

Recalling that k + 1
µη
≤ log∗(k1)

µ2
η
− log∗(k2)

µ2
η

, it’s enough to show that log∗(µηk2)
µ2
η

−
log∗(k2)
µ2
η
≤ 1

µη
.

Case 1: k2 ≤ µη. In this case, it’s enough to show that log∗(µηk2)− log∗(k2) ≤ µη,
and indeed, log∗(µηk2)− log∗(k2) ≤ log∗(µ2

η) ≤ µη.
Case 2: µη < k2. By the properties of log∗, log∗(k2) ≤ log∗(µηk2) ≤ log∗(k2

2) =
log∗(k2) + 1, therefore log∗(µηk2)

µ2
η

− log∗(k2)
µ2
η
≤ 1

µη
.

�

Definition 5: For n ∈ N we define m = m2
n = (Q2

n, η
2
n
∼

) by:

A) p ∈ Q2
n iff p consists of a trunk tr(p) ∈ Tn, a perfect subtree Tp ⊆ T [tr(p)≤]

n and
a natural number n ∈ [1, lg(tr(p)) + 1] such that 1 + 1

n ≤ norη(sucTp(η)) for every
η ∈ T+

p .
B) Order: reverse inclusion.
C) η2

n
∼

= ∪{tr(p) : p ∈ GQ2
n
∼
}.

D) If p ∈ Q2
n we let nor(p) = min{n : η ∈ Tp → 1 + 1

n ≤ norη(sucp(η))}.
Claim 6: Qin |= ccc for i ∈ {0, 1

2 , 1, 2}.
4
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Proof : First we shall prove the claim for Qin where i ∈ {0, 1
2 , 1}. Observe that if

p ∈ Qin and 0 < k < ω, then there is p ≤ q ∈ Qin such that norη(Sucq(η)) > k for
every η ∈ Tq. The claim is trivial for i = 1, so suppose that i ∈ {0, 1

2}. In order to
prove this fact, let Y = {η ∈ Tp :for every η ≤ ν ∈ Tp, norν(SucTp(ν)) > k}, then
Y is dense in Tp (suppose otherwise, then we can construct a strictly increasing
sequence of memebrs ηi ∈ Tp such that norηi(SucTp(ηi)) ≤ k, so ∪

i<ω
ηi ∈ lim(Tp)

contradicts the definition of Qin). Now pick tr(p) ≤ η ∈ Y , then q = p[η≤] is as
required. It also follows that from this claim that Q

1
2
n is dense in Q0

n.
Now suppose towards contradiction that {pα : α < ℵ1} ⊆ Qin is an antichain, for
every α, there is pα ≤ qα such that norη(Sucqα(η)) > 2 for every η ∈ qα. For some
uncountable S ⊆ ℵ1, tr(qα) = η∗ for every α ∈ S. By the claim below, qα, qβ are
compatible for α, β ∈ S, contradicting our assumption.
As for Q2

n, given I = {pi : i < ℵ1} ⊆ Q2
n (Q1

n), the set {(tr(p), nor(p)) : p ∈ I}
is countable, hence there is p∗ ∈ I such that for uncountably many pi ∈ I we
have (tr(pi), nor(pi)) = (tr(p∗), nor(p∗)). By the claim below, those pi are pairwise
compatible.

�

Claim 7: 1) p, q ∈ Q2
n are compatible in Q2

n iff tr(p) ≤ tr(q) ∈ Tp or tr(q) ≤
tr(p) ∈ Tq.
2) Similarly, p, q ∈ Qin are compatible in Qin for i ∈ {0, 1

2 , 1} iff tr(p) ≤ tr(q) ∈
Tp ∨ tr(q) ≤ tr(p) ∈ Tq.
Proof : In both clauses, the implication → is obvious, we shall prove thee other
direction.
1) First observe that if p ∈ Q2

n and ν ∈ Tp, then p[ν] ∈ Q2
n and p ≤ p[ν] (where p[ν]

is the set of nodes in p comparable with ν).
�1 If tr(p) ≤ tr(q) ∈ Tp then Tp ∩ Tq has arbitrarily long sequences.

Proof: Let η = tr(q), then by the definition of the norm andQ2
n, 1

2 <
|sucTp (η)|
|sucTn (η)| ,

|sucTqη|
|sucTn (η)| .

Hence there is ν ∈ sucTp(η) ∩ sucTq (η). Repeating the same argument, we get se-
quences in Tp ∩ Tq of length n for every n large enough.
�2 Claim: If tr(p1) = tr(p2) = η, p1, p2 ∈ Q2

n, 1 + 1
h ≤ nor(p1), nor(p2) and

h < lg(η), then p1 and p2 are compatible.
Proof: For every ν ∈ Tp1∩Tp2 , by the co-bigness property,min{norν(sucp1(ν)), sucp2(ν)}−
1
µν
≤ nor(sucp1(ν)∩sucp2(ν)). By the definition of nor(pi) (recalling that lg(η)2 ≤

µη), 1 + 1
h+1 ≤ (1 + 1

h+1 ) + ( 1
(h+1)2 − 1

µη
) ≤ (1 + 1

h+1 ) + ( 1
h −

1
h+1 −

1
µν

) =
1 + 1

h −
1
µν
≤ min{nor(p1), nor(p2)} − 1

µν
≤ min{norν(sucp1(ν)), sucp2(ν)} − 1

µν
.

Therefore 1 + 1
h+1 ≤ nor(sucp1(ν) ∩ sucp2(ν)), so p1 ∩ p2 is as required. Hence:

�3 p and q are compatible.
Proof: Suppose WLOG that tr(p) ≤ tr(q) ∈ Tp and pick h such that 1 + 1

h ≤
nor(p), nor(q). By �1, there is η ∈ Tp ∩ Tq such that h < lg(η). Now p ≤ p[η], q ≤
q[η] and (p[η], q[η]) satisfy the assumptions of �2, therefore they’re compatible and
so are p and q.
The proof is similar if tr(q) ≤ tr(p) ∈ Tq. The implication in the other direction is
easy.
2) The proof is similar. First observe that if η ∈ lim(Tp)∩lim(Tq), then lim(norη�l(sucTp(η �
l)) : l < ω) = ∞ = lim(norη�l(sucTq (η � l)) : l < ω), so by the co-bigness
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property (definition 2(f)), lim(norη�l(sucTp∩q (η � l)) : l < ω) = ∞. Now let
ν = tr(q) ∈ Tp ∩ Tq, as 2 − 1

µtr(p)
≤ nor(p), nor(q), it follows from the co-bigness

property and definition 2(g) that ν ≤ η ∈ Tp∩Tq → 2 < |Sucp∩q(η)|, so p∩q is a per-
fect tree. It’s easy to see that there exists η ∈ p∩ q such that norν(Sucp∩q(ν)) > 2
for every η ≤ ν ∈ p ∩ q (otherwise, we can repeart the argument in the proof of
claim 6, and get a branch through p ∩ q along which the norm doesn’t tend to
infinity). Therefore, p[≤η] ∩ q[≤η] ∈ Qin (i ∈ {0, 1

2}) is a common upper bound.
Finally, note that if i = 1, then for every n < ω there exist kp(n + 1), kq(n + 1)
as in definition 3.3. By the co-bigness property, for every η ∈ Tp ∩ Tq of length
> max{kp(n+ 1), kq(n+ 1)}, n ≤ norη(Sucp∩q(η)). Therefore, the common upper
bound is in Q1

n as well.

�

Claim 8: Let I ⊆ Q2
n be an antichain and A = ∪{T+

q : q ∈ I} ⊆ Tn. The following
conditions are equivalent:
(a) I is a maximal antichain.
(b) If η ∈ Tn and 0 < n < ω then there is no p ∈ Q2

n such that:
(α) tr(p) = η.
(β) nor(p) = n.
(γ) p is incompatible with every q ∈ I.
(c) Like (b), but replcaing (γ) by
(γ)′ T+

p ∩A = ∅.
(d) Like (b), but replcaing (γ) by
(γ)′′ For every m > n T+

p ∩A is disjoint to {ν ∈ Tn : lg(ν) ≤ m}.
(e) If η ∈ Tn and n < ω then for some m > n there is no set T such that:
(α) T ⊆ Tn.
(β) η ∈ T .
(γ) If ν ∈ T+ then η ≤ ν and lg(ν) ≤ m.
(δ) If η ≤ ν1 ≤ ν2 and ν2 ∈ T then ν1 ∈ T .
(ε) T ∩A = ∅.
(ζ) If ν ∈ T and lg(ν) < m then 1 + 1

n ≤ norν(sucT (ν)).
Proof : ¬(a) → ¬(b) : If p is incompatible with every q ∈ I then (p, tr(p), nor(p))
is a counterexample to (b).
¬(b)→ ¬(c) : If (p, tr(p), nor(p)) is a counterexample to (b), then it is a counterex-
ample to (c) by the characterisation of compatibility in Q2

n in claim 7.
¬(c)→ ¬(d) : Obvious.
¬(d)→ ¬(e): Let T = Tp with p being a counter example to (d) and let η = tr(p), n
witness ¬(d). We shall check that for every m > n, {ν : tr(p) ≤ ν ∈ T ∧ lg(ν) ≤ m}
satisfies (α)− (ζ) if (e).
¬(e)→ ¬(a) : If (η, n) is a counterexample, then for every m there is Tm satisfying
(α) − (ζ) of clause (e). Let D be a non-principal ultrafilter on ω and define T :=
{ν ∈ Tn : ν ≤ η or {m : m > n, ν ∈ Tm} ∈ D}. It remains to show that T ∈ Q2

n
(as T+ is disjoint to A, it follows that I is not a maximal antichain). The proof is
similar to claim 12.
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�

Claim 9: Let n ∈ N.

A) The sets Q1
n and Q2

n are Borel, the sets Q0
n and Q

1
2
n are Π1

1.

B) The relation ≤Qin is Borel for i ∈ {0, 1
2 , 1, 2}.

C) The incompatibility relation in Qin is Borel for i ∈ {0, 1
2 , 1, 2}.

Proof:

A. The sets Q1
n and Q2

n are Borel: We shall first prove the claim for Q1
n.

Consider Tn as a subset of H(ℵ0). By definition, if p ∈ Q1
n then Tp ⊆ Tn ⊆ H(ℵ0).

Hence S := {p ⊆ H(ℵ0) : p is a perfect subtree of Tn} ⊆ P (H(ℵ0)) is a Borel
subset of P (H(ℵ0)). For every n, k < ω define S1

n,k = {p ∈ S : lg(tr(p)) < k

and if ρ ∈ Tp and k ≤ lg(ρ) then n ≤ norρ(sucp(ρ))}. Each S1
n,k is closed, hence

S ∩ (∩
n
∪
k
S1
n,k) is Borel, so it’s enough to show that p ∈ Q1

n iff p ∈ S ∩ (∩
n
∪
k
S1
n,k)

and 2− 1
µtr(p)

≤ nor(p), which follows directly from the definition of Q1
n.

In the case of Q2
n, we replace ∩

n
∪
k
S1
n,k with ∪

n,k
S2
n,k where S2

n,k = {p ∈ S : lg(tr(p)) =

n ∧ nor(p) = k}. Each S2
n,k is Borel and since “being a perfect subtree” is Borel,

Q2
n is Borel.

The sets Q0
n and Q

1
2
n are Π1

1: The demand “lim
n<ω

(norη�n(Sucp(η � n))) = ∞ for
every η ∈ lim(Tp)” is Π1

1,and it’s easy to see that {p ∈ S : tr(p) ≤ η ∈ Tp →
norη(SucTp(η)) > 2} is Borel.

B. The relation ≤Qin is Borel for i ∈ {0, 1
2 , 1, 2}: For i ∈ {0, 1

2 , 1, 2}, the relation
≤Qin is simply the reverse inclusion relation restricted to Qin, hence it is Borel.

C. The incompatibility relation in Qin is Borel for {0, 1
2 , 1, 2}: The incom-

patibility relation is Borel by claim 7.

�

Claim 10: A) Assume that pl ∈ Qin (l < n) where i ∈ {0, 1}, ∧
l<n

tr(pl) = ρ,
n ≤ lg(ρ) and for every η ∈ pl we have 2 ≤ k+1 ≤ norη(sucpl(η)), then {pl : l < n}
have a common upper bound p such that tr(p) = ρ and k ≤ norη(sucp(η)) for every
η ∈ T+

p .

B) Assume that pl ∈ Q2
n (l < n), ∧

l<n
tr(pl) = ρ, n ≤ lg(ρ) and for every η ∈ p+

l

(l < n) we have 1 + 1
k ≤ norη(sucpl(η)). In addition, assume that k(k+ 1) ≤ µη for

every η ∈ p+
l (l < n), then {pl : l < n} have a common upper bound p such that

tr(p) = ρ and 1 + 1
k+1 ≤ norη(sucp(η)).

Proof : A) Suppose first that i = 0. Let p = ∩
l<n

pl, then p ⊆ T
[ρ≤]
n is a subtree

conatining ρ. If ν ∈ p then ν ∈ pl for every l < n, hence Sucp(ν) = ∩
l<n

Sucpl(ν).
As n ≤ lg(ρ) ≤ µη for every ρ ≤ η ∈ p, it follows from the properties of the norm in
the definition of n ∈ N that k ≤ norη(Sucp(η)). Therefore, Tp is a prefect tree, and
similarly to the proof of claim 7, it follows that the norm along infinite branches
tends to infinity, hence p ∈ Q0

n. Suppose now that i = 1. The above arguments are
still valid, and in addition, similarly to the argument on Q1

n in th proof of claim
7(2), it’s easy to see that by the co-bigness property, p ∈ Q1

n.
7
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Remark: Note that as 2 ≤ k+1, it follows from the above arguments that 2− 1
µtr(p)

≤
norη(SucTp(η)) for every tr(p) ≤ η ∈ Tp. In fact, k + 1 − 1

µρ
≤ norη(SucTp(η)),

therefore, if 2 < k + 1− 1
µρ

then we also get the claim for i = 1
2 .

B) The proof is similar, the only difference is that now we have to prove the following
assertion:

(∗) If bl ⊆ sucTn(η) for l < n ≤ µη, ∧
l<n

1 + 1
k ≤ norη(bl) and b = ∩

l<n
bl then

1 + 1
k+1 ≤ norη(b).

The assertion follows from the co-bigness property (definition 2(f), with bi and
1 + 1

k −
1
µη

here standing for ai and k there).

�

Claim 11: Let n ∈ N. ”{pn : n < ω} is a maximal antichain” is Borel for
{pn : n < ω} ⊆ Q2

n.

Proof : By claim 8.

�

Claim 12: Assume {pn : n < ω} ⊆ Q2
n, ∧

n
tr(pn) = η and ∧

n
nor(pn) = k. Then

there is p∗ ∈ Q2
n such that:

(a) tr(p∗) = η, nor(p∗) = k.

(b) p∗ Q2
n

”(∃∞n)(pn ∈ GQ2
n
)”.

Proof : Let D be a uniform ultrafilter on ω and define Tp∗ := {ν ∈ Tn : {n : ν ∈
pn} ∈ D}. If ν ∈ Tp∗ , then for some n, ν ∈ Tpn ⊆ T

[η≤]
n (recalling that tr(pn) = η),

hence Tp∗ ⊆ T
[η≤]
n . Obviously, l ≤ lg(η)→ η � l ∈ Tp∗ as η = tr(pn) ∈ pn for every

n.

(∗)1 If η / ν / ρ and ρ ∈ Tp∗ , then ν ∈ Tp∗ .

Why? Define Aρ = {n : ρ ∈ pn} and define Aν similarly. Aρ ∈ D by the definition
of Tp∗ . Obviously Aρ ⊆ Aν , hence Aν ∈ D and ν ∈ Tp∗ .

(∗)2 If ν ∈ Tp∗ then 1 + 1
k ≤ norν(sucp∗(ν)).

Why? Define Aν as above, so Aν ∈ D. Let (bl : l < l(∗)) list {sucpn(ν) : n < ω}.
As {sucpn(ν) : n < ω} ⊆ P (sucTn(ν)), we have l(∗) ≤ 2|sucTn (ν)| = 2λν < ℵ0. For
l < l(∗) let Aν,l := {n ∈ Aν : sucpn(ν) = bl}. Obviously this is a finite partition
of Aν , hence there is exactly one m < l(∗) such that Aν,m ∈ D and therefore
bm ⊆ sucp∗(ν) and actually bm = sucp∗(ν) (if η ∈ sucp∗(ν) is witnessed by X ∈ D,
then X ∩Aν,m is a witness for η ∈ bm). Therefore norν(bm) = norν(sucp∗(ν)) and
for some n we have 1 + 1

k = 1 + 1
nor(pn) ≤ norν(sucpn(ν)) = norν(sucp∗(ν)).

It follows from the above arguments that p∗ ∈ Q2
n.

We shall now prove that

(∗)3p∗ Q2
n

”(∃∞n)(pn ∈ GQ2
n
)”.

Why? Suppose that p∗ ≤ q, then tr(q) ∈ Tp∗ . By the definition of p∗, {n : tr(q) ∈
pn} ∈ D. For every such pn, η = tr(pn) ≤ tr(q) ∈ Tpn , so pn is compatible with q
and hence with p∗.

�
8
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Claim 12’: For ι ∈ {0, 1
2 , 1, 2}, η

ι
n
∼

is a generic for Qιn, i.e. Qιn ”V [GQιn
∼

] = V [ηιn
∼

]”.

Proof: Easy.

�

3. The iteration
In this section we shall describe our iteration. Although our definition will be
general and will follow the technique of iteration along templates as described in
[Sh700], we will eventually use a simple private case of the general construction. In
our case, we’ll have a non-wellfounded linear order L, and the forcing will be the
union of finite-length iterations along subsets of L. Dealing with FS-iterations of
Suslin forcing will guarantee that the union is well-behaved.
Iteration parameters
Definition 12: Let Q be the class of q (iteration parameters) consisting of:
a. A partial order Lq = L[q].
b. ū0 = (u0

t : t ∈ Lq) such that u0
t ⊆ L<t for each t ∈ Lq (and u0

t is well-ordered
by (d)). In the main case |u0

t | ≤ ℵ0 (in our application, u0
t is actually empty).

c. I = (It : t ∈ Lq) such that each It is an ideal on L<t and u0
t ∈ It. In the main

case here, It = {u ⊆ L<t : u is finite}.
d. L is a directed family of well-founded subsets of Lq closed under initial segments
such that ∪

L∈L
L = Lq and t ∈ L→ u0

t ⊆ L (for L ∈ L).

e. (mt : t ∈ Lq) is a sequence such that each mt is a definition of a Suslin ccc forcing
notion Qimt

with a generic ηmt
∼

(depending on a formula using B(..., ηs, ...)s∈u0
t
, see

f+g and definition 13).
f. Actually, mt = mt,ν

∼t

where νt
∼

= Bt(η̄ � u0
t ) is a name of a real and Bt is a

Borel function (see definition 13(E) below), i.e. mt is computed from the parameter
νt
∼
∈ ωω.

g. For every t ∈ Lq, Bt : Π
i∈u0

t

ωω → ωω is an absolute Borel function.

h. For a linear order L, let L+ := L∪{∞} which is obtained by adding an element
above all elements of L.
The iteration
Definition and claim 13: For i ∈ {1, 2}, q ∈ Q and L ∈ L we shall define the FS
iteration Q̄L = (PLt ,QLt

∼
: t ∈ L+) with limit PL and the PLt = PL,<t-names ηt

∼
, νt
∼

by

induction on dp(L) (where dp(L) is the depth of L, recalling that L is well-founded)
such that:
A. a) PL is a forcing notion.
b) ηt
∼

is a PL name when u0
t ∪ {t} ⊆ L ∈ L (so we use a maximal antichain from

PL, moreover, from PL1 for every L1 ∈ L which is ⊆ L).
c) νt
∼

is a PL name when u0
t ⊆ L ∈ L.

d) If L1, L2 ∈ L are linearly ordered, L1 ⊆ L2 and each It has the form {L ⊆ L<t : L
is well-ordered}, then PL1 l PL2 .
B. p ∈ PLt iff

9
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a. Dom(p) ⊆ L<t is finite.
b. If s ∈ Dom(p) then for some u ∈ Is ∩ P(L<s) and a Borel function B, p(s) =
B(..., ηr

∼
, ...)r∈u and PLs ”p(s) ∈ Qims

”.

C. QLt
∼

is the PLt -name of Qimt
using the parameter νt

∼
.

D. η̄ = (ηt
∼

: t ∈ Lq). Each ηt
∼

is defined as the generic of QLt (by a maximal

antichain of PL whenever L ∈ L and u0
t ⊆ L ⊆ L<t), meaning: t ∈ L ∈ L → ”ηt

∼
is a generic for Qt

∼
” defined as usual.

E. ν̄ = (νt
∼

: t ∈ Lq) such that for each t ∈ Lq, Bt is a Borel function and

νt
∼

= Bt(η̄ � u0
t ).

F. The order on PL is defined naturally.
Proof: Should be clear.

�

13(A) A special case of the general construction
Of special interest here is the case where q ∈ Q satisfies:
a. Lq is a dense linear order, It = [L<t]<ℵ0 for each t ∈ Lq and L = [Lq]<ℵ0 .
b. mt is a definition of Qint where i ∈ {1, 2} (hence a Suslin c.c.c. forcing), not
using a name of the form νt

∼
.

c. mt ∈ V and u0
t = ∅ for every t ∈ Lq.

13(B) We shall denote the collection of q ∈ Q as above by Qsp.
13(C) Hypothesis: From now on we assume that q ∈ Q satisfies the requirements
of 13(A).
Definition/Observation 14: Let q ∈ Q.
1. {PJ : J ⊆ Lq is finite} is a l-directed set of forcing notions.
2. For J ⊆ Lq, let PJ = ∪{PJ′ : J ′ ⊆ J is finite} and Pq = PLq .
Proof : (1) follows by [JuSh292].

�

Claim 15: 1) For every J1 ⊆ J2 ⊆ Lq, PJ1 l PJ2 .
2) If J ⊆ Lq then PJ = Pq,J = ∪{PI : I ⊆ J is finite}l Pq.
Proof: 1) Case 1: |J2| < ℵ0. Easy by [JuSh292].
Case 2: J2 is inifinite. Let q ∈ PJ2 , then for some finite J∗2 ⊆ J2, q ∈ PJ∗2 . Let
J∗1 = J1 ∩ J∗2 . As PJ∗1 l PJ∗2 by observation 14(1), there is p ∈ PJ∗1 such that
p ≤ p′ ∈ PJ∗1 → p′ and q are compatible. It suffices to prove that if J ′1 ⊆ J1 is
finite and J∗1 ⊆ J ′1, then p ≤ p′ ∈ PJ′1 → p′ and q are compatible in PJ∗2∪J′1 (as if
p ≤ p′ ∈ PJ1 , then p′ ∈ PJ′1 where J ′1 = J∗1 ∪Dom(p′)). We prove this by induction
on sup{|L<t ∩ J∗1 | : t ∈ J ′1 \ J∗1 } as in [JuSh292].
2) By (1).
Observation 16: Suppose that q ∈ Q, J ∈ L is finite and p1, p2 ∈ PJ . If
tr(p1(t)) = tr(p2(t)) for every t ∈ Dom(p1)∩Dom(p2), then p1 and p2 are compat-
ible.
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Proof : By induction on |J |. The induction step is a corollary of the compatibility
condition for Q2

n (see claim 7).

�

Claim 17: For q ∈ Q, Pq |= ccc.

Proof: Suppose that {pα : α < ℵ1} ⊆ Pq. For each α < ℵ1 there is a finite Jα ⊆ Lq
such that pα ∈ PJα . Hence there is n∗ ∈ N such that |{pα : |Jα| = n∗}| = ℵ1. For
each α denote Jα = {tα,0 < ... < tα,nα−1}, by cardinallity arguments i.e. the ∆-
system lemma, WLOG there is u ⊆ n∗ such that tα,l = tl for every α < ℵ1 and
(tα,l : l ∈ n∗ \ u, α < ℵ1) is without repetitions. As every condition pα ∈ PJα
belongs to an iteration along Jα in the usual sense, there is pα ≤ p′α ∈ PJα such
that tr(p′α(t)) is an object for every t ∈ Jα (so Jα = Dom(p′α)). Given l ∈ u there
are countably many possible values for tr(pα(tl)), hence there is a set I = {pαi :
i < i(∗)} ⊆ {pα : α < ℵ1} of cardinality ℵ1 such that tr(pαi(tl)) is constant for all
i < i(∗). If i < j < i(∗), then Ji,j := Jαi ∪ Jαj ⊆ Lq is finite, pαi ∈ PJαi l PJi,j
and pαj ∈ PJαj l PJi,j , so pαi and pαj are compatible in PJi,j (hence in Pq) by
observation 16.

�

4. The ideals derived from a forcing notion Q
We shall now define the ideals derived from a Suslin forcing notion Q and a name
η
∼
of a real.

Definition 18: 1. Let Q be a forcing notion such that each p ∈ Q is a perfect
subtree of ω<ω, p ≤Q q iff q ⊆ p and the generic real is given by the union of trunks
of conditions that belong to the generic set, that is η

∼
= ∪
p∈G
∼

tr(p) and Q ”η
∼
∈ ωω”.

Let ℵ0 ≤ κ, the ideal I0
Q,κ will be defined as the closure under unions of size ≤ κ of

sets of the form {X ⊆ ωω : (∀p ∈ Q)(∃p ≤ q)(lim(q) ∩X = ∅)}.

2. Let m = (Q, κ) where η
∼
is a Q-name of a real, the ideal I1

m,κ for ℵ0 ≤ κ will be
defined as follows:

A ∈ I1
m,κ iff there exists X ⊆ κ such that A ∩ {η

∼
[G] : G ⊆ QL[X] is generic over

L[X]} = ∅.

3. For Q and κ as above, we shall denote I0
Q,κ by IQ,κ.

4. Let I be an ideal on the reals, a set of reals X is called I-measurable if there
exists a Borel set B such that X∆B ∈ I.

5. A set of reals X will be called (Q, κ)-measurable if it is IQ,κ-measurable.

6. Given a model V of ZF , we say that (Q, κ)-measurability holds in V if every set
of reals in V is (Q, κ)-measurable and IQ,κ is a non-trivial ideal.

Remark: In [F1424] we shall further investigate the above ideals.

5. Cohen reals
An important feature of Qιn is the fact that it adds a Cohen real. This fact will be
later used to show that Qιn can turn the ground model reals into a null set with
respect to the relevant ideal.

Claim 19: Forcing with Qιn (i ∈ {0, 1
2 , 1, 2}) adds a Cohen real.
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Proof : For every η ∈ Tn let gη : sucTn(η) → {0, 1} be a function such that
|g−1
η {l}| >

λη
2 − 1 (l = 0, 1) (recall that λη = |sucTn(η)|). Define a Qιn-name ν

∼
by

ν
∼

(n) = gηιn
∼

�n(ηιn
∼

� (n+ 1)) (recalling ηιn
∼

is the generic). Clearly, Qιn ”ν
∼
∈ 2ω”. We

shall prove that it’s forced to be Cohen.
(∗) If p ∈ Qιn and i = 1 → 2 ≤ norρ(sucp(ρ)) for every ρ ∈ Tp, then for every
η ∈ 2ω, for some ρ ∈ Tp, lg(ρ) = lg(tr(p)) +m and if lg(tr(p)) ≤ i < tr(p) +m then
p[ρ]  ”ν

∼
(i) = η(i)”.

We prove it by induction on m. For m = 1, as |sucTn(tr(p)) \ sucp(tr(p))| <
|sucTn (tr(p))|

2 − 1 (by clause (g) of definition 2) and for every i ∈ {0, 1} we have
|g−1
tr(p){i}| >

λtr(p)
2 −1, hence there are ρ0, ρ1 ∈ sucp(tr(p))\{ρ} such that gtr(p)(ρ0) =

0, gtr(p)(ρ1) = 1 and by the definition of ν
∼
, p[ρ0]  ”ν

∼
(tr(p) + 1) = 0” and

p[ρ1]  ”ν
∼

(tr(p) + 1) = 1”. Suppose that we proved the theorem for m, then
for some ρ ∈ Tp of length lg(tr(p)) + m the conclusion holds. Now repeat the
argument of the first step of the induction for p[≤ρ] to obtain ρ ≤ ρ′ of length
lg(tr(p)) +m+ 1 as required.
By (∗), ν

∼
is forced to lie in every open dense set, hence it’s Cohen.

�

6. Not adding an unwanted real
A crucial step towards our final goal is to prove that the only generic reals in finite
length iterations of Q2

n are the ηts. This will be used later in order to show that
ωω \{ηt : t ∈ L} is null with resepect to the relevant ideal. We intend to strengthen
this result dealing with arbitrary length iterations in [F1424].
Claim 20: If A) then B) where
A) (a) pi ∈ Qιn for i < m.
(b) tr(pi) = ρ for i < m.
(c) If ι ∈ {0, 1} then 2 ≤ nor(pi) for every i < m.
(d) If ι = 2 then 2 ≤ nor(pi) for every i < m.
(e) lg(ρ) < m∗ < m.
(f) There is ρ < η ∈ Tn such that λ<η ≤ m∗ < m ≤ µη (for example, it follows
from the assumption m ≤ µη ⇐⇒ m∗ ≤ λ≤η).
B) There is an equivalence relation E on {0, 1, ...,m − 1} with ≤ m∗ equivalence
classes such that if i < m then {pj : j ∈ (i/E)} has a common upper bound.

Proof : Let η ∈ T [ρ≤]
n be as in clause (f). Let k∗ = lg(η) and define λn,k := Π{λν :

ν ∈ Tn, lg(ν) < k}, Tn,ρ,k := {ν ∈ Tn : ρ ≤ ν ∈ Tn, lg(ν) = k}. Recall that λν
is the size of sucn(ν), hence |Tn,ρ,k∗ | is the product of all λν such that ρ ≤ ν and
lg(ν) < k∗, which is ≤ λn,k∗ . For each i < m let ρi ∈ pi be of length k∗, then
ρi ∈ Tn,ρ,k∗ by the definition of Tn,ρ,k∗ and the assumptions on pi. Define ρ+

i for
i < m as follows: if λη < λρi , define ρ+

i := ρi. Otherwise we let ρ+
i ∈ sucpi(ρi).

Define the equivalence relation E := {(i, j) : ρ+
i = ρ+

j }. Let j < m, for every

i ∈ (j/E) define p′i = p
[ρ+
j

]
i (this is well defined, as ρ+

i = ρ+
j ), then tr(p′i) = ρ+

j for
every i ∈ (j/E). By the choice of η, for j < m, |j/E| ≤ m ≤ µη ≤ µρ+

j
(by the

choice of ρ+
j and definition 2).
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By claim 10, the set {p′i : i ∈ (j/E)} has a common upper bound, hence {pi : i ∈
(j/E)} has a common upper bound.
By the choice of p+

i , the number of E-equivalence classes is bounded by λ<η. As
λ<η ≤ m∗, we’re done.

�

Claim 21: We have p∗ P ”ρ
∼
is not (Qιn, ηιn

∼
)-generic over V ” when:

a) ι ∈ {0, 1
2 , 1, 2} and α∗ < ω.

b) (Pα,Qα
∼

: α < α∗) is a FS iteration with limit P = Pα∗ .

c) nα ∈ N is special (note: nα is not a Pα−name).

d) Pα ”Qα
∼

= (Qιnα)V
Pα

”.

e) n ∈ N is special.
f) For every α, n and nα are far (i.e. η1 ∈ Tn ∧ η2 ∈ Tnα → λn

η1
� µnα

η2
or

λnα
η2
� µn

η1
).

f)(+) For every α < α∗ for every l large enough, for some m ∈ {l, l + 1} we have:
If ρ ∈ Tn, lg(ρ) = l, ν1, ν2 ∈ Tnα(l) and lg(ν1) ≤ m < lg(ν2)) then λnα(l),ν1 � µn,ρ
and λn,ρ � µnα(l),ν2 .

g) p∗ P ”ρ
∼
∈ lim(Tn)”.

Proof : For η ∈ Tn defineWn,η := {w : w ⊆ sucTn(η) and i = 1→ lg(η) ≤ norn
η (w)

and i = 2 → 2 ≤ norn
η (w)}. For n < ω define Λn = {η ∈ Tn : lg(η) < n}, so

Tn = ∪
n<ω

Λn. Define Sn := {w̄ : w̄ = (wη : η ∈ Λn ∧ wη ∈ Wn,η)} and S = ∪
n<ω

Sn.
(S,≤) is a tree with ω levels such that each level is finite and lim(S) = {w̄ : w̄ =
(wη : η ∈ Tn) and w̄ � Λn ∈ Sn for every n}. For w̄ ∈ lim(S) let Bw̄ := {ρ ∈
lim(Tn) : for every n large enough, ρ � (n+ 1) ∈ wρ�n}, so Bw̄ = ∪

m<ω
Bw̄,m where

Bw̄,m = {ρ ∈ lim(Tn) : if m ≤ n then ρ � (n+ 1) ∈ wρ�n}. We shall prove that
(∗) Qιn ”ηιn

∼
∈ Bw̄” for every w̄ ∈ lim(S).

Let p ∈ Qιn, we shall prove that for some p ≤ q and m < ω, q  ηin
∼
∈ Bw̄,m. Let

ν ∈ Tp such that lg(ν) is large enough and let m = lg(ν). Now q will be defined
by taking the subtree obtained from the intersection of T [≤ν]

p with ( ∪
ν≤ρ

wρ). By the

co-bigness property, q is a well defined condition, and obviously q  ηin
∼
∈ Bw̄,m.

By (∗) it suffices to prove that for some w̄ ∈ lim(S), p∗ 1P ”ρ
∼
∈ Bw̄”.

Proof: Assume towards contradiction that p  ”ρ
∼
∈ Bw̄ for every w̄ ∈ lim(S)”, so

there is a sequence (pw̄ : w̄ ∈ lim(S)) and a sequence (m(w̄) : w̄ ∈ lim(S)) such
that:
a) p∗ ≤ pw̄.
b) pw̄  ρ

∼
∈ Bw̄,m(w̄).

By increasing the conditions pw̄ if necessary, we may assume WLOG that:
1. tr(pw̄(α)) is an object for every w̄ and every α ∈ Dom(pw̄).
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2. If ι = 1 and α ∈ Dom(pw̄), then pw̄ � α Pα ”ν ∈ pw̄(α)→ norν(Sucpw̄(α)(ν)) >
2”.
If ι = 2 and α ∈ Dom(pw̄), then for some m � lg(tr(pw̄(α))), pw̄ � α Pα ν ∈
pw̄(α)→ 1 + 1

m ≤ nor(sucpw̄(α)(ν)).
In order to prove (1)+(2), we shall prove by induction on β ≤ α(∗) that for every
p ∈ Pβ there is p ≤ q ∈ Pβ satisfying (2) and forcing a value to the relevant trunks.
The induction step: assume that β = γ + 1. As p(γ) is a Pγ−name of a condition
in Q2

n, there are p � γ ≤ p′ ∈ Pγ and ρ such that p′ Pγ tr(p(γ)) = ρ. As p′ Pγ
p(γ) ∈ Q2

n and by the definition of Q2
n, there is p′ ≤ p′′ and m ≤ µlg(ρ) such that

p′′ Pγ ν ∈ p(γ)→ 1+ 1
m ≤ nor(sucp(γ)(ν)). Now choosem� m1, so p′′ Pγ ”there

is ν ∈ p(γ) such that lg(ν) = m1”. Therefore there are p′′ ≤ p∗ and ν of length
m1 such that p∗ Pγ ”ν ∈ p(γ) ∧ (ν ≤ η ∈ p(γ) → 1 + 1

m ≤ nor(sucp(γ)(η)))”.
By the induction hypothesis, there is p∗ ≤ q′ ∈ Pγ satisfying (1)+(2). Now define
q := q′ ∪ (γ, p(γ)[ν≤]), obviously q is as required. The proof for Q1

n is similar.
Now we shall define a partition of lim(S) to ℵ0 sets as follows:
LetWm,u,ρ̄ = {w̄ ∈ lim(S) : m(w̄) = m,Dom(pw̄) = u ∈ [α(∗)]<ℵ0 , ρ̄ = (tr(pw̄(α)) :
α ∈ u)}. Choose (m∗, u∗, ρ̄∗) such that W = Wm∗,u∗,ρ̄∗ ⊆ lim(S) is not meagre.
Let ū∗ ∈ S such that W is no-where meagre above ū∗. Let l(∗) be such that
ū∗ ∈ Sl(∗) and let lg(ū∗) := l(∗).
Denote ρ̄∗ = (ρ∗α : α ∈ u∗), let (αn : n < n(∗)) list u∗ in increasing order and let
αn(∗) = α(∗). Therefore, if ū∗ ≤ w̄ ∈ W then Dom(pw̄) = {α0, ..., αn(∗)−1} and
tr(pw̄(αn)) = ρ∗αn for every n < n(∗).
By our assumption, n is far from nα. As increasing ū∗ is not going to change
the argument, we may assume that l(∗) is large enough so ∧

α∈u∗
lg(ρ∗α) < l(∗) and if

l < n(∗), ν ∈ Tn, ρ ∈ Tnαl and lg(ū∗) ≤ lg(ν), then λn,ν � µnαl ,ρ or λnαl ,ρ � µn,ν .
Note that we don’t have to assume that lg(ū∗) ≤ lg(ρ): For every n < n(∗), there
is mn as guaranteed by (f)(+), with (nαn , lg(ν),mn) here standing for (nα, l,m)
there. If lg(ρ) ≤ mn, then by taking an arbitrary ν2 of length > mn, it follows
from (f)(+) that λnα(n),ρ � µn,ν . If mn < lg(ρ), then by taking an arbitrary ν2 of
length ≤ mn, we get λn,ν � µnα(n),ρ.
Recalling (f)(+) (and by increasing ū∗ if necessary), let (mn : n < n(∗)) be a
series of natural numbers such that (n,nα(n), lg(ū∗),mn) satisfy that assumptions
of (f)(+) (with (n,nα(n), lg(ū∗),mn) here standing for (n,nα, l,m) there).
Let Λ0

m = Λm+1\Λm = {ρ ∈ Tn : lg(ρ) = m} and let S0
m = {w̄ : w̄ = (wη : η ∈ Λ0

m),
for every η ∈ Λ0

m, wη ∈Wn,η}.
Recalling that above ū∗, W is nowhere meagre, for every v̄ ∈ S0

l(∗) there is w̄v̄ ∈
W ⊆ lim(S) such that ū∗̂̄v ≤ w̄v̄.
Choose pn, Un by induction on n ≤ n(∗) such that:
1. pn ∈ Pαn .
2. If m < n then pm ≤ pn � αm.
3. Un ⊆ S0

l(∗).
4. If m < n then Un ⊆ Um.
5. If E is an equivalence relation on Un with ≤ Π{|Tnαl ,ml | : n ≤ l < n(∗)}
equivalence classes, then for some v̄∗ ∈ Un, ∩{ ∪

ρ∈Tn,l(∗)
wv̄ρ : v̄ ∈ v̄∗/E} = ∅.

6. If v̄ ∈ Un then pw̄v̄ � α(n) ≤ pn.
14
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Suppose we’ve carried the induction, then for every v̄ ∈ Un(∗), pw̄v̄ = pw̄v̄�αn(∗)
≤

pn(∗), hence by the choice of pw̄v̄ , pn(∗)  ρ
∼
∈ ∩{Bw̄v̄ ,mw̄v̄ : v̄ ∈ Un(∗)}. Therefore

it’s enough to show that ∩{Bw̄v̄ ,mw̄v̄ : v̄ ∈ Un(∗)} = ∅. By its definition, Bw̄v̄,mw̄v̄
=

lim(Tv̄) where Tv̄ = {η ∈ Tn : if mw̄v̄ < lg(η) then η(m + 1) ∈ wη�m for every
mw̄v̄ ≤ m}. Therefore, if we show that ∩{Tv̄ ∩ Tn,l(∗)+1 : v̄ ∈ Un(∗)} = ∅, then
it will follow that ∩{lim(Tv̄) : v̄ ∈ Un(∗)} = ∅. This follows from part (5) of the
induction hypothesis, as ∩{ ∪

ρ∈Tn,l(∗)
wv̄ρ : v̄ ∈ Un(∗)} = ∅. This contradiction proves

the claim.

Carrying the induction: For n = 0, choose any p0 ∈ Pα0 and let U0 = S0
l(∗). It’s

enough to show that U0 satisfies (5). Let E be an equivalence relation on U0 with
m∗∗ ≤ Π{|Tnα(l),ml | : l < n(∗)} equivalence classes and denote Π{|Tnα(l),ml | : l <
n(∗)} by m∗. For every m < m∗∗, denote by U0,m the mth equivalence class of
E. Suppose towards contradiction that for every m < m∗∗ there is some ηm in
∩{∪

ρ
wρ : w̄ ∈ U0,m}. For every m there is ρm such that ηm ∈ sucTn(ρm). Choose

w̄ = (wρ : ρ ∈ Tn,l(∗)) by letting wρ = sucTn(ρ) \ {ηm : m < m∗∗ ∧ ρm = ρ}. We
shall prove that w̄ ∈ U0. It will then follow that w̄ ∈ U0,m for some m, therefore
ηm ∈ ∪

ρ
wρ, contradicting the definition of wρ. This proves that U0 is as required. In

order to provvve that w̄ ∈ U0, note that for every ρ, |sucTn(ρ) \ wρ| ≤ |{m : ρm =
ρ}| ≤ m∗∗ ≤ m∗ = Π{|Tnα(l),ml | : l < n(∗)} � µn,ρ (the last inequality follows by
(f)(+) and the choice of ml). Therefore, w̄ ∈ U0.

Suppose now that n = k + 1 ≤ n(∗). Choose qk ∈ Pαk such that pk ≤ qk and
qk forces a value Λkv̄ to {ρ ∈ pw̄v̄ (αk) : lg(ρ) = mk + 1} for every v̄ ∈ Uk. For
every ρ ∈ Tnαk ,mk+1 let Uk,ρ = {v̄ ∈ Uk : ρ ∈ Λkv̄}. If v̄ ∈ Uk, then qk forces the
value Λkv̄ to {ρ ∈ pw̄v̄ (αk) : lg(ρ) = mk + 1}, hence Uk = ∪{Uk,ρ : ρ ∈ Tnα,mk+1}.
WLOG Uk,ρ are pairwise disjoint. Now suppose towards contradiction that none
of them satisfies requirement (5) of the induction for k + 1, then each Uk,ρ has a
counterexample Eρ, and the union ∪

ρ
Eρ is therefore an equivalence relation which

is a counterexample to Uk satisfying (5). Therefore, for some ρ, Uk,ρ satisfies (5),
so choose Un = Uk,ρ.

Define pn ∈ Pαk+1 ⊆ Pαn as follows:

1. pn � αk = qk.

2. pn(αk) = ∩{pw̄v̄ (αk)[ρ≤] : v̄ ∈ Un}.

Now for every v̄ ∈ Uk, pw̄v̄ � αk ≤ pk ≤ qk, hence qk Pαk ν ∈ pw̄v̄ (αk) →
1 + 1

m ≤ nor(sucpw̄v̄ (αk)(ν)). We shall prove that qk Pαk pn(αk) ∈ Q2
nα . As,

|Un| ≤ |S0
l(∗)| ≤ 2Σ{λn,ρ′ :ρ

′∈Λ0
l(∗)} < µnαk ,ρ, the assumptions of claim 10 hold, the

conclusion follows by the proof of claim 10. A similar argument (using the first
part of claim 10) proves the claim for the case of Q1

n.

So pn obviously satisfies requirements 1,2 and 6.

�

7. Main measurability claim

We’re now ready to prove the main result. We shall first prove that Cohen forcing
(hence Qin) turns the ground model set of reals into a null set with respect to our
ideal. We will then prove the main result by using a Solovay-type argument.
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Claim 22: For ι ∈ {0, 1
2 , 1, 2} we have Cohen ”there is a Borel set B ⊆ lim(Tn∗)

such that lim(Tn∗)V ⊆ B and B is (Qιn∗ , η
ι
n∗
∼

)-null”.

Proof : Let Q be the set of finite functions with domain {η ∈ Tn∗ : lg(η) < k}
for some k < ω such that f(ρ) ∈ sucTn∗

(ρ). (Q,⊆) is countable and for every
q ∈ Q there are q ≤ q1, q2 ∈ Q which are incompatibe, hence is equivalent to
Cohen forcing. Let f

∼
:= ∪

g∈G
∼

g. For f ∈ S = Π{sucTn∗
(ρ) : ρ ∈ Tn∗} define

Bf := {η ∈ lim(Tn∗) : for infinitely many n we have η � (n + 1) = f(ηn)}. For
every n < ω let Bf,n = {η ∈ lim(Tn∗) : η � (m + 1) 6= f(ρ) if n ≤ m and
n ≤ lg(ρ)}. Clearly,  ”f

∼
∈ S”, Bc

f = ∪
n<ω

Bf,n, and obviously each Bf,n is Borel,

hence Bf is Borel. For every η ∈ Tn∗ let wη = sucTn∗
(η) \ {f(η)}. As in claim

21, Qιn∗ ”ηιn∗
∼
∈ Bw̄” for w̄ and Bw̄ as in that proof. Hence Qιn∗ ”ηιn∗

∼
/∈ Bf ,

so Bf is (Qιn∗ , η
ι
n∗
∼

)-null. Let G ⊆ Q be generic and let g = f
∼

[G], so Bg is a

(Qιn∗ , η
ι
n∗
∼

)-null Borel set in V [G]. We shall prove that V [G] |= lim(Tn∗)V ⊆ Bg.

Let η ∈ lim(Tn∗)V and m < ω, it’s enough to show that in V , Q ”for some m ≤ k
and ρ ∈ Tn∗ , f

∼
(ρ) = η � (k + 1)”. Let p ∈ Q, we can extend p to a function p ≤ q

with domain {η ∈ Tn∗ : lg(η) < k} for some m ≤ k. Now let q ≤ s be an extension
of q with domain {η ∈ Tn∗ : lg(η) ≤ k} such that s(η � k) = η � (k+ 1). Obviously,
s forces the required conclusion, so we’re done.

�

Main conclusion 23: Let i ∈ {1, 2}. Let V |= CH and suppose ℵ1 < κ = cf(κ) ≤
µ. Let L be a linear order of cardinality µ and cofinality κ, such that for every
proper initial segment J ⊆ L and t, s ∈ L\J , there is an automorphism π of L over
J such that π(s) = t. Suppose that q is as in 13(A) such that Lq = L and mt = m
for every t ∈ Lq is a (constant) definition of the forcing Qin, then:
a) Pq is a c.c.c. forcing notion of cardinality µ.

b) Pq ”2ℵ0 = µ”.
c) Let G ⊆ Pq be generic over V , ηt = ηt

∼
[G] for t ∈ Lq, X = {ηt : t ∈ Lq}

and let V [X] be the collection of sets hereditarily definable from finite sequences of
members of X, then:
(α) V [X] |= ZF + ¬ACℵ0 and lim(Tn)V [X] = ∪{lim(Tn)V [{ηt:t∈u}] : u ⊆ Lq is
finite}.

(β) (Qin,ℵ1)-measurability: Every A ⊆ lim(Tn)V [X] is IQin,ℵ1 -measurable.

(γ) {ηt : t ∈ Lq} = lim(Tn) mod IQin,ℵ1 .

(δ) If J ⊆ Lq is a proper initial segment then {ηt : t ∈ J} ∈ IQin,ℵ1 .

(ε) The ideal IQin,ℵ1 is non-trivial.

(ζ) ℵ1 is not collapsed, there is an ω1-sequence of different reals, and if V = L then
ℵL1 = ℵV [X]

1 .
Proof : Clause a) By the definition of Pq and claim 17, so |Pq| ≤ Σ{|Pq,J | : J ⊆ L
is finite} ≤ 2ℵ0 + |L|<ℵ0 = 2ℵ0 + µ = µ.
Clause b) By a) we have Pq ”2ℵ0 ≤ µ”, and as |L| = µ we have Pq ”µ = |L| ≤
|{ηt
∼

: t ∈ L}| ≤ 2ℵ0”. Together we’re done.
16
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Clause c) (α) By the definitions of V [X] and Pq. In particular, ¬ACℵ0 , as we can
use (An : n < ω) where An := {{ηtl : l < n} : t0 <L ... <L tn−1}.

Clause c)(β) Let A ∈ V [X] be a subset of lim(Tm∗). A is definable in V [X] by
a first order formula φ(x, ā, c) such that c ∈ V and ā = (ηt0 , ..., ηtn−1) is a finite
sequence from X. Let J = {s ∈ Lq : s ≤ tl for some l}. For s ∈ L \ J let
Ls = {tl : l < n} ∪ {s}, then Ls ∈ Lq hence by 14 we have PLs l PLq . Let
Ts
∼

= TV (φ(ηs
∼
, ā, c)), so Ts

∼
is a PLq-name and actually a PLs -name.

Let (ps,i : i < ω) be a maximal antichian in PLs and let Ws ⊆ ω such that
ps,i  Ts

∼
= true if and only if i ∈ Ws. Define the P{tl:l<n}-name U

∼
:= {i < ω :

ps,i � {tl : l < n} ∈ GP{tl:l<n}
∼

}.

If G0 ⊆ P{tl:l<n} is generic over V and U = U
∼

[G0], then in V [G0], (lim(ps,i(s)[G0]) :
i ∈ U) are pairwise disjoint: by claim 7, if p, q ∈ Qιn are incompatible and η ∈
lim(p), then η /∈ lim(q) (otherwise, WLOG lg(tr(p)) ≤ lg(tr(q)), and both tr(p)
and tr(q) are initial segments of η, hence tr(p) ≤ tr(q) ∈ Tp which is a contradiction
by claim 7). Hence it’s enough to show that ((ps,i(s)[G0]) : i ∈ U) is an antichain in
V [G0]. Assume towards contradiction that for some i 6= j ∈ U there is a common
upper bound q for ps,i(s)[G0] and ps,j(s)[G0]. Therefore there is a P{tl:l<n}-name
q
∼
and r ∈ G0 such that r P{tl:l<n} ”ps,i(s), ps,j(s) ≤ q

∼
”. Since i, j ∈ U , we have

ps,i � {tl : l < n}, ps,j � {tl : l < n} ∈ G0, and as G0 is directed, there is a common
upper bound r1 ∈ G0 for ps,i � {tl : l < n}, ps,j � {tl : l < n} and r. Now let
r+ := r1 ∪ {(s, q

∼
)} ∈ PLs , then obviousy r+ is a common upper bound (in PLs) for

ps,i and ps,j , which contradicts our assumption.

Moreover, (ps,i(s)[G0] : i ∈ U) is a maximal antichain: If q ∈ Qιn
V [G0] is incom-

patible with ps,i(s)[G0] for every i ∈ U , then as before, there are r ∈ G0 and
a P{tl:l<n}-name q

∼
such that r forces that q

∼
is incompatible with ps,i(s) for every

i ∈ U . As before we can get a member of PLs that is incompatible with (ps,i : i < ω),
contradicting its maximality. Hence (ps,i(s)[G0] : i ∈ U) is a maximal antichain in
V [G0].

If s1, s1 ∈ Lq \ J , by the homogeneity assumption, there is an autommorphism
f of Lq over J such that f(s1) = s2. Therefore the natural map induced by f is
mapping ā to itself and ηs1

∼
to ηs2
∼
. Hence Ts1

∼
is mapped to Ts2

∼
. As (f̂(ps1,i) : i < ω)

and Ws1 have the same properties (with respect to Ts2
∼

) as (ps2,i : i < ω) and Ws2 ,

we may assume WLOG that Ws1 = Ws2 (denote it by W ) and f̂(ps1,i) = ps2,i.

Therefore, if G0 ⊆ P{tl:l<n} is generic and i ∈ U
∼

[G0], then there is pi ∈ (Qιn)V [G0]

and W such that for every s ∈ L \ J , ps,i(s)[G0] = pi and Ws = W .

Work now in V [G0]: Let B := ∪{lim(pi) : i ∈ W ∩ U}, so B is a Borel set and we
shall prove that A = B modulo the ideal: by clauses (c)(γ) + (c)(δ) proved below,
it’s enough to show that if s ∈ Lq \ J , then ηs /∈ A∆B.

Let s ∈ Lq \J and i ∈ U , then ps,i ∈ PLs/G0 and by the choice of ps,i, ps,i PLs/G0

”φ(ηs
∼
, ā, c) iff Ts

∼
= true iff i ∈ W”. In other words, in V [G0] we have: pi Qιn

”φ(ηs
∼
, ā, c) iff i ∈ W”. Since (pi : i ∈ U) is a maximal antichain, every G ⊆

Q2
n generic over V [G0] must contain exactly one of the pi, hence in V [G0] : Qιn

”φ(ηs
∼
, ā, c) iff i ∈ W for the pi such that pi ∈ G

∼
”. Now ps,i(s) = pi ∈ G

∼
iff

17
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ηs
∼
∈ lim(Tps,i(s)) = lim(Tpi), hence we got Q2

n
”φ(ηs

∼
, ā, c) iff i ∈ W where i is

such that ηs
∼
∈ lim(Tpi)”. Therefore Qιn ”ηs

∼
∈ A iff ηs

∼
∈ B”.

Clause c)(γ) If ρ ∈ lim(Tm∗)V [X] \ {ηt : t ∈ Lq}, then ρ ∈ lim(Tm∗)V [{ηt:t∈u}] for
some finite u. By claim 21, ρ is not (Qιm∗ , ηm∗

∼
)-generic over V . Therefore, by the

definition of I2
m∗ , Pq ”lim(Tm∗)\{ηt

∼
: t ∈ Lq} ∈ I2

m∗”. Why can we use claim 21?

Assume that in claim 21 α∗ is finite, assumptions (a)− (e) and (g) hold and (f) is
replaced by (h) where:
(h) p∗ P ρ

∼
/∈ {ηα
∼

: α < α∗}.

There is a condition p∗ ≤ p∗∗ and a natural number k such that p∗∗ P ρ
∼

� k /∈

{ηα
∼

� k : α < α∗} and p∗∗ forces values to ρ
∼
� k and ηα

∼
� k (α < α∗), which will be

deonted by ρ∗ and η∗α (α < α∗). WLOG k(n,nα) ≤ k for every α where k(n,nα)
is as in the definition of “far”.
For n ∈ N and η ∈ Tn, let n[η≤] be the natural restriction of n to T [η≤]

n . Now let
n∗ = n[ρ∗≤] and n∗α = n[η∗α≤]

α . By the choice of k, n∗ and n∗ηα are far, moreover,
they satisfy assumption f(+) of claim 21, and by iterating Qin∗α instead, we get the
desired conclusion.
Clause c)(δ) By claim 19, each Qmt adds a Cohen real, hence the set of previous
generics is included in a null Borel set by claim 22. More precisely: Supppose
that νt

∼
is a Qt

∼
-name of a Cohen real, we shall prove that Pq ”νt

∼
is Cohen over

V [(ηs
∼

: s < t)]”. Let p0 ∈ Pq, let P<t be defined as Pq with L<t instead of Lq and

let T
∼
be a P<t−name such that: p0 � L<t P<t ”T

∼
⊆ ω<ω is a nowhere dense tree”.

a. As P<t ” Qt
∼

”νt
∼

is Cohen over V P<t””, there is p ≤ p1 and ρ ∈ ω<ω such that:

1. p1(t) = p0(t).
2. For every ν such that ρ ≤ ν ∈ ω<ω and p2 ∈ P<t such that p1 � L<t ≤ p2, there
is p3 ∈ P≤t such that p1, p2 ≤ p3 and p3  ”ν ≤ νt

∼
”.

b. As T
∼

is a name of a nowhere dense tree, there are p2 ∈ P<t and ρ ≤ ν ∈ ω<ω

such that p1 � L<t ≤ p2 and p2  ”ν /∈ T
∼

”.

c. Combining (a) and (b), there is p1 ≤ p3 such that p3  ”ν ≤ νt
∼

”, hence
p3  ”νt

∼
/∈ lim(T

∼
)”, which proves the claim.

Clause c)(ε) Every definable set from IQin,ℵ1 is contained in a union of ℵ1 Borel
sets from IQin,ℵ1 , and since the cofinality of L is κ > ℵ1, there is a final segment of
{ηt : t ∈ L} not covered by them.
Clause c)(ζ) V |= AC, therefore there is an ω1-sequence of distinct reals in V .
Pq |= ccc, therefore ℵ1 is not collapsed, and that sequence is as required in V [X]
as well. If V = L, then ℵL1 = ℵV [X]

1 follows from ccc.

�

24. Discussion: As our model doesn’t sasitfy ACℵ0 , it’s natural to ask whether
we can improve the result getting a model of ACℵ0 or even DC. In [F1424] we
prove that assuming the existence of a measurable cardinal, we can get a model of
DC(ℵ1). This leads to the following question:
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25. Problem 1: Can we improve the current result and get a model of DC
without large cardinals?
As the current result gives measurability with respect to the ideal In,ℵ1 , it’s natural
to ask:
26. Problem 2: Can we get a similar result for the ideal In,ℵ0?
We intend to address these problems in [F1495].
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